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Abstract 

In this paper we make use of a closed-form solution for mode I Stress Intensity Factors (SIF) in three-dimensional planar flaws 
based on homotopy transformations of a disc. The utilised equations are very accurate when the flaw is a small deviation from a 
circle. Under the hypothesis of an isolated crack, the SIF at each point of the crack border is calculated to assess the crack shape 
after propagation. The solution is proposed in terms of the Fourier series and the crack growth rate equation is taken according to 
Paris’ low. Many examples are proposed with the aim of predicting the final shape of different types of embedded planar flaws in 
butt welded joints under fatigue tensile loading. 
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1. Introduction  

The Stress Intensity Factor (SIF) of two-dimensional cracks can be obtained without particular problems by means 
of fracture mechanics textbooks [1, 2] or by applying formulas present in the scientific literature. However, in the case 
of three-dimensional planar cracks, the equation for SIF calculation is not so manageable and is often overcome by 
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1. Introduction  
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using numerical applications. In fact, apart from some particular geometrical cases, such as elliptical cracks [3, 4], 
there is no exact analytical solution for generic crack shape contours in the literature. 

 
Nomenclature 

a radius of reference circle 
KI mode I stress intensity factor  
∆K  range of KI 
Kth threshold for stress intensity factor 
x,y actual cartesian reference system 
𝑥̅𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦� actual cartesian reference system 
s arch-length 
ρ�  actual radius 
ρ non-dimensional radius 
∆σn range of nominal stress  

 
In order to avoid this problem, Oore-Burns [5] introduced a three-dimensional weight function which gives an exact 
solution in the case of a circular or tunnel crack. However, when an elliptical crack is assumed, the authors have shown 
that, under remote uniform tensile loading, the Oore-Burns integral gives a first order approximation of the SIF along 
the whole crack front and a second order approximation is also possible [6]. Furthermore, the first order equation is 
very close to the first order approximation of Irwin’s [4] exact solution.  
The SIF calculation around the crack contour is more complicated if the propagation phase is considered because even 
if the initial crack is assumed elliptical after the growth, the shape is not elliptical. In order to overcome this problem, 
an elliptical shape is often maintained. For instance, in reference [7], an elliptical-arc surface flaw is always assumed 
to exist in notched round bars under cyclic tension and bending, for different values of stress concentration factors. 
So that, after the first crack shape assumption, the subsequent crack growth phase under cyclic loading was examined 
through a numerical procedure which takes into account the computed SIF values by considering a crack front as an 
elliptical arc. This hypothesis is also considered to estimate the fatigue life of welded joints where the shape of a semi-
elliptical crack is usually kept [8, 9, 10,11]. 
In order to overcome the exact stress intensity factors of a generical crack, Murakami and Endo [12] proposed the 

area  as an empirical parameter for the evaluation of the fatigue limit linked to the maximum stress intensity factors 
under mode I loadings (KI,max) of small convex cracks. On the basis of several examples of flaw shapes, Murakami 
and Nemat-Nasser [ 13] proposed the simple formula areaYK max,I πσ= , where Y is a coefficient which is 
evaluated as best fitting the numerical and analytical results (Y=0.63 for a surface crack). However, in light of the 
first order approximation of the crack border, in reference [14],an approximated analytical model of the first order 
was proposed for the SIF calculation based on the Oore-Burns integral. So that, an explicit analytical equation for SIF 
calculations could be useful for estimating the SIF of internal irregular small defects or irregular cracks. Furthermore, 
when the flaw can be considered as a star domain, the full Oore-Burns solution can be used [15,16]. 

The aim of this paper is to propose a numerical model for fatigue crack propagation based on the first order 
approximation of the SIF along the whole crack front. More precisely, for small embedded cracks in butt welded 
joints, we are able to compute the SIF in closed form and then consider the propagation phase of the defects. The 
material is considered as linear elastic while the propagation regime is considered according to the Paris-Erdogan 
equation. Some examples will be proposed and the final shape of the crack will be discussed. 
 

2. Stress intensity factor evaluation 

2.1. Oore-Burns integral 

The mode I loading stress intensity factor of a planar crack Ω in a three-dimensional body can be estimated by 
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means of the Oore-Burns weight function [5]. When the crack takes a special configuration such as a disc or a tunnel 
crack, this weight function gives the exact solution. Let Ω be an open bounded, simply connected, bounded open 
subset of the plane. We set: 

𝑓𝑓𝑓𝑓(𝑄𝑄𝑄𝑄) = � d𝑠𝑠𝑠𝑠
|𝑄𝑄𝑄𝑄−𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠)|2∂𝛺𝛺𝛺𝛺

 ,        𝑄𝑄𝑄𝑄∈ Ω    (1) 

where 𝑄𝑄𝑄𝑄 ∈ Ω, s is the arc-length on  and P(s) describes . Then the O-integral is defined as:  
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where σn(Q) is the nominal stress over the Ω region evaluated without taking into account the crack and 𝑄𝑄𝑄𝑄 ∈ Ω with 
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while  𝑄𝑄𝑄𝑄′ ∈ 𝜕𝜕𝜕𝜕Ω. The nominal stress σn(Q) can be evaluated analytically or by means of FE analysis.  
In this work, we assume a constant value for nominal stress σn, therefore we consider the case of small embedded 
defects. Figure 1 shows the reference scheme for a crack in an infinite body. 

 

 
Fig. 1. Perturbation of the circular flaw with a=1. 

 

2.2. Analytical equation for the SIF based on first order approximation 

Let Ω be an open bounded simply-connected subset of the plane as reported in Fig. 1 with a=1 (𝜌𝜌𝜌𝜌(𝛼𝛼𝛼𝛼)= 𝜌̅𝜌𝜌𝜌(𝛼𝛼𝛼𝛼)/a). In a 
previous paper [17], we considered Ω∂  as a distortion of the unitary circle in terms of a continuous function R=R(ε, 
ψ) (homotopy) of class C1 with respect to ψ , with the possible exception of a finite number of values (edges) and of 
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class C2 with respect to ε, where 0≤ ε ≤1 is a parameter and 0≤ ψ ≤2π  is the angle. 
By means of the Taylor expansion, we have 
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In reference [18] we obtained the following approximation for the Oore-Burns integral (1) as a function of the angle 
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The En coefficients are independent of the homotopy R and are reported in Table 1 (for the complete formulae of En 
coefficients see reference [18]).  
In general, by considering that an a-dilatation of Ω under uniform normal tension σn produces factor a  in the 
expression of KI, from (5) we are able to state the following final equation:  
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where, in this case, bn are the Fourier coefficients of 𝜌̅𝜌𝜌𝜌(𝛼𝛼𝛼𝛼). Eq. (7) is the first order approximation of the Oore-Burns 
integral (2). 
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The asymptotic behaviour of En and the hypothesis on R (and therefore on ρ) ensure the convergence of the series 
(10). 
 

Table 1. En coefficients 

n En  n En 

0 ½ 6 -1.58042 

1 0 7 -1.81911 

2 -0.4 8 -2.04377 

3 -0.74286 9 -2.2566 

4 -1.04762 10 -2.45929 

5 -1.32468 11 -2.65318 

 

3. Propagation phase 

By means of Eq. (10), the stress intensity factors on the whole crack contour can be easily calculated provided that 
the b0, pi and qi coefficients are estimated. Now, in order to use Eq. (10) for the assessment of the propagation of an 
embedded crack, we consider a butt welded joint subjected to a fatigue loading with a nominal ratio equal to zero. The 
growth rate model is taken according to Paris’ model [19]: 
 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=  C  ∆K𝑚𝑚𝑚𝑚     (11) 
 

If ∆K ≤ ∆Kth, the crack growth ratio da/dN is set to zero. Obviously, more complicated propagation models could 
be used in the future that take into account the closure effect or short crack [20,21,22]. In the specific case of welded 
joints according to Hobbacher [23], we consider the reference values of Table 2 for steel joints. 

In order to evaluate the final crack shape, as a first step, the stress intensity factors are calculated by means of Eq. 
(9) . In all analyses, we use half of the maximum diameter of the actual crack to obtain the non-dimensional radius 
ρ(α) in Eq. (9) (a=max diameter of crack / 2). Then, by using Eq. (11), the local crack growth da(α) is evaluated along 
the whole boundary and the new shape is carried out. The increment of da(α) is assumed according to the outward 
normal and the use of Eq. (8) simplifies the evaluation of the normal as a function of α. 
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  Table 2. Parameters of Paris’ power law and threshold data for steel [23] 
Units  Paris’ power law 

parameters 
Threshold ∆Kth values 

KI [N mm-3/2] C = 5.21·10-13 170 
da/dN [mm/cycle] m=3  

 
As an example, Figure 2, shows a generis crack shape with a maximum diameter of about 0.44 mm subjected to a 

nominal stress range ∆σn of 350 MPa. After 5·104 cycles of propagation, the shape becomes close to a circular disc as 
reported in Figure 3. In order to measure the distortion of the crack with respect to the reference circle of radius a, we 
consider the t parameter defined as follows:  
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When t is equal to the unity the crack becomes a circle. The trend of t is reported in Figure 4. After an initial quick 

decreasing, the final value of t tends asymptotically to the unity. When the shape of the crack is not uniform, its growth 
depends on α. As the initial SIF in A is less than ∆Kth, the crack does not increase in the first stage of propagation as 
reported in Figure 5. On the contrary, the crack grows right from the beginning in B. The size trend of Figure 5 in 
points A and B confirms, in another way, the results of Figures 3 and 4.  

 

 
Fig.2. Initial size of the crack. 
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Fig. 3. Final shape and size after 5·104 cycles of propagation (∆σn=350MPa). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Trend of the t parameter for the crack of Figure 2. 
 

Fig. 5. Trend of size in points A and B of Figure 2 
 

Finally, Table 3 shows some examples of crack growth under the uniform nominal stress range. The trend of t is very 
similar to the example shown in Figure 4. Independently from the initial shape, the crack quickly approaches a circular 
disc. It should be noted that in many experimental cases of axial fatigue loading, the fracture surface shows a circular 
area around an embedded critical flaw [24, 25, 26, 27, 28]. Similar results were also obtained by Lazarus [29] by 
means of Bower and Ortiz’s finite perturbation method [30]. However, specific software is needed for the finite 
perturbation method. On the contrary, this paper requires only the implementation of Equation (8) to evaluate the 
shape of the crack, Equation (10) for evaluation of the SIF and Eq. (11) for the size increment.  
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4. Conclusion 

In this paper, a simple model to study the crack growth of embedded three-dimensional planar cracks has been 
proposed. In the limit of first order approximation of the stress intensity factor and Paris-Erdogan crack propagation 
laws, all numerical analyses show that the flaw tends to reach a circular shape when a remote uniform fatigue stress 
field is imposed and the characteristic values of welded joints is used for fatigue crack propagation. In order to confirm 
this trend other examples are in progress. 
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