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Abstract

In Euclidean space, it is well known that any integration by parts formula for a set of finite
perimeter Ω is expressed by the integration with respect to a measure P (Ω, ·) which is equivalent
to the one-codimensional Hausdorff measure restricted to the reduced boundary of Ω. The same
result has been proved in an abstract Wiener space, typically an infinite dimensional space, where
the surface measure considered is the one-codimensional spherical Hausdorff-Gauss measure S

∞−1

restricted to the measure-theoretic boundary of Ω. In this paper we consider an open convex set Ω
and we provide an explicit formula for the density of P (Ω, ·) with respect to S

∞−1. In particular,
the density can be written in terms of the Minkowski functional p of Ω with respect to an inner
point of Ω. As a consequence, we obtain an integration by parts formula for open convex sets in
Wiener spaces.
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analysis; geometric measure theory
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1 Introduction

We consider a separable Banach space X endowed with a Gaussian measure γ, whose Cameron-
Martin space is denoted by H . The covariance operator is denoted by Q : X∗ → X, where X∗

is the topological dual of X, and Ω ⊆ X is an open and convex domain. The aim of this paper
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is proving an integration-by-parts formula for the domain Ω. To be more precise, we are going to
show that for any Lipschitz function ψ : X → R it holds that

∫

Ω

∂∗
kψdγ =

∫

∂Ω

ψ
∂kp

|∇Hp|H
dS ∞−1, k ∈ N. (1)

Here, p is the Minkowski functional of Ω and S
∞−1 is the (spherical) Hausdorff-Gauss surface

measure introduced in [14], where the surface measure is denoted by ρ. However, we use the notation
S

∞−1 which has been introduced in [7] and is more familiar with the language of geometric measure
theory. The measure ρ is the generalization of the Airault-Malliavin surface measure [2].

The crucial tools to obtain formula (1) are convex analysis and geometric measure theory in
infinite dimension. The former ensures that the Minkowski functional p related to the open convex
domain Ω satisfies regularity conditions. Indeed, it is well known that the Minkowski functional
related to an open convex set is convex and continuous (see [19]) and therefore we infer that p
is Lipschitz, and therefore Gâteaux differentiable almost everywhere. This allows us to write the
exterior normal vector of Ω in terms of p, as in finite dimensional setting.

Geometric measure theory has been recently developed, starting from the first definition of
functions of bounded variation (BV functions for short) in abstract Wiener spaces (which we denote
by BV (X, γ)) given by [15] and [16]. However, the authors propose a stochastic approach, defining
the sets of finite perimeter in terms of reflected Brownian motions and by using the theory of
Dirichlet forms. In [6] the authors prove the results of [16] and further properties of BV functions
in abstract Wiener spaces in a purely analytic setting, closer to the classical one. In particular, they
prove the equivalence between different definitions of BV (X, γ) in terms of total variation VH(f) of
a function f , by approximation with more regular functions throughout the functional LH(f) and
by means of the Ornstein-Uhlenbeck semigroup (Tt)t≥0. The latter is the analogous in the Gaussian
setting of the heat semigroup in the original definition of BV functions given by De Giorgi in [13].

We recall the definition of the space BV (X, γ) of the functions of bounded variation on X (see
e.g. [16] and [6, Definition 3.1]). We say that f ∈ L1(logL)1/2(X, γ) is a function of bounded
variation if there exists a finite signed Radon measure µ ∈ M (X;H) such that for any h ∈ QX∗ it
follows that

∫

X

f∂∗
hΨdγ = −

∫

X

Ψd[h, µ]H ,

for any Ψ ∈ FC
1
b(X). Further, if U ⊂ X is a Borel set and f = 1U , if f has bounded variation

then we say that U has finite perimeter and we denote by P (U, ·) the associated measure. The
definition of BV functions on an open set A ⊂ X is more complicated, since of the lackness of
local compactness in infinite dimension. However, BV functions on open domains A has been
investigated in [1], where, as in [5], the authors provide different characterizations of the space
BV (A, γ) by means of the total variation Vγ(f,A) and in terms of approximations with more
regular functions throughout the functional Lγ(f,A). We stress that the characterization in terms
of the Ornstein-Uhlenbeck semigroup of BV (A, γ) is not an easy task since at the best of our
knowledge there is no good definition of (Tt)t≥0 on a general open domain A. However, in [10] it
has been defined the Ornstein-Uhlenbeck semigroup (TC

t )t≥0 on the convex set C ⊂ X by means of
finite dimensional approximations, and in [18] the authors relate the variation of a function f with
the behaviour of TC

t u near 0.
Sets of finite perimeter play a crucial role in our investigation. As in the finite dimensional case,

the measure associated to sets of finite perimeter is strictly connected with a surface measure. In
[14] it is introduced a notion of surface measure in infinite dimension, the spherical Hausdorff-Gauss
surface measure S

∞−1, which is defined by means of finite dimensional spherical Hausdorff measure
S

n−1, n ∈ N. This is different from the classical Hausdorff measure H
n−1 even if the relation

H
n−1 ≤ S

n−1 ≤ 2H n−1 holds true and they coincide on rectifiable sets. This choice is due to the
fact that spherical Hausdorff-Gauss surface measure S

n−1 enjoy a monotonicity property (see [7,
Lemma 3.2], [14, Proposition 6(ii)] or [17, Proposition 2.4]) which allows to define measure S

∞−1

as limit on direct sets. Further details are given in Section 3.
Properties of sets of finite perimeter have been widely studied in [7], [11] and [17]. In particular,

[7, Theorem 5.2] and [17, Theorem 2.11] show that if U has finite perimeter in X, then P (U,B) =
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S
∞−1(B ∩ ∂∗U), where ∂∗U is the cylindrical essential boundary introduced in [17, Definition

2.9]. It is worth noticing that in the infinite-dimensional setting things do not work as well as for
the Euclidean case; [20] gives an example of an infinite-dimensional Hilbert space X, a Gaussian
measure γ and a set E ⊂ X such that 0 < γ(E) < 1 and

lim
r→0

γ(E ∩Br(x))

γ(Br(x))
= 1, for every x ∈ X. (2)

In the same work, it is also shown that if the eigenvalues of the covariance Q decay to zero sufficiently
fast, then it is possible to talk about density points; in some sense, the requirement on the decay
gives properties of X closer to the finite-dimensional case. For these reasons, in general the notion
of point of density as given in (2) is not a good notion. However, [4] gives a definition of points of
density 1/2 by means of the Ornstein-Uhlenbeck semigroup (Tt)t≥0.

The properties of Ω give other important consequences. At first, we show that, as in finite
dimension, for any open convex set C ⊂ X we have ∂C = ∂∗C, where ∂C denotes the topological
boundary of C. Further, from [11, Proposition 9], it follows that Ω has finite perimeter and therefore
from the above reasoning it follows that P (Ω, B) = S

∞−1(B∩∂∗Ω) = S
∞−1(B∩∂Ω). This explain

why in the right-hand side of (1) the measure S
∞−1 ∂Ω appears.

Finally, we stress that (1) is the generalization of the integration-by-parts formula proved in [12].
Here, the authors deal with subsets of X of the type O := {x ∈ X : G(x) < 0}, where G : X → R is
a suitable regular function which satisfy a sort of nondegeneracy assumption, and they prove that

∫

O

∂∗
kϕdγ =

∫

G−1(0)

ϕ
∂kG

|∇HG|H
ϕdS ∞−1, k ∈ N, (3)

for any Lipschitz function ϕ : X → R. G−1(0) coincides S
∞−1-almost everywhere with ∂O. Thanks

to (3), the authors set the bases of a theory of the traces for Sobolev functions in abstract Wiener
spaces and proved the existence of a trace operator Tr. However, this theory if far away to be
complete. Indeed, in general if f belongs to the Sobolev space W 1,p(O, γ) with p ∈ (1,+∞) (see
[12] for the definition of W 1,p(O, γ)), then Trf ∈ Lq(∂O, ρ) with 1 ≤ q < p. The case q = p is
still an open problem, and in this direction some result is known if G satisfies some additional
conditions, which are not even fulfilled by the balls in Hilbert spaces. We recall that in the case
O = X the surface integral in (3) disappears and therefore (3) is the usual integration-by-parts
formula in abstract Wiener space (see e.g. [9, Chapter 5]).

Comparing (1) and (3) we notice that the Minkowski functional p of Ω plays the role of the
function G in [12]. However, p in general does not satisfies the assumptions of [12] for G and in
this sense our result is a generalization of (3). Moreover, our work suggests a different way to get
the integration-by-parts formula by using procedures and techniques inherit from the geometric
measure theory. This different approach gives the hope to develop in future papers a more general
trace theory for Sobolev and BV functions in abstract Wiener spaces.

The paper is organized as follows.
In Section 2 we define the abstract Wiener space (X, γ,H) and the main tools of differen-

tial calculus in infinite dimension, i.e., the H-gradient, the γ- divergence and the Sobolev spaces
W 1,p(Ω, γ), with p ∈ [1,+∞). Moreover, we recall the definition of functions of bounded variation
both on X and on an open set A ⊂ X.

In Section 3 we recall the definition of S
∞−1 and, thanks to an infinite dimensional version of

the area formula, we prove that the epigraph of a Sobolev function has finite perimeter.
Finally, in Section 4 we prove the integration-by-parts formula (1). To this aim we initially

show that, thanks to [7, Lemma 6.3], it is possible to choice a direction h ∈ QX∗ such that
|Dγ1Ω| ({x ∈ X : [νΩ(x), h]H = 0}) = 0, where νΩ is the Radon-Nikodym density of Dγ1Ω with
respect |Dγ1Ω|, i.e., Dγ1Ω = νΩ|Dγ1Ω|. We set Ω⊥

h := {x ∈ Ω : ĥ(x) = 0}, where ĥ ∈ X∗ satisfies
h = Qĥ. Then, there exist two functions f, g : Ω⊥

h → R such that ∂Ω = Γ(f,Ω⊥
h ) ∪ Γ(g,Ω⊥

h ) ∪ N ,
where N is a Borel set with null S ∞−1-measure and Γ(f,Ω⊥

h ) := {y+f(y)h : y ∈ Ω⊥
h }. By applying

the results of Section 3 it follows that Dγ1Ω = −νfS
∞−1 Γ(f,Ω⊥

h ) + νgS
∞−1 Γ(g,Ω⊥

h ). To
conclude, we show a relation between p and f and g, which gives (1).
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2 Preliminaries

Let us fix some notations. We denote by (X, γ,H) an abstract Wiener space, i.e. a separable infinite
dimensional Banach space X endowed with a Radon centered non degenerate Gaussian measure γ
with Cameron–Martin space H . We recall that H is continuously and compactly embedded in X
and that there exists Q : X∗ → X such that QX∗ ⊂ H ⊂ X, all these embeddings being dense by
the non-degeneracy of γ. The decomposition Q = Rγ ◦ j holds, where j : X∗ → L2(X, γ) is just the
identification of an element of X∗ as a function in L2(X, γ) and Rγ : L2(X, γ) → X is defined in
terms of Bochner integral as

Rγ(f) =

∫

X

f(x)x γ(dx).

The reproducing kernel is defined as

H = j(X∗) ⊂ L2(X, γ),

and the restriction of Rγ on H gives a one–to–one correspondence between H and H . For any
h ∈ H we shall denote by ĥ ∈ H the unique element such that Rγ(ĥ) = h. Then, the Cameron–
Martin space inherits the Hilbert structure with inner product

[h, k]H =

∫

X

ĥ(x)k̂(x)γ(dx).

We denote by FC1
b (X) the set of bounded functions ϕ : X → R such that there exists n ∈

N, x∗
1, . . . x

∗
n ∈ X∗ and v ∈ C1

b (R
n) (the space of bounded continuous functions with bounded

continuous derivatives) with
ϕ(x) = v(x∗

1(x), . . . , x
∗
n(x)).

Without loss of generality, we can suppose that Qx∗
1, . . . , Qx

∗
n are orthonormal vectors in H . Fur-

ther, we denote the set cylindrical H-valued vector fields by FC1
b (X,H), where Φ ∈ FC1

b (X,H) if
there exist n ∈ N and h1, . . . , hn ∈ H and ϕ1, . . . , ϕn ∈ FC1

b (X) such that

Φ(x) :=
n∑

i=1

ϕi(x)hi.

For any ϕ ∈ FC1
b (X) and h ∈ H we set

∂hϕ(x) = lim
t→0

ϕ(x+ th)− ϕ(x)

t
.

The separability of X implies that H is separable.
For any ϕ ∈ FC1

b (X), ϕ(x) = v(x∗
1(x), . . . , x

∗
n(x)) for some n ∈ N, x1, . . . , xn ∈ X∗ and v ∈

C1
b (R

n), we define its H–gradient by

∇Hϕ(x) =

n∑

i=1

∂Qx∗
i
ϕ(x)Qx∗

i ,

If H ′ ⊂ H is a closed subspace and Qx∗
i ∈ H ′ for any i = 1, . . . , n, then we write ∇H′ϕ(x) = ∇Hϕ

to enlight the dependence of ϕ on the directions of H ′. For any h ∈ H we also denote by

∂∗
hϕ(x) = ∂hϕ(x)− ϕ(x)ĥ(x)

the formal adjoint (up to the sign) of ∂h, in the sense that, for any ϕ,ψ ∈ FC1
b (X), it holds that

∫

X

ϕ∂hψdγ = −
∫

X

∂∗
hϕψdγ.

We introduce the divergence operator divγ : FC1
b (X,H) −→ R by setting

divγΦ(x) :=
n∑

i=1

∂hi
ϕi(x)− ϕi(x)hi,

4



with Φ(x) =
∑n

i=1 ϕi(x)hi ∈ FC1
b (X,H). Further, for any Φ ∈ FC1

b (X,H) and any ψ ∈ FC1
b (X)

the following integration-by-parts formula holds:

∫

X

[∇Hψ,Φ]Hdγ = −
∫

X

ψdivγΦdγ.

We stress that it is possible to fix an orthonormal basis {hi}i∈N of H such that hi = Qx∗
i with

x∗
i ∈ X∗ for any i ∈ N.
For any h ∈ QX∗ we introduce the continuous projection πh : X −→ H defined by πhx = ĥ(x)h,

where Rγ(ĥ) = h. This fact induces the decomposition X = X⊥
h ⊕ 〈h〉, where X⊥

h = ker(πh) =
ker(ĥ). Therefore, for any x ∈ X we shall write x = y + z, where y = x− πhx ∈ X⊥

h and z = πhx.
Clearly, this decomposition is unique. Such a decomposition implies that the measure γ can be
split as a product measure

γ = γ⊥
h ⊗ γh

where γ⊥
h and γh are centred non-degenerate Gaussian measures on X⊥

h and 〈h〉, respectively. If
|h|H = 1, then γh is a standard Gaussian measure, i.e. letting z = th, we have

γh(dz) = γ1(dt) = N (0, 1)(dt) =
1√
2π
e−

t2

2 dt.

This argument can be generalized for any finite dimensional subspace F ⊂ QX∗ ⊂ H : indeed, if
F = 〈h1, . . . , hm〉 with {hi}i=1,...,m orthonormal elements of H and hi ∈ QX∗ for any i = 1, . . . ,m,
then we can write X = X⊥

F ⊕ F , where X⊥
F = ker(πF ), πF : X −→ F and

πF (x) =

m∑

i=1

ĥi(x)hi,

and πF (h) :=
∑m

i=1[h, hi]Hhi for any h ∈ H . We identify F with R
m and for any z ∈ F we denote

by |z| its norm in R
m. We can also decompose γ = γ⊥

F ⊗ γF where γ⊥
F and γF are centred non

degenerate Gaussian measures on X⊥
F and F , respectively. Further,

γF (dz) =
1

(2π)m/2
e−

|z|2

2 dz.

We recall the definition of Sobolev spaces and functions with bounded variation in Wiener spaces.
Let Ω ⊂ X be an open set. By Lipb(Ω) we denote the set of bounded Lipschitz continuous functions
on Ω, by Lipc(Ω) we denote the set of functions ϕ ∈ Lip(X) with bounded support and such that
dist(supp(ϕ),Ωc) > 0, and by FC1

b (Ω) we denote the set of restrictions of functions of FC1
b (X)

to Ω. Clearly, Lipc(Ω) ⊂ Lipb(Ω) and FC1
b (Ω) ⊂ Lipb(Ω). Analogously, we define Lip(Ω,H)

as the set of functions ϕ : Ω → H such that there exists a positive constant L which satisfies
|ϕ(x) − ϕ(y)|H ≤ L‖x − y‖X for any x, y ∈ X. Lipb(Ω, H) and Lipc(Ω, H) are defined in obvious
way.

We shall denote by M (Ω,H) the set of H-valued Borel measures defined on Ω ⊂ X. For such
measures the total variation turns out to be given by

|µ|(Ω) = sup

{∫

Ω

〈Φ, dµ〉H : Φ ∈ Lipc(Ω,H), |Φ(x)|H ≤ 1 ∀x ∈ Ω

}
. (4)

Equation (4) has been proved in [18, Lemma 2.3] with Lip0(Ω,H) instead of Lipc(Ω,H), but the
same arguments can be adapted to prove (4). We can state the following preliminary result.

Lemma 2.1 Let 1 ≤ p < ∞. Then, the operator ∇H : FC1
b (Ω) ⊂ Lp(Ω, γ) → Lp(Ω, γ, H) is

closable. We denote by W 1,p(Ω, γ) the domain of its closure. The same is true if we use Lipb(Ω) ⊂
Lp(Ω, γ) instead of FC1

b (Ω), and the definition of W 1,p(Ω, γ) is equivalent.

Proof. The above statement is true for Ω = X from [9, Chapter 5]. By linearity, it is sufficient
to prove that if fj → 0 in Lp(Ω, γ) and ∇Hfj → F in Lp(Ω, γ,H), then F = 0. To this aim, we
fix ϕ ∈ Lipc(Ω): notice that |∇Hϕ|H ∈ L∞(X, γ), then the zero extension ϕ̃ = ϕ · 1Ω of ϕ belongs

5



to Lip(X) and ∂∗
hϕ ∈ L∞(X, γ) for any h ∈ H . Since fj ∈ FC1

b (X) for any j ∈ N and fj → 0 in
Lp(Ω, γ). Then we get

0 = lim
j→+∞

∫

Ω

fj∂
∗
hϕdγ = lim

j→+∞

∫

X

fj∂
∗
hϕ̃dγ = lim

j→+∞
−
∫

X

∂hfj ϕ̃dγ = lim
j→+∞

−
∫

Ω

∂hfjϕdγ

=− lim
j→+∞

∫

Ω

[∇hfj , ϕ]Hdγ = −
∫

Ω

[F, h]Hϕdγ,

for any h ∈ H . Now, 〈F, h〉H ∈ Lp(Ω, γ) ⊆ L1(Ω, γ), so we can define µ ∈ M (Ω,H) by µ = 〈F, h〉Hγ.
Therefore, (4) gives µ ≡ 0. This implies that 〈F, h〉H = 0 γ–a.e. for every h ∈ H , and then F = 0.

To prove the second part of the statement, we recall that the restriction to Ω of a function
in W 1,p(X, γ) is in W 1,p(Ω, γ), and by [9, Chapter 5] we have Lipb(X) ⊆ W 1,p(X, γ). Finally, a
function in Lipb(Ω) can be extended to a function in Lipb(X), and therefore Lipb(Ω) ⊆W 1,p(Ω, γ)
and we can conclude. qed

From the definition of W 1,p(Ω, γ), it is easy to prove that for any f ∈ W 1,p(Ω, γ) and Φ ∈
Lipc(Ω,H) the following integration by parts formula holds:

∫

Ω

fdivγΦdγ = −
∫

Ω

〈∇Hf,Φ〉Hdγ.

We close this section by giving the definition of functions of bounded variation both on X and
on open domains. For precise study of such functions see [1]. We recall the definition on X.

Definition 2.2 Let p > 1. We say that u ∈ Lp(X, γ) is a function with bounded variation, i.e.,
u ∈ BV (X, γ), if there exists a Borel measure Dγu ∈ M (X,H) (said weak gradient) such that for
any ϕ ∈ FC1

b (X) and any i ∈ N we have

∫

Ω

u∂∗
i ϕdγ = −

∫

Ω

ϕd(Dγu)i,

where (Dγu)i = [Dγu, hi]H . If E ∈ B(X) and u = 1E, then we say that E has finite perimeter in
X if u ∈ BV (X, γ) and we write Pγ(E,B) := |Dγ1E |(B), for any B ∈ B(X).

For further informations on BV (X, γ) we refer to [6].

Definition 2.3 Let Ω ⊆ X an open set and let p > 1. We say that u ∈ Lp(Ω, γ) is a function with
bounded variation, u ∈ BV (Ω, γ), if there exists a measure Dγu ∈ M (Ω,H) (said weak gradient)
such that for any ϕ ∈ Lipc(Ω) and any i ∈ N we have

∫

Ω

u∂∗
i ϕdγ = −

∫

Ω

ϕd(Dγu)i,

where (Dγu)i = [Dγu, hi]H .

Remark 2.4 In [6] BV (X, γ) has been defined starting from the Orlicz space L(LogL)1/2(X, γ)
instead of Lp(X, γ) with p > 1. Since Lp(X, γ) ⊂ L(LogL)1/2(X, γ) for any p > 1 Definition 2.2 is
less general then [6, Definition 3.1], but in our situation it is enough.
Moreover, the same holds for Definition 2.3 where X is replaced by the open set Ω ⊂ X (see [1]).

It is clear that for Ω = X the above definitions are equivalent. Moreover, if f ∈ Lp(X, γ) is a
function with bounded variation with weak gradient Dγu, clearly for every Ω open subset of X, f
is of bounded variation with weak gradient Dγu Ω, the restriction of the measure Dγu to the set
Ω. In each case, if Dγu exists it is unique.

3 Epigraph of Sobolev functions

Fixed h ∈ QX∗ and an open set A ⊂ X⊥
h and a function f : A→ R, we define the graph of f by

Γ(f, A) := {x = y + f(y)h : y ∈ A}

6



and the epigraph of f by

Epi(f, A) := {x = y + th : y ∈ A, t > f(y)} .

Let us recall the definition of spherical Hausdorff measure in a Wiener space setting (see [7], [14]
and [17] for more details). For a given F ⊂ H finite dimensional space with F ⊂ QX∗, we define

S
∞−1
F (B) =

∫

X⊥
F

γ⊥
F (dy)

∫

By

Gm(z)S m−1(dz), ∀B ∈ B(X),

where m = dimF , S
m−1 is the spherical Hausdorff measure on F ,

Gm(z) =
1

(2π)m/2
e−

|z|2

2 .

and, for any y ∈ X⊥
F ,

By = {z ∈ F : y + z ∈ B} = (B − y) ∩ F.
Since S

∞−1
F ≤ S

∞−1
G if F ⊆ G (see e.g. [7, Lemma 3.2], [14, Proposition 6(ii)] or [17,

Proposition 2.4]), we can define the measure

S
∞−1 = sup

F
S

∞−1
F .

The definition immediately implies that, If A ⊂ X is a Borel set which satisfies S
∞−1(A) < +∞,

then γ(A) = 0. If we now consider an increasing family F = (Fn)n∈N ⊂ QX∗ whose closure is dense
in H , by monotone convergence we have that is well defined as a measure

S
∞−1
F

= sup
n∈N

S
∞−1
Fn

.

From the definition, it follows that S
∞−1
F

≤ S
∞−1 for any F which satisfies the above condition.

However, the first part of the proof of the following result shows that they coincide if we restrict
them to the graph of Sobolev functions.

Proposition 3.1 Let h ∈ QX∗ with |h|H = 1, let A ⊆ X⊥
h be an open set and let f ∈W 1,1(A, γ⊥

h ).
Then:

(i) for any representative f̃ of f we have S
∞−1(Γ(f̃ , A)) < +∞. In particular, γ(Γ(f̃ , A)) = 0.

(ii) If f̃1, f̃2 are two representatives of f , then S
∞−1(Γ(f̃1, A)∆Γ(f̃2, A)) = 0 and S

∞−1 Γ(f̃1, A) =
S

∞−1 Γ(f̃2, A).

(iii) For any bounded Borel function g : X −→ R we have

∫

Γ(f,A)

g(x)S∞−1(dx) =

∫

A

g(y + f(y)h)G1(f(y))
√

1 + |∇Hf(y)|2Hγ
⊥
h (dy). (5)

Proof. Let us then show that for any B ∈ B(X) it follows that

S
∞−1(Γ(f,A) ∩B) =

∫

A

1B(y + f(y)h)G1(f(y))
√

1 + |∇Hf(y)|2H γ⊥
h (dy), (6)

where we still denote by f a representative of f , since (i), (ii) and (iii) follow from (6). We consider

F ⊂ QX∗ with dim(F ) = m < ∞, h ∈ F , F̃ = X⊥
h ∩ F , πF and πF̃ canonical projections of X on

F and F̃ , respectively, and we set X⊥
F = ker(πF ) and X⊥

F̃
= ker(πF̃ ). This gives X⊥

h = F̃ ⊕ X⊥
F

and F = F̃ ⊕ 〈h〉. Moreover, if we denote by γF , γF̃ , γ
⊥
F , γ⊥

F̃
the nondegenerate Gaussian measures

on F, F̃ , X⊥
F , X⊥

F̃
, respectively, we get γ = γF ⊗ γ⊥

F , γ = γF̃ ⊗ γ⊥
F̃

and γ⊥
h = γF̃ ⊗ γ⊥

F . Then,

S
∞−1
F (Γ(f,A) ∩ B) =

∫

X⊥
F

γ⊥
F (dy)

∫

(Γ(f,A)∩B)y

Gm(z) S
m−1(dz),
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where Gm(z) := 1√
(2π)m

exp− ‖z‖2F
2

for z ∈ F and

(Γ(f,A) ∩ B)y = {z ∈ F |z + y ∈ Γ(f,A) ∩ B},

for all y ∈ X⊥
F . For any y ∈ X⊥

F , the set Ay, which a priori is contained in F , is indeed contained
in F̃ since A ⊂ X⊥

h . We consider the function fy : Ay −→ R defined by fy(z) := f(y + z).
Since f ∈ W 1,1(A, γ⊥

h ), it follows that fy ∈ W 1,1(Ay, γF ) for γ⊥
F̃
-a.e. y ∈ X⊥

F . Let us denote by
Γ(fy, Ay) ⊆ F the graph of fy on Ay. Since (Γ(f,A))y = Γ(fy, Ay) and

(Γ(f,A) ∩B)y = Γ(fy, Ay) ∩ By.

Therefore, writing z ∈ Γ(fy, Ay) as z = z̃ + [z, h]Hh with z̃ ∈ F̃ , we get

Gm(z) = Gm(z̃ + fy(z̃)h) = Gm−1(z̃)G1(fy(z̃))

Since fy is a finite–dimensional Sobolev function, it follows that

∫

Γ(fy,Ay)

1B(y + z)Gm(z) S
m−1(dz)

=

∫

Ay

1B(y + z̃ + fy(z̃)h)Gm−1(z̃)G1(fy(z̃))
√

1 + |∇F fy(z̃)|2 dz̃

=

∫

Ay

1B(y + z̃ + fy(z̃)h)G1(fy(z̃))
√

1 + |∇F fy(z̃)|2γF̃ (dz̃).

Hence,

S
∞−1
F (Γ(f,A) ∩B) =

∫

X⊥
F

γ⊥
F (dy)

∫

Ay

1B(y + z̃ + fy(z̃)h)G1(fy(z̃))
√

1 + |∇F fy(z̃)|2H γF̃ (dz̃)

=

∫

A

1B(y + f(y)h)G1(f(y))
√

1 + |πF (∇Hf(y))|2H γ⊥
h (dy)

≤
∫

A

1B(y + f(y)h)G1(f(y))
√

1 + |∇Hf(y)|2H γ⊥
h (dy).

Therefore,

S
∞−1(Γ(f,A) ∩B) ≤

∫

A

1B(y + f(y)h)G1(f(y))
√

1 + |∇Hf(y)|2H γ⊥
h (dy).

If we now consider an increasing family F = (Fn)n∈N ⊂ QX∗ whose closure is dense in H and
h ∈ F1, by monotone convergence we obtain that

S
∞−1
F

(Γ(f,A) ∩B) = sup
n∈N

S
∞−1
Fn

(Γ(f,A) ∩B) =

∫

A

1B

√
1 + |∇Hf(y)|2Hγ

⊥
h (dy).

Hence we have

S
∞−1(Γ(f,A) ∩ B) = S

∞−1
F

(Γ(f,A) ∩B) =

∫

A

1B(y + f(y)h)
√

1 + |∇Hf(y)|2Hγ
⊥
h (dy) (7)

Proof of (i). If we take B = X in (7), then we have

S
∞−1(Γ(f,A)) =

∫

A

√
1 + |∇Hf(y)|2Hγ

⊥
h (dy) ≤

∫

A

(1 + |∇Hf(y)|H) γ⊥
h (y)

≤γ⊥
h (A) + ‖f‖W1,1(A,γ⊥

h
) < +∞.
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Proof of (ii). Let f̃1 and f̃2 be two representatives of f . Let us setN := {y ∈ A : f̃1(y) 6= f̃2(y)}.
Then, γ⊥

h (N) = 0 and it is easy to see that if x = y + f̃1(y)h ∈ Γ(f̃1, A) \ Γ(f̃2, A), then y ∈ N .
Therefore, from (7) with f replaced by f̃1 and B replaced by Γ(f̃1, A) \ Γ(f̃2, A) we deduce that

S
∞−1(Γ(f̃1, A) \ Γ(f̃2, A)) =

∫

A

1(Γ(f̃1,A)\Γ(f̃2,A))(y + f̃1(y)h)

√
1 + |∇H f̃1(y)|2Hγ

⊥
h (dy)

≤
∫

A

1N (y)

√
1 + |∇H f̃1(y)|2Hγ

⊥
h (dy) = 0.

The same arguments give S
∞−1(Γ(f̃2, A)\Γ(f̃1, A)) = 0, and we get the first part of the statement.

As far the second part is concerned, it is enough to notice that for any Borel set B ∈ B(X) we have

S
∞−1 Γ(f̃1, A)(B) =S

∞−1(Γ(f̃2, A) ∩B) =

∫

A

1B(y + f(y)h)

√
1 + |∇H f̃1(y)|2Hγ

⊥
h (dy)

=

∫

A

1B(y + f(y)h)

√
1 + |∇H f̃2(y)|2Hγ⊥

h (dy) = S
∞−1(Γ(f̃2, A) ∩B)

=S
∞−1 Γ(f̃2, A)(B).

Proof of (iii). (5) follows from (7) simply approximating g by means of simple functions. qed

Remark 3.2

(i) Assume that the function g is (5) does not depend on the component of x along h, i.e., there
exists a Borel function ℓ : A −→ R such that g(x) = ℓ(y), where y = x − πhx. Then, if g̃ is a
bounded Borel function such that g̃(x) = g(x) for γ-a.e. x ∈ X, then

∫

Γ(f,A)

gdS ∞−1 =

∫

Γ(f,A)

g̃dS ∞−1.

Indeed, for γ-a.e. x ∈ X we have g̃(x) = ℓ(y), with y = x− πhx, and therefore

∫

Γ(f,A)

gdS ∞−1 =

∫

A

g(y + f(y)h)
√

1 + |∇Hf(y)|2γ⊥
h (dy) =

∫

A

ℓ(y)
√

1 + |∇Hf(y)|2γ⊥
h (dy)

=

∫

A

g̃(y + f(y)h)
√

1 + |∇Hf(y)|2γ⊥
h (dy) =

∫

Γ(f,A)

g̃dS ∞−1.

Theorem 3.3 Let h ∈ QX∗ with |h|H = 1, let A ⊆ X⊥
h be an open set and let f be a Borel

representative of an element of W 1,1(A, γ⊥
h ). Then, the Borel set

Epi(f,A) = {x = y + th : y ∈ A, t > f(y)}

has finite perimeter in the cylinder CA = A⊕ 〈h〉 with

Dγ1Epi(f,A)(dx) =
−∇Hf(y) + h√
1 + |∇Hf(y)|2H

S
∞−1 Γ(f,A)(dx), (8)

where x = y + f(y)h. As a byproduct, we get

P (Epi(f,A), CA) =

∫

A

G1(f(y))
√

1 + |∇Hf(y)|2Hγ⊥
h (dy).

Proof. At first, we stress that from Proposition 3.1(ii) and Remark 3.2 formula (8) does not
depend on the choice of the representative f . Let us denote by νf the vector defined on CA by

νf (x) =
−∇Hf(y) + h√
1 + |∇Hf(y)|2H

, (9)
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where x = y + th with y ∈ A and t ∈ R. First of all, we notice that for ϕ ∈ Lipc(CA) we have that

∫

Epi(f,A)

∂∗
hϕ(x)γ(dx) =

∫

A

γ⊥
h (dy)

∫ ∞

f(y)

∂∗ϕy(t)γ1(dt)

=−
∫

A

G1(f(y))ϕ(y + f(y)h)γ⊥
h (dy)

=−
∫

A

G1(f(y))
ϕ(y + f(y)h)√
1 + |∇Hf(y)|2H

√
1 + |∇Hf(y)|2Hγ

⊥
h (dy)

=−
∫

Γ(f,A)

ϕ[νf , h]HdS
∞−1.

In the last equality we have applied (5) with g = νf on CA and g = 0 on (CA)
c, noticing that

g(x) = ℓ(x− πhx) with x ∈ CA.
Let us now fix k ∈ h⊥, k ∈ QX∗ and we considerW = ker(πh)∩ker(πk); we haveX =W⊕〈h, k〉

and γ = γW ⊗ γ〈h,k〉. We notice that for γW -a.e. w ∈ W

(Epi(f, A))w = {z1h+ z2k ∈ 〈h, k〉 : z1 > fw(z2k), z2k ∈ Aw}, Aw = {z2k : w + z2k ∈ A},

and the map fw : Aw −→ R belongs to W 1,1(Aw, γW ). Then, the set Epi(fw, Aw) has finite
perimeter for γW -a.e. w ∈ W with bounded inner normal given by νw = (−f ′

w, 1)/
√

1 + (f ′
w)2. For

any ϕ ∈ Lipc(CA) we get

∫

Epi(f,A)

∂∗
kϕ(x)γ(dx) =

∫

W

γW (dw)

∫

Epi(fw,Aw)

∂∗
2ϕw(z)γ〈h,k〉(dz)

=

∫

W

γW (dw)

∫

Γ(fw,Aw)

f ′
w√

1 + (f ′
w)2

ϕwG1(fw)dS
1

=

∫

W

γW (dw)

∫

Aw

f ′
w(z2)ϕ(w + fw(z2)h+ z2k)G1(fw(z2))γ1(dz2)

=

∫

A

∂kf(y)ϕ(y + f(y)h)G1(f(y))γ
⊥
h (dy)

=−
∫

A

ϕ(y + f(y)h)[νf (y + f(y)h), k]HG1(f(y))
√

1 + |∇Hf(y)|2Hγ
⊥
h (dy)

=−
∫

Γ(f,A)

ϕ[νf , k]HdS
∞−1,

where we have used the fact that ker(πh) = W + 〈k〉 and that γ⊥
h = γW ⊗ γk. Let us consider

an orthonormal basis {h, hn : n ∈ N} ⊂ QX∗ of H . Then, we have proved that for any ϕ ∈
Lipc,b(CA,H) and any k ∈ {h, hn : h ∈ N},

∫

Epi(f,A)

∂∗
kϕ(x)γ(dx) = −

∫

Γ(f,A)

ϕ[νf , k]HS
∞−1,

i.e. the measure
µ = νfS

∞−1
F

Γ(f,A) ∈ M (CA, H)

is the distributional derivative of 1Epi(f,A). Finally, Proposition 3.1(i) implies that Epi(f,A) has
finite perimeter in CA. qed

We conclude this section providing a useful result on epigraphs of convex and concave functions.

Remark 3.4 Let h ∈ QX∗ with |h|H = 1, let D ⊂ X⊥
h be an open convex domain, let g be a

continuous convex function and let f be a continuous concave function both defined on D. Then,
Epi(g,D) and CD \Epi(f,D) are open convex subsets of X, and therefore Epi(g,D) and Epi(f,D)
have finite perimeter in X. Indeed, since a function is convex if and only if its epigraph is convex,
from [11, Proposition 9] it follows that Epi(g,D) is convex. Analogously, CD and CD \ Epi(f,D)
have finite perimeter in X since they are open convex sets. This implies that also X \ Epi(f,D)
has finite perimeter in CD, and therefore Epi(f,D) has finite perimeter.
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4 Integration by parts formula on convex sets

In this section we consider a nonempty open convex set Ω ⊂ X. By [11, Proposition 9], Ω has finite
perimeter in X and γ(∂Ω) = 0, i.e. 1Ω ∈ BV (X, γ). Without loss of generality we can assume that
0 ∈ Ω, and we define

Ω={p < 1},
with p being the gauge of the convex set or the Minkowski functional associated with Ω centered in
0 defined by

p(x) = inf{λ > 0 : x ∈ λΩ}.
The main result proved in this section is the following theorem.

Theorem 4.1 ∇Hp is defined S
∞−1-almost everywhere and non-zero on ∂Ω, for any k ∈ H and

any ψ ∈ Lipb(X) we have that

∫

Ω

∂∗
kψdγ =

∫

∂Ω

ψ
∂kp

|∇Hp|H
dS ∞−1.

The proof of Theorem 4.1 is postponed to the end of the section.

Let us introduce some useful tools about convex functions (we refer to [19, Chapter 5] for further
details). We consider the dual ball of p defined by

C(p) := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ p(x) ∀x ∈ X},

Moreover, we recall that, for any x0 ∈ X, the subdifferential ∂p(x0) is the set of the elements
x∗ ∈ X∗ which satisfy

x∗(x− x0) ≤ p(x)− p(x0), ∀x ∈ B(x0, r),

for some r > 0. We will use the following property of the subdifferential of a convex function.

Proposition 4.2 [19, Proposition 1.11] Let f be a convex function which is continuous at x0 ∈ D,
where D is a convex domain. Then, ∂f(x0) is nonempty.

We state the following characterization of the subdifferential ∂p(x) of a Minkowski functional in
terms of C(p) (see [19, Lemma 5.10]).

Lemma 4.3 x∗ ∈ ∂p(x) if and only if x∗ ∈ C(p) and x∗(x) = p(x).

In our case, thanks to [7, Lemma 6.2] we may consider h ∈ QX∗ such that

|Dγ1Ω|({[νΩ, h]H = 0}) = 0, (10)

with Dγ1Ω = νΩ|Dγ1Ω|. This Lemma simply says that we may choose a direction h such that the
vertical part of ∂Ω with respect to h is |Dγ1Ω|-negligible. We denote by h∗ the element of X∗ such
that h = Qh∗. Once such a direction has been fixed, we may define the open convex set Ω⊥

h ⊆ X⊥
h

by
Ω⊥

h = {y ∈ X⊥
h : ∃t ∈ R s.t. y + th ∈ Ω}.

For any y ∈ Ω⊥
h , the set

Ωy = {t ∈ R : y + th ∈ Ω}
is an open interval, and therefore there exist f : Ω⊥

h → (−∞,+∞], g : Ω⊥
h → [−∞,+∞) such that

Ωy is the interval (g(y), f(y)), i.e., Ω is between the graph of g and that of f .

Lemma 4.4 The functions f and g satisfy the following properties:

(i) If there exists y ∈ Ω⊥
h such that f(y) = +∞, then f ≡ +∞ on Ω⊥

h . Analogously, if g(y) = −∞
for some y ∈ Ω⊥

h , then g ≡ −∞ on Ω⊥
h .

(ii) if f is not infinite then it is a concave function. Analogously, if g in not infinite then it is a
convex function.

11



Proof. To show (i), let us assume that there exists y0 ∈ Ω⊥
h such that f(y0) = +∞, and let

y ∈ Ω⊥
h . Therefore, there exists y1 ∈ Ω⊥

h and λ > 0 s.t. y = λy0 + (1− λ)y1. From the definition of
Ω⊥

h there exists t1 ∈ R s.t. x1 = y1 + t1h ∈ Ω, and since f(y0) = +∞ we have x0 = y0 + th ∈ Ω for
every t ∈ (g(y0),+∞). Since Ω is convex, we have λx0 + (1− λ)x1 = y+ (λt+ (1− λ)t1)h ∈ Ω and
therefore

f(y) ≥ λt+ (1− λ)t1, t ∈ (g(y),+∞),

which gives f(y) = +∞.
The same argument holds for g, i.e., if there exists y0 ∈ Ω⊥

h such that g(y0) = −∞, then
g ≡ −∞.

Let us prove (ii). Assume that g > −∞ on Ω⊥
h . We fix y1, y2 ∈ Ω⊥

h , t1 ∈ Ωy1 , t2 ∈ Ωy2 , then
for any λ ∈ [0, 1]

λ(y1 + t1h) + (1− λ)(y2 + t2h) = λy1 + (1− λ)y2 + (λt1 + (1− λ)t2)h ∈ Ω.

This means that ỹ := λy1 + (1− λ)y2 ∈ Ω⊥
h and λt1 + (1− λ)t2 ∈ Ωỹ . Therefore,

g(λy1 + (1− λ)y2) ≤ λt1 + (1− λ)t2≤f(λy1 + (1− λ)y2).

Since this is true for any t1 and t2, this implies that

g(λy1 + (1− λ)y2) ≤ λg(y1) + (1− λ)g(y2)

hence g is convex. same arguments reveal that for any λ ∈ [0, 1] we have

λf(y1) + (1− λ)f(y2) ≤ f(λy1 + (1− λ)y2),

which implies that f is concave. qed

Thanks to Lemma 4.4 (and by the fact that Ω is a nonempty set, hence it is impossible that
f = −∞ everywhere or g = +∞ everywhere), only the following four cases occur:

1. f ≡ +∞, g ≡ −∞ and Ω⊥
h = X⊥

h , i.e. Ω = Ω⊥
h ⊕ 〈h〉;

2. f ≡ +∞ and g(y) > −∞ for any y ∈ Ω⊥
h , and then Ω = Epi(g,Ω⊥

h ) .

3. g ≡ −∞ and f(y) < +∞ for any y ∈ Ω⊥
h , and then Ω = {x = y + th : y ∈ Ω⊥

h , t < f(y)}.
4. −∞ < g(y) < f(y) < +∞ for any y ∈ Ω⊥

h and

Ω = {x = y + th : y ∈ Ω⊥
h , t ∈ (g(y), f(y))}.

From now on we shall assume to be in the last case, since in the other three cases the following
lemmas remain true, with the convention that Γ(f,Ω⊥

h ) = ∅ if f = +∞, and Γ(g,Ω⊥
h ) = ∅ if

g = −∞.
Before passing to the infinite dimension, we state a property of open convex sets in finite

dimension.

Remark 4.5 For any open convex set C ⊂ R
n, ∂∗C = ∂C, i.e., each point of ∂C has density

different from 0 and 1. Let n = 2, let us fix x ∈ ∂C and let p be its Minkowski function. By
Proposition 4.2, there exists ν ∈ ∂p(x), hence C remains below the hyperplane with equation
〈ν, · − x〉 = 0 (it suffices to remember the definition of ∂p and the fact that if y ∈ C then p(y) < 1,
while p(x) = 1), which implies that its density is not greater than 1/2. Further, let B(x0, r) ⊂ C.
The convexity of C implies that the convex hull of {x,B(x0, r)} is contained in C, and in particular
the triangle with vertices x, x0 and x1, where x1 satisfies |x1 − x0| = r and x1 − x0 ⊥ x − x0.
Therefore, for any ρ > 0 a sector of angle 2 arctan(r|x − x0|−1) of the ball B(x, ρ) is contained in
C. This gives

|C ∩B(x, ρ)|
|B(x, ρ)| ≥ 2arctg

(
r

|x− x0|

)
> 0,

for any ρ > 0, and so the density of x is greater than 0. The general case n ∈ N follows from similar
arguments.
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Let F be a countable family of finite dimensional subspaces of QX∗ stable under finite union
and such that ∪F∈FF is dense in H . In [17] the F-essential boundary of Ω is defined by

∂∗
FΩ =

⋃

F∈F

⋂

G⊃F,G∈F

∂∗
GΩ,

where

∂∗
FΩ := {y + z : y ∈ Ker(πF ), z ∈ ∂∗(Ωy)},

for any F ∈ F. In general, ∂∗
FΩ does not satisfy any monotonicity property with respect to F ∈ F.

However, in the case of open convex sets we recover the finite dimensional situation with the next
Lemma.

Lemma 4.6 Let Ω ⊂ X be an open convex set and let F be as above. Then, ∂∗
FΩ = ∂Ω.

Proof. At first, we claim that ∂∗
FΩ ⊆ ∂∗

GΩ if F ⊆ G, for any F,G ∈ F. Let F ∈ F and let
y + z ∈ ∂∗

FΩ. This means that y ∈ Ker(πF ) and z ∈ ∂(Ωy) (∂(Ωy) = ∂∗(Ωy) since it is convex,
see Remark 4.5). Let G ∈ F be such that F ⊆ G. In particular, there exists a finite dimensional
subspace L of QX∗ such that G = F ⊕ L. If L = {0}, we are done. Assume that L 6= {0}.
Therefore, y + z = y − πLy + πLy + z =: ỹ + z̃, where ỹ = y − πLy and z̃ := πLy + z. Clearly,
ỹ ∈ Ker(πG) and z̃ ∈ G. It remains to prove that z̃ ∈ ∂∗(Ωỹ). Since Ωỹ is a finite dimensional open
convex set, from Remark 4.5 it is equivalent to show that z̃ ∈ ∂(Ωỹ). By contradiction, we suppose
that z̃ ∈ Ωỹ . Then, y+ z = ỹ+ z̃ ∈ Ω, and so z ∈ Ωy . This contradicts the assumptions, since Ωy is
open and z ∈ ∂∗(Ωy) = ∂(Ωy). Moreover, z̃ ∈ Ωỹ . Indeed, since z ∈ ∂(Ωy), there exists a sequence
(zn) ∈ Ωy which converges to z in X. Obviously, the sequence (z̃n := πL(y)+ zn) converges to z̃ in
X and ỹ + z̃n = y + zn ∈ Ω, which means that z̃ ∈ (Ωỹ). Hence, z̃ ∈ ∂(Ωỹ) = ∂∗(Ωỹ), since Ωỹ is
convex. This means that ỹ + z̃ ∈ ∂∗

G(Ω), and the claim is therefore proved.
In particular, the claim implies that ∂∗

FΩ = ∪F∈F∂
∗
FΩ. We remark that ∪F∈FF is dense in X.

This fact easily follows from the density of ∪F∈FF in H , the density of H in X and the continuous
embedding H →֒ X. We stress that, for any F ∈ F and any y ∈ Ker(πF ), arguing as above we
deduce that ∂(Ωy) ⊂ (∂Ω)y. Hence, ∂∗

FΩ ⊂ ∂Ω. To show the converse inclusion, we consider
x ∈ ∂Ω. Since Ω is open, there exists an open ball B ⊂ Ω. Clearly, B̃ := x −B is an open ball in
X, and the density of ∪F∈FF in X implies that there exists F ∈ F and ξ ∈ F such that ξ = x− y,
with y ∈ B, i.e., x = y + ξ. If we define yF = y − πF y ∈ Ker(πF ) and zF := πF y + ξ, it remains
to prove that zF ∈ ∂(ΩyF ) = ∂∗(ΩyF ). Clearly, zF /∈ ΩyF , otherwise x = yF + zF ∈ Ω. Further,
since y ∈ Ω and x ∈ ∂Ω, for any λ ∈ [0, 1) we have y + λξ = y + λ(x− y) ∈ Ω. Taking a sequence
(λm)m ∈ N ⊂ (0, 1) converging to 1, we obtain a sequence (ηm = λmzF )m∈N ⊂ ΩyF which converges
to zF in F , and so zF ∈ ΩyF , which gives x ∈ ∂∗

FΩ. qed

Remark 4.7 From [7] and [17], we know that for any B ∈ B(X) we have |Dγ1Ω|(B) = S
∞−1
F

(B∩
∂∗
FΩ), for any countable family F of finite dimensional subspaces of QX∗ stable under finite union

such that ∪F∈FF is dense in H . In particular, if F
′ satisfies the same assumptions as F, then

from Lemma 4.6 we deduce that S
∞−1
F

(B ∩ ∂Ω) = S
∞−1
F′ (B ∩ ∂Ω). Therefore, S

∞−1
F

∂Ω =
S

∞−1
F′ ∂Ω for any F,F′ as above and from the definition of S

∞−1 we infer that S
∞−1
F

∂Ω =
S

∞−1
F′ ∂Ω = S

∞−1 ∂Ω. In particular, we get |Dγ1Ω|(B) = S
∞−1(B ∩ ∂Ω) for any B ∈ B(X).

Lemma 4.8 Let Ω be an open convex set, h ∈ QX∗, C := Ω⊥
h ⊕ 〈h〉 and let f, g be the functions

introduced in Lemma 4.4. Then

∂Ω = Γ(f,Ω⊥
h ) ∪ Γ(g,Ω⊥

h ) ∪N, (11)

where the sets in the right-hand side of (11) are pairwise disjoint, and S
∞−1(N) = 0. In particular,

S
∞−1(∂Ω \ (Γ(f,Ω⊥

h ) ∪ Γ(g,Ω⊥
h ))) = 0.

Proof. Since C is convex, from Remark 4.7 it follows that Dγ1C = νCS
∞−1 ∂C. Further,

∂Ω = (∂Ω ∩C) ∪N . Since Ω ⊂ C, we have N = ∂Ω ∩ ∂C, and by [8, Corollary 2.3] νΩ(x) = νC(x)
for S

∞−1-a.e. x ∈ ∂Ω ∩ ∂C. By construction, [νC(x), h]H = 0 for S
∞−1-a.e. x ∈ ∂C, and so
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[νΩ(x), h]H = 0 for S
∞−1-a.e. x ∈ N . Therefore, (10) gives |Dγ1Ω|(N) = 0, and since N ⊂ ∂Ω,

from Remark 4.7 we deduce that S
∞−1(N) = S

∞−1(N ∩ ∂Ω) = |Dγ1Ω|(N) = 0.
It remains to show that ∂Ω ∩ C = Γ(g,Ω⊥

h ) ∪ Γ(f,Ω⊥
h ). At first, we suppose that x ∈ Γ(g,Ω⊥

h ).
Hence, there exists y ∈ Ω⊥

h such that x = y+ g(y)h. Arguing as above, we deduce that x ∈ Ω \Ω =
∂Ω, and clearly x ∈ C. Further, the same arguments hold true for x ∈ Γ(f,Ω⊥

h ). Inclusion ⊇ is
therefore proved.

To show the converse inclusion, we assume that x ∈ ∂Ω ∩C. Therefore, there exists δ ∈ R such
that x + δh ∈ Ω. Let us assume that δ > 0. If we set y := (I − πh)x ∈ Ω⊥

h and z := πhx, then
y + z + th ∈ Ω for any t ∈ (0, δ) (because Ω is convex), i.e., z + th ∈ Ωy for any t ∈ (0, δ). Letting
t → 0, we get that πhx ∈ Ωy . Necessarily, πhx /∈ Ωy , otherwise x = y + z ∈ Ω, which contradicts
the fact that x ∈ ∂Ω. Hence, z ∈ ∂(Ωy) = {g(y), f(y)} and, since δ > 0, we deduce that z = g(y)
which means x = y + g(y)h ∈ Γ(g,Ω⊥

h ). If δ < 0, arguing as above we infer that z = f(y), from
which it follows that x = y + f(y)h ∈ Γ(f,Ω⊥

h ). qed

Lemma 4.9 For any y0 ∈ Ω⊥
h , there exists r0 = r0(y0) > 0 such that f, g are bounded Lips-

chitz functions on B(y0, r0) ∩ X⊥
h . As a byproduct, f and g are Gâteaux differentiable γ⊥

h -a.e.
∈ B(y0, r0) ∩X⊥

h and belong to W 1,1(B(y0, r0) ∩X⊥
h , γ

⊥
h ), for any y0 ∈ Ω⊥

h .

Proof. Let us consider the function g; the argument for f is similar. We show that for any
y0 ∈ Ω⊥

h there exists r0 > 0 such that g ∈ Lip(B(y0, r0)). To this aim, let us fix y0 ∈ Ω⊥
h .

Hence, there exists t0 ∈ R such that x0 := y0 + t0h ∈ Ω, and we can find r0 > 0 such that
B(x0, 2r0) ⊂ Ω. We claim that B(y0, 2r0) ∩X⊥

h ⊂ Ω⊥
h and g(y) ≤ t0 for any y ∈ B(y0, 2r0) ∩X⊥

h :
indeed, ‖y + t0h − x0‖X = ‖y − y0‖X < 2r0, and so y + t0h ∈ B(x0, 2r0) ⊂ Ω. This implies that
y ∈ Ω⊥

h and t0 ∈ Ωy , which means g(y) ≤ t0 for any y ∈ B(y0, 2r0) ∩X⊥
h . Hence, g is convex and

bounded from above on a symmetric domain. We claim that g is bounded on B(y0, 2r0) ∩ X⊥
h .

Indeed, for any y ∈ B(y0, 2r0) ∩X⊥
h let us consider y′ = y0 − (y − y0). Then, we have

g(y0) = g

(
1

2
y +

1

2
y′
)

≤ 1

2
g(y) +

1

2
g(y′) ≤ 1

2
g(y) +

1

2
t0.

Hence, g(y) ≥ 2g(y0)−t0. Since B(y0, r)+rB(0, 1) = B(y0, 2r), we infer that g ∈ Lip(B(y0, r)∩X⊥
h )

(see [19, Proposition 1.6 and the successive Remark therein]).
The remain part follows from [9, Theorems 5.11.1 and 5.11.2] and from the definition of Sobolev

space W 1,1(A, γ⊥
h ) with A ⊂ X⊥

h open set. qed

Remark 4.10 We denote by DGf and DGg the Gâteaux derivatives of f and g, respectively, where
they are defined, and analogously by ∇Hf and ∇Hg their H-derivatives where they are defined.

(i) The family A := {B(y0, r0) ∩X⊥
h ⊂ Ω⊥

h : y0 ∈ Ω⊥
h , f, g ∈ Lipb(B(y0, r0) ∩X⊥

h )} is an open
covering of Ω⊥

h . Since X is separable, A admits a countable subcovering {B(yn, rn) ∩X⊥
h ⊂

Ω⊥
h : yn ∈ Ω⊥

h , f, g ∈ Lipb(B(yn, rn) ∩ X⊥
h ), n ∈ N}. Hence, ∇Hf(y) and ∇Hg(y) (and

also DGf(y) and DGg(y)) are defined γ⊥
h -a.e. y ∈ Ω⊥

h and for such a values of y we have
∇Hf(y) = RγDGf(y) and ∇Hg(y) = RγDGg(y).

(ii) From [3, Corollary 1.4] there exists a partition of unity of Lipschitz functions subordinated to
{B(yn, rn)∩X⊥

h : n ∈ N}, i.e., there exists an open locally finite covering {An : n ∈ N} of Ω⊥
h

such that for any n ∈ N there exists m = m(n) with An ⊂ B(ym, rm) ∩X⊥
h , and there exists

a family {ψn : n ∈ N} ⊂ Lipb(X
⊥
h ) such that supp(ψn) ⊂ An for any n ∈ N, ψn ≥ 0 for any

n ∈ N and
∑

n∈N
ψn = 1.

Now we are ready to show the link between Dγ1Ω and f and g.

Lemma 4.11 Let Ω, Ω⊥
h , f and g as above. Then,

Dγ1Ω = −νfS
∞−1 Γ(f,Ω⊥

h ) + νgS
∞−1 Γ(g,Ω⊥

h ), (12)

where νf and νg have been defined in (9).

Proof. Let ϕ ∈ FC1
b (X). Since Ω has finite perimeter, for any k ∈ H we have

∫

Ω

∂∗
kϕdγ = −

∫

X

ϕd[Dγ1Ω, k]H .
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From Proposition 3.4 with D in place of Ω⊥
h , we know that both Epi(g,Ω⊥

h ) and Epi(f,Ω⊥
h ) have

finite perimeter, and Ω = Epi(g,Ω⊥
h ) \ (Γ(f,Ω⊥

h ) ∪ Epi(f,Ω⊥
h )). Therefore,

∫

Ω

∂∗
kϕdγ =

∫

Epi(g,Ω⊥
h

)

∂∗
kϕdγ −

∫

Epi(f,Ω⊥
h
)

∂∗
kϕdγ

=−
∫

X

ϕd[Dγ1Epi(g,Ω⊥
h

), k]H +

∫

X

ϕd[Dγ1Epi(f,Ω⊥
h

), k]H

=−
∫

X

ϕd[ν, k]H ,

since Lemma 4.8 gives γ(Γ(f,Ω⊥
h )) = 0. Here, ν = Dγ1Epi(g,Ω⊥

h
) −Dγ1Epi(f,Ω⊥

h
). Therefore,

Dγ1Ω = Dγ1Epi(g,Ω⊥
h

) −Dγ1Epi(f,Ω⊥
h

). (13)

By the finiteness of the perimeter of Epi(g,Ω⊥
h ) we have that |Dγ1Epi(g,Ω⊥

h
)| = S

∞−1 Γ(g,Ω⊥
h )

is a finite measure. Further, for any ϕ ∈ Lipb(X
⊥
h ) such that supp(ϕ) ⊂ B(ym(n), rm(n)) ∩X⊥

h for
some n ∈ N, any θ ∈ Lipb(X) and any k ∈ H we have

∫

X

θ(x)ϕ(x− πhx)[Dγ1Epi(g,Ω⊥
h
), k]H (dx) =−

∫

X

1Epi(g,Ω⊥
h
)∂

∗
k(θ(x)ϕ(x− πhx))γ(dx)

=−
∫

X

1Epi(g,B(ym(n),rm(n))∩X⊥
h

)∂
∗
k(θ(x)ϕ(x− πhx))γ(dx)

=

∫

X

θ(x)ϕ(x− πhx)[Dγ1Epi(g,B(ym(n),rm(n))∩X⊥
h

), k]H(dx).

(14)

By density equality (14) holds for any θ ∈ Bb(X). Let {ψn : n ∈ N} be the partition of unity
introduced in Remark 4.10 (ii) and let B ∈ B(X). We have that ψn ≥ 0 everywhere for any n ∈ N,
so

∑

n∈N

∫

X

ψndS
∞−1 Γ(g,Ω⊥

h ) <∞.

Since g, f ∈ W 1,1(B(ym(n), rm(n)) ∩X⊥
h ), taking into account Theorem 3.3 and (14) we have

∫

B

[νg, k]HdS
∞−1 Γ(g,Ω⊥

h )

=

∫

X

∑

n∈N

ψn(x− πhx)1B(x)[νg(x), k]HS
∞−1 Γ(g,Ω⊥

h )(dx)

=
∑

n∈N

∫

X

ψn(x− πhx)1B(x)[νg(x), k]HS
∞−1 Γ(g,Ω⊥

h )(dx)

=
∑

n∈N

∫

X

ψn(x− πhx)1B(x)d[νg(x), k]HS
∞−1 Γ(g,B(ym(n), rm(n)) ∩X⊥

h )(dx)

=
∑

n∈N

∫

X

ψn(x− πhx)1B(x)[Dγ1Epi(g,B(ym(n),rm(n))∩X⊥
h

), k]H(dx)

=
∑

n∈N

∫

X

ψn(x− πhx)1B(x)[Dγ1Epi(g,Ω⊥
h

), k]H(dx)

=

∫

X

∑

n∈N

ψn(x− πhx)1B(x)[Dγ1Epi(g,Ω⊥
h

), k]H(dx)

=

∫

B

d[Dγ1Epi(g,Ω⊥
h
), k]H ,
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where νg has been defined in (9) and we can change series and integral thanks to the dominated
convergence theorem. This shows that

Dγ1Epi(g,Ω⊥
h

) = νgS
∞−1 Γ(g,Ω⊥

h ) =
−∇Hg(y) + h√
1 + |∇Hg(y)|2H

S
∞−1 Γ(g,Ω⊥

h ).

The same argument applied to f gives

Dγ1Epi(f,Ω⊥
h
) = νfS

∞−1 Γ(f,Ω⊥
h ) =

−∇Hf(y) + h√
1 + |∇Hf(y)|2H

S
∞−1 Γ(f,Ω⊥

h ),

and the thesis follows from (13). qed

Remark 4.12 We cannot directly apply (8) to (13) since f and g do not belong to W 1,1(Ω⊥
h , γ

⊥
h ),

but they belong to W 1,1(B(yn, rn) ∩X⊥
h , γ

⊥
h ) with n ∈ N. Hence, we don’t have global summability

and we have to use the partition of unity.

Since Ω is an open convex set, p is defined everywhere and ∂Ω = {x ∈ X : p(x) = 1}. Moreover, it
follows that p is a continuous convex function. Our aim is to prove that p(x) is Gâteaux differentiable
S

∞−1-a.e. x ∈ ∂Ω. We recall a characterization of Gâteaux differentiability of a continuous convex
function (see [19, Proposition 1.8]).

Proposition 4.13 Let x0 ∈ X. A continuous convex function ψ defined on an open set D ∋ x0 is
Gâteaux differentiable at x0 if and only if there exists a unique linear functional x∗ ∈ X∗ such that

x∗(x− x0) ≤ ψ(x)− ψ(x0), ∀x ∈ D.

In this case, x∗ = dψ(x0).

In particular, by Lemma 4.9 for any y ∈ B(ỹ, rỹ), for S
∞−1-a.e. ỹ ∈ Ω⊥

h and suitable rỹ > 0 we
have

−DGf(ỹ)(y − ỹ) ≤ −f(y) + f(ỹ), DGg(ỹ)(y − ỹ) ≤ g(y)− g(ỹ),

where DGf and DGg is the Gâteaux differential of f and g, respectively.
We introduce the following notation. Let y∗ ∈ (X⊥

h )∗, let h ∈ QX∗ and let h∗ ∈ X∗ such that
Qh∗ = h. Then, x∗ := y∗ ⊗ h∗ ∈ X∗ denotes the element of X∗ such that x∗(x) = y∗(y)+ t for any
x = y + th, with y ∈ X⊥

h and t ∈ R.
Now we have all the ingredients to prove the Gâteaux differentiability of p.

Theorem 4.14 In our setting, let x ∈ Γ(f,Ω⊥
h ) such that f is Gâteaux differentiable at y, where

x = y + f(y)h. Then, it holds that

DGp(x) =
−DGf(y)⊗ h∗

(−DGf(y)⊗ h∗)(x)
. (15)

Analogously, if x ∈ Γ(g,Ω⊥
h ) and g is Gâteaux differentiable at y, where x = y + g(y)h, then we

get

DGp(x) =
DGg(y)⊗−h∗

(DGg(y)⊗−h∗)(x)
. (16)

In particular, p is Gâteaux differentiable and H-differentiable for S
∞−1-a.e. x ∈ ∂Ω, and

∇Hp(x) =






−∇Hf(y)⊗ h

(−DGf(y)⊗ h∗)(x)
, x = y + f(y)h, f Gâteaux diff. at y,

∇Hg(y)⊗−h
(DGg(y)⊗−h∗)(x)

, x = y + g(y)h, g Gâteaux diff. at y.

(17)
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Proof. We fix x0 ∈ Γ(f,Ω⊥
h ) such that f is Gâteaux differentiable at y0, with x0 := y0 + f(y0)h

and y0 ∈ Ω⊥
h . Since p is continuous, from Proposition 4.2 we know that ∂p(x0) is nonempty. We

claim that any element of ∂p(x0) equals (15). If the claim is true, by Proposition 4.13 it follows
that p is Gâteaux differentiable at x0 and DGp(x0) satisfies (15). Hence, it remains to prove the
claim.

Let x∗ ∈ ∂p(x0). Lemma 4.3 implies that x∗ ∈ C(p), i.e., x∗(x) ≤ p(x) for any x ∈ X, and
x∗(x) = p(x0) = 1. Since y0 ∈ Ω⊥

h and Ω⊥
h is an open set, there exists r > 0 such that, for any

y ∈ B(y0, r) ⊂ Ω⊥
h , the element x := y + f(y)h ∈ Γ(f,Ω⊥

h ) ⊂ ∂Ω. Therefore, x∗(x) ≤ p(x) = 1 and

0 ≥x∗(x)− x∗(x0) = x∗(x− x0) = x∗(y + f(y)h− y0 − f(y0)h) = x∗(y − y0) + x∗(h)(f(y)− f(y0),

which implies that

x∗(y − y0) ≤ x∗(h)(f(y0)− f(y)). (18)

Let us show that x∗(h) > 0. Indeed, if by contradiction we assume that x∗(h) ≤ 0, then for any
t < 0 we have

p(x0 + th) ≥ x∗(x0 + th) = x∗(x0) + tx∗(h) ≥ 1.

This means that x0 + th = y0 + (t + f(y0))h /∈ Ω for any t < 0. This contradicts the fact that
y0 + ch ∈ Ω for any c ∈ (g(y0), f(y0)), since y0 ∈ Ω⊥

h . We have therefore proved that x∗(h) > 0.
Dividing both sides of (18) by x∗(h) we get

z∗(y − y0) ≤ (−f)(y)− (−f)(y0), ∀y ∈ B(y0, r),

where z∗ := (x∗(h))−1x∗. Since (−f) is Gâteaux differentiable at y0, Proposition 4.13 gives z∗ =
DG(−f)(y0) = −DGf(y0) on X

⊥
h . Now we compute x∗(h). From x∗(x0) = 1, we get

1 = x∗(x0) = x∗(y0) + f(y0)x
∗(h) = −DGf(y0)(y0)x

∗(h) + f(y0)x
∗(h).

Hence,

x∗(h) =
1

−DGf(y0)(y0) + f(y0)
=

1

(−DGf(y0)⊗ h∗)(x0)
. (19)

We are almost done. Indeed, for any x ∈ X, we consider the decomposition x = y+ th with y ∈ X⊥
h

and t ∈ R. Above computations reveal

x∗(x) =x∗(y) + tx∗(h) =
−DGf(y0)(y)

(−DGf(y0)⊗ h∗)(x0)
+

t

(−DGf(y0)⊗ h∗)(x0)

=
−DGf(y0)(y) + t

(−DGf(y0)⊗ h∗)(x0)
=

(−DGf(y0)⊗ h∗)(x)

(−DGf(y0)⊗ h∗)(x0)
.

The claim is therefore proved. The same arguments applied to g give (16).
We have proved that γ⊥

h a.e. y ∈ Ω⊥
h the function p is Gâteaux differentiable at xf = y + f(y)h

and xg = y + g(y)h. Equivalently, there exists a γ⊥
h -negligible set V ⊂ Ω⊥

h such that p is Gâteaux
differentiable on Γ(f,Ω⊥

h \ V ) ∪ Γ(g,Ω⊥
h \ V ). Moreover,

∫

Γ(f,Ω⊥
h
)

1Γ(f,V )dS
∞−1 =

∫

Ω⊥
h

1Γ(f,V )(y + f(y)h)G1(f(y))
√

1 + |∇Hf(y)|2Hγ
⊥
h (dy) = 0,

since 1Γ(f,V )(y+ f(y)h) = 1V (y) and γ⊥
h (V ) = 0. This gives S

∞−1(Γ(f, V )) = 0 and, analogously,
we get S

∞−1(Γ(g, V )) = 0. From Lemma 4.8 we infer that p(x) is Gâteaux differentiable S
∞−1-a.e.

x ∈ ∂Ω. The last part of the statement follows because, as recalled in Remark 4.10(i), ∇H = RγDG.
qed

Now we are ready to prove Theorem 4.1.
Proof.[of Theorem 4.1] By the last part of Theorem 4.14, ∇Hp is defined and non-zero S

∞−1-
almost everywhere on ∂Ω.
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As a consequence of (19) we deduce that (−DGf(y0) ⊗ h∗)(x0) > 0 for any y0 ∈ Ω⊥
h such that

x0 = y0 + f(y0)h ∈ Γ(f,Ω⊥
h ) and f is differentiable at y0, and (DGg(y0) ⊗ (−h∗))(x0) > 0 for any

y0 ∈ Ω⊥
h such that such that x0 = y0 + g(y0)h ∈ Γ(g,Ω⊥

h ) and g is differentiable at y0. Hence, (17)
gives

∇Hp(x)

|∇Hp(x)|H
= νf (x), (20)

if x ∈ Γ(f,Ω⊥
h ) and f is differentiable at y, with x = y + f(y)h, and

∇Hp(x)

|∇Hp(x)|H
= −νg(x), (21)

if x ∈ Γ(g,Ω⊥
h ) and g is differentiable at y, with x = y + g(y)h. Let k ∈ H and let ψ ∈ Lipb(X).

From (12), (20) and (21) we get

∫

Ω

∂∗
kψdγ =−

∫

X

ψd[Dγ1Ω, k]H =

∫

Γ(f,Ω⊥
h
)

ψ[νf , k]HdS
∞−1 −

∫

Γ(g,Ω⊥
h
)

ψ[νg, k]HdS
∞−1

=

∫

Γ(f,Ω⊥
h
)

ψ
∂kp

|∇Hp|
dS ∞−1 +

∫

Γ(g,Ω⊥
h
)

ψ
∂kp

|∇Hp|
dS ∞−1 =

∫

∂Ω

ψ
∂kp

|∇Hp|
dS ∞−1.

qed
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over infinite-dimensional state spaces. J. Funct. Anal., 143(1):247–268, 1997.

[4] Luigi Ambrosio and Alessio Figalli. Surface measures and convergence of the Ornstein-
Uhlenbeck semigroup in Wiener spaces. Ann. Fac. Sci. Toulouse Math. (6), 20(2):407–438,
2011.

[5] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford Uni-
versity Press, New York, 2000.

[6] Luigi Ambrosio, Michele Miranda, Jr., Stefania Maniglia, and Diego Pallara. BV functions in
abstract Wiener spaces. J. Funct. Anal., 258(3):785–813, 2010.

[7] Luigi Ambrosio, Michele Miranda, Jr., and Diego Pallara. Sets with finite perimeter in Wiener
spaces, perimeter measure and boundary rectifiability. Discrete Contin. Dyn. Syst., 28(2):591–
606, 2010.

[8] Luigi Ambrosio, Michele Miranda, Jr., and Diego Pallara. Some fine properties of BV functions
on Wiener spaces. Anal. Geom. Metr. Spaces, 3:212–230, 2015.

[9] Vladimir I. Bogachev. Gaussian measures, volume 62 ofMathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 1998.

[10] Gianluca Cappa. On the ornstein-uhlenbeck operator in convex sets of banach spaces. preprint,
arXiv:1503.02836.

[11] Vicent Caselles, Alessandra Lunardi, Michele Miranda Jr, and Matteo Novaga. Perimeter of
sublevel sets in infinite dimensional spaces. Adv. Calc. Var., 5(1):59–76, 2012.

[12] Pietro Celada and Alessandra Lunardi. Traces of Sobolev functions on regular surfaces in
infinite dimensions. J. Funct. Anal., 266(4):1948–1987, 2014.

18



[13] Ennio De Giorgi. Definizione ed espressione analitica del perimetro di un insieme. Atti Accad.
Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 14:390–393, 1953.

[14] Denis Feyel and Arnaud de La Pradelle. Hausdorff measures on the Wiener space. Potential
Anal., 1(2):177–189, 1992.

[15] Masatoshi Fukushima. BV functions and distorted Ornstein Uhlenbeck processes over the
abstract Wiener space. J. Funct. Anal., 174(1):227–249, 2000.

[16] Masatoshi Fukushima and Masanori Hino. On the space of BV functions and a related stochas-
tic calculus in infinite dimensions. J. Funct. Anal., 183(1):245–268, 2001.

[17] Masanori Hino. Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space.
J. Funct. Anal., 258(5):1656–1681, 2010.

[18] Alessandra Lunardi, Michele Miranda, Jr., and Diego Pallara. BV functions on convex domains
in Wiener spaces. Potential Anal., 43(1):23–48, 2015.

[19] R. R. Phelps. Convex functions, monotone operators and differentiability, volume 1364 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 1993.

[20] D. Preiss. Gaussian measures and the density theorem. Comment. Math. Univ. Carolin.,
22(1):181–193, 1981.

19


	1 Introduction
	2 Preliminaries
	3 Epigraph of Sobolev functions
	4 Integration by parts formula on convex sets

