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Abstract: Background/Objectives: Neovascular age-related macular degeneration (nAMD) is a
retinal disorder leading to irreversible central vision loss. The pro-re-nata (PRN) treatment for
nAMD involves frequent intravitreal injections of anti-VEGF medications, placing a burden on
patients and healthcare systems. Predicting injections needs at each monitoring session could
optimize treatment outcomes and reduce unnecessary interventions. Methods: To achieve these aims,
machine learning (ML) models were evaluated using different combinations of clinical variables,
including retinal thickness and volume, best-corrected visual acuity, and features derived from
macular optical coherence tomography (OCT). A “Leave Some Subjects Out” (LSSO) nested cross-
validation approach ensured robust evaluation. Moreover, the SHapley Additive exPlanations (SHAP)
analysis was employed to quantify the contribution of each feature to model predictions. Results:
Results demonstrated that models incorporating both structural and functional features achieved high
classification accuracy in predicting injection necessity (AUC = 0.747 £ 0.046, MCC = 0.541 £ 0.073).
Moreover, the explainability analysis identified as key predictors both subretinal and intraretinal
fluid, alongside central retinal thickness. Conclusions: These findings suggest that session-by-session
prediction of injection needs in nAMD patients is feasible, even without processing the entire OCT
image. The proposed ML framework has the potential to be integrated into routine clinical workflows,
thereby optimizing nAMD therapeutic management.

Keywords: neovascular age-related macular degeneration; optical coherence tomography; anti-VEGF
drugs; artificial intelligence; machine learning; injection prediction; SHapley Additive exPlanations analysis

1. Introduction

Age-related macular degeneration (AMD) is a chronic, multifactorial disorder charac-
terized by progressive alteration of the macula, the central region of the retina responsible
for high-resolution vision [1,2]. AMD is the leading cause of visual impairment and irre-
versible blindness among the elderly population in developed countries: about 200 million
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people were affected by AMD in 2020 [3], and its prevalence is projected to reach 288 million
by 2040, accounting for approximately 9% of all blindness cases worldwide [4-7]. The
most severe advanced stage of AMD is the exudative form, also known as neurovascular
or wet AMD (nAMD), which is caused by an abnormal growth of blood vessels in the
retina, leading to fluid leakage and subsequent macular degeneration. Although accounting
for only 10-15% of cases globally, nAMD is responsible for up to 90% of blindness cases
in AMD patients [8,9]. Appropriate evaluation procedures for the diagnosis of nAMD
include an ophthalmological examination of the macula. This involves the measurement of
best-corrected visual acuity (BCVA), with the Early Treatment Diabetic Retinopathy Study
(ETDRS) charts representing the recommended standardized optotype for this assessment,
and the evaluation of the macula using different imaging techniques, the most common
being optical coherence tomography (OCT). OCT is a rapid, non-invasive, and highly
repeatable imaging method, essential for both diagnosis and follow-up assessments. It
enables precise measurement of retinal thickness and allows the detection of structural
changes associated with disease progression or treatment response, such as retinal thicken-
ing, accumulation of subretinal and intraretinal fluid, intraretinal hyperreflective markings,
and unclear boundaries of subretinal material [10,11].

Although the pathogenetic mechanism underlying AMD progression cannot be fully
halted, the nAMD trajectory can be favorably influenced by intensive and sustained treat-
ment administered over an extended period of time. The current therapeutic approach
for nAMD involves intravitreal injections of anti-endothelial growth factor (anti-VEGF)
agents, which are frequently employed using the pro-re-nata (PRN) regimen [12]. The
PRN-related decision of injecting a patient with anti-VEGF drugs is based on follow-up
visits, whose frequency depends on the level of disease activity, often involving visual
acuity assessment and examination by means of macular OCT. The need for frequent and
expensive intravitreal injections, coupled with the necessity of adherence to long-term
treatment schedules, place a substantial burden on both patients and healthcare providers.
In this context, the development of novel techniques to enhance treatment outcomes and
optimize therapeutic regimens is of critical importance.

Recent advances in artificial intelligence (Al), particularly deep learning (DL), have
shown promising results in analyzing OCT images for AMD-related tasks, such as distin-
guishing patients with AMD from those with other macular pathologies [13-15] or from
healthy individuals [16-18], as well as classifying different stages of AMD [19-21]. More-
over, beyond diagnostic application, other studies have focused on prognostic tasks, such
as predicting the progression from AMD to nAMD [22], treatment response [23], or the
frequency of anti-VEGEF injections required by each patient [24]—for a systematic review,
see [25,26]. However, despite the high performances achieved, DL models possess inherent
limitations. These include the necessity of large amounts of labeled data for effective
training, significant computational resources, and generally opaque internal structures
and decision-making strategies, often referred to as a “black box”. These factors might
limit their suitability for deployment in clinical settings. To address these challenges, some
studies have applied traditional machine learning (ML) models to quantitative features
extracted from OCT images and other clinical data. A common approach for extracting
relevant clinical information from OCT is the use of automated techniques. Bogunovi¢
et al. [27] developed a Random Forest model to classify patients based on their treatment
requirements, using a set of clinical and quantitative spatio-temporal features derived from
OCT volumes through DL algorithms. Similarly, Gallardo et al. [28] applied a ML approach
to predict the long-term treatment demand of new patients using morphological tabular
features automatically extracted from sequential OCT volumes. In contrast to automated
segmentation techniques, other studies used clinical annotations by expert ophthalmol-
ogists on OCT images. For example, Chandra et al. [29] evaluated various ML models
with the goal of predicting the required number of injections for each patient. The features
assessed included retinal thickness and volume measurements, the presence and location
of fluid, foveal fluid, retinal pigment epithelium (RPE) elevation, subretinal hyperreflective
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material, vitreomacular traction (attachment of the vitreous within the central 3 mm), and
the presence of an epiretinal membrane. However, these studies primarily focused on
predicting the total number of injections required, assessing disease severity [20], or evalu-
ating treatment response [30]. None have specifically explored the potential prediction of a
patient’s injection necessity on a session-by-session basis.

In the current study, the performance levels of different ML models in predicting the
need for injecting a patient with anti-VEGF medication were compared, using data exclu-
sively from the current clinical session. In addition, the impact of different combinations
of input features (namely, retinal volume and thickness, best corrected visual acuity, and
annotations extracted from OCT images) on classification performance was investigated.
The results demonstrate that models incorporating both quantitative and structural OCT-
extracted features achieved a high classification accuracy in predicting injection necessity
in patients with nAMD. These findings suggest that Al-based models could be integrated
into clinical workflows to optimize AMD treatment regimens, reducing the frequency of
unnecessary injections.

2. Materials and Methods
2.1. Dataset

Data were collected as part of a project funded by the Italian Ministry of Health (Project
code: RF-2016-02362267), aimed at investigating innovative monitoring modalities to iden-
tify the need for anti-VEGF retreatment in nAMD patients in real-life clinical settings. This
study was approved by the Clinical Research Ethics Committee named CE-AVEC (Comitato
Etico di Area Vasta Emilia Centro della Regione Emilia-Romagna, Italy; ethical approval
code: 99/2018/0ss/AOUFe). Informed consent was obtained from all the participants or
their legal guardians. All procedures followed the tenets of the Declaration of Helsinki.

Patients were recruited in a non-active phase of the disease, i.e., when no signs of
exudative-hemorrhagic activity were observable. Inclusion criteria were age > 50 years, the
ability and the willingness to comply with study procedures, nAMD in either treatment-
naive or previously treated patients, and a BCVA > 20/200 in the study eye. Exclusion
criteria consisted of any other possible cause of neovascular maculopathy and/or the
presence of ocular media opacities or other factors counteracting data collection. In the
course of the selection of the study population, 11 patients were ruled out owing to the
following: i. chronic persistence of exudative-hemorrhagic activity due to nAMD (7 cases);
ii. BCVA reduction at a level equal to or less than 20/200 in the study eye (2 cases);
iii. observation of retinal patterns indicative of myopic neovascular maculopathy (2 cases).

The selected patients underwent a comprehensive ophthalmologic examination, which
included standard monitoring procedures such as the measurement of BCVA using ETDRS
charts, color fundus photography (CFP), and spectral-domain optical coherence tomog-
raphy (SD-OCT) using the Spectralis platform (Heidelberg Engineering Inc., Heidelberg,
Germany). Based on the results of these tests, an expert ophthalmologist decided whether
or not to inject the anti-VEGF drugs into the target eye. This therapeutic decision after
routine monitoring visits was used as the gold-standard reference. In particular, according
to the PRN retreatment criteria of the National Institute for Health and Care Excellence
(NICE guideline NG82 available at https:/ /www.nice.org.uk/guidance /ng82—accessed
on 15 November 2024), an intravitreal injection of the anti-VEGF drug was scheduled
only if signs of active wAMD were present, such as a i. decrease in BCVA related to
exudative-hemorrhagic activity; ii. increase in OCT-evaluated macular fluids, cysts, and/or
detachments due to choroidal neovascularization; or iii. occurrence of new hemorrhagic
events secondary to the maculopathy. The study design also defined the timing of interven-
tion following a PRN regimen. Visits were scheduled every 30 £ 15 days, with treatments
administered within 7 + 3 days following each visit, over a maximum time window of
18 months. Moreover, intra-patient factors, potentially affecting ophthalmic exams, were
assessed at the baseline and subsequently every 3 months. A total of 557 sessions with
47 patients at the Eye Clinic of Ferrara University Hospital (Italy) were considered for the
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following analyses. Due to some anomalies in the collected measurements, a patient was
removed from the dataset, leading to a total of 540 experimental sessions. For each session,
three sets of variables were considered. The first category included quantitative clinical
variables extracted from OCT images and annotated by experienced clinicians, such as
the presence of subretinal and intraretinal fluid, intraretinal cysts and/or macular edema,
the detachment of neuroepithelium (NE) and/or of retinal pigment epithelium (RPE),
and nerve fiber layer assessment. The second set encompassed mean macular thickness
(um) and volume (mm?®) measurements, generated by the Heidelberg Spectralis software
(version 6.9.5) during the OCT scanning procedure, and relative to the 9 subfields of the
ETDRS grid. These subfields were further combined into three concentric zones: central
circle (1 mm diameter), inner ring (3 mm diameter), and outer ring (6 mm diameter; see
Figure 1), by averaging the corresponding values. The third variables set comprised the
standardized BCVA, measured by the ETDRS chart and expressed in logMAR.

Feature vector
thick_1 thick_9 vol_1 vol_9
291 279 1.54 1.48

Figure 1. Thickness and volume OCT extraction for each ETDRS subfield. After extracting values
from the Heidelberg Spectralis software, volume and thickness measurements were also combined
in three concentric circles: the central circle (subfield 1; yellow), inner ring (subfields 2, 3, 4, and 5;
orange), and outer ring (subfields 6, 7, 8, and 9; light blue) by averaging the corresponding values.

2.2. Preprocessing

The outcome variable was encoded by binary labels assigning the positive tag to
sessions in which the clinical decision of injecting the patient was made, and zero otherwise.
All sessions were treated as independent data points. Before training the models, numerical
predictors were normalized between 0 and 1 using a standard scaler (see Figure 2). Addi-
tionally, the macular edema and the nerve fiber layer assessment variables were excluded
due to their low variance. The overall set of variables used for model training along with
their characteristics are shown in Table 1.
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Table 1. List of selected features for the algorithm training process. For each variable, a data type
description, mean, and standard deviation are reported.

Variable Type Value
Datum Type Feature Name (Levels) (Mean =+ SD or Numbers)
Volume (sectors 1-9) Numerical 0.9078 mm? + 0.5674
OCT-derived inf i Volumetric map Numerical 292.05 mm® =+ 76.6557
-dertved intormation Thickness (sectors 1-9) Numerical 301.1327 um + 67.1518
Central retinal thickness Numerical 254.0352 um + 79.7335
Subretinal fluid Categorical (0;1) 0(n=471);1 (n=69)
Intraretinal fluid Categorical (0;1) 0 (n=502); 1 (n=238)
OCT-derived annotation Intraretinal cyst Categorical (0;1) 0 (n=476);1 (n=64)
NE detachment Categorical (0;1) 0(n=>522);1(n=18)
RPE detachment Categorical (0;1) 0(n=479);1 (n=61)
Visual function BCVA Numerical 0.0895 logMAR = 0.127

SD = standard deviation; OCT = optical coherence tomography; NE = neuroepithelium; RPE = retinal pigment
epithelium; BCVA = best-corrected visual acuity.

Central Retinal Thickness (pm)

-
s . o
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original distribution
TO
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Central Retinal Thickness (scaled)
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Session Session

Figure 2. Preprocessing of numerical features using a standard scaler with z-score normalization. The
left plot shows the original distribution of feature values for a sample numerical feature (i.e., central
retinal thickness) across patient sessions. The right plot displays the same feature after normalization
using a standard scaler: the data distribution is transformed to have a mean of 0 and a variance
of 1. In both plots, the red solid line represents the mean, while the black dashed lines indicate
one standard deviation above and below the mean. Standard scaling was applied to all numerical

predictors to ensure consistency in model training.

2.3. Machine Learning Pipeline

First, to identify the model that would best perform on our dataset, five different ML
algorithms were selected, namely support vector (SVC), Random Forest (RF), Extra Trees,
Gradient Boost, and Extreme Gradient Boosting (XGB) classifiers. The selected models
were then evaluated on different combinations of input data, to assess the contributions of
various features. All subsets included the volume and thickness of each ETDRS subfield,
which comprised the first feature set (C1). The second combination (C2) included BCVA in
addition to volume and thickness data. The third set (C3) added clinical annotations (as
detailed in Table 1) to C1 variables, while the fourth set (C4) combined the volume and
thickness, BVCA, and clinical annotations.

The performances of the aforementioned models were evaluated using a “Leave
Some Subjects Out” (LSSO) cross-validation approach. This consists of systematically
selecting all sessions pertaining to a random subset of subjects during training, and testing
the resulting model on those. This procedure makes it possible to account for subject-
specific variations, and it helps in understanding whether the model can generalize to new
subjects’ sessions that were not seen during training. For testing, all sessions pertaining
to 9 patients (20% of the total number of subjects) were chosen as the “left out” data,



Diagnostics 2024, 14, 2609

6 of 15

while the remaining sessions from 37 patients (80% of the sample) were used for training.
This process was repeated 10 times, each time selecting a different set of subjects for
testing and training. During the training phase, the hyperparameters of each model were
optimized by means of a randomized grid search approach. This method evaluates multiple
combinations of hyperparameters and selects those achieving higher performances for
the current cross-validation fold. The hyperparameter tuning during the training step
was finalized to maximize the Matthews correlation coefficient (MCC) score. The MCC
score is a metric ranging from —1 to +1, where +1 indicates a perfect model, 0 represents
a random prediction, and —1 a poor model. This metric was selected as it takes into
account all four components of the confusion matrix (true positives, true negatives, false
positives, and false negatives), providing a more comprehensive evaluation compared to
other metrics [31-33]. This process was repeated for each of the four combinations of input
data, and the performance metrics were then averaged across the 10 train—test splits for
each combination. The best-performing model for each combination of input features was
selected for comparison. The pipeline structure is shown in Figure 3.

Start
450 Sessions
(46 subjects)

For each combination of input features

Cl c2 Cc3 Cc4
— —| 10 Fold Repetition o
/ \
Train set Train / Test Test set
80% subjects Split 20% subjects

For each model

- e D

Hyperparameter tuning
(Randomized Gridsearch)
5-fold Cross Validation

Test model on unseen
data

Best Estimator

Save Metrics
(MCCrAaUC/
Precision, ...)

Figure 3. Schematic depiction of the “Leave Some Subjects Out” (LSSO) cross-validation approach.
For each input combination (i.e., C1, C2, C3, C4), the dataset was randomly divided into training
(sessions pertaining to 80% of the patients) and test (sessions pertaining to 20% of the patients) sets.
Each model was then optimized by means of a randomized grid search on the training set, and
tested on the test set. This process was repeated 10 times, and the results were averaged to select the
best-performing model for each combination of input parameters.

To assess the predictive performance levels of the models, several metrics were con-

sidered, such as recall, accuracy, F1 score, area under the receiver operating characteristic
curve (ROC AUC), and MCC.
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2.4. Predictive Model Interpretability

To increase the interpretability of our machine learning analyses, the SHapley Additive
exPlanations (SHAP) method was applied to the best-performing model [34]. This method
has gained significant attention in the machine learning community due to its interpretabil-
ity, enabling users to understand complex model behaviors and make informed decisions.
The SHAP method allows for the inspection of the predictive power of individual variables
by highlighting how each feature impacts the final prediction, both at the instance level
and across the whole population. For each iteration, SHAP values were calculated for the
training set data based on the fitted model. To evaluate the overall effect of the features,
these values were then combined into a single Beeswarm plot.

3. Results

In the investigative context aimed at developing a system that could assist clinicians
in the yes/no decision about intravitreal administration of anti-VEGF drugs to patients
with nAMD, we studied the performance of various machine learning (ML) algorithms
using real-life data collected during a strict PRN therapeutic regimen.

3.1. Predictive Performance

As an initial step, we aimed at finding which model performed the best for each
combination of input features. For feature sets (i.e., C1, C2, C3, and C4), we evaluated the
performance of different ML models, i.e., ETC, RF, GB, XGB, and SVC classifiers. Models
were evaluated using several performance metrics, including ROC AUC, accuracy, recall,
F1, and MCC. A summary of classification results for each combination of input features is
presented in Figure 4.

0.7 A o
(o]
0.6
0.5 A
° o
0.4 o o
Q
Q
=
0.3 1
0.2 A
0.1 > S
0.0 A o
Cl C2 C3 Cc4

I svc randomForest I extraTrees
Il gradientBoostClassifier B xgb

Figure 4. Boxplots displaying the distribution of MCC scores for each type of machine learning model
(blue: SVC, orange: Random Forest, green: Extra Trees Classifier, red: Gradient Boost Classifier, pur-
ple: Extreme Gradient Boost Classifier) and input features combinations (C1: volume and thickness of
each ETDRS subfield, C2: C1 and BCVA, C3: C1 and clinical annotations, C4: C1, BCVA, and clinical
annotations), across the ten iterations of the LSSO procedure. Black lines represent the median, black
triangles the mean, whiskers 1.5 the interquartile range and circles data points falling beyond 1.5x

the interquartile range.
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3.2. Selection of Most Informative Input Features

After determining the optimal performance for each combination of input features, the
next step was identifying which combination yielded the best overall performance. Models
trained on input feature combinations that included clinical annotations exhibited higher
median MCC scores (C3: MCC = 0.541 £ 0.07; C4: MCC = 0.536 £ 0.07) compared to those
using only volumes, thickness, and BCVA (i.e., C1: mean MCC = 0.225 £ 0.11; C3: mean
MCC = 0.231 & 0.11). Overall, the model achieving the best performance was the SVC
trained with the third combination of input features (C3: volumes, thickness and clinical
annotations), attaining a mean MCC score of 0.5415 £ 0.073. As illustrated in Figure 5, this
algorithm had a more contained spread and higher median score compared to the other
considered models.

o
0.6 1
0.5 1
o o
0.4
8 o o
=
0.3
0.2
0.1 1 o o
c1 c2 Cc3 c4
(extraTrees)  (extraTrees) (svc) (svc)

Figure 5. Boxplots displaying the distribution of MCC scores for each type of machine learning
model (Extra Trees Classifier, SVC) and input feature combinations (C1: volume and thickness of
each ETDRS subfield, C2: C1 and BCVA, C3: C1 and clinical annotations, C4: C1, BCVA, and clinical
annotations), across the ten iterations of the LSSO procedure. Black lines represent the median, red
triangles the mean, whiskers 1.5x the interquartile range, and circles data points falling beyond 1.5x
the interquartile range.

A comprehensive summary of the results is provided in Table 2, and the corresponding
ROC AUC curves are displayed in Figure 6.

Table 2. Evaluation metrics for the LSSO cross-validation analysis. For each subset of input features
(i.e., C1, C2, C3, C4), the metrics of the model with the highest mean MCC are reported. Comprehen-
sive tables detailing the list of optimized hyperparameters, the corresponding selected values, and
the metrics of all models trained with the different combinations of input features can be found in
Appendix A, Tables A1-A3.

Input Feature

C A ROC AUC Accuracy F1 Score Recall MCC
ombination
C1 (ETC) 0.623 £ 0.042 0.626 + 0.045 0.579 + 0.055 0.596 + 0.108 0.25 4+ 0.085
C2 (ETC) 0.634 + 0.045 0.638 + 0.046 0.59 + 0.064 0.607 +0.116 0.271 4+ 0.087
C3(SVO) 0.747 + 0.046 0.77 & 0.034 0.675 + 0.081 0.564 + 0.106 0.541 + 0.073
C4 (SVQO) 0.744 4+ 0.046 0.768 + 0.034 0.672 + 0.08 0.56 + 0.105 0.536 + 0.072

ROC AUC = area under the receiver operating characteristic curve; MCC = Matthews correlation coefficient. The
best-performing model overall is highlighted in bold.
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C1: Extra Trees Classifier (AUC=0.623 * 0.042) C2: Extra Trees Classifier (AUC=0.634 + 0.045)

1.0
0.8

0.8

0.6 0.6

True Positive Rate
True Positive Rate

0.4 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0e 10 0.0 0.2 0.4 0.6 08 1.0
False Positive Rate False Positive Rate
C3: Support Vector Classifier (AUC=0.747 + 0.046) C4: Support Vector Classifier (AUC=0.744 * 0.046)
1.0 1.0
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Figure 6. ROC AUC curves for the best-performing model for each combination of input parameters
(C1, C2, C3, and C4). The solid blue line represents the average ROC AUC across the 10 iterations of
the “Leave-Some-Subjects-Out” (LSSO) cross-validation procedure, while the shaded area indicates
the standard deviation. The dotted black line represents the ROC curve of a random classifier.

3.3. Model Interpretability

To further explain the predictive performance of the best model (i.e., SVC trained on
input feature set C3), a saliency analysis using SHAP was performed. Figure 7 illustrates
the top nine variables with the highest impact on model prediction.

High
subretinal_fluid * i A
intraretinal_cyst * —— o cme®
intraretinal_fluid comamm oo wman
thick_7 . Sp— .
=
thick_outerRing . -—{—_ T
]
thick_3 ..|_- - 5
- ©
()
w
thick_1 i .{[_. R
vol_7 i
thick_8
Sum of 24 other features see . -—t—--u--u- .
T T T T 1 Low
-1.0 -0.5 0.0 0.5 1.0

SHAP value (impact on model output)

Figure 7. SHAP Beeswarm plot listing the top 9 features impacting model outputs. Each point repre-
sents a SHAP value for a feature and an individual observation. The blue color represents low values
for a variable, while red indicates high values. A higher SHAP value indicates a positive influence on
the model’s prediction of the necessity to administer anti-VEGF medications to the patient.
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The necessity of intravitreal treatment with anti-VEGF medications is associated with
both clinical annotations and OCT-derived variables. Regarding the former, the presence
of subretinal fluid, intraretinal cysts, and intraretinal fluid has a positive influence on the
target outcome. For physiological variables, an increase in macular thickness within the
outer ring, or in sectors 7, 3, and 1, and a decrease in macular volume were more closely
associated with the necessity of treating patients with anti-VEGF medications.

4. Discussion

In this study, the possibility of using artificial intelligence to predict the need for anti-
VEGEF injections in patients with nAMD was tested, based on data from individual clinical
sessions. To determine which data types might be more suitable for this task, different
combinations of input features, including retinal volume and thickness information, BCVA,
and quantitative clinical annotations extracted from OCT images, were selected. Moreover,
the performance levels of different ML algorithms were compared using a robust nested
cross-validation approach to ensure reliable results across train-test splits. The findings
indicated that models incorporating clinical annotations outperformed those based solely
on retinal volume and thickness measurements, and that adding BCVA values did not
improve prediction performances in either case. Overall, the model with the highest pre-
dictive power was an SVC, achieving an MCC score of 0.5415 £ 0.07. Feature importance
analysis revealed that clinical annotation, specifically the presence of subretinal and in-
traretinal fluid, alongside OCT-derived features like retinal thickness, were key predictors
for the model.

The results obtained align with previous studies, which highlighted the fundamental
role of OCT-derived clinical annotations in enhancing the predictive power of ML mod-
els. For instance, Chandra et al. [29] employed quantitative and qualitative evaluation of
lesion characteristics extrapolated from OCT images to predict the number of anti-VEGF
injections required by each patient. Their results emphasized the presence of intrareti-
nal and subretinal fluid and sub-retinal pigment epithelium (RPE), along with baseline
lesion characteristics, as the most influential features for model prediction. In a similar
study, Gallardo et al. [28] aimed at stratifying patients based on treatment demand by
incorporating retinal volume and thickness measurements alongside clinical annotations of
morphological retinal features automatically extracted from OCT volumes. Their feature
importance analysis highlighted as most representative variables the presence of subretinal
(SRF) and intraretinal fluid (IRF).

Interestingly, in the current study the inclusion of BCVA, whether combined with
retinal thickness and volume measurements or in conjunction with OCT quantitative
features, did not improve model performances. To date, the contribution of BCVA in ML
applications for nAMD remains unclear. Bogunovi¢ et al. [27] reported a limited impact of
BCVA on accuracy when predicting anti-VEGF treatment requirements in nAMD patients.
In contrast, other studies have shown that BCVA plays a crucial role in predicting visual
acuity outcomes at 9 [35] and 12 months [36] after anti-VEGF treatment. This discrepancy
might be linked to the specific aim of the studies, suggesting a more relevant role of BCVA
in analyses focused on long-term visual outcomes.

To explain the behavior of their models, previously cited papers applied feature
importance techniques that explored the magnitude of each feature’s contribution to model
performance, but did not provide insights relative to the directionality of these effects. To
address this limitation, in the current study, a SHAP analysis was performed. This approach
provides a clear understanding of how feature values influence model predictions, and
thus might act as protective or a risk factor for a specific task. The SHAP analysis identified
OCT-derived features, such as the presence of subretinal fluid, intraretinal cysts, and
intraretinal fluid, as the most influential predictors for determining the need for injections.
Additionally, increased retinal thickness, particularly in the central region (ETDRS subfield
1) near the fovea, and in regions adjacent to the optic disk (zones 3-7), was associated with
a higher likelihood of requiring treatment.
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By narrowing the prediction window to individual sessions, we aim to provide a more
actionable framework that might support clinicians in optimizing treatment regimens and
potentially reduce unnecessary injections. Most patients with AMD require approximately
7—8 injections in the first 12 months to effectively manage the wet form of the disease [37,38],
with a reduced frequency generally needed in the subsequent years. This places a significant
burden on physicians, staff, patients, and caregivers [39], as well as a substantial economic
strain on the healthcare system. Compared to previous studies that primarily focused
on predicting disease progression [22], treatment response [23], or the frequency of anti-
VEGEF injections required by each patient [24], we propose a more granular approach, that
might be specifically relevant in normal clinical practice, during which the decision to
schedule a new injection (pro-re-nata regimen) or to modify the injection timing (treat-and-
extend regimen) is made at each visit [40,41]. In real-world clinical settings, an automated
model could serve as a valuable complementary support system for both less experienced
clinicians and experts with high workloads, providing a preliminary indication of the need
for anti-VEGF injections. This could potentially reduce the time to treatment and enhance
decision-making reliability. The strength of an automated ML model in this context lies in
its ability to provide consistent data-driven recommendations. As a result, this framework
could also potentially be integrated into telemedicine, helping the decentralization of AMD
management by separating data collection from data interpretation. Orthoptists could
collect clinical data in community settings, enabling a broader patient outreach. The data
would then be sent to a central reading center where ophthalmologists, supported by a
ML model, would evaluate and annotate OCT images, and generate predictions to inform
treatment decisions. The proposed model would be well-suited for this type of setting, as
it does not require significant computational resources, is easy to deploy, and can predict
outcomes for individual sessions without the need for additional contextual information.

However, several limitations of the current study should be acknowledged. First, the
relatively small sample size and the use of simpler machine learning algorithms might have
constrained the performance of the presented model. To address these limitations, future
works might explore the application of DL approaches, which, in light of their ability to
capture more complex, non-linear relationships in data, might lead to improved classifica-
tion performances. Given the longitudinal nature of session-based clinical data, algorithms
capable of modeling temporal dependencies, such as Recurrent Neural Networks (RNNs)
or transformers [42], could be explored (see [43,44] for potential applications). Leveraging
the computational power of these models would require a larger dataset, encompassing a
greater number of patients and clinical sessions, to achieve more robust results. To this end,
recent research has focused on augmenting existing datasets through synthetic data genera-
tion (for a systematic review, see [45,46]), which involves creating artificial observations that
mimic the statistical properties and patterns of real data. Common methods for generating
synthetic data include deep learning models, such as Generative Adversarial Networks
(GANSs) or Variational Autoencoders (VAEs), whose application could be considered in
future studies to increase data availability and enhance model performance. In addition,
quantitative OCT annotations were performed by an expert ophthalmologist after the man-
ual inspection of each individual image, which is both time-consuming and costly and thus
might limit the scalability in routine clinical settings. A potential solution to this challenge
would be the use of automated DL-based tools for feature extraction from OCT imaging, as
several studies reported their efficacy in producing reliable quantitative annotations (for a
review, see [25]). Finally, the presented approach did not explore multimodal integration of
different data sources, which could potentially enhance classification performances. Several
studies have highlighted the benefits of combining information from different data sources
(e.g., images and clinical data) for training Al models [47]. Future work might investigate
the integration of multiple data sources to better reflect the complexity of decision-making
in the therapeutic management of nAMD.
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Appendix A

Table Al. Evaluation metrics for the “Leave Some Subjects Out” (LSSO) cross-validation analysis.
For each subset of the available features, all the metrics for the 5 models are shown. C1: volume and
thickness of each ETDRS sector, C2: C1 + BCVA, C3: C1 + clinical annotations, C4: C1 + BCVA +
clinical annotations.

C Model ROC AUC Accuracy F1 Recall McCC

C1 SvC 0.564 + 0.052 0.573 £ 0.057 0.504 £ 0.075 0.509 £+ 0.122 0.131 +0.103
C1 RFC 0.62 £ 0.041 0.624 + 0.044 0.57 £ 0.063 0.584 £ 0.126 0.245 £ 0.08
C1 ETC 0.623 + 0.042 0.626 £ 0.045 0.579 £ 0.055 0.596 £ 0.108 0.25 + 0.085
C1 GBC 0.601 + 0.054 0.612 £ 0.058 0.532 + 0.082 0.517 £ 0.126 0.209 £+ 0.11
C1 XGBC 0.602 + 0.044 0.605 £ 0.055 0.543 + 0.082 0.557 £ 0.149 0.212 £ 0.095
c2 svC 0.547 £ 0.032 0.556 + 0.034 0.474 £ 0.072 0.472 £0.12 0.096 + 0.065
c2 RFC 0.621 £ 0.039 0.628 £ 0.043 0.564 £ 0.057 0.56 £ 0.109 0.246 £ 0.078
C2 ETC 0.634 + 0.045 0.638 £ 0.046 0.59 + 0.064 0.607 £ 0.116 0.271 £ 0.087
C2 GBC 0.598 + 0.057 0.612 + 0.056 0.512 £0.115 0.492 £+ 0.156 0.202 £0.11
c2 XGBC 0.62 £ 0.049 0.633 £ 0.055 0.546 + 0.082 0.523 £0.135 0.254 £ 0.099
C3 svC 0.747 £ 0.046 0.77 £ 0.034 0.675 £ 0.081 0.564 + 0.106 0.541 £ 0.073
C3 RFC 0.734 + 0.031 0.748 £ 0.036 0.683 £ 0.053 0.635 £ 0.137 0.501 + 0.066
C3 ETC 0.742 £ 0.048 0.764 £ 0.042 0.67 £ 0.083 0.569 £ 0.135 0.535 £ 0.08
C3 GBC 0.75 £ 0.047 0.764 £ 0.038 0.696 + 0.082 0.643 £+ 0.145 0.53 £ 0.079
C3 XGBC 0.749 £ 0.033 0.761 £ 0.03 0.702 £ 0.058 0.659 £ 0.116 0.518 £ 0.057
C4 svC 0.744 £ 0.046 0.768 £ 0.034 0.672 £ 0.08 0.56 £ 0.105 0.536 £ 0.072
C4 RFC 0.736 £+ 0.03 0.754 £ 0.032 0.68 £ 0.06 0.619 £ 0.15 0.514 £ 0.051
C4 ETC 0.733 £ 0.036 0.756 £ 0.031 0.662 + 0.069 0.563 £+ 0.124 0.518 £ 0.058
C4 GBC 0.746 £ 0.043 0.76 = 0.04 0.694 + 0.071 0.642 +0.133 0.522 +0.076
C4 XGBC 0.752 £ 0.029 0.763 £ 0.03 0.712 £ 0.046 0.678 £ 0.095 0.52 £ 0.057

C = combination; ROC AUC = area under the receiver operating characteristic curve; MCC = Matthews correlation
coefficient; SVC = support vector classifier; RFC = Random Forest Classifier; ETC = Extra Trees Classifier;
GBC = Gradient Boost Classifier; XGBC = Extreme Gradient Boosting Classifier.
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Table A2. List of hyperparameters optimized for each algorithm (i.e., SVC, Random Forest, Extra
Trees Classifier, Gradient Boost, and XGBoost) during the “Leave Some Subjects Out” (LSSO) cross-

validation procedure, along with the specific ranges of values explored.

Model Hyperparameter Range/Values
SvC C Exponential distribution (A = 0.01)
kernel [‘rbf’]
gamma Exponential distribution (A = 10)

Random Forest

n_estimators
max_depth
max_features
min_samples_split
min_samples_leaf
bootstrap
criterion

[50, 51, ...,499]

[10, 20, 30, 40, 50, None]
[log2’, ‘sqrt’, None]
Uniform distribution [0, 1]
Uniform distribution [0, 1]
[True, False]

[‘gini’, ‘entropy’]

Extra Trees

n_estimators
max_depth

max_features
class_weight

[50, 51, ... ., 499]
[1,2,...49]
[1,2,..., X.shape-1]
[‘balanced’]

Gradient Boost learning_rate Uniform distribution [0.01, 0.5]
n_estimators [50, 51, ...,499]
subsample [1.0]
max_depth [1, 3,5, 10, 20, 30, 40, 50, None]
min_samples_split Uniform distribution [0, 1]
min_samples_leaf Uniform distribution [0, 1]
max_features [None, ‘sqrt’, ‘log2’]
loss [‘log_loss’, ‘exponential’]
XGBoost learning_rate Uniform distribution [0.001, 0.5]

subsample
n_estimators
max_depth
gamma

[0.5,0.7,1]
[50, 51, . . ., 499]
[1,3,5, 10, 20, 30, 40, 50, None]
Uniform distribution [0, 10]

ETC = Extra Trees Classifier; SVC = support vector classifier; C = regularization parameter; kernel = kernel
type; gamma = kernel coefficient; n_estimators = number of trees; max_depth = maximum depth of the tree;
max_features = maximum features to consider; min_sample_split = minimum number of samples required
to split an internal node; min_samples_leaf = minimum number of samples required to be at a leaf node;
bootstrap = bootstrap applied; criterion = function to measure the quality of a split; class_weight = weight
associated with classes; learning_rate = learning rate value; subsample = fraction of samples to be used for fitting
individual base learners; loss = loss function to be optimized.

Table A3. Hyperparameters selected for the best-performing models and their corresponding input
data combinations (C1, C2, C3, and C4), optimized across the 10 iterations of the “Leave-Some-
Subjects-Out” (LSSO) cross-validation procedure.

Model Hyperparameter Value
C1: ETC n_estimators 235
max_features 23
max_depth 7
class_weight ‘balanced”
C2: ETC n_estimators 123
max_features 7
max_depth 8
class_weight ‘balanced’
C3: SVC C 82.6
gamma 1.67 x 10~*
kernel ‘rbf’
C4: SsVC C 82.6
gamma 1.67 x 1074
kernel ‘rbf’

C1, C2, C3, C4 = input features combinations; ETC = extra trees classifier; SVC = support vector classifier;
n_estimators = number of trees; max_features = maximum features to consider; max_depth = maximum depth of
the tree; class_weight = weight associated with classes; C = regularization parameter; gamma = kernel coefficient;
kernel = kernel type.
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