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Abstract: Label noise is a harmful issue that arises when data are erroneously labeled. Several label
noise issues can occur but, among them, unit of measure inconsistencies (UMIs) are inexplicably
neglected in the literature. Despite its relevance, a general and automated approach for UMI detection
suitable to gas turbines (GTs) has not been developed yet; as a result, GT diagnosis, prognosis, and
control may be challenged since collected data may not reflect the actual operation. To fill this gap, this
paper investigates the capability of three supervised machine learning classifiers, i.e., Support Vector
Machine, Naïve Bayes, and K-Nearest Neighbors, that are tested by means of challenging analyses
to infer general guidelines for UMI detection. Classification accuracy and posterior probability of
each classifier is evaluated by means of an experimental dataset derived from a large fleet of Siemens
gas turbines in operation. Results reveal that Naïve Bayes is the optimal classifier for UMI detection,
since 88.5% of data are correctly labeled with 84% of posterior probability when experimental UMIs
affect the dataset. In addition, Naïve Bayes proved to be the most robust classifier also if the rate of
UMIs increases.

Keywords: label noise; data reliability; gas turbines; machine learning; classification

1. Introduction
1.1. Problem Statement and Literature Survey

Monitoring, diagnostics, and prognostics are fundamental tasks that can be efficiently
performed only if data reflect the actual operating condition of the unit under analysis.
However, data may be corrupted by means of both feature and label noise, whose rate may
be even equal to 5% in real-word installations [1]. Faulty sensors and transmission errors
generally cause feature noise [1]. Instead, label noise, which is also known in the literature
as class noise, occurs when data are incorrectly labeled [2] because of erroneous labelling
processes [3] and process anomalies [4]. In the literature, some studies, e.g., [3], claimed
that label noise issue is usually more harmful than feature noise.

Thus, several studies have recently developed data-cleaning approaches, e.g., the
study [5], as well as tolerant and robust methodologies (e.g., [3,6,7]), for identifying noisy
labels and smoothing the negative effect of incorrectly labeled data.

However, Pu and Li [6] and Liu et al. [7] have recently stated that label noise is
an urgent and neglected issue in industry. So far, only Pu and Li [6], Liu et al. [7], and
Zhang et al. [8] have dealt with the removal of label noise in industrial applications.

In general, data are stored in databases in which data are marked by means of several
labels. As demonstrated by Wang et al. [9], the identification of the actual label can be
performed by means of data-based models. To this purpose, supervised machine learning
(ML) techniques can be efficiently exploited, since data are classified within different classes,
e.g., fault and normal operation. For example, Chen et al. [10] have recently developed a
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novel hierarchical ML model for the detection and identification of faults affecting rotary
machines. Instead, Si et al. [11] exploited an SVM-based classifier for classifying the shear
cutting state into eight classes.

Though some authors addressed the label noise issue affecting a unit health state,
e.g., a wind turbine gearbox in [8], no studies tuned and tested proper methodologies
for the detection of unit of measure inconsistencies (UMIs), which occur because of the
availability of several systems of measurements. As a result, unit of measure (UOM) may
be incorrectly assumed. Such event is not infrequent since GTs are currently equipped with
hundreds of sensors and manufacturer diagnostic centers monitor large fleets of machines.
Moreover, it should be noted that UMI detection is a highly challenging task, since UMIs
and sensor anomalies sometime exhibit a similar behavior, especially in field datasets.

Unit of measure inconsistencies also affect data acquired from GTs, because their
acquisition systems do not usually include automated and general procedures for detecting
UMIs. In fact, UMIs are identified by means of visual and manual checks that require an
in-depth insight about GT operation [4,12]. Such analyses are usually inefficient since they
are time consuming and wrong units may persist even after manual verification.

Alternatively, UMIs can be detected by considering the expected range of variation
of the physical quantity under analysis. Based on engineering practice, minimum and
maximum acceptability thresholds are identified; if the physical quantity exceeds such a
range, a UMI is identified. Such a practice clearly requires a fine tuning of the acceptability
thresholds, otherwise UMIs may not be detected.

As a consequence, the diagnosis of GT sensors may be compromised, by leading to
several false positives and eventually wrong recommendation to customers.

To the authors’ knowledge, so far only Manservigi et al. [4,12] have focused on the
detection of UMIs in GT sensors. These two papers exploited the Support Vector Machine
(SVM) classifier, which proved to be a general and automated data-cleaning approach to
both detect UMIs and provide the actual label, i.e., UOM. Four SVM approaches were
investigated, by coupling two kernel functions, i.e., linear and Radial Basis Function (RBF),
to two decomposition strategies, i.e., One-Vs-One (OVO) and One-Vs-All (OVA). The
SVM classifier was significantly challenged by using up to 12 classes and training the ML
models also by means of noisy data. The comprehensive analyses pointed out that the SVM
classifier coupled to the RBF OVO approach (SVM RO) outperformed the other alternatives,
since it was more robust and accurate.

Despite the encouraging results documented in [4,12], further attempts are required
to identify the optimal approach for UMI detection. To this purpose, the capability of
alternative supervised classifiers, e.g., Naïve Bayes (NB) and K-Nearest Neighbors (K-NNs),
is worth investigation. In fact, as demonstrated by recent studies, e.g., [13], accuracy of
these classifiers may also be close to 100%.

In the literature, both NB and K-NN classifiers broadly proved their reliability and
versatility in real-world applications.

For example, the NB classifier is usually exploited for spam filtering and document
classification, as well as for diagnostic purposes. Aralikatti et al. [14] exploited the NB
classifier to classify the faulty condition of a carbide tool, while it detected hotspots in
solar photovoltaic modules in Niazi et al. [15]. Recently, the NB classifier has also been
applied for detecting and classifying faults occurring in transmission lines [16,17]. In a
study developed by da Silva et al. [16], the NB accuracy was equal to 95%, while an NB-
based classifier outperformed alternative classifiers, e.g., Multi-Layer Perceptron Neural
Network, in Aker et al. [17].

In the literature, several studies exploited the K-NN classifier to diagnostic purposes.
For example, Shi et al. [18] applied the K-NN classifier to detect different fault types
affecting rotors. The authors compared the K-NN accuracy to other classifiers, e.g., linear
SVM, by stating that K-NN exhibited the highest fault diagnosis accuracy. Aslinezhad and
Hejazi [19] used the K-NN classifier for assessing the deformation of turbine blade tip. The
authors varied the K number, by achieving acceptable results in terms of accuracy.
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1.2. Contribution and Outline of This Paper

This study contributes to state-of-the-art-literature in the field of artificial intelligence
by focusing on UMIs occurring in GTs. The novelty of the paper is acknowledged by recent
studies [6,7], even in industrial applications. To fill this gap, the current paper identifies
the optimal supervised classifier for UMI detection. To this purpose, the capability of three
supervised classifiers is compared by means of comprehensive and challenging analyses.
The goal of this paper is in fact the comparison of the classifiers aimed at investigating
the benefits and drawbacks of each methodology with respect to UMI detection to extract
general guidelines for field application.

First, SVM RO is accounted for thanks to the classification capability demonstrated in
Manservigi et al. [4,12]. In addition, the NB and K-NN classifiers are also investigated, since
they are usually more accurate than more interpretable methods, e.g., decision trees, [20].

Finally, with respect to Manservigi et al. [4,12], the current study also evaluates the
robustness of each classifier by varying the rate of UMI.

As a result, the optimal classifier may be exploited as a general data-cleaning approach
that filters out or correctly labels noisy data before the evaluation of GT health state. Thus,
the methodologies and results of this paper can be used to improve the reliability of GT
monitoring, diagnostics, and prognostics.

The paper is structured as follows. First, characteristics, basics, benefits, and draw-
backs of the three supervised classifiers are described. Then, the paper outlines the general
procedure to identify data used for training and testing the considered classifiers. Fur-
thermore, field data are shown, and results are broadly discussed. Robustness of each
classifier is evaluated by means of a sensitivity analysis to provide general rules of thumb
for UMI detection.

2. Supervised Machine Learning Classifiers
2.1. Overview

Machine learning techniques are useful approaches that are currently exploited in
several research fields. Their effectiveness strongly depends on theoretical rules, as well as
characteristics of data used for training and testing the methodology.

In artificial intelligence, two different learning strategies exist, namely eager and lazy
learners. Eager learners exploit labeled data to construct a generalization model [21], which
is built throughout the training phase. The general validity of the model is subsequently
tested during the test phase. Conversely, lazy learners do not construct a model, but labeled
data are only stored [21]. Thus, an appropriate training phase is not performed [22].

As stated in Kumar and Sahoo [23], supervised classifiers can be divided into two
classes, i.e., density-based and geometric-based classifiers. Most classifiers belong to
the density-based class, which further discriminates between parametric and non-
parametric classifiers.

In the following, the classification procedure adopted by SVM, Naïve Bayes, and
K-NN classifiers is described, by also highlighting their benefits and drawbacks.

2.2. Basics of Support Vector Machine

Support Vector Machine is one of the most popular eager classifiers exploited for both
binary and multi-class problems.

Data classification can be performed by means of linear or non-linear kernel functions
that identify the optimal separating hyperplane that separates different classes [24]. The for-
mer is exploited when data are linearly separable. Conversely, non-linear kernel functions,
such as Radial Basis Function (RBF), are recommended.

Support Vector Machine exploits the divide-and-conquer paradigm for dividing a
multi-class problem into binary subproblems. To this purpose, two different strategies,
namely One-vs-One (OVO) and One-vs-All (OVA) decompositions, can be exploited. In
OVO decomposition, each learner is trained by means of a pair of UOMs, whereas in OVA
decomposition the learner is trained by using one class vs. all the others.
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In a binary classification problem that exploits a linear kernel function, the SVM
classifier uses labeled data, i.e., y, and their labels, i.e., l, to identify a linear decision
hyperplane. To this aim, a constrained optimization problem is solved by setting the
derivative of the Lagrangian equal to zero [12,25]. Thus, the linear decision hyperplane is
obtained by maximizing Equation (1)

max

(
Ntr

∑
i=1

ffi −
1
2

Ntr

∑
i=1

Ntr

∑
j=1

ffiffjlilj〈yi, yj〉
)

(1)

where α is the Lagrangian multiple and Ntr is the number of training data. Data for
testing, i.e., x, are labeled as the sign provided by Equation (2), where b is the intercept of
decision hyperplane:

g(x)= sign

(
Ntr

∑
i=1

liffi〈x, yi〉+b

)
(2)

Equations (1) and (2) can be generalized by using the non-linear kernel function k
(Equation (3)):

k
(

yi, yj

)
= 〈Φ (yi), Φ

(
yj
)〉

(3)

where Φ is the mapping function [25]. According to Equation (3), Equations (1) and (2) can
be written in the form reported in Equations (4) and (5):

max

(
Ntr

∑
i=1

ffi −
1
2

Ntr

∑
i=1

Ntr

∑
j=1

ffiffjliljk
(

yi, yj

))
(4)

g(x)= sign

(
Ntr

∑
i=1

liffik(x, yi)+b

)
(5)

Based on the results reported in [4,12], the current paper exploits the RBF kernel
function, which is defined as in Equation (6):

k
(

yi, yj

)
= e−fl(yi − yj)

2
(6)

where γ = 1/2σ2 is the distance between data and the decision hyperplane.

2.3. Benefits and Drawbacks of Support Vector Machine

In the literature, several studies stated that SVM usually outperforms other supervised
classifiers [26–28]. This benefit is generally clearer when the training dataset comprises a
limited amount of data. In addition, SVM is slightly affected by overfitting problems [29],
so that an excellent generalization can be achieved [30].

Benefits and drawbacks of the SVM classifier are strictly correlated to both kernel
functions and decomposition strategies. As demonstrated in Manservigi et al. [4,12] and
Krawczyk et al. [31], OVO decomposition usually achieves higher classification accuracy
than the OVA decomposition, though non-competent classifiers are trained and computa-
tional time may be high.

2.4. Basics of Naïve Bayes

Naïve Bayes classifier is a parametric classifier whose classification response is pro-
vided by means of an eager learning [23]. It is based on the Bayes’ theorem and assumes
that f features are mutually independent. In practice, the independency assumption may be
violated, but it significantly simplifies the classification task, without a dramatic reduction
of prediction accuracy and robustness [16,32].
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Naïve Bayes classifier assigns each unlabeled data, i.e., xi, to the most probable class C,
i.e., the one that accounts for the highest posterior probability (or conditional probability),
calculated as in Equation (7):

P(Ck|x i) =
P(xi|C k)P(Ck)

P(xi)
(7)

According to Equation (7), the conditional probability that data xi belongs to class
Ck depends on the class prior probability P(Ck) and the likelihood P(xi|Ck). Based on the
conditional independency assumption, likelihood P(xi|Ck) can be calculated separately for
each variable, by reducing a multidimensional problem to a one-dimensional problem, as
in Equation (8):

P(Ck|x i) =
P(Ck)∏

f
i=1 P(xi|C k)

P(xi)
(8)

The predicted label is the one that maximizes the numerator of Equation (8), since the
prior probability is constant [32].

Several Naïve Bayes classifiers exist, which differ from the likelihood distribution
assumption. In the literature, the Gaussian Naïve Bayes, Bernoulli Naïve Bayes and
Multinomial Naïve Bayes are popular Naïve Bayes classifiers [33].

2.5. Benefits and Drawbacks of Naïve Bayes

The Naïve Bayes classifier is effective at handling both limited and very large datasets.
In fact, the classification model is easily built and its parameters are not estimated by means
of complex iterations [23].

Despite its simplicity, the Naïve Bayes classifier can be efficiently exploited for com-
plex real-world problems, even though an explicit model for its deployment cannot be
provided [23].

2.6. Basics of K-Nearest Neighbors

K-Nearest Neighbors is a popular lazy learner and non-parametric classifier [22], [34]
exploited in different research fields.

The K-NN learner classifies each unlabeled data as the most frequent label among its
K nearest labeled neighbors [35], which are identified by means of the Minkowski distance,
reported in Equation (9):

d =

(
f

∑
i=1
|xi − yi|

z

) 1
z

(9)

where f are the considered features and xi and yi are the coordinates of each unlabeled
and labeled data in the f-dimensional space, respectively. If z is set equal to 1, d is named
Manhattan distance, whereas Equation (9) calculates the Euclidean distance if z is equal to 2.

2.7. Benefits and Drawbacks of K-Nearest Neighbors

The K-NN classifier is broadly exploited thanks to its conceptual straightforwardness,
which makes it also suitable for handling multi-classification problems [34–36]. However,
despite its simplicity, the accuracy of the K-NN classifier can be equal or even higher than
that of more complex classifiers [37]. In addition, since lazy learners do not account for an
explicit training phase, the computational time is usually very low.

However, the K-NN classifier is affected by two main drawbacks: (i) the tuning of the
K value and (ii) the negative effect of outliers.

Several studies were addressed to identify the optimal K value for accuracy maximiza-
tion. In general, 1-NN (i.e., K = 1) is considered a promising classifier, which has been
considered hard to be beaten for classification purposes [38]; however, misleading results
can be achieved since the label is assigned only by the nearest neighbor. Thus, the reliability
of the 1-NN classifier may be compromised if outliers are included within the dataset.
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Instead, given that Ntr is the number of available labeled data, Cheng et al. [22]
suggested setting K equal to Ntr

0.5 if the dataset is larger than 100 samples. However,
the same authors also stated that this rule of thumb has not been proved suitable for all
datasets. Thus, the optimal setting of the K value is still an ongoing research topic.

Finally, the K-NN classifier may be significantly challenged if the number of features
is higher than the number of labeled data [34] or when unbalanced datasets are used [36].

3. Training and Testing

The general procedure for identifying the data used to train and test the classifiers
is sketched in Figure 1, where it has to be observed that the word “training” does not
rigorously apply to the K-NN classifier because there is no training phase.
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Figure 1. Flowchart of the procedure for identifying the data used for training and testing
the classifiers.

First, each piece of field data is labelled with the supposed label.
After that, rough acceptability thresholds can be used to filter the labeled field data.

This step relies on the fact that, in the GT field, UMIs are currently detected by using
physics-based acceptability thresholds: if a given piece of data exceeds such thresholds,
it is labeled as a UMI. In practice, such assumption may lead to misleading results, since
anomalous observations may be caused by feature noise, e.g., sensor faults. Thus, in the
current paper, the out-of-range values, i.e., the ones that exceed the acceptability thresholds,
are tested because they are candidate UMIs.

Conversely, data that lie within the minimum and maximum acceptability thresholds
are used to both train and test the supervised classifiers. Such data are named “filtered
data” in Figure 1.

Alternatively, if the acceptability thresholds are not used to preliminary filter the
candidate UMIs, all labeled field data, namely non-filtered data in Figure 1, are used to
both train and test the classifiers.

A fraction of filtered or non-filtered data is identified to train each classifier, while the
remaining data are used for testing. Then, the features are selected and the “Raw data for
training” (see Figure 1) are sampled in different UOMs, by defining the number of classes
c. Thus, the dataset of training data comprises both field and scaled data, by making all
classes inherently balanced. Once the classifiers have been trained, raw data for testing are
used to test the capability of the learner. For each piece of testing data, its label is provided,
as well as the accuracy and the posterior probability of prediction.

Each classifier was trained and tested by means of the tools available in the
Matlab® environment.

4. Field Data

In the current paper, each ML classifier is tested by using one experimental dataset
collected by a pressure sensor (see Figure 2).
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Figure 2. Dataset composition.

The field dataset comprises a fleet of thirty Siemens GTs of the same type, installed
in eleven sites worldwide. Thus, coherent comparisons can be performed among the
considered GTs. Each site comprises a different number of GTs, which varies from one to
ten; the amount of data acquired from each site is in the range from 0.7% (i.e., Site 6) to
24.2% (i.e., Site 8), with respect to the total amount of available data (Table 1).

Table 1. Dataset characteristics.

Site Number of GTs Share True UOM

1 10 21.1%

kPa absolute

2 1 6.1%
3 1 2.7%
4 2 12.1%
5 1 6.1%
6 1 0.7%
7 1 2.8%
8 7 24.2%
9 2 7.9%
10 1 2.9%
11 3 13.4% bar absolute

TOTAL 30 100.0 %

In order to distinguish UMIs from sensor faults [12], field data were elaborated to
extract two features, i.e., mean value and standard deviation, which are exploited to train
and test the classifiers. For feature extraction, only steady state operations were considered.
Each piece of data of the dataset was obtained by considering the mean value and standard
deviation over sixty consecutive field time points. As a result, 2721 measurements in total
were obtained.

The characteristics of the dataset are shown in Figure 2; for each site, box plots report
the median, the lower and upper quartiles, as well as the minimum and maximum values
of data. All measurements were normalized with respect to the maximum acceptability
threshold for confidentiality reasons. The values of skewness and kurtosis of the two
considered features are reported in Table 2. Based on the analysis of such indices, Site #11 is
characterized by the highest values of the skewness and kurtosis, thus revealing that its
data distribution is heavy-tailed.
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Table 2. Skewness and kurtosis of the field data.

Site
Feature #1 (Mean Value) Feature #2 (Standard Deviation)

Skewness Kurtosis Skewness Kurtosis

#1 −0.11 2.60 1.32 3.78
#2 0.41 1.98 1.33 5.29
#3 1.19 3.67 3.81 21.55
#4 −0.08 2.97 5.52 34.27
#5 1.06 3.35 1.88 7.06
#6 0.15 2.22 −0.18 1.69
#7 0.61 1.88 3.55 16.81
#8 −0.23 2.58 0.90 3.20
#9 −0.29 2.21 1.74 5.87

#10 1.15 2.87 4.50 24.75
#11 1.18 3.14 6.81 65.48

Based on engineering practice and an in-depth knowledge of the GT type, the nondi-
mensional pressure is expected to lie between 0.65 (i.e., minimum acceptability threshold)
and 1.00 (i.e., maximum acceptability threshold).

All data were originally labeled as kPa absolute. However, all data acquired from
Site #11 are approximately two orders of magnitude lower than the minimum acceptability
threshold; such data represent 13.4% of the entire dataset. Thus, data acquired from Site #11
may be incorrectly classified as out of range values [12], whose anomalous behavior may
be caused by sensor faults [39]. However, sensor faults generally affect a limited amount of
data. Thus, based on the general procedure outlined in Figure 1, all data acquired from
Site #11 are candidate UMIs.

Subsequently, an inspection made by Siemens confirmed that all data collected from
Site #11 were affected by UMIs and, based on the scale factor between such piece of data and
the ones acquired from the other sites, the bar absolute label was subsequently assigned.

It has to be mentioned that the use of an experimental dataset strengthens the outcomes
of this paper. In fact, experimental noisy labels are included within the dataset, while the
common practice is to artificially introduce misleading labels [5].

5. Analysis of Classification Performance

Performance of ML classifiers strictly depends on the characteristics of training data,
such as data quality and quantity [40], which can negatively affect the capability of su-
pervised learners. To provide a general classifier able to efficiently detect UMIs, several
analyses are documented and discussed for testing each classifier in challenging scenarios.
Such analyses evaluate the influence of (i) data quality, (ii) data quantity and (iii) number
of classes on the performance of each classifier.

Data quality. In the current paper, the influence of data quality is evaluated by means
of different analyses. First, each classifier is trained by means of correctly labeled data only,
i.e., filtered data (Figure 1). Then, each classifier is trained by means of non-filtered data
(Figure 1), in which all data acquired from Site #11 (approximately 13% of the dataset) are
experimentally affected by label noise issue. The effect of UMIs on classification capability
is further investigated by means of a sensitivity analysis in which the rate of UMI is
progressively increased, as outlined in Table 3. At each step, the rate of UMIs is increased
by roughly 10%, so that the label noise experimentally affects all data acquired from Site #11,
as well as all data collected from additional sites, in which noisy labels were implanted. As
in Site #11, implanted UMIs were originally labeled as kPa absolute, though bar absolute
was the correct label. Such analyses are aimed at assessing the robustness of each classifier
by varying data quality.
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Table 3. Scheme of the sensitivity analysis.

Rate of UMIs Sites Affected by UMIs

0% /
13.4% Site #11
20.2% Site #2, Site 6, Site #11
30.8% Site #2, Site #3, Site 6, Site #9, Site #11
39.8% Site #2, Site #3, Site #5, Site 6, Site #9, Site #10, Site #11
51.9% Site #2, Site #3, Site #4, Site #5, Site 6, Site #9, Site #10, Site #11
60.9% Site #1, Site #2, Site #3, Site #5, Site #6, Site #9, Site #10, Site #11
73.0% From Site #1 to #6 and from Site #9 to Site #11
97.2% Site #1 through #6 and Site #8 through #11

100.0% All sites

Data quantity. The amount of data used for training a classifier usually affects its
classification capability. In this paper, the influence of data quantity is assessed by means
of two analyses.

In the first analysis, each classifier is trained by using 10% of filtered or non-filtered data
of each site. This choice is in line with the outcomes documented in Manservigi et al. [12],
which reports a detailed sensitivity analysis on the amount of data used for training the
SVM classifier. In Manservigi et al. [12], the amount of data used for training the classifier
was equal to 10%, 25%, 50%, 75%, and 90% of both filtered and non-filtered data. Based
on results, in most cases the SVM classifier was slightly affected by the amount of training
data. Thus, in the current paper, each classifier is trained by means of the lowest rate of
data, i.e., 10%.

The second analysis, namely site cross-validation, mimics the practical condition in
which all data acquired from a novel site have to be labeled. In line with the case study
reported in Section 4, if filtered data train the classifier, all data acquired from two sites,
i.e., Site #11 and one additional site in turn, are tested. Instead, if non-filtered data are
used, all data acquired from only one site in turn are tested. Since each site accounts for a
different number of data, each training combination is performed by means of a different
amount of data, which varies from 62.4% to 99.3% of the data included in the dataset. As a
result, the site cross-validation further strengthens the classifier reliability vs. amount of
training data.

Number of classes. The classification capability of the classifiers is tested by means
of twelve classes. The selected UOMs were identified by means of engineering practice.
In fact, since all field data were originally labeled as kPa absolute, five additional UOMs,
i.e., mmH2O, mbar, inH2O, psi, and bar, are accounted for in absolute terms. As a result, six
absolute UOMs in total are considered, whose scale factors with respect to the kPa absolute
are highlighted in Figure 3 (full circles). Such scale factors are independent from the dataset
under analysis.
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Figure 3. UOM conversion factors (full circles: absolute UOMs; empty circles: gauge UOMs).

Moreover, the six absolute UOMs are converted in gauge terms, by obtaining twelve
UOMs in total. It has to be mentioned that the relationship between absolute and gauge
UOMs is strictly correlated to the dataset under analysis. The position of the gauge UOMs
(empty circles) with respect to the absolute UOMs is reported in Figure 3 for the considered
case study.

It can be observed that, in the current paper, the identification of the true UOM is
significantly challenged. In fact, the conversion factor between kPa absolute and inH2O



Machines 2022, 10, 228 10 of 19

gauge is equal to just 1.2. In addition, regardless of the number of classes, when non-filtered
data are used, each classifier is also trained by means of incorrectly labeled data.

6. Indices of Classification Performance

The performance of each classifier is evaluated by means of two indices, i.e., classifica-
tion accuracy and posterior probability.

Classification accuracy. In the field of ML, confusion matrix is usually exploited to
evaluate the effectiveness of supervised classifiers. Based on the classifier prediction, four
metrics can be calculated, i.e., the rate of true positives (TPs), false positives (FPs), true
negatives (TNs) and false negatives (FNs), which can be used to calculate classification
accuracy, precision, recall, and specificity.

In the current paper, accuracy (Equation (10)) meaningfully quantifies the performance
of the classifiers.

A =
TP + TN

TP + TN + FP + FN
(10)

In fact, based on the training and testing procedure outlined in Section 3, for each
site, the true label (i.e., the positive class) of all data used for testing is unique. Thus, true
negative and false positive rates are inherently null. As a result, precision is equal to 100%,
while specificity cannot be calculated and accuracy corresponds to recall.

Since classification accuracy represents the rate of correctly labeled data, the higher
the classification accuracy the better is the classification performance.

Posterior probability. The posterior probability represents the confidence that a given
data belongs to a given class. By considering all classes, for each data the sum of the c
posterior probabilities is equal to 100%.

The procedure employed to calculate the posterior probability depends the considered
ML classifier.

In the SVM RO classifier, the score-matrix P is calculated for each pair of classes; each
element pij (pij ∈ [0,1]) is the confidence that a given data belongs to the class i. Consequently,
pji = 1 − pij. The comprehensive procedure to calculate the score-matrix P is described in
Platt [41].

In the NB classifier, the posterior probability is calculated as in Equation (8).
Finally, in the K-NN classifier, the posterior probability of a given class is the ratio

between the number of the K neighbors that belong to that class and the K value.
The optimal supervised classifier is the one that correctly classifies the “Raw data

for testing” (see Figure 1) and that maximizes both classification accuracy and posterior
probability. In addition, for the sake of industrial attractiveness, classification results have
to be obtained with the lowest computational effort.

Receiver Operating Characteristic curve. The capability of each ML classifier is also
assessed by means of the receiver operating characteristic (ROC) curve, which displays
the false positive rate (FPR) vs. the true positive rate (TPR). Thus, the ROC curve shows
the trade-off between the probability of detecting false positives or true positives. For an
accurate ML classifier, the ROC curve should climb steeply [42].

Area Under the Curve. The area under the curve (AUC) is the area under the ROC
curve, which is in the range from 0 to 1. The higher the AUC value, the better the perfor-
mance of the ML classifier [26].

7. Results and Discussion

This section compares classification accuracy, posterior probability, and computational
time of the supervised classifiers.

Support Vector Machine, NB, and K-NN classifiers can classify data by means of
several approaches. For the sake of brevity, for each classifier, only the most promising
approach is hereafter reported. In the current paper, the identification of the optimal ML
classifier is focused on three alternatives, i.e., SVM RO, NB, and K-NN by using K = Ntr

0.5.
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In fact, Manservigi et al. [12] demonstrated that SVM RO is the most suitable approach
for UMI detection. As in Subasi et al. [42], the σ value (defined in Equation (6)) is equal
to 1. In addition, a specific analysis on the influence of the σ parameter revealed that its
value slightly affected SVM performance [12].

Regarding the NB classifier, as made in Petschke and Staab [32] a Gaussian Naïve
Bayes classifier is assumed.

Finally, Manservigi [43] has recently examined the effect of the K value on the capability
of the K-NN classifier. By assuming that Ntr is the number of training data (Figure 1), three
analyses were carried out, in which: (i) K = 1, (ii) K = (Ntr/c)0.5, and (iii) K = Ntr

0.5. In these
analyses, the ratio Ntr/c corresponds to the number of “Raw data for training” (Figure 1).
Among the three K value settings, the best results were obtained when K = Ntr

0.5, especially
when non-filtered data were accounted for. This outcome confirms the analysis reported in
Cheng et al. [22], which suggested setting K = Ntr

0.5.
For the K-NN classifier, neighbors are identified by means of the Euclidean distance.
The results are split into four sections. Section 7.1 describes in detail the case in which

data are filtered by means of acceptability thresholds, which were previously set thanks to
domain knowledge about the considered GT type. For each classifier, Section 7.2 documents
the classification performance when raw data are not filtered out. This analysis mimics the
situation in which acceptability thresholds cannot be employed (e.g., their boundaries are
not known). Thus, the effect of the experimental noise label can be evaluated.

For all sites characterized by the same true UOM, the mean classification accuracy and
posterior probability is calculated; posterior probabilities of absolute and gauge UOMs are
highlighted by means of full and dotted bars, respectively.

Then, a sensitivity analysis on the rate of UMIs is reported in Section 7.3. For the sake
of clarity, the sensitivity analysis is separately discussed since implanted UMIs are also
accounted for.

Sections 7.1–7.5 are aimed at identifying the optimal supervised classifier.

7.1. Training with Filtered Data

When 10% of filtered data train the classifiers, the label selection of the kPa absolute
sites is mainly focused on two out of twelve classes, i.e., kPa absolute and inH2O gauge.

SVM RO and NB achieve approximately the same classification accuracy. In fact, the
rate of correctly labeled data slightly varies from 95% (i.e., SVM RO) to 97% (i.e., NB).
The K-NN classifier achieves the poorest classification accuracy, since 77% of data were
correctly labeled.

The inH2O gauge label slightly challenges the classifiers. In fact, for SVM RO and
NB a limited fraction of data (between 3% and 9%) is classified as inH2O gauge; this rate
increases up to 23% in the K-NN classifier.

Posterior probability values (Figure 4) confirm these positive results. In fact, the correct
UOM is provided by the NB classifier by means of the highest posterior probability, which
is on average equal to 93%, followed by the SVM RO (i.e., 87%) and K-NN (i.e., 80%).

Instead, all data of Site #11 are always univocally classified; in addition, posterior
probability is always equal to 100%.

Both classification accuracy and posterior probability of kPa absolute sites are usually
lower than the ones obtained for Site #11. This is due to the scale factor between the true
label of the site under analysis and its nearest UOM. In fact, the conversion factor between
kPa absolute and inH2O gauge is only equal to 1.2, while the scale factor between bar
absolute and bar gauge is roughly equal to 5. As a result, the assignment of the correct
UOM is more challenging for Site #1 through #10 than for Site #11.

Site cross-validation generally confirms the results achieved by using 10% of filtered
data for training the classifiers. In fact, classification accuracy and posterior probability
(Figure 5) are always higher than 89% and 75%, respectively.
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Figure 4. Posterior probability for twelve UOMs: training with 10 % of filtered data (full bar: absolute
UOMs, dotted bar: gauge UOMs; kPa absolute sites (a), bar absolute site (b)).
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Figure 5. Posterior probability for twelve UOMs: site cross-validation by means of filtered data
(full bar: absolute UOMs, dotted bar: gauge UOMs; kPa absolute sites (a), bar absolute site (b)).

7.2. Training with Non-Filtered Data

The comparison between the exploitation of filtered and non-filtered data for training
the classifiers reveals that all ML approaches are only slightly affected by data reliability. In
fact, the reduction in terms of classification accuracy is lower than 3%, thus proving the
robustness of all classifiers.

As a general comment, the highest and homogeneous classification accuracy is pro-
vided by SVM RO, i.e., 97% and 99% for the kPa absolute and bar absolute sites, respectively.
Instead, NB correctly classifies 94% of data acquired from Site #1 through #10 and 99%
of data acquired from Site #11. The K-NN classifier confirms the poorest classification
capability, since 76% of data acquired from Site #1 through #10 are correctly labeled.

Though the classification accuracy is generally confirmed, posterior probability (Figure 6)
proves to be more affected by data reliability. Therefore, the label is correctly provided,
but classifier confidence decreases. This outcome is clearer for the SVM RO and K-NN
classifiers, whose posterior probability decrease up to 24% (Site #1 through #10) and
27% (Site #11), respectively. As a result, SVM RO provides the true UOM with 66%
(kPa absolute sites) and 78% (bar absolute sites) of confidence, while such rates are equal
to 71% (kPa absolute sites) and 73% (bar absolute sites) for the K-NN classifier.

Instead, posterior probability of the Naïve Bayes classifier only slightly decreases; in
fact, it is equal to 84% for the kPa absolute sites and 96% for the bar absolute site.
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Figure 6. Posterior probability for twelve UOMs: training with 10% of non-filtered data (full bar:
absolute UOMs, dotted bar: gauge UOMs; kPa absolute sites (a), bar absolute site (b)).

A further interesting result, which highlights the theoretical differences among the
classifiers, can be inferred by comparing the posterior probability of the twelve UOMs. As
a general comment, posterior probability of SVM RO is significantly scattered. For Site #1
through #10, UOMs at the left-hand side of kPa absolute (Figure 3) usually achieve higher
posterior probability values than UOMs placed at the right-hand side; this rule of thumb
holds with the exception of the inH2O gauge label, which is the second-most probable label
because of the challenging scale factor.

This result may rely on the fact that the wrongly assumed mmH2O absolute data of
Site #11 slightly overlap the kPa absolute data acquired from the other sites. Thus, the area
that identifies the mmH2O absolute label is shifted toward the kPa absolute label.

As a consequence, the posterior probability of all UOMs located between mmH2O
absolute and kPa absolute is higher than that of the other UOMs. However, this out-
come cannot be clearly grasped from Figure 6 because few outliers are included within
the dataset.

Similarly, psi absolute and kPa absolute are the second and third-most probable labels,
respectively, for Site #11.

Instead, for the NB classifier, posterior probability of each class strictly depends on its
proximity to the true UOM. In fact, for Site #1 through #10, posterior probability of inH2O
absolute, mbar absolute, inH2O gauge, and kPa gauge is higher than the one of the other
UOMs. Similarly, for Site #11, posterior probability of all UOMs is null, with the exception
of bar gauge and psi gauge.

The K-NN classifier identifies the correct UOM among a limited number of labels.
In fact, for Site #1 through #10, posterior probability of four classes only is not null,
i.e., mmH2O absolute, inH2O gauge, mbar gauge, and kPa absolute (the true UOM).
This outcome can be explained by considering that wrongly assumed mmH2O absolute
data approximately overlap data that are correctly labeled as kPa absolute. In addition, the
inH2O gauge and mbar gauge labels are the classes that are nearest and second-nearest
to the true UOM (see Figure 3). A similar result is confirmed for Site #11, in which the
kPa absolute label is the only incorrect UOM whose posterior probability is not null. In
fact, wrongly assumed kPa absolute data numerically overlap data correctly labeled as
bar absolute.

The site cross-validation carried out by means of non-filtered data (Figure 7) generally
confirms the results provided by training the classifiers with 10% of non-filtered data. In
fact, the classification accuracy for Site #1 through #10 is in the range from 86% (i.e., K-NN)
to 93% (i.e., SVM RO). However, the true label is assigned by SVM RO by means of the
lowest posterior probability, i.e., 70%.
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Figure 7. Posterior probability for twelve UOMs: site cross-validation by means of non-filtered data
(full bar: absolute UOMs, dotted bar: gauge UOMs; kPa absolute sites (a), bar absolute site (b)).

As previously demonstrated, the true UOM of Site #11 is usually better detected in
terms of both classification accuracy and posterior probability. In addition, the site cross-
validation further proves that quality of data for training slightly affects the classification
accuracy, while posterior probability may significantly decrease, even by 19%, as in SVM RO.
In addition, SVM RO confirms the most scattered results in terms of posterior probability,
whereas only a few classes are more probable for the K-NN classifier.

7.3. ROC Curve and AUC

The results reported in Figures 4–7 are confirmed by analyzing the ROC curves
reported in Figure 8 and the AUC values shown in Table 4 for the three ML classifiers.
For the Naïve Bayes classifier, the ROC curve of both the kPa absolute sites and the bar
absolute site exhibit a stepwise behavior (Figure 8b) and the AUC is always higher than
0.993 (Table 4). The SVM RO classifier is the second-best ML approach, since the AUC is at
least 0.992. Finally, the ROC curve of the K-NN classifier is characterized by a smoother
trend than the NB and SVM RO classifiers, by achieving a lower AUC value, accordingly.
Thus, such results point out that the NB classifier is the optimal ML classifier because it
minimizes the false positive rate and simultaneously maximizes the true positive rate.
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non-filtered data and twelve UOMs (continuous line: kPa absolute sites, dashed line: bar absolute site).

Table 4. AUC of the SVM RO, NB, and K-NN classifiers.

SVM RO NB K-NNs

kPa absolute sites 0.992 0.993 0.990
bar absolute site 1.000 1.000 0.992
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7.4. Sensitivity Analysis

The effect of UMIs on classification capability is further investigated by means of a
sensitivity analysis in which the rate of UMIs varies from 0% to 100%. This analysis is
performed by considering 12 UOMs and by training the classifier by means of 10% of data.

The sensitivity analysis comprises ten scenarios. In the first scenario, the rate of UMI
is equal to 0% and the corresponding classification results have already been thoroughly
analyzed in Section 7.1, i.e., “Training with filtered data”. In the second scenario, the classi-
fiers are trained by also using the experimentally noisy labels of Site #11, i.e., Section 7.2
“Training with non-filtered data”. The remaining scenarios account for both experimen-
tal and implanted UMIs. Accuracy and posterior probability of incorrectly labeled data
obtained by varying the rate of UMI are reported in Figure 9.
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Figure 9. Sensitivity analysis on the rate of UMI (accuracy (a); posterior probability (b)).

As can be grasped from Figure 9, the sensitivity analysis confirms that the NB is the
most robust classifier for UMI detection. In fact, both accuracy (Figure 9a) and posterior
probability (Figure 9b) slightly decrease by increasing the rate of UMI and are always
higher than the values provided by the other two methodologies, especially when the rate
of UMIs is high.

Slightly poorer results are achieved by using SVM RO. In particular, the rate of UMI
mainly affects the posterior probability, which exhibits an almost linear trend by increasing
the noise rate. However, the classifier proves to be reliable up to a rate of UMI roughly
equal to 40%.

Finally, the sensitivity analysis further proves that the K-NN classifier can be exploited
only when a limited amount of data is incorrectly labeled or in the case that a limited
number of outliers is included within the dataset [44]. In fact, both accuracy and pos-
terior probability of the K-NN classifier significantly decrease when the rate of UMI is
approximately equal to 20%, so that only 66% of data are correctly labeled.

These results can be explained by considering the theoretical differences among the
considered classifiers. In fact, as stated in Section 7.2, the posterior probability of each class
provided by the NB classifier strictly depends on its proximity to the true UOM. Thus, the
NB classifier proves to be more robust than SVM RO and K-NNs. In fact, the SVM RO
classifier tends to scatter the posterior probabilities, while the K-NN classifier labels the
testing data as outliers.

7.5. Discussion and Guidelines

The capability of SVM RO, NB, and K-NNs is directly compared in Tables 5 and 6.
In Table 6, robustness in the presence of UMIs and computational time are qualitatively
described as extremely positive (33), positive (3), or not acceptable (8).
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Table 5. Product of accuracy and posterior probability for each training approach.

Site Data Quality Training SVM RO NB K-NNs

Site #1–#10
Filtered

10% of data 83% 90% 62%
Site cross-validation 81% 85% 77%

Non-filtered
10% of data 64% 79% 54%

Site cross-validation 65% 76% 63%

Site #11
Filtered

10% of data 99% 100% 99%
Site cross-validation 75% 100% 100%

Non-filtered
10% of data 77% 95% 72%

Site cross-validation 65% 100% 100%

Table 6. Comparison of classifier performance.

SVM RO NB K-NNs

Robustness in the
presence of UMIs 3 33 8

Computational time 8 3 33

As demonstrated in Sections 7.1–7.3, the accuracy of SVM RO is generally slightly
higher than that of the NB classifier. However, NB provides the correct label by means of
a higher posterior probability. Thus, since the optimal classifier is the one that maximize
both accuracy and posterior probability, their product is calculated. As can be grasped by
means of Table 5, the NB classifier always provides the highest product of accuracy and
posterior probability, which is always higher than 76%.

Furthermore, the computational of both training and testing is low, by taking less
than 1 s for the considered dataset (Table 6). In addition, NB is a robust classifier even
when increasing the rate of UMI (Table 6). For these reasons, NB proved to be the optimal
classifier for UMI detection.

The SVM RO may represent an effective alternative to the NB classifier, despite the
fact that the computational time for both training and testing the classifier may be up to
30 times higher than that the optimal methodology. In addition, the robustness of the SVM
technique may be significantly compromised in terms of posterior probability when noisy
labels are used to train the model.

Finally, despite the promising results achieved in this paper and the low computational
time, the exploitation of the K-NN classifier is discouraged for detecting UMIs, since its
classification capability is strongly correlated to the K value and dataset composition. Thus,
K-NN may not be a general approach suitable for detecting heterogeneous data, because
it may require a fine tuning based on its application. In addition, a limited rate of UMIs,
e.g., 20%, may significantly decrease the classifier capability.

As a final comment, it has to be mentioned that the experimental noisy labels of the
dataset challenge all classifiers in realistic GT applications; thus, the inferred rules of thumb
can be considered of general validity.

8. Conclusions

This paper dealt with the detection of the unit of measure inconsistency, a challenging
label noise issue that makes a physical quantity inconsistent with the assigned unit of
measure. To this purpose, the capability of three supervised classifiers was compared with
the final aim to provide general guidelines for detecting unit of measure inconsistencies in
gas turbines. Three well-known classifiers, i.e., Support Vector Machine, Naïve Bayes, and
K-Nearest Neighbors, were tested by considering a test case composed of an experimental
dataset collected on a large fleet of Siemens gas turbines in operation.

The effectiveness and robustness of each classifier were thoroughly assessed by varying
field data reliability for training each classifier.
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The analyses revealed that the Naïve Bayes classifier provided the most reliable results,
both in terms of classification accuracy and posterior probability. In fact, when experimental
label noise issues affected the dataset, accuracy and posterior probability were equal to
94.4% and 84.0%, respectively. In addition, a sensitivity analysis on the rate of incorrectly
labeled data revealed that the NB classifier was only slightly affected by noisy data. The
superior capability of the Naïve Bayes classifier was also demonstrated by means of the
receiver operating characteristic curve and the related area under the curve, which provide
a trade-off between the probability of detecting false positives or true positives.

Despite the promising results obtained by means of the Support Vector Machine classi-
fier (with Radial Basis Function and One-vs-One decomposition strategy), its classification
capability was usually lower than that of NB. In addition, computational time for both
training and testing the classifier was higher than that of the other methodologies.

Finally, the exploitation of the K-Nearest Neighbors was discouraged, since its effec-
tiveness may be strongly correlated to the selected K value and dataset composition.

Future works are planned to further test the Naïve Bayes by means of additional
experimental datasets.

Author Contributions: Conceptualization, L.M. and J.A.d.l.I.; methodology, L.M., M.V. and E.L.; soft-
ware, L.M.; validation, L.M.; formal analysis, L.M., M.V. and E.L.; investigation, L.M., M.V. and E.L.;
resources, G.B. and J.A.d.l.I.; data curation, L.M. and J.A.d.l.I.; writing—original draft preparation,
L.M. and M.V.; writing—review and editing, L.M., M.V., E.L., G.B. and J.A.d.l.I.; supervision, M.V.
and G.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data.

Acknowledgments: The authors gratefully acknowledge Siemens Energy for the permission to
publish the results. In particular, the authors highlight the contribution of Giuseppe Fabio Ceschini
to this paper and his efforts for pushing the collaboration between the Remote Diagnostics Centre
Team of Siemens AG (Warwick, UK) and the University of Ferrara.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
A accuracy
b intercept of the SVM decision hyperplane
C class
c number of classes
d Minkowski distance
f number of features
g function
K number of neighbors (K-Nearest Neighbors)
k non-linear kernel function (Support Vector Machine)
l label
N number
P posterior probability
x unlabeled data
y labeled data
z exponent of the Minkowski distance (K-Nearest Neighbors)
α Lagrangian multiple
γ distance between data and the SVM decision hyperplane
σ standard deviation
Φ mapping function
tr training
AUC Area Under the Curve
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FN False Negative
FP False Positive
FPR False Positive Rate
GT Gas Turbine
ML Machine Learning
K-NN K-Nearest Neighbors
NB Naïve Bayes
OVA One-vs-All
OVO One-vs-One
RBF Radial Basis Function
RO Radial Basis Function with OVO decomposition
ROC Receiver Operating Characteristic
SVM Support Vector Machine
TN True Negative
TP True Positive
TPR True Positive Rate
UMI Unit of Measure Inconsistency
UOM Unit Of Measure
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