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Abstract
We consider shape functionals of the form Fq(�) = P(�)T q(�) on the class of open
sets of prescribed Lebesgue measure. Here q > 0 is fixed, P(�) denotes the perimeter
of � and T (�) is the torsional rigidity of �. The minimization and maximization of
Fq(�) is considered on various classes of admissible domains �: in the class Aall of
all domains, in the class Aconvex of convex domains, and in the class Athin of thin
domains.
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1 Introduction

In this paper, given an open set � ⊂ R
d with finite Lebesgue measure, we consider

the quantities

P(�) = perimeter of �;
T (�) = torsional rigidity of �.
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The perimeter P(�) is defined according to the De Giorgi formula

P(�) = sup

{∫
�

div φ dx : φ ∈ C1
c (R

d ;Rd), ‖φ‖L∞(Rd ) ≤ 1

}
.

The scaling property of the perimeter is

P(t�) = td−1P(�) for every t > 0

and the relation between P(�) and the Lebesgue measure |�| is the well-known
isoperimetric inequality:

P(�)

|�|(d−1)/d
≥ P(B)

|B|(d−1)/d
(1.1)

where B is any ball in R
d . In addition, the inequality above becomes an equality if

and only if � is a ball (up to sets of Lebesgue measure zero).
The torsional rigidity T (�) is defined as

T (�) =
∫

�

u dx

where u is the unique solution of the PDE

{
−�u = 1 in �,

u ∈ H1
0 (�).

(1.2)

Equivalently, T (�) can be characterized through the maximization problem

T (�) = max
{[ ∫

�

u dx
]2[ ∫

�

|∇u|2 dx
]−1 : u ∈ H1

0 (�) \ {0}
}
.

Moreover T is increasing with respect to the set inclusion, that is

�1 ⊂ �2 	⇒ T (�1) ≤ T (�2)

and T is additive on disjoint families of open sets. The scaling property of the torsional
rigidity is

T (t�) = td+2T (�), for every t > 0,

and the relation between T (�) and the Lebesgue measure |�| is the well-known
Saint-Venant inequality (see for instance [16,17]):

T (�)

|�|(d+2)/d
≤ T (B)

|B|(d+2)/d
. (1.3)
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Again, the inequality above becomes an equality if and only if � is a ball (up to sets
of capacity zero). If we denote by B1 the unitary ball of Rd and by ωd its Lebesgue
measure, then the solution of (1.2), with � = B1, is

u(x) = 1 − |x |2
2d

which provides

T (B1) = ωd

d(d + 2)
. (1.4)

We are interested in the problem of minimizing or maximizing quantities of the
form

Pα(�)T β(�)

on some given class of open sets � ⊂ R
d having a prescribed Lebesgue measure |�|,

where α, β are two given exponents. Similar problems have been considered for shape
functionals involving:

– the torsional rigidity and the first eigenvalue of the Laplacian in [2,3,6,8,11,19,20,
22];

– the torsional rigidity and the Newtonian capacity in [1];
– the perimeter and the first eigenvalue of the Laplacian in [14];
– the perimeter and the Newtonian capacity in [9,13].

The case β = 0 reduces to the isoperimetric inequality, and we have, denoting by
�∗

m a ball of measure m,

{
min

{
P(�) : |�| = m

} = P(�∗
m)

sup
{
P(�) : |�| = m

} = +∞.

Similarly, in the case α = 0, the Saint Venant inequality yields

max
{
T (�) : |�| = m

} = T (�∗
m) = m

d(d + 2)

( m

ωd

)2/d

while

inf
{
T (�) : |�| = m

} = 0.

Indeed if we choose �n = ∪n
k=1Bn,k where Bn,k are disjoint balls of measure m/n

each, we get for every n ∈ N

inf
{
T (�) : |�| = m

} ≤ T (�n) = m(d+2)/d

d(d + 2)ω2/d
d

n−2/d → 0.
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The case when α and β have a different sign is also immediate; for instance, if
α > 0 and β < 0 we have from (1.1) and (1.3)

{
min

{
Pα(�)T β(�) : |�| = m

} = Pα(�∗
m)T β(�∗

m)

sup
{
Pα(�)T β(�) : |�| = m

} = +∞,

and similarly, if α < 0 and β > 0 we have

{
inf

{
Pα(�)T β(�) : |�| = m

} = 0

max
{
Pα(�)T β(�) : |�| = m

} = Pα(�∗
m)T β(�∗

m).

The cases we will investigate are the remaining ones; with no loss of generality
we may assume α = 1, so that the optimization problems we consider are for the
quantities

P(�)T q(�), with q > 0.

In order to remove the Lebesgue measure constraint |�| = m we consider the scaling
free functionals

Fq(�) = P(�)T q(�)

|�|αq with αq = 1 + q + 2q − 1

d
.

In the following sections we study the minimization and the maximization problems
for the shape functionals Fq on various classes of domains.More preciselywe consider
the cases below.

The class of all domains � (nonempty)

Aall = {
� ⊂ R

d : � �= ∅}

will be considered in Sect. 2; we show that for every q > 0 both the maximization
and the minimization problems for Fq on Aall are ill posed.

The class of convex domains �

Aconvex = {
� ⊂ R

d : � �= ∅, � convex
}

will be considered in Sect. 3; we show that for 0 < q < 1/2 themaximization problem
for Fq on Aconvex is ill posed, whereas the minimization problem is well posed. On
the contrary, when q > 1/2 the minimization problem for Fq on Aconvex is ill posed,
whereas the maximization problem is well posed. In the threshold case q = 1/2 the
precise value of the infimum of F1/2 is provided; concerning the precise value of
the supremum of F1/2 an interesting conjecture is stated. At present, the conjecture
has been shown to be true in the case d = 2, while the question is open in higher
dimensions.
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The class of thin domains Athin , suitably defined, will be considered in Sect. 4. If
h(s) represents the asymptotical local thickness of the thin domain as s varies in a d−1
dimensional domain A, the maximization of the functional F1/2 on Athin reduces to
the maximization of a functional defined on nonnegative functions h defined on A;
this allows us to prove the conjecture for any dimension d on the class of thin convex
domains.

2 Optimization in the Class of All Domains

In this section we show that the minimization and the maximization problems for the
shape functionals Fq are both ill posed, for every q > 0.

Theorem 2.1 There exist two sequences (�1,n) and (�2,n) of smooth domains such
that for every q > 0 we have

Fq(�1,n) → 0 and Fq(�2,n) → +∞.

In particular, we have

{
inf

{
Fq(�) : � ∈ Aall , � smooth

} = 0

sup
{
Fq(�) : � ∈ Aall , � smooth

} = +∞.

Proof In order to show the sup equality it is enough to take as �2,n a perturbation of
the unit ball B1 such that

B1/2 ⊂ �2,n ⊂ B2 and P(�2,n) → +∞.

Then we have

|�2,n| ≤ |B2|, T (�2,n) ≥ T (B1/2),

where we used the monotonicity of the torsional rigidity. Then

Fq(�2,n) ≥ P(�2,n)T q(B1/2)

|B2|αq → +∞.

In order to prove the inf equality we take as �c,ε the unit ball B1 from which we
remove a periodic array of holes; the centers of two adjacent holes are at distance ε

and the radii of the holes are

rc,ε =
{
e−1/(cε2) if d = 2

cεd/(d−2) if d > 2,

where c is a positive constant. It is easy to see that, as ε → 0, we have

|�c,ε| → |B1| and P(�c,ε) → P(B1).
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Concerning the torsion T (�c,ε), we have (see [10])

T (�c,ε) →
∫
B1

uc dx

where uc is the nonnegative function which solves

{
−�uc + Kcuc = 1 in B1

uc ∈ H1
0 (B1),

being Kc the constant

Kc =
{
cπ/2 if d = 2

d(d − 2)2−dωdcd−2 if d > 2.

Since for every c > 0 we have that

∫
B1

|∇uc(x)|2 + Kcu
2
c(x) dx =

∫
B1

uc dx

we get that

∫
B1

uc dx ≤ ωd

Kc
.

Therefore, a diagonal argument allows us to construct a sequence (�1,n) such that

|�1,n| → |B1|, P(�1,n) → P(B1), T (�1,n) → 0,

which concludes the proof. ��

3 Optimization in the Class of Convex Domains

In this section we consider only domains � which are convex. A first remark is in
the proposition below and shows that in some cases the optimization problems for the
shape functional Fq is still ill posed.

Proposition 3.1 We have

{
inf

{
Fq(�) : � ∈ Aconvex

} = 0 for every q > 1/2;
sup

{
Fq(�) : � ∈ Aconvex

} = +∞ for every q < 1/2.
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Proof Let A be a smooth convex d − 1 dimensional set and for every ε > 0 consider
the domain �ε ∈ Aconvex given by

�ε = A×] − ε/2, ε/2[.

We have (for the torsion asymptotics see for instance [2])

P(�ε) ≈ 2Hd−1(A),

T (�ε) ≈ ε3

12
Hd−1(A),

|�ε| = εHd−1(A),

so that

Fq(�ε) ≈ 2

12q
(Hd−1(A)

)(2q−1)/d
ε(2q−1)(d−1)/d . (3.1)

Letting ε → 0 achieves the proof. ��
We show now that in some other cases the optimization problems for the shape

functional Fq is well posed. Let us begin to consider the case q = 1/2.

Proposition 3.2 We have

inf
{
F1/2(�) : � ∈ Aconvex

} = 3−1/2 (3.2)

and the infimum is asymptotically reached by domains of the form

�ε = A×] − ε/2, ε/2[

as ε → 0, where A is any d − 1 dimensional convex set.

Proof Thanks to a classical result by Polya ( [21], see also Theorem 5.1 of [11]) it
holds

T (�) ≥ 1

3

|�|3
(P(�))2

.

Then

F1/2(�) = P(�)(T (�))1/2

|�|3/2 ≥ 3−1/2

for any bounded open convex set. Taking into account (3.1), we get (3.2). ��
Concerning the supremum of F1/2(�) in the class Aconvex we can only show that

it is finite.
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Proposition 3.3 For every � ∈ Aconvex we have

F1/2(�) ≤ 2dd3d/2

ωd

√
d

d + 2
. (3.3)

Proof By the John’s ellipsoid Theorem [18], there exists an ellipsoid that, without loss
of generality, we may assume centered at the origin,

Ea =
{
x ∈ R

d :
d∑

i=1

x2i
a2i

< 1

}
, a = (a1, . . . , ad), with ai > 0

such that Ea ⊂ � ⊂ dEa . Then we have

F1/2(�) ≤ P(dEa)
(
T (dEa)

)1/2
|Ea |3/2 . (3.4)

Since the solution of (1.2) for Ea is given by

u(x) = 1

2

( d∑
i=1

a−2
i

)−1(
1 −

d∑
i=1

x2i
a2i

)
,

we obtain

T (Ea) = ωd

d + 2

( d∑
i=1

a−2
i

)−1 d∏
i=1

ai ,

while

|Ea | = ωd

d∏
i=1

ai .

To estimate P(Ea) we notice that Ea is contained in the cuboid Qa = ∏d
1 ] − ai , ai [,

so that

P(Ea) ≤ P(Qa) = 2
d∑

i=1

∏
j �=i

(2a j ) = 2d
( d∑

i=1

1

ai

) d∏
i=1

ai .

Combining these formulas we have from (3.4)

F1/2(�) ≤ 2dd3d/2

ωd(d + 2)1/2

( d∑
i=1

1

ai

)( d∑
i=1

1

a2i

)−1/2
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and finally, by Jensen inequality,

F1/2(�) ≤ 2dd3d/2

ωd

√
d

d + 2
,

as required. ��
On the precise value of sup

{
F1/2(�) : � ∈ Aconvex

}
we make the following

conjecture.

Conjecture 3.4 We have

sup
{
F1/2(�) : � ∈ Aconvex

} = d
( 2

(d + 1)(d + 2)

)1/2

and it is asymptotically reached by taking for instance

�ε = {
(s, t) : s ∈ A, 0 < t < ε(1 − |s|)}

as ε → 0, where A is the unit ball in Rd−1.

Remark 3.5 We recall that Conjecture 3.4 has been shown to be true in the case d = 2
(see [21,23], and the more recent paper [12]). In Sect. 4 we prove the conjecture above
for every d ≥ 2 in the class of convex thin domains.

We show now that for Fq in the class Aconvex the minimization problem is well
posed when q < 1/2 and the maximization problem is well posed when q > 1/2.
From the bounds obtained in Propositions 3.2 and 3.3 we can prove the following
results.

Proposition 3.6 We have

⎧⎪⎨
⎪⎩
inf

{
Fq (�) : � ∈ Aconvex

} ≥ 3−1/2(d(d + 2)
)1/2−q

ω
(1−2q)/d
d for every q ≤ 1/2

sup
{
Fq (�) : � ∈ Aconvex

} ≤ 2dd3d/2−q+1

(d + 2)qω
1+(2q−1)/d
d

for every q ≥ 1/2.

Proof We have

Fq(�) = F1/2(�)

(
T (�)

|�|(d+2)/d

)q−1/2

.

Hence it is enough to apply the bounds (3.2) and (3.3), together with the Saint-Venant
inequality (1.3) to get that for every � ∈ Aconvex

inf
{
Fq(�) : � ∈ Aconvex

} ≥ 3−1/2
(

T (B)

B(d+2)/d

)q−1/2

if q ≤ 1/2

sup
{
Fq(�) : � ∈ Aconvex

}
<

2dd3d/2

ωd

√
d

d + 2

(
T (B)

B(d+2)/d

)q−1/2

if q ≥ 1/2.
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By the expression (1.4) for T (B) we conclude the proof. ��
We now prove the existence of a convex minimizer when q < 1/2 and of a convex

maximizer when q > 1/2.

Theorem 3.7 There exists a solution for the following optimization problems:

{
min

{
Fq(�) : � ∈ Aconvex

}
for every q < 1/2;

max
{
Fq(�) : � ∈ Aconvex

}
for every q > 1/2.

Proof Suppose q < 1/2 and consider (�n) a minimizing sequence for Fq(�). By the
John’s ellipsoid Theorem we can assume that there exists a sequence of ellipsoids Ean
such that

Ean ⊂ �n ⊂ dEan .

By rotations, translations and scaling invariance of Fq we can assume without loss of
generality that

Ean =
{
x ∈ R

d :
d∑

i=1

x2i
a2in

< 1

}
, an = (a1n, . . . , adn), 0 < a1n ≤ · · · ≤ adn = 1.

Observe that this implies that the diameter of �n is uniformly bounded in n. We claim
that

a1n ≥ c for every n ∈ N

where c is a positive constant. Then the proof is achieved by extracting a subsequence
(�nk ) which converges both in the sense of characteristic functions and in the co-
Hausdorff metric to some open, non empty, convex, bounded set �− and by using
the continuity properties of torsional rigidity, perimeter and volume (see for instance,
[7,17]).

To prove the claim we use a strategy similar to the one already used in the proof of
Proposition 3.3. Let Qan be the cuboid

∏d
i=1] − ain, ain[. Since

d−1/2Qan ⊂ Ean

we have, for n large enough,

Fq(B1) ≥ Fq(�n) ≥ 1

d(d−1)/2ddαq

T q(Ean )P(Qan )

|Ean |αq
. (3.5)

An explicit computation shows

T q(Ean )P(Qan )

|Ean |αq
= 2dω

q−αq
d

(d + 2)q

( ∑d
i=1 a

−1
in( ∑d

i=1 a
−2
in

)1/2
) (( ∑d

i=1 a
−2
in

)1/2
(
∏d

i=1 a
−1
in )1/d

)1−2q

.
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Observe that, by Cauchy–Schwarz inequality,

1 ≤
∑d

i=1 a
−1
in(∑d

i=1 a
−2
in

)1/2 ≤ √
d, (3.6)

while for the last term it holds

(∑d
i=1 a

−2
in

)1/2
(∏d

i=1 a
−1
in

)1/d =
(∑d

i=1 a
−2
in

)1/2
(∏d−1

i=1 a−1
in

)1/d ≥ a−1
1n(

a−1
1n

)(d−1)/d
=

(
1

a1n

)1/d

(3.7)

Therefore, putting together (3.5)–(3.7) and using the fact that q < 1/2 we obtain that,
if n is large enough, the sequence a1n must be greater than some positive constant c,
which proves the claim.

The case q > 1/2 can be proved in a similar way. If (�n) is a maximizing sequence
for Fq(�) and Ean are ellipsoids such that Ean ⊂ �n ⊂ dEan , we have

Fq(B1) ≤ Fq(�n) ≤ P(dEan )T
q(dEan )

|Ean |αq
= dd−1+q(d+2) P(Ean )T

q(Ean )

|Ean |αq
.

(3.8)

If Qan is the cuboid
∏d

i=1] − ain, ain[ we have Ean ⊂ Qan , so that

P(Ean ) ≤ P(Qan ) = 2d
(

d∑
i=1

a−1
in

)
d∏

i=1

ain .

Hence (3.8) implies, for a suitable constant Cq,d depending only on q and on d,

Fq(B1) ≤ Cq,d

∑d
i=1 a

−1
in( ∑d

i=1 a
−2
in

)q( ∏d
i=1 ain

)(2q−1)/d
≤ dqCq,d

(( ∏d
i=1 a

−1
in

)1/d
∑d

i=1 a
−1
in

)2q−1

,

where in the last inequality we used the Cauchy–Schwarz inequality (3.6). Finally,
since ain ≤ adn = 1, we obtain

Fq(B1) ≤ dqCq,d

(
a−1
in

)(2q−1)/d

and, since q > 1/2, the conclusion follows as in the previous case. ��
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4 Optimization in the Class of Thin Domains

In this section we consider the class of thin domains, that we define below through the
families of domains

�ε = {
(s, t) : s ∈ A, εh−(s) < t < εh+(s)

}
(4.1)

where ε is a small positive parameter, A is a (smooth) domain of Rd−1, and h−, h+
are two given (smooth) functions. We denote by h(s) the local thickness

h(s) = h+(s) − h−(s),

and we assume that h(s) ≥ 0.More precisely, we call thin domain a family (�ε)ε>0 as
above; in other words a thin domain is characterized by the d −1 dimensional domain
A and by the local thickness function h.

The following asymptotics hold for the quantities we are interested to (for the
torsional rigidity we refer to [5]):

P(�ε) ≈ 2Hd−1(A),

T (�ε) ≈ ε3

12

∫
A
h3(s) ds,

|�ε| = ε

∫
A
h(s) ds,

which together give the asymptotic formula when q = 1/2

F1/2(�ε) ≈ 3−1/2Hd−1(A)
[ ∫

A
h3(s) ds

]1/2[ ∫
A
h(s) ds

]−3/2

= 3−1/2
[[

—
∫
A
h3(s) ds

][
—
∫
A
h(s) ds

]−3
]1/2 (4.2)

where we use the notation

—
∫
A
f (s) ds = 1

Hd−1(A)

∫
A
f (s) ds.

We then define the functional F1/2 on the thin domain (�ε)ε>0 associated with the
d − 1 dimensional domain A and the local thickness function h by

F1/2(A, h) = 3−1/2
[[

—
∫
A
h3(s) ds

][
—
∫
A
h(s) ds

]−3
]1/2

.

By Hölder inequality we have

F1/2(A, h) ≥ 3−1/2
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and the value 3−1/2 is actually reachedby taking the local thickness functionh constant,
which corresponds to �ε a thin slab.

A sharp inequality from above is also possible for F1/2(A, h), if we restrict the
analysis to convex domains, that is to local thickness functions h which are concave.
The following result will be used, for which we refer to [4,15].

Theorem 4.1 Let 1 ≤ p ≤ q. Then for every convex set A of RN (N ≥ 1) and every
nonnegative concave function f on A we have

[
—
∫
A
f q dx

]1/q ≤ Cp,q

[
—
∫
A
f p dx

]1/p

where the constant Cp,q is given by

Cp,q =
(
N + p

N

)1/p(N + q

N

)−1/q

.

In addition, the inequality above becomes an equality when A is a ball of radius 1 and
f (x) = 1 − |x |.
We are now in a position to prove the Conjecture 3.4 for convex thin domains.

Theorem 4.2 If (�ε)ε>0 is a thin convex domains given by (4.1), we have

F1/2(A, h) ≤ d
( 2

(d + 1)(d + 2)

)1/2
. (4.3)

In addition, the inequality above becomes an equality taking for instance as A the unit
ball of Rd−1 and as the local thickness h(s) the function 1 − |s|.
Proof Since the local thickness function h is concave, by Theorem 4.1with N = d−1,
q = 3, p = 1, we obtain

—
∫
A
h3 dx ≤ C3

1,3

[
—
∫
A
h dx

]3
,

so that

F1/2(A, h) ≤ 3−1/2C3/2
1,3 = d

( 2

(d + 1)(d + 2)

)1/2

as required. Finally, an easy computation shows that in (4.3) the inequality becomes
an equality if A is the unit ball of Rd−1 and h(s) = 1 − |s|. ��
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