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Abstract. Uncertainty in data is certainly one of the main problems in epi-
demiology, as shown by the recent COVID-19 pandemic. The need for effi-

cient methods capable of quantifying uncertainty in the mathematical model

is essential in order to produce realistic scenarios of the spread of infection.
In this paper, we introduce a bi-fidelity approach to quantify uncertainty in
spatially dependent epidemic models. The approach is based on evaluating

a high-fidelity model on a small number of samples properly selected from a
large number of evaluations of a low-fidelity model. In particular, we will con-

sider the class of multiscale transport models recently introduced in [13, 7] as

the high-fidelity reference and use simple two-velocity discrete models for low-
fidelity evaluations. Both models share the same diffusive behavior and are

solved with ad-hoc asymptotic-preserving numerical discretizations. A series
of numerical experiments confirm the validity of the approach.
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1. Introduction. Mathematical modeling in epidemiology has certainly experi-
enced an impressive increase in recent times driven by the overwhelming effects of
the COVID-19 pandemic. A large part of the research has been directed towards
the construction of models capable of describing specific characteristics associated
with the pandemic, in particular the presence of asymptomatic individuals, which
were largely underestimated, especially in the early stages of the spread of the dis-
ease [14, 23, 38, 36, 41]. Another line of research was aimed at the construction of
models capable of describing the spatial characteristics of the epidemic, in order to
be able to properly assess the impact of containment measures, in particular with
regard to the mobility on the territory and restrictions in areas with higher risk of
infection [13, 43, 42, 16, 1, 39]. Other approaches took into account the network
structure of connections [10], social heterogeneity aspects [21], and the multiscale
nature of the pandemic [6]. See also [37, 32] and the survey [2] for some recent
developments in epidemiological modelling based on the use of kinetic equations.

Regardless of the characteristics of the model, a common aspect concerns the
uncertainty of the data, which, especially in the first phase of the pandemic, largely
underestimated the number of infected individuals. More precisely, the difficulty
in correctly identifying all infected individuals in the early stages of the pandemic,
due to structural limitations in performing large-scale screening and the inability to
track the number of contacts, required the introduction of stochastic parameters into
the models and the construction of related techniques for quantifying uncertainty [3,
4, 9, 7].

Among the various techniques of uncertainty quantification, the approaches based
on stochastic strategies that do not necessarily require a-priori knowledge of the
probability distribution of the uncertain parameters, as needed in the case of meth-
ods based on generalized polynomial chaos [46], are particularly interesting in view
of a comparison with experimental data. On the other hand, the low convergence
rate of Monte Carlo type sampling techniques poses serious limitations to their
practical use.

In this context, multi-fidelity methods have shown to be able to efficiently alle-
viate such limitations through control variate techniques based on an appropriate
use of low-fidelity surrogate models able to accelerate the convergence of stochas-
tic sampling [48, 35, 30, 18, 19]. Specifically, general multi-fidelity approaches for
kinetic equations have been developed in [18, 19], while bi-fidelity techniques with
greedy sample selection in [30, 31]. We refer also to the recent survey in [17].

The present paper is devoted to extend the bi-fidelity method for transport equa-
tions in the diffusive limit developed in [30] to the case of compartmental systems
of multiscale equations designed to model mobility dynamics in an epidemic setting
with uncertainty [13, 7]. For this purpose, the corresponding hyperbolic system
recently introduced in [10, 9] will be used as a reduced low-fidelity model. The
two models allow to correctly describe the hyperbolic dynamics of the movement of
individuals over long distances together with the small-scale, high-density, diffusive
nature typical of urban areas [13]. In addition, both models share the same diffusive
limit in which it is possible to recover classical models of diffusive type [26]. From a
numerical viewpoint, a space-time asymptotic-preserving discretization, which work
uniformly in all regimes, has been adopted in combination with the bi-fidelity ap-
proach. This permits to obtain efficient stochastic asymptotic-preserving methods.
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The rest of the manuscript is organized as follows. In Section 2 we introduce the
epidemic transport model with uncertainty in the simplified SIR compartmental set-
ting, together with its diffusive limit. The corresponding reduced order two-velocity
model used as low-fidelity surrogate is also discussed. Next, we extend the previous
modeling to more realistic compartmental settings based on the introduction of the
exposed and asymptomatic compartments in Section 3. The details of the bi-fidelity
method and the asymptotic-preserving IMEX Finite Volume scheme are then given
in Section 4. Section 5 contains several numerical experiments that illustrate the
performance of the bi-fidelity approach. Some conclusions are reported at the end
of the manuscript.

2. Epidemic transport models with random inputs. For simplicity, we first
illustrate the modeling in the case of a classic SIR compartmental dynamic and sub-
sequently we will extend our arguments to a more realistic SEIAR model, designed
to take into account specific features of the COVID-19 pandemic, in Section 3.

2.1. The high-fidelity epidemic transport model. Let us consider a random
vector z = (z1, . . . , zd)

T ∈ Rd characterizing possible sources of uncertainty due
to the independent stochastic parameters z1, . . . , zd, which may affect variables of
the mathematical model, as well as parameters or initial conditions. Individuals
at position x ∈ Ω ⊂ R at time t moving with velocity v ∈ [−1, 1] are denote by
fS = fS(x, v, t, z), fI = fI(x, v, t, z) and fR = fR(x, v, t, z), which are the respective
kinetic densities of susceptible S (individuals who may be infected by the disease),
infectious I ( individuals who may transmit the disease) and removed R (individuals
healed or died due to the disease). We assume to have a population with subjects
having no prior immunity and neglect the vital dynamics represented by births and
deaths due to the time scale considered.

The kinetic distribution is then given by

f(x, v, t, z) = fS(x, v, t, z) + fI(x, v, t, z) + fR(x, v, t, z),

and we recover their total density by integration over the velocity space

ρ(x, t, z) =

∫ 1

−1

f(x, v∗, t, z) dv∗.

As a consequence,

S(x, t, z) =

∫ 1

−1

fS(x, v, t, z) dv

I(x, t, z) =

∫ 1

−1

fI(x, v, t, z) dv (1)

R(x, t, z) =

∫ 1

−1

fR(x, v, t, z) dv,

with ρ(x, t, z) = S(x, t, z) + I(x, t, z) +R(x, t, z), denote the density fractions of the
population at position x and time t > 0 that are susceptible, infected and recovered
respectively. In this setting, the kinetic densities satisfy the epidemic transport
equations [13]

∂fS
∂t

+ vS
∂fS
∂x

= −F (fS , I) +
1

τS

(
S

2
− fS

)
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∂fI
∂t

+ vI
∂fI
∂x

= F (fS , I)− γfI +
1

τI

(
I

2
− fI

)
(2)

∂fR
∂t

+ vR
∂fR
∂x

= γfI +
1

τR

(
R

2
− fR

)
,

where vS = λS(x)v, vI = λI(x)v, vR = λR(x)v, λS , λI , λR ≥ 0 take into account
the heterogeneities of geographical areas, and are thus chosen dependent on the
spatial location. Similarly, also the relaxation times τS = τS(x), τI = τI(x) and
τR = τR(x). The quantity γ = γ(x, z) is the recovery rate of infected, while the
transmission of the infection is governed by an incidence function F (·, I) modeling
the transmission of the disease [25]

F (g, I) = β
gIp

1 + κI
, (3)

with the classic bi-linear case corresponding to p = 1, κ = 0, even though it has
been observed that an incidence rate that increases more than linearly with respect
to the number of infected I can occur under certain circumstances [15, 5, 29]. The
parameter β = β(x, t, z) characterizes the average number of contacts per person
per time, multiplied by the probability of disease transmission in a contact between
a susceptible and an infectious subject; whereas κ = κ(x, t, z) > 0 acts as an
incidence damping parameter based on the self-protective behavior of the individual
that arises from awareness of the epidemic risk as the disease progresses [44, 22].
Notice that both β and κ may vary in time as a consequence of governmental control
actions, such as mandatory wearing of masks or full lockdowns, and the increasing
awareness of the epidemic risks among the population.

The standard threshold of epidemic models is the well-known reproduction num-
ber R0, which defines the average number of secondary infections produced when
one infected individual is introduced into a host population in which everyone is
susceptible [25]. This number determines when an infection can invade and persist
in a new host population. For many deterministic infectious disease models, an
infection begins in a fully susceptible population if and only if R0 > 1. Assuming
no inflow/outflow boundary conditions in Ω, integrating over velocity/space and
summing up the second equation in (2) we have

∂

∂t

∫
Ω

I(x, t, z) dx =

∫
Ω

F (S, I) dx−
∫

Ω

γ(x, z)I(x, t, z) dx ≥ 0

when

R0(t, z) =

∫
Ω
F (S, I) dx∫

Ω
γ(x, z)I(x, t, z) dx

≥ 1. (4)

The above quantity, therefore, defines the stochastic reproduction number for sys-
tem (2) describing the space averaged instantaneous variation of the number of
infectious individuals at time t > 0. This definition naturally extends locally by
integrating over any subset of the computational domain Ω if one ignores the bound-
ary flows.

2.1.1. Macroscopic formulation and diffusion limit. Let us introduce the flux func-
tions

JS = λS

∫ 1

−1

vfS(x, v, t, z) dv,
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JI = λI

∫ 1

−1

vfI(x, v, t, z) dv, (5)

JR = λR

∫ 1

−1

vfR(x, v, t, z) dv.

Then, integrating the system (2) against v, it is straightforward to get the following
set of equations for the macroscopic densities of commuters

∂S

∂t
+
∂JS
∂x

= −F (S, I)

∂I

∂t
+
∂JI
∂x

= F (S, I)− γI (6)

∂R

∂t
+
∂JR
∂x

= γI

whereas the flux functions satisfy

∂JS
∂t

+ λ2
S

∫ 1

−1

v2 ∂fS
∂x

dv = −F (JS , I)− JS
τS

∂JI
∂t

+ λ2
I

∫ 1

−1

v2 ∂fI
∂x

dv = − λI
λS
F (JS , I)− γJI −

JI
τI

(7)

∂JR
∂t

+ λ2
R

∫ 1

−1

v2 ∂fR
∂x

dv = −λR
λI
γJI −

JR
τR
.

By introducing the space dependent diffusion coefficients

DS =
1

3
λ2
SτS , DI =

1

3
λ2
IτI , DR =

1

3
λ2
RτR, (8)

which characterize the diffusive transport mechanism of susceptible, infectious and
removed, respectively, and keeping the above quantities fixed while letting the re-
laxation times τS,I,R to zero, we get from the r.h.s. in (2)

fS = S/2, fI = I/2, fR = R/2,

and consequently, from (7), we obtain a proportionality relation between the fluxes
and the spatial derivatives (Fick’s law):

JS = −DS
∂S

∂x
, JI = −DI

∂I

∂x
, JR = −DR

∂R

∂x
. (9)

Thus, substituting (9) into (6) we get the diffusion system [34, 40, 45, 26]

∂S

∂t
= −F (S, I) +

∂

∂x

(
DS

∂S

∂x

)
∂I

∂t
= F (S, I)− γI +

∂

∂x

(
DI

∂I

∂x

)
(10)

∂R

∂t
= γI +

∂

∂x

(
DR

∂R

∂x

)
.

We remark that the model’s capability to account for different regimes, hyperbolic
or parabolic, accordingly to the space dependent values τS , τI , τR, makes it suitable
for describing the dynamics of populations composed of human beings. Indeed, it is
clear that the daily routine is a complex mixing of individuals moving at the scale
of a city and individuals moving among different urban centers. In this situation, it
seems reasonable to avoid, due to the lack of microscopic information and the high
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complexity, the description of the details of movements within an urban area and
to describe this aspect through a diffusion operator. On the other hand, individuals
when moving from one city to another follow well established connections for which
a hyperbolic setting is certainly more appropriate.

2.2. The low-fidelity epidemic transport model. The low-fidelity model, is
based on considering individuals moving in two opposite directions (indicated by
signs “+” and “-”), with velocities ±λS for susceptible, ±λI for infectious and
±λR for removed, we can describe the spatio-temporal dynamics of the population
through the following two-velocity epidemic model [10]

∂S±

∂t
+ λS

∂S±

∂x
= −F (S±, I)∓ 1

2τS

(
S+ − S−

)
∂I±

∂t
+ λI

∂I±

∂x
= F (S±, I)− γI± ∓ 1

2τI

(
I+ − I−

)
(11)

∂R±

∂t
+ λR

∂R±

∂x
= γI± ∓ 1

2τR

(
R+ −R−

)
.

In the above system, individuals S(x, t, z), I(x, t, z) and R(x, t, z) are defined as

S = S+ + S−, I = I+ + I−, R = R+ +R−.

The transmission of the infection is governed by the same incidence function as in
the high-fidelity model, defined in (3). Also the definition of the basic reproduction
number R0 results the same previously introduced in (4).

2.2.1. Macroscopic formulation and diffusion limit. If we now introduce the fluxes,
defined by

JS = λS
(
S+ − S−

)
, JI = λI

(
I+ − I−

)
, JR = λR

(
R+ −R−

)
, (12)

we obtain a hyperbolic model equivalent to (11), but presenting a macroscopic de-
scription of the propagation of the epidemic at finite speeds, for which the densities
follow system (6) and equations of fluxes read

∂JS
∂t

+ λ2
S

∂S

∂x
= −F (JS , I)− JS

τS
∂JI
∂t

+ λ2
I

∂I

∂x
=

λI
λS
F (JS , I)− γJI −

JI
τI

(13)

∂JR
∂t

+ λ2
R

∂R

∂x
=

λR
λI
γJI −

JR
τR
.

Let us now consider the behavior of the low-fidelity model in diffusive regimes.
To this aim, we introduce the diffusion coefficients

DS = λ2
SτS , DI = λ2

IτI , DR = λ2
RτR. (14)

As for the previous model, the diffusion limit of the system is formally recovered
letting the relaxation times τS,I,R → 0, while keeping the diffusion coefficients (14)
finite. Under this scaling, from (13) we get equations (9), which inserted into (6)
lead again to the parabolic reaction-diffusion system (10).

Remark 1. An important aspect in the bi-fidelity approach here proposed, is that
the high-fidelity model and the low-fidelity one exactly coincide in the diffusive
limit. The only difference lays in the definition of the diffusion coefficients (see
eqs. (8) and eqs. (14)). As a consequence, in such a regime the bi-fidelity method
achieves the maximum accuracy.
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3. Extension to more epidemic compartments. To account for more realistic
models to analyze the evolution of the ongoing COVID-19 pandemic, we consider ex-
tending the simple SIR compartmentalization by taking into account two additional
population compartments, E and A, resulting in a SEIAR model [9, 7]. Subjects
in the E compartment are the exposed, hence infected but not yet infectious, being
in the latent period. Moreover, among the infectious subjects, we distinguish the
population between a group of individuals I who will develop severe symptoms and
a group of individuals A who will never develop symptoms or, if they do, these
will be very mild. This feature turns out to be essential to correctly analyze the
evolution of COVID-19. In fact, it has been shown that individuals belonging to
the A group are very difficult to detect and isolate, contributing more strongly to
the spread of the virus than the more easily detectable I individuals [23, 36, 41].

3.1. The high-fidelity SEIAR transport model. Let us now consider a popu-
lation at position x ∈ Ω moving with velocity directions v ∈ [−1, 1], still taking into
account possible uncertainties related to the random vector z. Defining the kinetic
densities of susceptible fS = fS(x, v, t, z), exposed fE = fE(x, v, t, z), severe symp-
tomatic infected fI = fI(x, v, t, z), mildly symptomatic or asymptomatic infected
fA = fA(x, v, t, z) and removed (healed or deceased) fR = fR(x, v, t, z), the kinetic
distribution of the population results

f(x, v, t, z) = fS(x, v, t, z)+fE(x, v, t, z)+fI(x, v, t, z)+fA(x, v, t, z)+fR(x, v, t, z).

In addition to (1), we have that

E(x, t, z) =

∫ 1

−1

fE(x, v, t, z) dv, A(x, t, z) =

∫ 1

−1

fA(x, v, t, z) dv.

In this setting, the kinetic densities satisfy the following transport equations [7]

∂fS
∂t

+ vS
∂fS
∂x

= −F (fS , I)− FA(fS , A) +
1

τS

(
S

2
− fS

)
∂fE
∂t

+ vE
∂fE
∂x

= F (fS , I) + FA(fS , A)− afE +
1

τE

(
E

2
− fE

)
∂fI
∂t

+ vI
∂fI
∂x

= aσfE − γIfI +
1

τI

(
I

2
− fI

)
(15)

∂fA
∂t

+ vA
∂fA
∂x

= a(1− σ)fE − γAfA +
1

τA

(
A

2
− fA

)
∂fR
∂t

+ vR
∂fR
∂x

= γIfI + γAfA +
1

τR

(
R

2
− fR

)
The quantities γI = γI(x, z) and γA = γA(x, z) are the recovery rates of sympto-
matic and asymptomatic infected (inverse of the infectious periods), respectively,
while a = a(x, z) represents the inverse of the latency period and σ = σ(x, z) is
the probability rate of developing severe symptoms [41, 23, 14]. In this model, the
transmission of the infection is governed by two different incidence functions, F (·, I)
and FA(·, A), simply to distinguish between the behavior of I and A individuals.
Analogously to (3),

FA(g,A) = βA
gAp

1 + κAA
, (16)

where a different contact rate, βA = βA(x, t, z), and coefficient κA = κA(x, t, z) are
taken into account for mildly/no symptomatic people. For the derivation of the
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reproduction number R0 of this SEIAR kinetic model, which results

R0(t, z) =

∫
Ω
FI(S, I) dx∫

Ω
γI(x, z)I(x, t, z) dx

·
∫

Ω
a(x, z)σ(x, z)E(x, t, z) dx∫

Ω
a(x, z)E(x, t, z) dx

+

∫
Ω
FA(S,A) dx∫

Ω
γA(x, z)A(x, t, z) dx

·
∫

Ω
a(x, z)(1− σ(x, z))E(x, t, z) dx∫

Ω
a(x, z)E(x, t, z) dx

,

(17)

the reader is invited to refer to [9, 7].
When introducing the same definition (5) of flux for the additional compartments,

JE and JA, integrating system (2) in v, we get the following set of equations for the
macroscopic densities

∂S

∂t
+
∂JS
∂x

= −F (S, I)− FA(S,A)

∂E

∂t
+
∂JE
∂x

= F (S, I) + FA(S,A)− aE

∂I

∂t
+
∂JI
∂x

= aσE − γII (18)

∂A

∂t
+
∂JA
∂x

= a(1− σ)E − γAA

∂R

∂t
+
∂JR
∂x

= γII + γAA

and for the fluxes

∂JS
∂t

+ λ2
S

∫ 1

−1

v2 ∂fS
∂x

dv = −F (JS , I)− FA(JS , A)− JS
τS

∂JE
∂t

+ λ2
E

∫ 1

−1

v2 ∂fE
∂x

dv =
λE
λS

(F (JS , I) + FA(JS , A))− aJE −
JE
τE

∂JI
∂t

+ λ2
I

∫ 1

−1

v2 ∂fI
∂x

dv =
λI
λE

aσJE − γIJI −
JI
τI

(19)

∂JA
∂t

+ λ2
A

∫ 1

−1

v2 ∂fA
∂x

dv =
λA
λE

a(1− σ)JE − γAJA −
JA
τA

∂JR
∂t

+ λ2
R

∫ 1

−1

v2 ∂fR
∂x

dv =
λR
λI
γIJI +

λR
λA

γAJA −
JR
τR
.

Moreover, defining also DE = 1
3λ

2
EτE and DA = 1

3λ
2
AτA and following the same

procedure discussed in Section 2.1.1, we recover this SEIAR system in the diffusive
regime:

∂S

∂t
= −F (S, I)− FA(S,A) +

∂

∂x

(
DS

∂S

∂x

)
∂E

∂t
= F (S, I) + FA(S,A)− aE +

∂

∂x

(
DE

∂E

∂x

)
∂I

∂t
= aσE − γII +

∂

∂x

(
DI

∂I

∂x

)
(20)

∂A

∂t
= a(1− σ)E − γAA+

∂

∂x

(
DA

∂A

∂x

)
∂R

∂t
= γII + γAA+

∂

∂x

(
DR

∂R

∂x

)
.
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3.2. The low-fidelity SEIAR transport model. The low-fidelity model is ob-
tained, also with the more complex SEIAR compartmentalization, considering the
discrete-velocity case with only two opposite velocities ±λ [7]:

∂S±

∂t
± λS

∂S±

∂x
= −F (S±, I)− FA(S±, A) +

1

2τS

(
S∓ − S±

)
∂E±

∂t
± λE

∂E±

∂x
= F (S±, I) + FA(S±, A)− aE± +

1

2τE

(
E∓ − E±

)
∂I±

∂t
± λI

∂I±

∂x
= aσE± − γII± +

1

2τI

(
I∓ − I±

)
(21)

∂A±

∂t
± λA

∂A±

∂x
= a(1− σ)E± − γAA± +

1

2τA

(
A∓ −A±

)
∂R±

∂t
± λR

∂R±

∂x
= γII

± + γAA
± +

1

2τR

(
R∓ −R±

)
.

When defining fluxes JE and JA as in (12), the equivalent hyperbolic model
underlying the macroscopic formulation of the spatial propagation of an epidemic
is obtained. The evolution of the densities follows (18), while for the fluxes we have

∂JS
∂t

+ λ2
S

∂S

∂x
= −F (JS , I)− FA(JS , A)− JS

τS
∂JE
∂t

+ λ2
E

∂E

∂x
=

λE
λS

(F (JS , I) + FA(JS , A))− aJE −
JE
τE

∂JI
∂t

+ λ2
I

∂I

∂x
=

λI
λE

aσJE − γIJI −
JI
τI

(22)

∂JA
∂t

+ λ2
A

∂A

∂x
=

λA
λE

a(1− σ)JE − γAJA −
JA
τA

∂JR
∂t

+ λ2
R

∂R

∂x
=

λR
λI
γIJI +

λR
λA

γAJA −
JR
τR
.

As for the previous cases, the diffusion limit of the system is formally recovered
letting the relaxation times τS,E,I,A,R → 0, while keeping the diffusion coefficients,
Di = λ2

i τi, i ∈ {S,E, I, A,R}, finite. Thus, the same procedure presented for the
SIR compartmentalization in Section 2.2.1 lead to the SEIAR parabolic system (20).

4. An asymptotic-preserving bi-fidelity numerical method. In this Section,
we present the details of the numerical method used to solve the stochastic problem
following the bi-fidelity asymptotic-preserving scheme proposed in [35, 48]. For the
high-fidelity model, the numerical scheme is structured in agreement with a discrete
ordinate method in velocity with the even and odd parity formulation [20, 28]. Both
the high-fidelity and low-fidelity solvers use Finite Volume Method (FVM) in space
and achieve asymptotic preservation in time using suitable IMEX Runge-Kutta
schemes [11, 12]. This permits to obtain a numerical scheme able to deal with
the diffusion limit of the mathematical models without loosing consistency, and for
which the time step size of the temporal discretization is not subject to excessive
restrictions related to the smallness of the scaling parameters τi. For simplicity,
we illustrate the numerical method in the case of the simpler SIR model. The
application of the same numerical scheme results straightforward for the case of the
SEIAR compartmentalization.
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4.1. Asymptotic-preserving IMEX Finite Volume scheme. In this Section,
we present the AP-IMEX Finite Volume scheme adopted to solve the SIR model at
each stochastic collocation point selected for the bi-fidelity approximation.

The asymptotic-preserving IMEX method and the corresponding even and odd
parities formulation was introduced in [13] for an SIR kinetic transport model in 2D
domains. According to [28, 24], for v > 0, we can define the even and odd parities
for the high-fidelity SIR kinetic transport model (2) as follows:

rS(v) =
1

2
(fS(v) + fS(−v)) , jS(v) = λS

2 (fS(v)− fS(−v)) ,

rI(v) =
1

2
(fI(v) + fI(−v)) , jI(v) = λI

2 (fI(v)− fI(−v)) ,

rR(v) =
1

2
(fR(v) + fR(−v)) , jR(v) = λR

2 (fR(v)− fR(−v)) .

An equivalent formulation of (2) can be written as

∂rS
∂t

+ v
∂jS
∂x

= −F (rS , I) +
1

τS

(
1

2
S − rS

)
∂rI
∂t

+ v
∂jI
∂x

= F (rS , I)− γrI +
1

τI

(
1

2
I − rI

)
∂rR
∂t

+ v
∂jR
∂x

= γrI +
1

τR

(
1

2
R− rR

)
∂jS
∂t

+ λ2
S v

∂rS
∂x

= −F (jS , I)− 1

τS
jS

∂jI
∂t

+ λ2
I v
∂rI
∂x

= F (jS , I)− γjI −
1

τI
jI

∂jR
∂t

+ λ2
R v

∂rR
∂x

= γjI −
1

τR
jR ,

(23)

where

S = 2

∫ 1

0

rS dv, I = 2

∫ 1

0

rI dv, R = 2

∫ 1

0

rR dv. (24)

The above densities can be approximated by a Gauss-Legendre quadrature rule.
This leads to a discrete velocity setting, usually referred to as the discrete ordinate
method, where we approximate

S ≈ SM =

NG∑
i=1

wi rS(ζi) I ≈ IM =

NG∑
i=1

wi rI(ζi) R ≈ RM =

NG∑
i=1

wi rR(ζi)

where wi and ζi are the NG standard Gauss-Legendre quadrature weights and points
in [−1, 1], and NG = Nv, number of chosen discrete velocities.

Assuming for simplicity of notation that τS,I,R = τ , we can write the above
system in the following compact form

∂r

∂t
+ v

∂j

∂x
= E(r)− 1

τ

(
r − R

2

)
∂j

∂t
+ Λ2v

∂r

∂x
= E(j)− 1

τ
j ,

(25)

with

r = (rS , rI , rR)
T
, j = (jS , jI , jR)

T
, R = (S, I,R)

T
, Λ = diag{λS , λI , λR},
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E(r) = (−F (rS , I), F (rS , I)− γrI , γrI)
T , E(j) (−F (jS , I), F (jS , I)− γjI , γjI)

T .

Following [12], the Implicit-Explicit (IMEX) Runge-Kutta discretization that we
consider for system (25) consists in computing the internal stages

r(k) = rn −∆t

k∑
j=1

akj

(
v
∂j(j)

∂x
+

1

τ

(
r(j) − R(j)

2

))
+ ∆t

k−1∑
j=1

ãkjE
(
r(j)

)

j(k) = jn −∆t

k−1∑
j=1

ãkj

(
Λ2v

∂r(j)

∂x
−E

(
j(j)
))
−∆t

k∑
j=1

akj
1

τ
j(j),

(26)

and evaluating the final numerical solution

rn+1 = rn −∆t

s∑
k=1

bk

(
v
∂j(k)

∂x
+

1

τ

(
r(k) − R(k)

2

))
+ ∆t

s∑
k=1

b̃kE
(
r(k)

)
jn+1 = jn −∆t

s∑
k=1

b̃k

(
Λ2v

∂r(k)

∂x
−E

(
j(k)

))
−∆t

s∑
k=1

bk
1

τ
j(k).

(27)

To properly compute the implicit terms R(j)

2 at each Runge-Kutta internal step ex-

plicitly, we refer to [27]. Matrices Ã = (ãkj), with ãkj = 0 for j ≥ k, and A = (akj),
with akj = 0 for j > k are s × s matrices, with s number of Runge-Kutta stages,
defining respectively the explicit and the implicit part of the scheme, and vectors
b̃ = (b̃1, ..., b̃s)

T and b = (b1, ..., bs)
T are the quadrature weights. Furthermore,

referring to [11, 12], if the following relations hold,

akj = bj , j = 1, . . . , s, ãkj = b̃j , j = 1, . . . , s− 1,

the method is said to be globally stiffly accurate (GSA). It is worth to notice that
this definition states also that the numerical solution of a GSA IMEX Runge-Kutta
scheme coincides exactly with the last internal stage of the scheme. Since the
GSA property is fundamental to preserve the correct diffusion limit and to achieve
asymptotic-preservation stability in stiff regimes [13, 10], in the sequel, the GSA
BPR(4,4,2) scheme presented in [12] is chosen, characterized by s = 4 stages for the
implicit part, 4 stages for the explicit part and 2nd order of accuracy.

At each internal stage of the IMEX scheme (26), we apply a Total-Variation-
Diminishing (TVD) Finite Volume discretization to evaluate the numerical fluxes [10,
8]. To achieve second order accuracy also in space, while avoiding the occurrence
of spurious oscillations, a classical minmod slope limiter has been adopted.

The same AP-IMEX Finite Volume scheme is adopted also to solve the low-
fidelity SIR model (6)-(13), as fully presented in [10]. The reader is invited to refer
to [10, 9, 7, 13] for further details on the properties of the chosen numerical scheme
applied to epidemic models.

4.2. Bi-fidelity stochastic collocation. In this Section, we briefly review the bi-
fidelity method developed in [35, 48]. Bi-fidelity methods make use of low-fidelity
models to effectively inform the selection of representative points in the parameter
space and then employ this information to construct accurate approximations to
high-fidelity solutions. To facilitate future discussion, we denote the expensive
high-fidelity solution uH(z) and the cheap low-fidelity solution uL(z) for any given
random parameter z ∈ Iz ⊂ Rd, where Iz is the domain of the random parameter
z.



412 GIULIA BERTAGLIA, LIU LIU, LORENZO PARESCHI AND XUEYU ZHU

The basic idea of the bi-fidelity approximation is to construct an inexpensive
surrogate uB(z) of the high-fidelity solution in the following non-intrusive manner:

uB(z) =

n∑
k=1

ck(z)uH(zk), (28)

where n is the number of the selected parameter points in the parameter space. If
n is small and the coefficient ck(z) can be efficiently and accurately approximated,
an efficient bi-fidelity approximation can be constructed. Once the surrogate is
constructed, the statistics of high-fidelity solutions can be quickly approximated by
evaluating the bi-fidelity surrogate via Monte Carlo methods or quadrature rules.

There are two major key questions for the performance of the above bi-fidelity
algorithms: (a) how to select the representative points zk effectively? (b) how to
efficiently construct the bi-fidelity approximation for any new given z but avoiding
requiring a high-fidelity simulation?

Subset Selection. Existing predefined or structured nodes (e.g., sparse grids,
cubature rules, etc.) often grows fast in high dimensions. Therefore, these options
cannot easily accommodate the current situation where we would like the size n
of γn to be small and also arbitrary. Alternatively, adaptive approaches based
on high-fidelity models to explore the parameter space suit our needs. However,
this typically requires a large number of high-fidelity samples, which might not be
computationally affordable. In contrast, the low-fidelity model is inexpensive to
evaluate and it mimics the variations of high-fidelity solutions in the parameter
space. This motivates us to employ the inexpensive low-fidelity model to learn and
explore the behaviors of the high-fidelity model in the parameter space.

We shall identify important points iteratively by a greedy approach [35, 48].
Specifically, we denote a candidate sample set ΓN = {z1, z2, . . . , zN}, which is
assumed to be large enough to cover the parameter space Iz. Initially, denote
γ0 = {} and assume we have the first k important points γk = {zi1 , zi2 , . . . , zik}
available at the k-th iteration. Denote the snapshot matrix uL(γk) = {u(z)|z ∈ γk}
and the corresponding spanned approximation space UL(γk) = span{uL(z)|z ∈
γk}. The corresponding high-fidelity approximation space can be defined similarly,
UH(γn) = span{uH(z)|z ∈ γn}. Then we pick the point (from the candidate set
ΓN ) so that the corresponding low-fidelity solution is farthest away from the existing
spanned low-fidelity approximation space UL(γk), to be the next sampling point:

zik+1
= arg max

z∈ΓN
dL(uL(z), UL(γk)), γk+1 = γk ∪ zik+1

, (29)

where dL(v,W ) is the distance between a function v ∈ uL(ΓN ) and the space
W ∈ uL(γk). We then repeat this step to select all n important points. The whole
procedure can be efficiently implemented by apply the pivoted Cholesky decompo-
sition on uL(ΓN ) [35, 48].

Bi-fidelity approximation. For any given z, to efficiently compute bi-fidelity
approximation in (28), it is desirable to find a cheap yet reasonably accurate ap-
proximation of ck(z). The bi-fidelity approach developed in [35, 48] learns these co-
efficients from the inexpensive low-fidelity model uL(z). Specifically, for any given
z, we shall compute the low-fidelity solution uL(z) and then construct its best ap-
proximation in the spanned low-fidelity approximation space UL(γn) by orthogonal
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projection:

uL(z) ≈ PUL(γn)u
L(z) =

n∑
k=1

cLk (z)uL(zk), zk ∈ γn, (30)

where the low-fidelity projection coefficients can be computed as follows:

GLcL = f , fL = (fLk )1≤k≤n, fLk = 〈uL(z), uL(zk)〉, (31)

and GL is the Gramian matrix of uL(γn),

(GL)ij =
〈
uL(zi), u

L(zj)
〉L
, 1 ≤ i, j ≤ n, (32)

where 〈·, ·〉L is the standard inner product associated with UL(γn).
Under certain conditions [35, 48], cLk (z) can be reasonably good approximation for

the high-fidelity coefficients in (28). Consequently, we can construct the bi-fidelity
approximation of the high-fidelity approximation solution uH(z) as follows:

uB(z) =

n∑
k=1

cLk (z)uH(zk). (33)

To put things together, we outline the major steps for the bi-fidelity approxi-
mation of the high-fidelity sample for a given z in Algorithm 1, reported in the
following.

Algorithm 1: A bi-fidelity approximation for a high-fidelity solution at
given z

1 Given a candidate sample set ΓN = {z1, z2, . . . , zN} ⊂ Iz, run the

low-fidelity model uL(zj) for each zj ∈ ΓN .
2 Select n “important” points γN from ΓN , where γN = {zi1 , · · · zin} ⊂ ΓN

and the low-fidelity approximation space by UL(γn).
3 Run high-fidelity simulation only at the point in the selected sample set γn.

4 For any given z, run the low-fidelity solver to get the low-fidelity solution

uL(z) and compute its low-fidelity coefficients in (30):

uL(z) ≈ PUL(γn)u
L(z) =

n∑
k=1

cLk (z)uL(zk), zk ∈ γn.

5 Construct the bi-fidelity approximation by applying the same
approximation rule as in low-fidelity model with (33):

uB(z) =

n∑
k=1

cLk (z)uH(zk).

Remark 2. As we mentioned above, the bi-fidelity method relies on the assumption
that the low-fidelity coefficients are similar to the high-fidelity coefficients in the
parameter space under certain conditions, as stated in [35, 48]. This may not hold
for some problems. In this case, a correction mapping between low-fidelity and
high-fidelity coefficient can be constructed by leveraging approximation power of
neural network to further improve the accuracy, if the additional high-fidelity data
are available. We refer readers to [33] for details on this approach.
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To construct the bi-fidelity approximation of the high-fidelity mean, with the
bi-fidelity surrogate uB(z), we can employ the Monte Carlo or other quadrature-
based methods to compute the statistical moments quickly by evaluating bi-fidelity
surrogates. To further reduce the number of bi-fidelity surrogate evaluations, a more
efficient extension to this approach is developed in [47]. The general procedure is
as follows:

• Compute the low-fidelity sample mean (via the Monte Carlo or quadrature
rules):

µL =

M∑
i=1

wiu
L(zi), (34)

where the high-fidelity mean µH is defined similarly.
• Compute its best approximation on the low-fidelity approximation space
UL(γn) by orthogonal projection,

µL ≈ PUL(γn)µ
L =

n∑
i=1

cLi u
L(zi), (35)

where the expansion coefficients cL are computed by solving the following
linear system:

GLcL = gL, gL =
〈
µL, uL(zj)

〉L
, 1 ≤ j ≤ n, zj ∈ γn. (36)

• Using this coefficient cLk as the surrogate of the high-fidelity coefficient of the
high-fidelity mean µH , the bi-fidelity approximation of the high-fidelity mean
can be constructed as follows:

µB =

n∑
k=1

cLk u
H(zk), zk ∈ γn. (37)

Note that in this way, only one bi-fidelity surrogate evaluation is required. The
standard deviation can be computed similarly. We refer readers to [47] for additional
details.

5. Numerical examples. To examine the performance of the proposed methodol-
ogy, two benchmark tests are considered: the first concerning the kinetic transport
model with the SIR compartmentalization discussed in Section 2, and the second
one regarding the extension to the SEIAR modeling presented in Section 3. It is
worth to highlight that, in these tests, we collect all the quantities of interests to-
gether in a single vector to choose the zk points of the bi-fidelity algorithm, for
either the 3 compartments S, I,R in Test 1 or the five compartments S, E, I, A,
R in Test 2. From the experiments, we also find that the results are similar if we
choose the zk points separately for the different epidemic compartments.

5.1. Test 1: SIR model with heterogeneous environment. We first consider
the initial distributions of the high-fidelity kinetic SIR model (2) as follows:

fi(x, v, 0) = c i(x, 0) e−
v2

2 , i ∈ {S, I,R} (38)

where c = 1
2

∑NG
i=1 wi e

− ζ
2
i
2 is a re-normalization constant, withNG number of Gauss-

Legendre quadrature points as defined in Section 4.1, and

S(x, 0) = 1− I(x, 0), I(x, 0) = 0.01e−(x−10)2 , R(x, 0) = 0,
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in the physical domain L = [0, 20]. The initial fluxes JS(x, 0), JI(x, 0) and JR(x, 0)
are null and we consider periodic boundary conditions. The same initial conditions
for S, I,R and JS , JI , JR are imposed in the low-fidelity SIR model (6)-(13). In
the following tests, we consider a 2-dimensional random vector z = (z1, z2)T , with
independent random parameters z1 and z2 that follow a uniform distribution, zj ∼
U(−1, 1), j = 1, 2.

We analyze the behavior of the proposed methodology concerning spatially het-
erogeneous environments, considering a spatially variable contact rate [10, 44]

β(x, z) = β0(z)

(
1 + 0.05 sin

(
13πx

20

))
,

where

β0(z) = 11(1 + 0.6z1),

and a recovery rate

γ(z) = 10(1 + 0.4z2).

In the incidence function, we set κ = 0 and p = 1. Therefore, we simulate an
infectious disease characterized by an R0 perturbed around the value 1 depending
on the random fluctuations. We discretize the spatial domain, both in the high-
fidelity and low-fidelity models, with Nx = 150 cells and consider Nv = 8 velocities
for the high-fidelity model. To compute the reference solutions for the mean and
standard deviation, we use a 3-rd level sparse grid quadrature based on Clenshaw-
Curtis rules for the choice of the stochastic collocation nodes, with a total of 29
points, for both the high-fidelity and low-fidelity models.

Test 1 (a): In this case, a parabolic configuration of speeds and relaxation param-
eters is considered, setting λ2

i = 105, i ∈ {S, I,R}, and τi = 10−5 in the low-fidelity
model and τi = 3× 10−5 in the high-fidelity model, to maintain consistency of the
two simulations (see Remark 1). The time step size results ∆t = 0.89 × 10−2 in
both models, nevertheless the low-fidelity code is almost 5 times faster than the
high-fidelity one (tHFCPU ≈ 70.0 s, tLFCPU ≈ 14.3 s to simulate until t = 5 in a ma-
chine with processor Intel(R) Core(TM) i7-9750H CPU @2.60 GHz – 6 cores and
12 logical processors).

In the first row of Figure 1, the expectation and standard deviation of the solution
of compartment I for the high-fidelity model, the low-fidelity model and the bi-
fidelity approximation at time t = 5 are shown. As expected, since high-fidelity
and low-fidelity models share the same diffusive limit, a perfect agreement of the
solutions can be observed. To confirm this, in the second row of the same figure,
we also plot the L2 errors of the mean and standard deviation between the bi-
fidelity and high-fidelity solutions at T = 5 with respect to the number of selected
“important” points n of the bi-fidelity algorithm. A fast error decay is clearly
observed. With only n = 8 hi-fidelity sample points, bi-fidelity approximation can
achieved a relative error of O(10−6) for both the mean and standard deviation.

Test 1 (b): In this second case, we consider the hyperbolic regime by letting λi = 1,
i ∈ {S, I,R}, while τi = 1 in the low-fidelity model and τi = 3 in the high-fidelity
model, for consistency. The time step size results ∆t = 0.12 in both models, but
the low-fidelity simulation is again almost 5 times faster than the high-fidelity one
(tHFCPU ≈ 5.6 s, tLFCPU ≈ 1.3 s to simulate until t = 5 in the same machine previously
mentioned).
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Figure 1. Test 1 (a): SIR model in diffusive regime. First row:
expectation (left) and standard deviation (right) obtained at t =
5 for the variable I with the three methodologies, by using n =
8 points for the bi-fidelity approximation. Second row: relative
L2 errors of the bi-fidelity approximation for the mean (left) and
standard deviation (right) of density I with respect to the number
of “important” points n used in the bi-fidelity algorithm, compared
with low-fidelity errors.

In Figure 2, the results of Test 1(b) are reported for the infectious compartment
I at time t = 5. The first row shows expectation and standard deviation of the high-
fidelity, the low-fidelity and the bi-fidelity solutions. While low-fidelity model fails
to capture details of the hi-fidelity solutions around peaks due to the different ve-
locity setting considered in the two models, bi-fidelity approximation are in almost
perfect agreement with the high-fidelity ones, confirming the validity of the pro-
posed methodology even with hyperbolic configurations of the scaling parameters.
In addition, we plot the relative L2 error convergence of the mean and standard
deviation of the bi-fidelity and high-fidelity solutions at t = 5 with the number of
high-fidelity samples, in the second row of Figure 2. Again, we observe a fast error
decay for mean and standard deviation with O(10) high-fidelity samples.

5.2. Test 2: SEIAR model with distinguished epidemic hotspots. Next,
we analyze the effectiveness of the proposed methodology also with the extended
SEIAR compartmentalization examining a more realistic epidemic scenario. Let
us now consider a 2-dimensional random vector z, this time with zj ∼ U(0, 1),
j = 1, 2. We design an initial condition for the low-fidelity SEIAR model (18)-(22)
that simulates the presence of 3 cities aligned in the spatial domain L = [0, 20]
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Figure 2. Test 1 (b): SIR model in hyperbolic regime. First
row: expectation (left) and standard deviation (right) obtained at
t = 5 for the variable I with the three methodologies, by using n =
14 points for the bi-fidelity approximation. Second row: relative
L2 errors of the bi-fidelity approximation for the mean (left) and
standard deviation (right) of density I with respect to the number
of “important” points n used in the bi-fidelity algorithm, compared
with low-fidelity errors.

with a different number of exposed (infected but not yet infectious) individuals,
subjected to randomness, distributed following a Gaussian function,

E(x, 0, z) = α1(z) e−(x−x1)2 + α2(z) e−(x−x2)2 + α3(z) e−(x−x3)2 ,

where x1 = 10/3, x2 = 10, x3 = 50/3 are the coordinates of the city centers
and α1 = 0.01(1 + z1), α2 = 0.001(1 + z1), α3 = 0.004(1 + z1) are the stochastic
amplitudes. In this case, we set the large stochastic amplitude to model large
uncertainty present on the initial amount of exposed people when an epidemic
starts spreading. Indeed, it is worth to underline that the initial number of exposed
individuals is certainly one of the variables most affected by uncertainty during
epidemic outbreaks [23]. We consider that there are no infectious people at t = 0,
being

S(x, 0, z) = 1− E(x, 0, z), I(x, 0) = 0, A(x, 0) = 0, R(x, 0) = 0,

and JS(x, 0) = JE(x, 0) = JI(x, 0) = JA(x, 0) = JR(x, 0) = 0, with periodic bound-
ary conditions, to allow a connection also between cities 1 and 3. The initial distri-
butions of the high-fidelity kinetic SEIAR model (15) then read as defined in (38),
for i ∈ {S,E, I, A,R}.
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Figure 3. Test 2 (a): SEIAR model in intermediate regime. The
baseline temporal and spatial evolution of compartments S (first
row, left), E (first row, right), I (second row, left) and A (second
row, right) in the high-fidelity model.

Concerning epidemic parameters, to simulate the more challenging scenario in
which the incidence function presents sinusoidal oscillations in space as well as being
greater in the most populated areas, we consider the following distribution of the
contact rate related to asymptomatic individuals:

βA(x, z) = β0
A(z)

(
1 +

1

2
e−(x−x1)2 +

1

4
e−(x−x2)2 +

1

2
e−(x−x3)2

)
+ 0.05 sin(2πx),

where β0
A is affected by the following random fluctuations:

β0
A(z) = 0.5(1 + 0.5z2).

Assuming that highly infectious subjects are mostly detected in the most opti-
mistic scenario, being subsequently quarantined or hospitalized, we set βI(x, z) =
0.03βA(x, z). Then, we fix γI = 1/14, γA = 1/7, a = 1/3, σ = 1/12.5, considering
these clinical parameters deterministic according to values adopted in [9, 7, 14, 23]
to simulate the COVID-19 spread. Finally, in the incidence functions, we set
κI = κA = 0, hence assuming that initially individuals are not aware of the epi-
demic outbreak, and p = 1 to work with the standard bi-linear case. The resulting
setting permits to simulate and epidemic characterized by a baseline reproduction
number R0 = 3. We consider Nx = 150 cells for both high-fidelity and low-fidelity
simulations, and use Nv = 8 velocities for the high-fidelity solution.
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Figure 4. Test 2 (a): SEIAR model in intermediate regime. Ex-
pectation (left) and standard deviation (right) of densities E (first
row), I (second row) and A (third row) at time t = 5, obtained
with the three methodologies, using n = 6 for the bi-fidelity solu-
tion.

Test 2 (a): In the first case, an intermediate regime between parabolic and hy-
perbolic is considered, setting λ2

i = 10, i ∈ {S,E,A,R}, λI = 0 and τi = 0.25,
i ∈ {S,E, I, A,R}, in the low-fidelity model and τi = 0.75 in the high-fidelity
model. The characteristic speed of compartment I is fixed to zero because we
assumed that infectious people with severe symptoms are generally detected and
isolated [9, 7].

The baseline space-time evolution of the compartments is shown in Figure 3,
where the fast propagation of the epidemic can be observed, especially starting from
the first city on the left, as expected. In Figure 4, the expectation and standard
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Figure 5. Test 2 (a): SEIAR model in intermediate regime. Rel-
ative L2 error decay of the bi-fidelity approximation of expectation
(left) and standard deviation (right) for the density A with respect
to the number of selected “important” points n, compared with
low-fidelity errors.

Figure 6. Test 2 (b): SEIAR model in hyperbolic regime. Base-
line temporal and spatial evolution of compartments S (first row,
left), E (first row, right), I (second row, left) and A (second row,
right) in the high-fidelity model.

deviation of infected individuals, divided by each compartment, are presented for
each methodology adopted, highlighting the validity of the bi-fidelity approach.
In Figure 5, L2 error decay of the bi-fidelity approximations, with respect to the
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number of selected “important” points n, is compared with the error that would be
obtained simply using the low-fidelity model.
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Figure 7. Test 2 (b): SEIAR model in hyperbolic regime. Ex-
pectation (left) and standard deviation (right) of densities E (first
row), I (second row) and A (third row) at time t = 5, obtained
with the three methodologies, using n = 7 for the bi-fidelity solu-
tion.

Test 2 (b): In the second case, we consider a fully hyperbolic regime choosing
λ2
i = 1, i ∈ {S,E,A,R}, λI = 0, and τi = 10, i ∈ {S,E, I, A,R}, and τi = 30

respectively in the low-fidelity and high-fidelity model.

The baseline space-time evolution of the compartments of major interest is pre-
sented in Figure 6. In this figure, the spatial heterogeneity of the epidemic spread
related to the prescribed contact rate can be clearly appreciated. Mean and stan-
dard deviation obtained with the 3 approaches are shown for compartments E,
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Figure 8. Test 2 (b): SEIAR model in hyperbolic regime. Rela-
tive L2 error decay of the bi-fidelity approximation of expectation
(left) and standard deviation (right) for the density A with respect
to the number of selected “important” points n, compared with
low-fidelity errors.

I and A in Figure 7. Again, although the low-fidelity and high-fidelity solutions
show clear discordant trends, the effectiveness of the bi-fidelity method is plainly
confirmed. In Figure 8, the decay of the L2 relative error norm of the bi-fidelity
approximation with respect to the number of points n shows that a proper accuracy
can be achieved for both mean and standard deviation even in this challenging test
case.

6. Conclusions. In this work we introduced a bi-fidelity method for the quantifi-
cation of uncertainty in epidemiological transport models based on an asymptotic-
preserving space-time discretization. In detail, after presenting the high-fidelity
epidemiological model, we considered the corresponding bi-fidelity model. Both
models share the same diffusive limit and permits to recover classical epidemic
models based on diffusion equations. The numerical scheme used allows to have an
efficient quantification of the uncertainty in different regimes, using few simulations
of the high-fidelity model and several runs of the low-fidelity model for points selec-
tion in the random space. Results for one-dimensional transport problems based on
realistic compartmentalization in relation to the recent COVID-19 pandemic, which
also include asymptomatic individuals, show the validity of the presented approach.
Further research will be directed toward extending the present approach to realistic
contexts such as those studied in [7, 9].
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