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Abstract. A two-scale model for clusters of degenerated graphite in gray cast iron is presented. The novelty of the model is that, at 

the mesoscale, a single cluster is described as a spheroidal inclusion made of porous materials. At the microscale, the porous material 

contains a random distribution of randomly oriented spheroidal voids modeling the graphite precipitates. To calculate the stress state 

inside and at the outer surface of the cluster, two different approaches are presented. In the first approach, the effective elastic 

properties of the porous material at the microscale are obtained using Pan and Weng homogenization scheme, based on Eshelby’s 

equivalent principle and the Mori-Tanaka’s estimate; at the mesoscale, the stress distributions inside and at the outer surface of the 

cluster are calculated using Eshelby’s solution applied to an inclusion made of equivalent porous material. The second approach is 

based on a finite element analysis of a cluster embedding 216 randomly oriented and randomly distributed spheroidal voids. A 

comparison between the numerical results obtained with the two approaches indicates good agreement in terms of average (elastic 

and stress distribution) properties. The equivalent elastic properties (Young’s modulus) calculated at the microscale in the two 

approaches are also compared with some experimental results available in the scientific literature. 

Keywords: Spheroidal cast iron, degenerated graphite; cluster; elastic plate; spheroidal voids; porous material; effective elastic moduli; spheroidal 

inclusion; stress analysis; multiscale method. 

1. Introduction 

Due to its good mechanical properties, such as machinability, strength, fatigue and wear resistance, 

spheroidal cast iron has a wide range of engineering applications in turbines, pipes, machines, and 

automotive industry parts. In the scientific literature, spheroidal cast iron is often viewed as a composite 

material in which graphite nodules, acting as reinforcement, are dispersed into a metallic matrix. Following 

this idea, many studies focus on damage and failure of such a material. A typical modeling approach is to 

study spheroidal graphite particles regularly embedded into a metallic matrix [1,2,3]. The graphite particles 

are often modelled as voids or cavities, due to their early decohesion from the matrix, cf. [2,4,5]. 

In spheroidal graphite cast iron, higher graphite nodularity results in higher ductility and strength but 

deviations from the spherical shape frequently occur. Degenerated graphite precipitates with complex 

microstructures may form in the casting under certain circumstances, resulting in a deterioration of the 

mechanical properties, cf. [6,7,8,9,10,11] and references therein.  

Gray cast iron is intrinsically characterized by the presence of multiple scales: the macroscale of the 

sample, the mesoscale at the level of clusters of degenerated graphite and the microscale at the level of 

graphite precipitates. Macroscale mechanical models are usually built up on constitutive phenomenological 

relations, in which descriptors of the microstructure such as orientation, size, shape or alignment 

distributions are unaccounted for, so this kind of models may be not accurate enough. At the meso- and 

microscale, the morphology of graphite clusters and the three-dimensional microstructure of graphite 

precipitates are usually very complex for a FE analysis, requiring too much computational effort. Therefore, 

a multiscale approach is a reasonable compromise between accuracy, complexity and computational time. 

The most detrimental forms of graphite, lamellar or spiky graphite precipitates, often tend to aggregate into 

clusters that can be viewed as another material phase, i.e. a mixture of graphite particles and metal matrix. 

Based on this idea, a multiscale description of the mechanical behavior of degenerated graphite clusters has 

been provided in [12,13]. The main simplifying assumption in these two studies is that graphite particles and 

their aggregates can be described as elliptical or spheroidal voids and inclusions. This assumption allows to 

exploit the well-known analytical methods for composites relying upon the equivalent inclusion method of 

Eshelby [14,15,16] and on its mean field extensions, cf. [17,1819,20,21] and the references therein. On the 

other hand, degenerated graphite particles occurring in elongated, needle-like shape are best fitted by ellipses 

and ellipsoids with large aspect ratio. In [12], the interaction of two clusters modeled as two elliptical voids 
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in an infinite plate under tensile loading is studied. In [13], a multiscale approach is proposed for the 

description of the behavior of degenerated graphite bidimensional clusters viewed as an aggregate of 

elliptical voids dispersed into a linear elastic, isotropic bidimensional matrix.  

In the present work, we propose an original generalization of the study in [13] to the three-dimensional 

case. At the microscale, i.e. the scale of graphite precipitates, we follow [2,4,5] in assuming that the 

precipitates can be described as spheroidal voids, due to the observed early decohesion from the matrix. In 

addition, the voids are assumed to be randomly oriented and randomly distributed in an elastic isotropic 

matrix. In Section 2, we apply the Pan and Weng homogenization scheme [22] to calculate the effective 

properties of the porous equivalent material. There exists an extensive literature on both analytical and 

computational homogenization models, for a recent state of art review see [23]. Here, we follow the approach 

proposed by Tandon and Weng [24,25,26] and further specialized by Pan and Weng to the case of spheroidal 

voids [22]. The advantage of this homogenization scheme, combining Eshelby’s theory and Mori–Tanaka’s 

method, is that it gives a closed form solution for finite concentrations of ellipsoidal inclusions with a wide 

range of inclusion aspect ratios. As the aspect ratio of the inclusions changes, the effective moduli calculated 

with the Tandon and Weng homogenization scheme are shown to vary within the Hashin-Shtrikman bounds 

[26]. In other homogenization methods, as the self-consistent method, the generalized self-consistent 

method, and the differential method, the shapes of the inclusions are limited to spheres and short fibers, cf. 

[23] and references therein. The effective elastic properties obtained using the Tandon and Weng 

homogenization scheme are then compared with those calculated via a finite element analysis performed in 

COMSOL Multiphysics on distributions of randomly oriented spheroidal voids randomly distributed in an 

elastic isotropic matrix. At the mesoscale, i.e. the scale of a cluster of graphite precipitates, Eshelby’s 

fundamental solution [14,15,16] is used to calculate the stress distributions internal and external to the 

cluster, assumed to be composed of the equivalent porous material. In Section 3, the (uniform) internal stress 

components are then compared with the average internal stress components calculated with the finite element 

method inside a reference spheroidal surface containing the spheroidal voids. A similar comparison is 

performed between the averaged stress components at the outer surface of the inclusion with porous 

materials and the analogous ones calculated using the finite element analysis at the reference spheroidal 

surface. The stress distribution analysis is also applied to obtain stress concentration factors inside and at the 

outer surface of the cluster. Section 4 is devoted to a comparison between the effective elastic properties 

predicted by the two approaches, homogenization and finite element modeling, and some experimental 

results available in the scientific literature for materials with random distributed porosity. Results and 

concluding remarks are summarized in Section 5, along with some comments on possible future 

developments. 
 

2. Microscale modelling 

Cast iron is naturally a two-phase material: iron containing graphite inclusions. These can be modeled as 

spheroidal inclusions randomly distributed in a three-dimensional isotropic infinite matrix. The inclusions 

can be assumed randomly oriented, the composite being macroscopically isotropic. 

Several methods can be envisaged for the analysis of the average properties of such a composite. Here, 

two different approaches are followed: an analytical one proposed in [22,24,25,26] and based on Eshelby’s 

formalism, and a finite element (FE) analysis performed with COMSOL Multiphysics commercial finite 

element code.  

2.1. Homogenization approach 

The average elastic properties of the composite and the elastic stress distribution in and around the 

spheroidal inclusions at finite concentration can be analyzed via the homogenization approach proposed by 

Tandon and Weng, based on Eshelby’s equivalent principle and Mori- Tanaka's concept of average stress in 

the matrix. A detailed exposition of this approach can be found in [24,25] for aligned inclusions and in [26] 

for randomly oriented inclusions. Results for effective elastic constants of randomly oriented ellipsoidal 
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voids are given in [22]. In particular, in the Pan and Weng (PW) estimate the effective bulk and shear moduli, 

𝜅̅ and 𝜇̅ respectively, are found to depend on the void volume fraction 𝜆 and on the elasticity coefficient of 

the matrix, 𝜅 and 𝜇 according to the following: 

𝜅̅ =
𝜅

1+𝑝
𝜆

1−𝜆

    (1) 

𝜇̅ =
𝜇

1+𝑞
𝜆

1−𝜆

    (2) 

the constants 𝑝 and 𝑞 depending on the components of the Eshelby’s tensor , S𝑖𝑗𝑘𝑙 , as follows: 

 

𝑝 = −
1

3𝐴
[(−S1111 + S1122 + 1)(S2233 − S3333 + 1) 

+(−S1111 + S1133 + 1)(−S2222 + S3322 + 1) 

+(−S1122 + S1133 + 1)(S2211 − S3311) + S2211(S3322 − S3333) 

+(1 − S2222)(S3311 − S3333 + 1) + S2233(S3311 − S3322) + S3311)],                     (3) 

 

𝑞 =  (1/(15 𝐴))[(1 − S1111) (2 S2222 + S2233 + S3322 + 2 S3333 − 4) 
+S2211 (2 S1122 + S1133 − S3333 + 1) 

+S3311 (S1122 + 2 S1133 + S2233) + S1122 (S2233 − S3333 + 1) 
+S3322 (S1133 + S2211 + 2 S2233) 

+(1 − S2222) (S1133 + S3311 + 2 S3333 − 2)] 
  +(1/5) (1/(1 − 2 S1212) + 1/(1 − 2 S1313) + 1/(1 − 2 S2323)),                       (4) 

with 

𝐴 = (S3333  −  1) ((S1111  −  1) (S2222  −  1)  −  S1122 S2211) 
          −S3322 ((S1111  −  1) S2233  −  S1133 S2211) 

          −S3311 (S1133 (S2222 −  1) −  S1122 S2233).                                       (5) 

 

The components of the Eshelby’s tensor , S𝑖𝑗𝑘𝑙 ,  depend on the ellipsoid’s semi-axis aspect ratio 𝑡 (the ratio 

of length to diameter) as specified in the Appendix. 

Given 𝜅̅ and 𝜇̅ as in Equations (1) and (2), the average Young modulus, 𝐸̅, and average Poisson ratio, 𝜈̅, can 

be calculated using the following standard relations: 

 

𝐸̅ =
9𝜅̅ 𝜇̅ 

3𝜅̅+𝜇̅ 
,   𝜈̅ =

3𝜅̅−2 𝜇̅ 

2(3𝜅̅+𝜇̅) 
.                                         (6) 

 

When the spheroidal voids have an aspect ratio 𝑡 → ∞, the voids are geometrically equivalent to cracks. In 

this limit case, the effective Young’s modulus and Poisson ratio given by Equations (6) and (7) reduce to 

the following simple forms: 

𝐸̅𝑐 =  
15 𝐸 (1−𝜆)

15+4𝜆(5+𝜈−4𝜈2)
,                (7) 

𝜈̅𝑐 =  
15𝜈+𝜆(5−3𝜈−8𝜈2)

15+4𝜆(5+𝜈−4𝜈2)
,                (8) 

where 𝐸 and 𝜈 are the Young’s modulus and Poisson’s ratio of the matrix, respectively, related to 𝜅 and 𝜇 

as in Equations (6). For spherical voids, Weng [W] has calculated the following equivalent moduli: 

𝐸̅𝑠 =  −
2𝐸0(𝜆−1)(5𝜈−7)

15𝜆𝜈2+2(𝜆+5)𝜈−13𝜆−14
,               (9) 

𝜈̅𝑠 =  
5(𝜆+2)𝜈2+2(𝜆−7)𝜈−3𝜆

15𝜆𝜈2+2(𝜆+5)𝜈−13𝜆−14
.               (10) 
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The simplest estimate for the effective elastic behavior of a porous material with porosity λ is given by 

the classical rule of mixtures (RM): 

𝐸𝑚𝑖𝑥 =  𝐸 (1 − 𝜆),     (11) 

𝜈𝑚𝑖𝑥 = 𝜈 (1 − 𝜆).     (12) 

In Section 2.3, the average elastic properties evaluated using (1)-(6) and (11)-(12) are compared with the 

results of the FE analysis described in the next Subsection. 

 

2.2. Finite element analysis  

A three-dimensional finite element analysis has been performed with commercially available software 

(COMSOL Multiphysics). The matrix is assumed to be elastic isotropic with Young’s modulus 𝐸 = 206 

GPa and Poisson’s ratio 𝜈 = 0.3. The graphite inclusions are modeled as voids dispersed in the matrix. Two 

different microstructures have been examined: an ordered distribution of voids and a disordered distribution 

of voids. In the ordered distribution, 216 randomly oriented voids are placed at the centers of a uniform grid 

with cube elementary cells of 1×1×1 mm. The union of 6×6×6 elementary cells gives the cube of Figure 1. 

In the disordered distribution, the centers of the voids are placed randomly inside the volume without 

overlapping by using a random sequential adsorption model, as shown in Figure 1b. 

The number of 216 voids was inspired by the bidimensional analysis conducted in previous paper [13], 

where the microstructural texture was approximated by means of about 200 ordered and disordered 2D voids 

in a rectangular plate. The reason behind the choice of the disordered distribution, in addition to the ordered 

one, is to take into account a more general random microstructure, i.e. to consider randomness not only in 

the orientation of the spheroids but also in their positions. Undoubtedly, the choice of two different 

distributions adds more generality to the analysis. 

In both types of voids distributions, the internal voids are ellipsoids of revolution with semi-axis aspect ratio 

𝑡 ranging between 0.1 and 0.8 and size of major axis ranging between 0.05 and 0.45 millimeters, implying 

a porosity ranging between 5·10-6 up to 0.24. The orientation angle of each ellipsoid was randomly evaluated 

for a discrete uniform distribution by means of a commercial numeric computing environment. After the 

generation, it has been verified that the average distribution of each angle was around zero. Figures 1c and 

1d show the typical mesh used in the numerical analysis where quadratic elements have been used. The 

example is relative to ellipsoidal voids with semi axis of 0.4×0.16×0.16 millimeter. In the reported example 

the number of elements were around 5·105. 

The boundary conditions applied to the model take inspiration from tensile tests on porous specimens, like 

the ones experimentally characterized in [30]. The average elastic properties have been calculated by 

prescribing a uniform tensile stress 𝜎𝑛 applied along the 𝑧 direction at 𝑧 = 𝐿, while simultaneously 

prescribing the displacement boundary conditions shown schematically in Figure 2. The average 

displacements in the 𝑧 direction ∆𝑢𝑧 at the surface 𝑧 = 𝐿, the average displacements ∆𝑢𝑥 in the 𝑥 direction 

at the free surface 𝑥 = 𝐿, and the ∆𝑢𝑦 in the 𝑦 direction at the free surface 𝑦 = 𝐿 have been evaluated 

numerically. The effective Young’s modulus along the 𝑧 direction and the Poisson’s ratios in the 𝑥 and 𝑦 

direction have been calculated as 𝐸̅𝑧 = 𝜎𝑛/(∆𝑢𝑧/𝐿), 𝜈̅𝑧𝑥 = −(∆𝑢𝑥/𝐿)/(∆𝑢𝑧/𝐿) and 𝜈̅𝑧𝑦 = −(∆𝑢𝑦/𝐿)/

(∆𝑢𝑧/𝐿), respectively. Analogous results have been obtained by prescribing uniform tensile stresses 

𝜎𝑛 applied along the 𝑥 and the 𝑦 directions. For a stress applied along the 𝑥 (𝑦) direction, the Young’s 

modulus 𝐸̅𝑥 (𝐸̅𝑦) and the Poisson ratios 𝜈̅𝑥𝑦 (𝜈̅𝑦𝑥) and 𝜈̅𝑥𝑧 (𝜈̅𝑦𝑧) have been calculated. 
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 a) 

 

 b) 

 c) 

 d) 

 

 

Figure 1. a): ordered distribution of randomly oriented voids in a cube of 6×6×6 mm; b): disordered distribution 

of randomly 216 oriented voids in a cube of 6×6×6 mm; c): typical mesh used in the analysis of ellipsoidal voids 

with semi axis of 0.4×0.16×0.16 millimeter; d): zoom of the mesh. 
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Figure 3 shows a comparison between elastic coefficients calculated for random distributions of voids under 

three uniaxial tensile tests with stress applied along the 𝑥, 𝑦 and 𝑧 directions, respectively. The plot on the 

 
Figure 2. Boundary conditions imposed in FE analysis on a cube with dimensions L×L×L mm (L=6 mm). 

 

 

 

 

  
Figure 3. Comparison of average normalized elastic moduli calculated with a FE analysis for random 

distributions of voids. Left: comparison of Young moduli. Right: comparison of Poisson ratios. The alignment 

of the data with the 45-degree line indicates isotropic behavior. 
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left-hand side shows a comparison between the Young moduli 𝐸̅𝑧, 𝐸̅𝑥 and 𝐸̅𝑦. The data are quite aligned with 

the 45-degree line corresponding to the ideal ratio 𝐸̅𝑥/𝐸̅𝑧 = 1 (𝐸̅𝑦/𝐸̅𝑧 = 1) indicating isotropic behavior. 

The plot on the right-hand side of Figure 3 shows a comparison between the six Poisson ratios 𝜈̅𝑧𝑥 , 𝜈̅𝑧𝑦, 

𝜈̅𝑥𝑦, 𝜈̅𝑥𝑧, 𝜈̅𝑦𝑥 and 𝜈̅𝑦𝑧. The alignment of the data with the straight line inclined at 45 degrees indicates again 

an almost isotropic behavior for the considered microstructure in the porosity range from zero to 25%. 

Porosity levels larger than 25%, which are far above the graphite content in gray cast iron (cf. Table 7), are 

not of interested in the present analysis and thus they have not been investigated. In Figure 3, the lowest 

values for the Young moduli and the Poisson ratios correspond to the largest values of porosity considered 

in FE simulations, about 25%. For this porosity level, the normalized Young moduli are found to range from 

0.56 to 0.58 (depending on the direction), while the normalized Poisson ratios are found to be higher, ranging 

from 0.79 to 0.90 (depending on the direction). This difference could be explained as follows. While it is 

expected that an increase in porosity causes a decrease of the Young moduli, at a rate depending on the 

voids’ aspect ratio, the dependence of the effective Poisson ratios on the porosity is known to be more subtle. 

In fact, the Poisson ratio is theoretically known to increase, decrease o remain constant with increasing 

porosity, cf. [28].  

 

2.3. Comparison of results at the microscale 

In this Subsection, the elastic parameters calculated via FE analysis are compared with the estimates 

provided by Equations (1)-(6) and by those given by the rule of mixtures, Equations (11) and (12).  

Figure 4 shows a two-dimensional density plot of the normalized average Young's modulus 𝐸̅/𝐸 versus the 

porosity 𝜆 and the void aspect ratio 𝑡. The density plot has been obtained by using Equations (1)-(6), i.e. 

PW estimate. For comparison, in the same Figure contour lines plotted by using the data obtained from FE 

simulations are also shown. Dashed line and dotted lines correspond to ordered and disordered voids 

distributions, respectively. Thick dash-dotted vertical lines correspond to Equation (11) of the rule of 

mixtures (RM). The main idea behind Figure 4 (and Figures 5, 8 and 9 below) is that the closer the contour 

lines plotted by using different methods (PW estimate, FE analysis or RM approach), the better the 

agreement between the used methods. So, representations like the one proposed in Figure 4 allow to evaluate 

the agreement between the used approaches at a glance, taking into account the dependence on porosity and 

inclusions aspect ratio. 

Deeper inspection of Figure 4 shows also that the average Young modulus is weakly dependent on the 

porosity aspect ratio, in particular for lower values of porosity and higher aspect ratio. Even though the black 

(dashed and dotted) curves of the FE estimate do not perfectly overlap with the contour (solid) lines of the 

density plot given by the PW estimate, the close spacing between them indicates a good agreement between 

FE analysis and homogenization results, with a better accordance for disordered voids (dotted lines). In 

contrast, thick dash-dotted vertical lines corresponding to the rule of mixture are well separated from the 

contour lines of the density plot and shifted to the right, suggesting that RM always provides an overestimate 

of the Young’s modulus, an occurrence already reported in [29]. 

Tables 1 and 2 show the absolute value of the relative percent errors of the PW estimate vs FE analysis for 

normalized Young’s modulus calculated for ordered and disordered distributions of spheroidal voids, 

respectively. For ordered distributions, the data confirm the trend of Figure 4, indicating a very good 

agreement between the two estimates, with a maximum error of 2.69% for ordered distributions and 3.04% 

for disordered ones. Tables 1 and 2 show also the absolute value of the relative percent errors of the RM 

estimate vs FE analysis for normalized Young’s modulus calculated for ordered and disordered distributions 

of spheroidal voids, respectively. In this case the errors increase, with a maximum error rises to 23.99% for 

ordered distributions and 28.87% for disordered ones, confirming that the rule of mixture provides in general 

a worse estimate with respect to the PW approach. On the other hand, it must be said that the maximum error 

of the RM estimate is attained for a porosity value of 25%, which is higher than typical values of graphite 

volume fraction in gray cast iron (about 10-15%). 
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Figure 5 shows a two-dimensional density plot of the normalized average Poisson’s coefficient 𝜈̅/𝜈 versus 

the porosity 𝜆 and the void aspect ratio 𝑡. As in Figure 4, the density plot has been obtained by using 

Equations (1)-(6). Figure 5 shows also contour lines plotted by using the data obtained from FE simulations 

are also shown: dashed line and dotted lines correspond to ordered and disordered voids distributions, 

respectively. Thick dash-dotted vertical lines correspond to Equation (12) of the rule of mixtures.  

As for the Young’s modulus, the normalized Poisson’s coefficient is weakly dependent on the porosity 

aspect ratio, in particular for lower values of porosity and higher aspect ratio. The close spacing between the 

(solid) contour lines calculate via the PW estimate and dashed line and dotted lines obtained by using FE 

data indicates a good overall agreement. When comparing with Figure 4, in Figure 5 dashed line (FE, 

ordered) and dotted lines (FE, disordered) corresponding to the same value of the normalized average 

Poisson’s coefficient 𝜈̅/𝜈  are shifted left from the corresponding contour lines of PW estimate, indicating 

that the PW approach provides an inferior (under)estimate for the Poisson’s coefficient with respect to the 

estimate of the Young’s modulus. The situation is worse for the RM estimate, for which thick dash-dotted 

vertical lines located even further left from the contour lines of PW estimate. 

The data listed in Tables 3 and 4 are the absolute value of the relative percent errors of the PW estimate 

vs FE analysis for normalized Poisson’s coefficient calculated for ordered and disordered distributions of 

spheroidal voids, respectively. Inspection of the data reveals that the maximum absolute error is 9.57% for 

ordered distributions, and 16.07% for disordered ones. These errors are larger than those found for the 

Young’s modulus, indicating that for the Poisson’s coefficient the agreement is less pronounced. The data 

show an even inferior agreement for the RM estimate, with a maximum absolute error of 12.13%  for ordered 

distributions, and 26.07% for disordered ones. 
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Error on 

 𝐸̅/𝐸 

vs. FE, ordered 

(%) 

𝑡 

 

1 1.25 2.5 5 10 

PW RM PW RM PW RM PW RM PW RM 

𝝀 

0-10% 2.63 5.88 2.65 9.38 2.68 9.33 2.69 4.44 2.69 3.04 

10-20% 0.97 12.44 0.08 17.32 − − − − − − 

20-25% 2.32 23.99 1.45 22.99 − − − − − −  

 

 

 

Table 1. Maximum relative percent errors on the normalized Young’s modulus estimated by homogenization 

analysis (via PW estimate) and by the rule of mixture (RM) vs the results of the FE analysis calculated for ordered 

distributions of spheroidal voids. 

 

 

 

 Ordered voids   Disordered voids   Rule of mixtures 

 

Figure 4. Two-dimensional density plot of normalized average Young's modulus 𝐸̅/𝐸 versus porosity, 𝜆, and void 

aspect ratio, 𝑡. The density plot has been obtained using the homogenization approach proposed in [PW], the color 

bar refers to different levels of 𝐸̅/𝐸. Dashed line and dotted lines are contour plots calculated with FE simulations 

for ordered and disordered voids distributions, respectively. Thick dash-dotted vertical lines correspond to the rule 

of mixtures, cf. equation (11). The numbers indicate values over which the contours are drawn. 
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Error on 

 𝑬̅/𝑬 

vs. FE, disordered 

(%) 

𝒕 

 

1 1.25 2.5 5 10 

PW RM PW RM PW RM PW RM PW RM 

𝝀 

0-10% 0.26 10.33 2.65 9.36 2.68 7.34 2.69 3.71 2.69 2.88 

10-20% 1.06 21.87 1.77 19.49 − − − − − − 

20-25% 2.99 28.87 3.04 28.59 − − − − − −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Table 2. Maximum relative percent errors on the normalized Young’s modulus estimated by homogenization 

analysis (via PW estimate) and by the rule of mixture (RM) vs the results of the FE analysis calculated for disordered 

distributions of spheroidal voids. 

 

 

v 

 Ordered voids   Disordered voids   Rule of mixtures 

 

Figure 5. Two-dimensional density plot of normalized average Poisson’s ratio 𝜈̅/𝜈 versus porosity, 𝜆, and void 

aspect ratio, 𝑡. The density plot has been obtained using the homogenization approach proposed in [PW], the color 

bar refers to different levels of 𝐸̅/𝐸. Dashed line and dotted lines are contour plots of 𝜈̅𝑥/𝜈 calculated with FE 

simulations for ordered and disordered voids distributions, respectively. Thick dash-dotted vertical lines correspond 

to the rule of mixtures, cf. equation (12). The numbers indicate values over which the contours are drawn. 
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Error on 

 𝝂̅/𝝂  

vs. FE, ordered 

(%) 

𝒕 

 

1 1.25 2.5 5 10 

PW RM PW RM PW RM PW RM PW RM 

𝝀 

0-10% 0.56 1.48 0.98 3.59 0.86 2.59 0.17 0.56 0.01 0.16 

10-20% 2.73 4.89 4.50 7.75 − − − − − − 

20-25% 9.57 12.13 7.86 11.16 − − − − − −  

 

 

 

 
Error on 

 𝝂̅/𝝂  

vs. FE, disordered 

(%) 

𝒕 

 

1 1.25 2.5 5 10 

PW RM PW RM PW RM PW RM PW RM 

𝝀 

0-10% 12.76 17.24 3.85 0.85 2.52 0.99 0.50 0.23 0.08 0.09 

10-20% 11.50 23.26 9.91 2.48 − − − − − − 

20-25% 10.68 26.07 16.07 4.41 − − − − − −  

 

 

 

 
 

3. Methods for mesoscale modelling 

In the proposed multiscale model (MM), the mesoscale is the scale of the clusters of defects. Each cluster of 

graphite inclusions is modeled as a spheroidal inclusion made of homogenized material with the average 

elastic properties calculated in the Section 2. The stress analysis of such a cluster can be analytically 

performed via Eshelby’s solution for an ellipsoidal inclusion perfectly bonded to an infinite elastic three-

dimensional matrix under a given remote uniform load 𝜎0.  

 A FE analysis has been also performed and two different configurations have been analyzed and 

compared with the results given by Eshelby’s solution: an inclusion embedded in an elastic matrix and made 

of porous material with equivalent elastic properties; 216 spherical voids placed inside a cluster made of the 

same material of the matrix. 

 

3.1. Stress analysis based on Eshelby’s solution 

Eshelby’s solution establishes that the stress and strain fields inside a spheroidal inclusion embedded into 

an elastic matrix are uniform and depending only the elasticity tensors of the matrix and inclusion materials, 

𝐶0 and 𝐶1 respectively, on the aspect ratio 𝑡 of the spheroid and on the applied remote load 𝜎0 [14,15,16]. In 

particular, the interior stress 𝜎𝑖𝑛 takes the form  

𝜎𝑖𝑛 =  𝜎0 + 𝐶0[𝑆𝑒∗ − 𝑒∗],   (13) 

where 𝑆 is the Eshelby’s tensor and 𝑒∗ is the equivalent eigenstrain of the inclusion, solution to the equation 

 

𝜎0 + 𝐶0[𝑆𝑒∗ − 𝑒∗] = 𝐶1(𝐶0
−1𝜎0 + 𝑆𝑒∗) .   (14) 

The components of the Eshelby’s tensor 𝑆 for a spheroidal inclusion are given in the Appendix.  

 

Table 3. Maximum relative percent errors on the normalized Poisson’s ratio estimated by homogenization analysis 

(via PW estimate) and by the rule of mixture (RM) vs the results of the FE analysis calculated for ordered 

distributions of spheroidal voids. 

 

 

 

Table 4. Maximum relative percent errors on the normalized Poisson’s ratio estimated by homogenization analysis 

(via PW estimate) and by the rule of mixture (RM) vs the results of the FE analysis calculated for disordered 

distributions of spheroidal voids. 
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The stress 𝜎𝑜𝑢𝑡 just outside the inclusion depends on the position on the outer surface of the inclusion, and 

in particular on the unit outward normal 𝑛 to the inclusion, as follows: 

 

𝜎𝑜𝑢𝑡 =  𝜎𝑖𝑛 + 𝐶0[𝑒∗ − (𝑀((𝐶0𝑒∗)𝑛))⨂𝑛],   (15) 

where the matrix 𝑀 is given as 

 

𝑀 =  
1

𝜇
[𝐼 −

1

2(1−𝜈)
(𝑛⨂𝑛)],     (16), 

with 𝜇 and 𝜈 the shear modulus and the Poisson’s ratio of the matrix, respectively, and ⨂ indicates the 

dyadic product between vectors. In this paper, the materials of the matrix and the inclusion are assumed to 

be isotropic, so the elasticity tensor 𝐶0 and 𝐶1 take the form 

 

𝐶 =  2 𝜇𝕀 + (𝜅 −
2

3
𝜇)  𝐼 ⊗ 𝐼,     (17), 

where 𝜅 and 𝜇 are the shear and bulk moduli of the material, respectively, 𝕀 is taken to denote the fourth 

order identity and ⊗ the dyadic product between second order tensors. 

3.2. Stress analysis based on finite element method 

A spheroidal cluster having semiaxes of 6 and 3 mm and embedded into a rectangular box of dimensions 

25×25×40 mm has be numerically analyzed in COMSOL. In the model quadratic elements have been used 

and its number were around 4·105. The semiaxes of the cluster are parallel to the edges of the rectangular 

box. The cluster contains a disordered distribution of small equal spherical voids with radius of 0.4 mm. The 

material inside and outside the cluster is assumed to be, as before, homogeneous, linear elastic and isotropic, 

with Young’s modulus 𝐸 = 206 GPa and Poisson’s ratio 𝜈 = 0.3. The rectangular box is subjected to a state 

of uniaxial traction by imposing a vanishing vertical displacement at the bottom surface of the box and a 

uniform distributed traction surface load 𝜎0 at the top surface, as represented in the left-hand side of Figure 

6. The numerical analysis performed in COMSOL provides the stress distribution inside and outside the 

cluster.  

The volume-averaged values of the stress components inside the cluster have been normalized with 

respect to the applied load 𝜎0 and compared with the normalized, uniform stress components given by 

Eshelby’s solution for an inclusion with homogenized porous material described by Eqns. (1-5). The 

comparison is illustrated in Subsection 3.3. 

For the stress distribution external to the cluster, the values of the load normalized stress components at 

the outer surface of the cluster have been calculated over the equatorial line of the spheroidal surface of the 

cluster, represented in the right-hand side of Figure 6. These normalized stress components have been 

compared with the corresponding ones calculated by using Eshelby’s solution at the external surface of the 

inclusion. The comparison is discussed in Subsection 3.4. 

 

3.3. Comparison of results for internal stress analysis 

Table 5 shows the load normalized, volume-averaged stress components calculated with the FE simulation 

inside the cluster versus the uniform stress components obtained by injecting Eqns. (1-5) into Eqn. (13). 

Inspection of data listed in Table 5 shows an overall good agreement between the two sets of stress 

components. Two additional cluster orientations were also considered in the analysis: a cluster rotated of 

45° about the y-axis indicated in Figure 6 and a cluster rotated of 90° about the same axis. For these new 

orientations, the agreement between the internal stress components from FE simulation and from the 

multiscale model confirmed to be very good. To avoid redundancy, the corresponding data are not presented. 
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Model 𝜎𝑥𝑥
𝑖𝑛/𝜎0 𝜎𝑦𝑦

𝑖𝑛 /𝜎0 𝜎𝑧𝑧
𝑖𝑛/𝜎0 𝜎𝑥𝑦

𝑖𝑛/𝜎0 𝜎𝑥𝑧
𝑖𝑛/𝜎0 𝜎𝑦𝑧

𝑖𝑛/𝜎0 

FE 0.018 0.001 0.770 0.001 0.000 -0.001 

MM 0.018 0.001 0.779 0.000 0.000 0.000 

 

 

 

 

a)  

 

 

 

 

 

 

 

 
 

 

b) 

 

 

Figure 6. a): configuration used in COMSOL for the stress analysis: a spheroidal inclusion with semiaxes of 6 and 

3 mm incorporating spheroidal voids with radius of 0.4 mm. b): equatorial line of the external surface of the cluster 

on which the outer stresses have been calculated. Note that some voids could slightly intersect the surface of the 

spheroid (size in millimeters). 
 

3.4. Comparison of results for external stress analysis 

Figure 7 shows the plots of distribution of outer stress components over the equatorial line of the spheroidal 

surface of the cluster calculated using the two different approach, i.e. the FE method and the multi-scale 

model (MM) In the plots, the values of the stress components are normalized with respect to the applied load 

𝜎0. The plots indicate that the multiscale model is able to capture the average trend of the distributions 

calculated using the FE method. This is confirmed by Table 2 in [29], where a good agreement between the 

average values (averaged along the equatorial lines of the cluster) of the stress components calculated using 

the multiscale method and FE analysis has been found. Disagreement between the curves in Figure 7 is due 

stress peaks  in FE data, given by the presence of neighboring cavities close to the surface of the cluster. 

These peaks, correctly reproduced by the FE model, are completely lacking in the curves obtained using the 

multiscale model, which appear to be more regular. The reason is that in the multiscale model defects internal 

to the cluster are smeared out into equivalent porosity, and thus local stress peaks cannot be taken into 

Table 5. Load normalized, volume-averaged, internal stress components calculated via a FE analysis of a traction 

test performed over a box including a porous cluster (label “FE”) vs the same uniform components calculated by 

using the multiscale model (label “MM”), i.e. Eshelby’s solution for an inclusion of equivalent homogenized porous 

material. 
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account. This aspect represents a main drawback of the multiscale model, in view of the fact that stress peaks 

may lead to cracking and fracture. 

 

 

 

3.5. Estimates of stress concentration factors 

Using Eqns. (13) and (17) together with the estimates for the elastic constants of the porous material provided 

by Eqn. (1)-(5), it is possible to calculate the stress concentration factors at the interior and on the outer 

surface of the inclusion modelling the cluster of degenerated graphite.  

A MATLAB routine has been implemented to calculate the components of stress tensors 𝜎𝑖𝑛 and 𝜎𝑜𝑢𝑡, and 

in particular their eigenvalues, denoted 𝜎𝑘
𝑖𝑛, 𝑘 = 1, 2, 3 for the inner stress and 𝜎𝑘

𝑜𝑢𝑡 , 𝑘 = 1, 2, 3 for the outer 

one. Because the internal stress components are uniform in Eshelby’s solution, the inner stress concentration 

factor, 𝑆𝐶𝐹𝑖𝑛, is defined as 

 

𝑆𝐶𝐹𝑖𝑛 =  𝑚𝑎𝑥 {
𝜎1

𝑖𝑛

𝜎0
,

𝜎2
𝑖𝑛

𝜎0
,

𝜎3
𝑖𝑛

𝜎0
 }      (18). 

The outer stress components are found to depend upon the position on the outer surface of the spheroid. It 

is convenient to introduce an angular spheroidal coordinates with 𝜗 ∈ [0, 𝜋) the angle formed by the position 

vector of a generic point on the spheroidal surface and the spheroid’s, and 𝜑 ∈ [0,2𝜋) the azimuthal angle 

of the position vector, i.e. the angle of rotation from the initial meridian plane. Then, the concentration factor, 

𝑆𝐶𝐹𝑜𝑢𝑡, is defined as 

 

 

𝑆𝐶𝐹𝑜𝑢𝑡 =  𝑚𝑎𝑥 𝜗∈[0,𝜋)

𝜑∈[0,2𝜋)

{
𝜎1

𝑜𝑢𝑡(𝜗,𝜑)

𝜎0
,

𝜎2
𝑜𝑢𝑡(𝜗,𝜑)

𝜎0
,

𝜎3
𝑜𝑢𝑡(𝜗,𝜑)

𝜎0
 }   (19). 

 

 

Figure 7. Comparison between stress distributions over the equatorial line at the outer surface of the cluster 

calculated using the finite element method (label “FE”) and by using the multiscale model (label “MM”), i.e. 

Eshelby’s solution for an inclusion of equivalent homogenized porous material. 
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Figure 8. Density plot of the internal stress concentration factor, defined as in Eqn. (18), versus cluster aspect ratio, 

𝑎, and void aspect ratio, 𝑡. A porosity value of 25% has been assumed. 

 

 

Figure 9. Density plot of the external stress concentration factor, defined as in Eqn. (19), versus cluster aspect ratio, 

𝑎, and void aspect ratio, 𝑡. A porosity value of 25% has been assumed. 

 

 

 



   16 

Given the elasticity parameters of the matrix, chosen as before 𝐸 = 206 GPa and 𝜈 = 0.3, Figures 8 and 9 

show the two-dimensional contour plots for the two stress concentration factors in the (𝑡, 𝑎) plane, with 𝑡 

the voids’ aspect ratio and 𝑎 the inclusion (or cluster) aspect ratio. In the two figures, a porosity value of 

25% has been assumed. As expected, 𝑆𝐶𝐹𝑜𝑢𝑡 values are larger than 𝑆𝐶𝐹𝑖𝑛 values. Moreover, while 𝑆𝐶𝐹𝑖𝑛 

is found to increase with decreasing 𝑡 and increasing 𝑎,  𝑆𝐶𝐹𝑜𝑢𝑡 increases for increasing both 𝑡 and 𝑎, i.e. 
for slender rod-like voids forming slender aggregates. 

 

4. Comparison of homogenization results with experimental data from literature 

In this Section, we compare the proposed analytical and numerical estimates of homogenized elastic 

properties calculated in Section 2 with some experimental results obtained in [30,31].  

In [30], beams constituted of porous material characterized by spherical porosity have been experimentally 

characterized. In particular, 20×20×150 mm beams made of high strength hemihydrate plaster containing 

randomly distributed polystyrene spherical agglomerates have been tested in four-point bending conditions. 

The content of polystyrene has been varied to realize different levels of porosity. The obtained 

microstructures have been characterized by X-ray computed tomography and optical imaging on 

bidimensional sections, revealing a random distribution of spherical defects. Figure 10 shows the model used 

in the FE analysis in the case of porosity of 15%. The load-displacement responses obtained in four-point 

bending test conditions have shown a quasi-brittle behavior. The Young modulus 𝐸, normalized with respect 

the elastic modulus 𝐸0 of the matrix material, is experimentally found to linearly decrease with porosity 

increase, accordingly to the following experimental estimate valid up to a porosity of 30%: 

 

𝐸/𝐸0 = 1 − 1.96 𝜆.      (20) 

Table 6 compares the values of the normalized Young modulus calculated with Eqn.(20) at different level 

of porosity with the estimates obtained with the finite element analysis (FE) and with the homogenized 

approach proposed by Pan and Weng (PW). The values in the Table indicate that the numerical and theorical 

estimates are very close and both in good agreement with experimental data, with relative errors lower that 

10% for porosity levels up to 20%. For larger porosity levels, relative errors are expected to increase due to 

the deviation of the real porosity geometry from the idealized distribution of spherical voids considered in 

calculating the FE and PW estimates. 

In [31], the Young’s modulus of nodular cast iron 𝐸̅𝑐𝑖  was obtained by using a pulse-echo elastic-wave 

technique. Several material samples were examined: specimens I, characterized by lower carbon gray cast 

iron, were obtained from the jamb of a coke-oven door; specimens II, presenting a higher carbon gray cast 

iron, were obtained from an ingot mold. Because of variations in graphite flake size and amount due to 

differential cooling rate during casting, the samples were extracted from two representative locations 

(labelled A and B) from each of the gray cast irons. Quantitative metallographic techniques were applied to 

determine the average volume fraction and the average aspect ratio of the graphite flakes. Figure 11 shows 

the model used in the FE analysis in the case IB. The graphite was modeled by means of thin ellipsoid of 

revolution. 

Table 7 shows the measured values of the Young’s modulus, obtained from rod specimens for samples IA 

and IB, and from thick plate specimens for samples IIA and IIB. In the same Table, the corresponding values 

provided by the Pan and Weng (PW) estimate and by the numerical analysis (FE) have been listed. The PW 

and FE estimates have been obtained by considering levels of porosity equal to the measured values of 

graphite volume fraction. For the considered values of the latter, the data listed in Table 7 indicate a good 

agreement between the experimental data and the analytical and numerical results. 
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 Porosity 𝝀 (%) 

5 10 15 20 25 

 

𝑬/𝑬𝟎  

Eqn. (20) 0.90 0.80 0.71 0.61 0.51 

FE 0.90 0.82 0.73 0.66 0.58 

PW 0.90 0.82 0.74 0.67 0.60  

 

 

 

 

 

Type of 

sample 

Graphite 

 

(%) 

Aspect 

ratio 
𝐸̅𝑐𝑖 

[𝑆𝑆𝐾] 
(GPa) 

PW 

 

(GPa) 

FE 

 

(GPa) 

Error 

TW 

(%) 

Error 

FE 

(%) 

IA 8.2 14.6 128 128.2 107.9 0.1 15.6 

IB 7.1 15.2 134 134.1 119.4 0.1 10.9 

IIA 12.7 23.9 97.2 80.8 − 16.9 − 

IIB 10.8 24.6 83.4 88.7 − 6.4 − 

 

 

 

 

 

Table 7. Average Young’s modulus vs. porosity in gray cast iron: comparison of Pan and Weng [22] estimate and 

finite element (FE) analysis prediction with experimental data obtained in [31]. 

 

 

 

 

 

 

 

Table 6. Normalized Young’s modulus vs. porosity in a porous material: comparison of Pan and Weng [22] estimate 

and finite element (FE) analysis prediction with the interpolation (Eqn. (20)) of experimental values obtained in [30]. 

Figure 10.  Model used for analyzing the experimental data proposed in reference [30]; porosity of 15% obtained 

with 216 spherical voids of radius 0.8 mm in a cube of 14.6×14.6×14.6 mm; boundary condition as in Figure 2. 
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Figure 11.  Model used for analyzing the experimental data proposed in reference [31]; Case IB with thin 216 

ellipsoidal voids with diameter of 0.19 mm and thickness of 0.013 in a cube of 0.92×0.92×0.92 mm; boundary 

condition as in Figure 2. 
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5. Conclusions 

 

The paper proposes a two-scale model for clusters of degenerated graphite in gray cast iron. The graphite 

precipitates are modeled as spheroidal voids aggregating in a spheroidal cluster embedded in a three-

dimensional infinite elastic matrix. At the microscale, the Pan and Weng’s estimate for ellipsoidal defects 

randomly distributed in an elastic matrix is applied to calculate the equivalent elastic constants of the porous 

material inside the cluster. At the mesoscale, Eshelby’s solution is used to calculate the stress components 

at points internal and external to the cluster, assumed to be composed of the equivalent porous material. 

To validate the two-scale model, a finite element analysis has been conducted on random microstructures 

embedding spheroidal randomly oriented and randomly distributed cavities aggregated in a cluster. The 

validation at the microscale indicates good agreement between the equivalent elastic properties of the porous 

material calculated by using Pan and Weng’s approach and those calculated by means of the finite element 

analysis. At the mesoscale, a very good agreement has been found between the internal (uniform) stress 

components calculated by using Eshelby’s solution and the corresponding average stress components 

calculated via the finite element simulation. A good agreement is also found for the outer stress distribution 

between the components calculated numerically and using the two-scale model. As expected, the latter is 

not able to capture stress peaks due to cavities close to the cluster surface, which are smeared out as an 

equivalent porous material in the two-scale model. 

As a second validation, the two-scale model and the numerical approach are validated by comparing the 

predicted average elastic properties of the porous material inside the clusters with experimental data obtained 

from the literature [30,31]. Again a good agreement is observed, indicating that analytical or numerical 

homogenization procedures are effective in estimating the elastic properties of porous materials and in 

particular of gray cast iron.  

Future developments of the present work could address the bonding and the damage of the graphite 

particles at the interface with the matrix, using approaches similar to those proposed in [32,33,34,35]. 

Another important aspect could be the validation of the model against experimental data collected by means 

of X-ray tomography, X-ray diffraction, and digital volume correlation, whose recent developments offer 

enormous potential [36]. 
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Appendix 

Components of the Eshelby’s tensor for a spheroidal inclusion: 

 

S1111 = (1 − 2𝜈0 + (3𝑡2 − 1) (𝑡2 − 1)⁄ − 𝑔(1 − 2𝜈0 + 3𝑡2 (𝑡2 − 1)⁄ )) (2(1 − 𝜈0))⁄  

S2222 = 3 𝑡2 (8(1 − 𝜈0)(𝑡2 − 1))⁄ + 𝑔 (1 − 2𝜈0 − 9 (4(𝑡2 − 1))⁄ ) (4(1 − 𝜈0))⁄  

S3333 = 3 𝑡2 (8(1 − 𝜈0)(𝑡2 − 1))⁄ + 𝑔 (1 − 2𝜈0 − 9 (4(𝑡2 − 1))⁄ ) (4(1 − 𝜈0))⁄  

S2233 = (𝑡2 (2(𝑡2 − 1))⁄ − 𝑔(1 − 2𝜈0 + 3 (4(𝑡2 − 1))⁄ )) (4(1 − 𝜈0))⁄  

S3322 = (𝑡2 (2(𝑡2 − 1))⁄ − 𝑔(1 − 2𝜈0 + 3 (4(𝑡2 − 1))⁄ )) (4(1 − 𝜈0))⁄  

S2211 = −𝑡2 (2(1 − 𝜈0)(𝑡2 − 1))⁄ + 𝑔 (3𝑡2 (𝑡2 − 1)⁄ − (1 − 2𝜈0)) (4(1 − 𝜈0))⁄  

S3311 = −𝑡2 (2(1 − 𝜈0)(𝑡2 − 1))⁄ + 𝑔 (3𝑡2 (𝑡2 − 1)⁄ − (1 − 2𝜈0)) (4(1 − 𝜈0))⁄  

S1122 = S1133 = −(1 − 2𝜈0 + 1 (𝑡2 − 1)⁄ ) (2(1 − 𝜈0))⁄ + 𝑔 (1 − 2𝜈0 + 3 (2(𝑡2 − 1))⁄ ) (2(1 − 𝜈0))⁄  

S2323 = S3232 = (𝑡2 (2(𝑡2 − 1))⁄ + 𝑔(1 − 2𝜈0 − 3 (4(𝑡2 − 1))⁄ )) (4(1 − 𝜈0))⁄  

S1212 = S1313 = (1 − 2𝜈0 − (𝑡2 + 1) (𝑡2 − 1)⁄ − (𝑔 2⁄ )(1 − 2𝜈0 − (3(𝑡2 + 1)) (𝑡2 − 1)⁄ )) (4(1 − 𝜈0))⁄  

 

where 𝜈0 is the Poisson ratio of the matrix, 𝑡 is the aspect ratio of the inclusion (length to diameter) and 𝑔 is given by 

𝑔 = 𝑡 (𝑡(𝑡2 − 1)
1
2 − ArcCosh(𝑡)) (𝑡2 − 1)3/2⁄  

for a prolate shape (𝑡 > 1) and  

𝑔 = 𝑡 (ArcCos(𝑡) − 𝑡(𝑡2 − 1)
1
2) (𝑡2 − 1)3/2⁄  

for an oblate shape (𝑡 < 1). For a spherical inclusion (𝑡 = 1), the above relations simplify into 

S1111 = S2222 = S3333 =
7 − 5𝜈0

15(1 − 𝜈0)
 

S1122 = S2233 = S3311 =
5𝜈0 − 1

15(1 − 𝜈0)
 

S1212 = S2323 = S3131 =
4 − 5𝜈0

15(1 − 𝜈0)
 

. 


