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Abstract. The virtual element method (VEM), is a stabilized Galerkin scheme deriving from
mimetic finite differences, which allows for very general polygonal meshes, and does not require
the explicit knowledge of the shape functions within the problem domain. In the VEM, the
discrete counterpart of the continuum formulation of the problem is defined by means of a
suitable projection of the virtual shape functions onto a polynomial space, which allows the
decomposition of the bilinear form into a consistent part, reproducing the polynomial space,
and a correction term ensuring stability. In the present contribution, we outline an extended
virtual element method (X-VEM) for two-dimensional elastic fracture problems where, drawing
inspiration from the extended finite element method (X-FEM), we extend the standard virtual
element space with the product of vector-valued virtual nodal shape functions and suitable
enrichment fields, which reproduce the singularities of the exact solution. We define an extended
projection operator that maps functions in the extended virtual element space onto a set spanned
by the space of linear polynomials augmented with the enrichment fields. Numerical examples
in 2D elastic fracture are worked out to assess convergence and accuracy of the proposed method
for both quadrilateral and general polygonal meshes.
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1 INTRODUCTION

Numerical techniques for the solution of problems that admit singular or discontinuous solu-
tions such as fracture propagation in solids have attracted significant attention in the last two
decades. In particular, to date, enriched finite element approximations based on the partition-
of-unity concept [1, 2] and the eXtended Finite Element Method (X-FEM) [3] have proven to
be one of the most successful methods to analyse fracture problems on unstructured meshes
without requiring remeshing. More recently, extended finite element formulations for polyg-
onal meshes have been proposed [4, 5]. However, on polygonal elements, the construction of
shape functions is generally cumbersome and, when dealing with singular functions, additional
numerical integration issues must be carefully dealt with [6, 7, 8].

The Virtual Element Method (VEM) is a stabilized Galerkin scheme proposed in [9] to solve
partial differential equations on general polygonal meshes that overcomes many of the diffi-
culties related to standard polygonal finite element formulations. The VEM can be looked at
as a generalization of the Finite Element Method (FEM) in which the explicit knowledge of
the basis functions is not needed. Indeed, in the VEM, the bilinear form and the continuous
linear functional deriving from the variational formulation, are approximated by means of el-
liptic projections of the basis functions onto suitable polynomial spaces, which turn out to be
computable from the degrees of freedom of the method. The VEM has also been proposed
for the solution of two- and three-dimensional linear elasticity [10, 11] and several studies have
exploited the flexibility of the method to deal with meshes that are cut by discontinuities in
fracture problems [12, 13, 14]. More recently, taking inspiration from the X-FEM, an eXtended
Virtual Element Method (X-VEM) has been proposed in [15, 16], for the scalar Laplace problem
with singularities and discontinuities, and in [17] for fracture problems in two-dimensional linear
elasticity.

In this contribution, we summarize the main finding related to the extended virtual element
formulation for linear elastic fracture problems proposed in [17], in which the displacement field
features both discontinuities and crack-tip singularities. The method entails the construction of
an enriched virtual element space by means of an additional set of virtual basis functions built
on suitably chosen vectorial enrichment fields which allow to incorporate additional information
about the exact solution, taming the negative effects of the singularity on numerical accuracy. On
the other hand, discontinuities in the displacement field are embedded into the virtual element
space using the approach proposed for finite elements by Hansbo and Hansbo [18]. The X-VEM
for elastic fracture provides greater flexibility with respect to the X-FEM since it is applicable to
arbitrary polygonal meshes and, unlike the X-FEM where numerical integration generally leads
to several issues, a one-dimensional quadrature rule on the boundary of the polygonal element
suffices to compute weak form integrals.

2 TWO-DIMENSIONAL ELASTICITY MODEL

Let us consider a linear elastic body occupying the two-dimensional domain Ω ⊂ R
2, bounded

by Γ e cut by a traction-free internal crack Γc. We denote the displacement field on Ω by u(x)
and assume small strains and displacements. The boundary Γ = Γu ∪ Γt ∪ Γc, where Γu, Γt

and Γc are nonoverlapping. Prescribed displacements g ∈ C0(Γu) are imposed on Γu, whereas
tractions t̄ ∈ C0(Γt) are imposed on Γt.
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Let σ be the Cauchy stress tensor. In the absence of body forces, equilibrium equations read

∇ · σ = 0 in Ω, (1a)

with the natural boundary conditions

σ · n = t̄ on Γt, (1b)

σ · n = 0 on Γc, (1c)

where n is the unit outward normal, and the essential boundary condition

u = g on Γu. (1d)

The small strain tensor ε is related to the displacement field u by the compatibility equation

ε(u) =
1

2

(
∇(u) +∇T (u)

)
, (1e)

Lastly, the isotropic linear elastic constitutive for a homogeneous material reads

σ(u) = C : ε(u), (1f)

where C is the fourth-order elasticity tensor.
To state the weak form of the problem we define the space of admissible displacement fields

as
U =

{
v ∈ [H1(Ω)]2 : v = g on Γu, v discontinuous on Γc

}
, (2)

Similarly, the test function space is defined as:

U0 =
{
v ∈ [H1(Ω)]2 : v = 0 on Γu, v discontinuous on Γc

}
. (3)

The weak form of the equilibrium equation reads as: Find u ∈ U such that

a(u,v) :=

∫

Ω
σ(v) : ε(u) dx =

∫

Γt

t̄ · vdΓ =: b(v) ∀v ∈ U0. (4)

3 EXTENDED VIRTUAL ELEMENT FORMULATION

We now summarize the formulation of the extended virtual element method for fracture
problems in two-dimensional elasticity presented in [17]. Let T = {Ωh}h be a family of decom-
positions of Ω into nonoverlapping polygonal elements E with nonintersecting boundary ∂E,
barycenter xE ≡ (xE , yE)

T , area |E|, and diameter hE = sup
x,y∈E |x− y|.
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3.1 Enrichment with singular fields

The main concept of the X-VEM is to enrich the standard virtual element space by means of
independent fields carrying information about the singularities affecting the exact solution. For
the problem at hand, we choose the enrichment fields ǔI = uI/h1/2 and ǔ

II = uII/h1/2, where
uI and uII are the exact asymptotic crack-tip displacement fields for mode I and mode II crack
opening respectively, and h the maximum elemental diameter of the mesh [17]. We observe that
these fields satisfy equilibrium. In order to define the extended virtual element space, we first
introduce the local virtual element space V h,∗(E):

V h,∗(E) ≡
{
vh = (vhx , v

h
y )

T ∈ V h(E) : vhx = vhy

}
, (5)

where V h(E) = [V h(E)]2 with V h(E) the standard virtual element space, spanned by the scalar
virtual basis functions {ϕi}

NE

i=1. Hence, the space V
h,∗(E) is generated by the linear combination

of the basis functions {ϕ∗
i = (ϕi, ϕi)

T }NE

i=1. Then, we define the matrices ψI and ψII as

ψI ≡

[
ǔIx 0
0 ǔIy

]
, ψII ≡

[
ǔIIx 0
0 ǔIIy

]
, (6)

so that the local extended virtual element space V h
X(E) reads as

V h
X(E) ≡ V h(E)⊕ψIV h,∗(E)⊕ψIIV h,∗(E). (7)

A basis of this space can be obtained as the union of the basis functions of V h
X(E), ψIV h,∗(E)

and ψIIV h,∗(E). Therefore, at every enriched node the vector-valued field vhX(x) that belongs
to the extended virtual element space V h

X(E) is characterized by four values and for an element
whose nodes are all enriched, we have 4NE degrees of freedom. We denote the basis functions
of V h

X(E) by the symbol ϕi, i = 1, 2, . . . , 4NE , where

ϕi =





(
ϕi, 0

)T
for 1 ≤ i ≤ 2NE , i odd,

(
0, ϕi

)T
for 1 ≤ i ≤ 2NE , i even,

(
ǔIxϕi, ǔ

I
yϕi

)T
for 1 + 2NE ≤ i ≤ 3NE ,

(
ǔIIx ϕi, ǔ

II
y ϕi

)T
for 1 + 3NE ≤ i ≤ 4NE .

Finally, the extended global virtual element space V h
X reads:

V h
X =

{
vhX ∈

[
H1(Ω)

]2
: vhX |E ∈ V h

X(E) ∀E ∈ Ωh

}
.

Since {ϕi}
4NE

i=1 are not known in the interior of the element, we construct a convenient projection
operator that allows to compute the approximations ahX(·, ·) : V h

X(E)×V h
X(E) → ❘ and bhX(·) :

V h
X(E) → ❘ of the exact bilinear form a(·, ·) and the linear functional b(·) appearing in (4). The

extended virtual element formulation then reads: Find uh
X ∈ V h

X,g such that

ahX(uh
X ,vhX) = bhX(vhX) ∀vhX ∈ V h

X,0, (8)
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where the bilinear form ahX(·, ·) is built element-wise as

ahX(uh
X ,vhX) =

∑

E∈Ω

ah,EX (uh
X ,vhX) ∀uh

X ,vhX ∈ V h
X , (9)

and we set bhX(vhX) = b(vhX). To construct a bilinear form ah,EX (·, ·) which is computable from the
degrees of freedom, we extend the vector-valued linear polynomial space P1(E) to a subspace
PX of V h

X(E) which includes the linear polynomials and the additional enrichment functions ǔI

and ǔ
II . Such space is spanned by the eight linearly independent vector fields representing the

three fundamental rigid body motions, the three independent deformation modes and the two
enrichment fields:

PX(E) = span

{(
1
0

)
,

(
0
1

)
,

(
η
−ξ

)
,

(
ξ
0

)
,

(
0
η

)
,

(
η
ξ

)
,

(
ǔIx
ǔIy

)
,

(
ǔIIx
ǔIIy

)}
. (10)

We then define the extended elliptic projection operator Πa
X : V h

X(E) → PX(E) for each element
E, which is the solution of the following variational problem

∫

E
σ(qX) : ε(Πa

Xv
h
X) dx =

∫

E
σ(qX) : ε(vhX) dx ∀qX ∈ PX(E), (11a)

with the additional conditions

Πa
Xv

h
X = vhX , (11b)

(Πa
Xv

h
X)R = (vhX)R, (11c)

where (·) and (·)R represent the average translation and rotation. Then, the local extended
bilinear form can be computed as:

ah,EX (vhX ,wh
X) ≡ aE

(
Πa

X(vhX), Πa
X(wh

X)
)
+ SE

X

(
vhX −Πa

X(vhX), wh
X −Πa

X(wh
X)

)

=

∫

E
σ
(
Πa

X(vhX)
)
: ε

(
Πa

X(wh
X)

)
dx+ SE

X

(
vhX −Πa

X(vhX), wh
X −Πa

X(wh
X)

)
, (12)

where SE
X(·, ·) is a suitable stabilization term needed to guarantee linear consistency and stability

of the method. According to the virtual element methodology, SE
X(·, ·) can be any symmetric,

positive definite, continuous bilinear form defined on the kernel of the extended projection
operator Πa

X [10]. In [17], we provide two possible choices of the stabilization term by considering
the standard dofi-dofi and D-recipe formulations in our extended setting. Such choices are widely
accepted in the VEM literature and in some cases they were theoretically proved to be effective
to guarantee stability.

3.2 Discontinuous fields

The extended virtual element formulations presented in the previous Section can also be
endowed with a structure that allows the inclusion of discontinuous fields within the virtual
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element space. Let us consider a crack γ that intersects some of the elements and consider
a cut element E partitioned by γ into two subdomains E− and E+. In order to represent
two independent linear polynomials on E− and E+, we adopt the approach of Hansbo and
Hansbo [18] and tailor it to the X-VEM. To this aim, let NVE

dofs denote the number of degrees of
freedom for element E, such that NVE

dofs = 2NE for the standard virtual element formulation and
NVE

dofs = 4NE for the extended virtual element formulation. Each one of the NVE
dofs virtual shape

functions, ϕi on E, can be written as the sum of two new virtual shape functions ϕ−
i and ϕ+

i

defined as follows:

ϕ+
i =

{
0 in E−

ϕi in E+
, ϕ−

i =

{
ϕi in E−

0 in E+
. (13)

Repeating this procedure for all the degrees of freedom in the element, we can generate
NHH

dofs = 2NVE
dofs new discontinuous basis functions, starting from the initial NVE

dofs virtual basis
functions. To define the local virtual element space to which the discontinuous approximate
solution belongs, consider the following spaces:

V h,−(E) ≡
{
vh ∈

[
H1(E−)

]2
: ∆vh|E− = 0, vh|∂E− ∈ [C0(∂E−)]2,

vh|e ∈
[
P

1(e)
]2

∀e ∈ (∂E ∩ ∂E−), vh|E+ = 0
}
,

V h,+(E) ≡
{
vh ∈

[
H1(E+)

]2
: ∆vh|E+ = 0, vh|∂E+ ∈ [C0(∂E+)]2,

vh|e ∈
[
P

1(e)
]2

∀e ∈ (∂E ∩ ∂E+), vh|E− = 0
}
.

Then, the local virtual element space reads:

V h
X(E) ≡

{
vhX = (vh,− + vh,+) : vh,− ∈ V h,−(E), vh,+ ∈ V h,+(E)

}
. (14)

An analogous definition of the local virtual element space for elements cut by a crack can be
easily provided also for the enriched formulation presented in the previous Section.

Virtual element functions along interface edges can be reconstructed by a suitable polyhar-
monic approximation [15]. Finally, we obtain the following representation for the virtual element
approximation on the element E cut by γ:

vhX(x) =

NVE
dof∑

i=1

[
ϕ−

i (x)v
−
i +ϕ+

i (x)v
+
i

]
∀x ∈ E, (15)

where v−i and v+i are the degrees of freedom associated with ϕ−
i and ϕ+

i , respectively.

3.3 Stress intensity factors computation

To derive stress intensity factors, given two equilibrium states denoted by superscripts (1)
and (2), we need to compute the following interaction integral:

I(1,2) =

∫

Ω
Fj(x1, x2)

∂w

∂xj
dΩ, (16)
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where ui is the i-th component of the displacement field

Fj(x1, x2) = σ
(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
−W (1,2)δ1j , (17)

andW (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij is the interaction strain energy. Then, the stress intensity factors

for mode I and mode II crack opening, respectively denoted by KI and KII , are computed using
the relation

I(1,2) =
2

E′

[
K

(1)
I K

(2)
I +K

(1)
II K

(2)
II

]
, (18)

where E′ = E for plane stress conditions and E′ = E/(1 − ν2) for plain strain conditions. To
make integral (16) computable from the X-VEM solution, which is known on the boundary
only, we need to apply the divergence theorem and transform the domain integral (16) into a
line integral that is evaluated on the boundaries of the element:

I(1,2) =
∑

E∈ΩJ

(∫

∂E
Fj(x1, x2)wnjdΓ−

∫

E

∂Fj

∂xj
(x1, x2)wdΩ

)
. (19)

We then use the elliptic projection of the solution in terms of displacements to compute the
corresponding deformation field and the stress components. Hence, the interaction integral can
be finally computed as:

I(1,2) =
∑

E∈ΩJ

∫

∂E

[
σij(Π

a
E(u

(1)
i ))

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂Πa
E(u

(1)
i )

∂x1
− W̃ (1,2)δ1j

]
wnjdΓ, (20)

where W̃ (1,2) = σij(Π
a
E(u

(1)
i ))ε

(2)
ij .

For the implementation details we refer the reader to [17]. It can be shown that all the needed
integrations can be carried out on the element boundary so that no volume integral needs to
be computed. This is one of the main advantages of the proposed approach with respect to the
X-FEM.

4 NUMERICAL EXAMPLES

4.1 Patch test

We first conduct an extended patch test, addressing the enrichment with singular fields and
a discontinuous patch test needed to assess the inclusion of discontinuities as described in Sec-
tion 3.2.

The extended patch test ensures that the singular enrichment fields can be exactly reproduced
using the X-VEM. To this aim, we consider a square elastic plate that occupies the region (−1, 1)2

under plane strain conditions, with a horizontal crack of unit length that extends from (−1, 0) to
(0, 0). Both a coarse mesh of 10×10 square elements and a coarse mesh of 64 polygonal elements
are considered, where all the nodes in the domain are enriched the near-tip displacement fields
are imposed on the boundary of the domain by requiring that all the enriched boundary degrees
of freedom are equal to 1 and all the standard boundary degrees of freedom are equal to 0. As
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a measure for the error of the numerical solution with respect to the exact solution we adopted
the relative error in strain energy, which is computed as

E(uh) =
|a(ũ, ũ)− a(uh,uh)|

a(u,u)
, (21)

where 1
2a(u,u) = 1.6776885579 × 10−5 is the strain energy of the exact solution u, and ũh is

the projection of the discrete solution uh, which is defined as:

ũh =
∑

E∈T

Πa
Eu

h. (22)

The relative error in strain energy for the extended patch tests is of the order of 10−12, clearly
showing that the X-VEM delivers sound accuracy in reproducing the enrichment fields.

In addition to the extended patch test, we perform the discontinuous patch test first proposed
by Dolbow and Devan [19] in finite strain elasticity to the present context of plain strain linear
elasticity. The test involves solving the problem of a 2D elastic domain occupying the unit
square domain Ω = (0, 1)2 that is bisected by an horizontal crack γ into two open subdomains
Ω− = (0, 1)× (0, 1/2) and Ω+ = (0, 1)× (1/2, 1). The crack is implicitly included in the model
following the construction proposed in Section 3.2. As boundary conditions, we prescribe zero
displacements along the edge x = 0, a discontinuous distribution of constant horizontal tractions
along the edge x = 1 and zero tractions along the horizontal edges y = 0 and y = 1. For this
problem, the exact solution is piecewise linear and turns out to belong to the discrete space.
Indeed, as expected, the extended virtual element formulation presented in Section 3.2, passes
the proposed patch test with a relative error in strain energy of 2× 10−13.

4.2 Convergence study

We investigate the convergence of the X-VEM for the problem of a two-dimensional square
plate under plain strain conditions in the presence of a horizontal crack, extending from the
boundary to the center of the specimen. The geometry of the domain is the same adopted as
that for the extended patch test. On the boundary of the domain, we apply the exact near-tip
mixed mode I and mode II displacement fields, which are also employed as enrichment fields for
the X-VEM and represent the exact solution for the problem at hand. Both quadrilateral and
general polygonal meshes are considered. To compute the element stiffness matrix, we follow
two different strategies: topological enrichment and geometric enrichment. In the topological
enrichment, we only enrich the node located at the singularity of the solution whereas in geo-
metric enrichment we enrich all the nodes within a given radius from the origin. As in extended
finite element methods, due to the presence of the singularity in the crack tip, the theoretical
convergence rate for this problem is R = 1 that is non-optimal. Figure 1 shows convergence
plots of the relative error in strain energy. Both VEM and X-VEM with topological enrichment
converge in strain energy with a rate close to 1, in agreement with theory. It turns out that the
X-VEM is insensitive to the type of mesh (quadrilaterals or polygons), and the results from the
X-VEM are consistently more accurate than those from standard VEM.

Many prior studies have indicated that geometric enrichment, allows the standard X-FEM
for fracture problems to recover the optimal convergence rate [20]. In order to establish if the
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Figure 1: Convergence in strain energy for the mixed-mode benchmark problem. For the X-
VEM, only the node at the origin is enriched (topological enrichment). Comparisons are shown
with the standard VEM on quadrilateral and polygonal meshes. All methods converge with a
rate close to unity.

proposed X-VEM can deliver the optimal convergence rate R = 2 that is predicted by theory,
we enrich all nodes that are located within a ball of radius re = 0.5 from the origin. Figure 2
depicts convergence plots for the relative error in strain energy on quadrilateral and polygonal
meshes for the X-VEM with geometric enrichment. The convergence rate is close to 2, which is
consistent with theory.

5 CONCLUSIONS

❼ The extended virtual element method for two-dimensional elastic fracture problems, pro-
posed in [17], allows the incorporation of crack-tip singularities and discontinuities in the
approximation space.

❼ In the X-VEM, we augmented the standard virtual element space by means of additional
vectorial basis functions that were constructed using the asymptotic mode I and mode II
crack-tip displacement fields as enrichment functions.

❼ An extended elliptic projector was proposed that projects the functions of the extended
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Figure 2: Convergence in strain energy for the mixed-mode benchmark problem. For the X-
VEM, geometric enrichment (re = 0.5) on quadrilateral and polygonal meshes is used. Compar-
isons are made with the standard VEM. X-VEM converges with a rate close to two.

virtual element space onto the space spanned by linear polynomials and the enrichment
fields.

❼ Crack discontinuities were modeled by decomposing each virtual shape function as the
sum of two discontinuous shape functions, following the approach proposed by Hansbo
and Hansbo [18].

❼ The proposed extended virtual element formulation does not present integration issues,
since all integrals are computed on the elements boundary, where virtual shape functions
are known.

❼ Many numerical tests proved the consistency and the robustness of the X-VEM.
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