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Abstract

A cell-centered implicit-explicit updated Lagrangian finite volume scheme on unstructured grids is proposed for a
unified first-order hyperbolic formulation of continuum fluid and solid mechanics, namely the Godunov-Pehskov-
Romenski (GPR) model. The scheme provably respects the stiff relaxation limits of the continuous model at the fully
discrete level, thus it is asymptotic preserving. Furthermore, the GCL is satisfied by a compatible discretization that
makes use of a nodal solver to compute vertex-based fluxes that are used both for the motion of the computational
mesh as well as for the time evolution of the governing PDEs. Second order of accuracy in space is achieved using
a TVD piecewise linear reconstruction, while an implicit-explicit (IMEX) Runge-Kutta time discretization allows the
scheme to obtain higher accuracy also in time. Particular care is devoted to the design of a stiff ODE solver, based on
approximate analytical solutions of the governing equations, that plays a crucial role when the visco-plastic limit of
the model is approached. We demonstrate the accuracy and robustness of the scheme on a wide spectrum of material
responses covered by the unified continuum model that includes inviscid hydrodynamics, viscous heat conducting
fluids, elastic and elasto-plastic solids in multidimensional settings.

Keywords: Cell-centered Lagrangian finite volume schemes, asymptotic preserving IMEX schemes, unified model
of continuum mechanics, inviscid and viscous fluids, hyperelasticity, hyperbolic PDE with stiff relaxation,
Unstructured meshes

1. Introduction

The motion of a continuous medium (either fluid or solid) can be described using two different types of reference
frames. The first type exploits frames that are co-moving and co-deforming together with the medium and traditionally
called Lagrangian frames. The second type is referred to as Eulerian frames of reference that are neither co-moving
nor co-deforming with the continuous medium. Each of the two types has its pros and cons when used for numerical
simulations. For example, approaches based on the Lagrangian description allow for accurate tracking of material
interfaces and thus are dominated in the computational solid mechanics, or even fluid mechanics algorithms aiming
to compute hydrodynamics effects when the vorticity field is not too severe. However, Lagrangian methods are
impractical for the simulation of phenomena with vorticity-dominated motion or highly distorted patterns of the
medium because the computational mesh, which moves with the material, becomes too distorted and eventually gets
tangled. On the other hand, Eulerian schemes are the natural choice for simulating complex flows but also provide
a framework for modeling interfaces of arbitrary complexity and topology changes if equipped with some interface-
capturing techniques, e.g. [108, 100, 6, 66, 70, 28, 117]. Nevertheless, due to the diffusion intrinsically embedded
into any Eulerian scheme, the errors in the interface approximation accumulate over time and Lagrangian schemes are
preferable when the accuracy of the interface location is critical, e.g. multi-material computations or plasma flows for
inertial confinement fusion applications [26, 10].
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The first Lagrangian schemes were proposed in [116] using a formulation of the governing equations in primitive
variables, which was also employed later in [9, 29]. However, most of the modern Lagrangian finite volume schemes
use the conservation form of the equations based on the physically conserved quantities like mass, momentum and
total energy in order to compute shock waves properly, see e.g. [87, 106, 79, 31, 119]. The original approach for
Lagrangian algorithms makes use of a staggered grid discretization [118, 77, 78], where the velocity is defined at the
cell interfaces and the other variables at the cell centers. Staggered schemes are compatible with the second law of
thermodynamics thanks to the addition of an artificial viscosity in the internal energy equation allowing the dissipation
of kinetic energy into internal energy through shock waves, thus total energy is not conserved. Although strategies
to overcome this drawback have been proposed in [29, 38], the development of cell-centered finite volume (FV)
Lagrangian schemes dedicated to solve the hydrodynamics equations has started to gain visibility from the seminal
works presented in [39, 40, 83]. As a purely Lagrangian formulation, no mass flux is allowed across cell interfaces,
and the cells move and deform by considering the effects of the entire neighborhood. Specifically, these Lagrangian
methods are based on the definition of a nodal solver which takes into account multiple one-dimensional Riemann
problems occurring across all surrounding cells, and eventually uniquely determines the node velocity. Consequently,
compatibility between the motion of the cell, thus its volume, and the cell deformation computed through PDEs
involving the discretization of the velocity divergence is ensured. This is the so-called Geometrical Conservation Law
(GCL) that is nothing but the discrete Gauss theorem that is satisfied by construction in classical Godunov-type finite
volume schemes on fixed grids.

Second order extension in space is typically achieved using a piecewise linear reconstruction of the conserved
variables, while second order time stepping can be obtained relying on a classical Runge-Kutta scheme [84, 54], a
Generalized Riemann problem methodology [79, 27] following the seminal ideas outlined in [8, 50, 25], or the ADER
strategy [22], originally proposed in [112, 110, 111] for fixed meshes. Cell-centered finite volume schemes have been
extended to 2D and 3D Lagrangian solid mechanics in [82, 72, 27], while curved meshes are considered in [37, 104].

Higher order of accuracy in space was first achieved in [32, 76, 33, 34], where a third order accurate essentially
non-oscillatory (ENO) reconstruction operator is introduced into a Godunov-type Lagrangian finite volume scheme.
The mesh velocity is simply computed as the arithmetic average of the corner-extrapolated values in the cells adjacent
to a mesh vertex and the numerical fluxes across element interfaces are solved at the aid of approximate Riemann
solvers, thus these schemes cannot be regarded as Lagrangian methods sensu stricto, since mass flux can in principle
take place across cells. In the finite element framework, high order Lagrangian schemes have been developed in
[88, 102] and also in [41, 42, 43], who solved the equations for Lagrangian hydrodynamics using high order curvilinear
finite element methods. Displacement-based finite element schemes for simulating engineering large strain transient
situations can be found in [60, 49]. Discontinuous Galerkin (DG) methods on polygonal unstructured meshes have
been proposed for hydrodynamics in [51, 52], while the equations for solid mechanics in hypo- and hyperelastic
formulations have been solved with Lagrangian DG schemes in [74, 75].

Lagrangian methods also may differ concerning the formulation of the governing equations. More precisely, there
do exist total and updated Lagrangian schemes. Total Lagrangian schemes rely on the discretization of the time rate
of change of the deformation gradient, its determinant and its co-factor and the computations are performed on a
fixed mesh. Contrarily, updated Lagrangian methods physically move the computational mesh and the deformation
gradient is the Lagrange-Euler mapping which relates the initial and the current mesh location. The solid dynamics
equations written under total Lagrangian formulation have been successfully solved in [57, 1, 12, 55, 13, 73, 61],
where a cell-centered finite volume computational framework was employed. Hypoelastic solid mechanics models
[115, 11] have also been numerically solved with Lagrangian methods, see e.g. [118, 53, 82, 101, 35]. However,
these models are not compatible with the second law of thermodynamics, contrarily to the hyperelasticity equations.
A parallel discussion about hypo- and hyper-elastic models and their resolution can be found for instance in [90].

From the physical viewpoint, all contributions listed so far deal with either fluid or solid mechanics. In the field of
fluid mechanics, most of the existing Lagrangian methods are designed for the solution of hydrodynamics equations,
i.e. ideal fluids. On the other hand, elastic or nearly incompressible solids are mainly addressed by moving mesh
schemes. An attempt to derive a unified formulation of continuum mechanics in first-order hyperbolic form that
includes fluid mechanics as well as solid mechanics has been very recently proposed in [93], referred to as Godunov-
Peshkov-Romenski (GPR) model. This model makes use of relaxation-type PDEs which govern the deformation of
the material. The relaxation parameter in the sources determines the inelasticity time scale of the phenomena under
consideration, thus permitting to recover either ideal fluids or ideal elastic solids in the model limits. Furthermore,
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because of the continuous transition from stiff to non-stiff time scale, the GPR model is also capable of capturing
the behavior of viscous fluids as well as elasto-plastic solids. The numerical solution of this model has been first
proposed on fixed meshes in [47], and consequently extended to plasma flows in [48]. In [21], a high order moving
mesh scheme is adopted for the solution of the GPR model, which is based on the direct Arbitrary-Lagrangian-Eulerian
(ALE) framework introduced in [15] and references therein.

In this work, we aim at developing a cell-centered updated Lagrangian finite volume scheme for the solution of
the GPR model. We consider unstructured meshes, composed of simplex control volumes, both in 2D an 3D. The
novel algorithm arises from the previous contribution for hydrodynamics [22] and the recent work on Lagrangian hy-
perelasticity [23]. Moreover, the numerical schemes presented in the aforementioned references are exactly recovered
by the new finite volume method in the limits of the GPR model. Indeed, the asymptotic preserving property of the
fully discrete scheme is derived to demonstrate the consistency with already existing and well-established Lagrangian
schemes, e.g. the EUCCLHYD scheme [83]. Finally, the compatible discretization of the GCL allows the asymptotic
limit of the distortion tensor to be consistently retrieved without resorting to staggered meshes as done in [20]. To the
knowledge of the authors, this is the first contribution towards the solution of relaxation-type systems of hyperbolic
conservation laws in the updated Lagrangian framework. Second order extension in space and time is devised as
well. In order to treat the arbitrarily stiff source terms with which the unified model is endowed, while maintaining
the asymptotic properties of the model at the discrete level, we employ a semi-analytical time integration scheme
for the stiff source terms [36, 107], which yields a second order discretization of the fully coupled system of PDEs
thanks to the implicit-explicit coupling obtained at the aid of the class of IMEX Runge-Kutta time stepping techniques
[2, 14, 89, 24].

The rest of this article is structured as follows. In Section 2, we present the governing equations of the GPR model.
Section 3 is devoted to detail the Lagrangian finite volume scheme, the ODE solver for stiff relaxation sources and
the extension of the algorithm to second order of accuracy. The asymptotic analysis of the fully discrete numerical
method is developed in Section 4. In Section 5, we show numerical convergence studies and a wide range of test cases
on 2D and 3D unstructured moving meshes for different types of materials and different equations of state. Finally, in
Section 6 we give some concluding remarks and an outlook to future research and developments.

2. Governing equations: the GPR model for continuum mechanics

The unified first-order hyperbolic model of continuum mechanics discussed in this section can describe fluid flows
and deformations of solids in a single system of first-order hyperbolic equations. The model originates from the works
by Godunov and Romenski in 1970s [58, 56, 96, 59] on the modeling of large elasto-plastic deformations of solids.
Similar to the work by Wilkins [118], the important feature of the model is that the description is made in an Eulerian
frame of reference in contrast to the conventional Lagrangian description of solid mechanics. Later, in the work by
Peshkov and Romenski [93], this allows for further generalization of the Godunov-Romenski model (which would be
impossible under the Lagrangian description) towards incorporating the description of viscous fluids as a particular
case of “extremely” inelastic deformations of solids, see also [47, 46, 28, 20]. Therefore, in this paper, we shall refer
to this model as the Godunov-Peshkov-Romenski (GPR) model.

In contrast to the conventional Navier-Stokes-based fluid mechanics, in the GPR model, fluids are characterized
not with a strain-rate measure like in the Newton law of viscosity, but with a deformation measure and a special
procedure of relaxation of tangential stresses similar to the Maxwell model of viscoelasticity. Nevertheless, it can be
shown via a formal asymptotic analysis that the Navier-Stokes Cauchy stress tensor is recovered in the relaxation limit
of the GPR model [47, 20]. Thus, according to the GPR model, each material element of an isotropic continuum is
defined by an infinitesimal frame A, (local basis triad) that characterizes deformation and orientation of the material
particles. The frame field A, is also called the effective elastic distortion [59], or simply the distortion field. The
relaxed (stress-free) state is defined for each material element individually as a state when the frame field A, is
orthonormal. In general, such a state may not be reachable globally for all the material elements simultaneously,
hence resulting in residual stresses in the material', see Section 5.8 and 5.9.

'In conventional fluids with zero yield strength, the residual stresses cannot be generated because the relaxation process acts until all stresses
vanish.



The GPR model can be also seen as a finite-strain elasto-plasticity model of hyperelastic type [90]. Thus, according
to the traditional finite-strain elasto-plasticity framework, the total deformation gradient F; can be decomposed as
F; = F,F, into the elastic F, and plastic F, part. The natural Lagrangian stress, i.e. the first Piola-Kirchhoff stress, is
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OoF;
OE OE
part F, of the deformation gradient, that is £ = E(F,). Hence, I1 = 3F = ﬁF;T, and therefore, to compute the
t e
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Consequently, to compute the stress tensor in the Eulerian frame, one needs to know only the elastic part F, of the
total gradient F;. In other words, we do not need to compute the entire history of inelastic deformations stored in F,,.
This opens the great possibility to describe arbitrarily large inelastic deformations typical of fluid-type motions. The
distortion field A, can also be seen as the inverse of F,, thus A, = F, L

Apart of being a deformation measure, the frame field A, also encodes the orientational degrees of freedom of
the material elements, e.g. see the computational results in [47, 20, 91]. The orientational degrees of freedom might
be relevant for turbulence modeling [94] or anisotropic plasticity models [98]. However, in this paper, we ignore
these degrees of freedom and instead of the frame field A, we consider the metric tensor G, = A]A,. However, in
the context of structure preserving numerical methods, the formulation in terms of A, is more preferable because the
deformation compatibility condition V X A, = 0 is linear while, in terms of G,, the compatibility condition (vanishing
Riemann curvature tensor) is nonlinear, e.g. see [59]. In addition, we also take into account heat conduction effects
via a first-order hyperbolic formulation proposed by Romenski in [85, 97], which characterizes the heat propagation
via a relaxation equation for the thermal impulse J, e.g. see [47]. In later papers [20, 95, 92], we however, use slightly
different hyperbolic heat conduction model that coincides with the one used in this paper in the Fourier limit (local
thermodynamic equilibrium).

For the updated Lagrangian scheme discussed in Section 3, we write the Eulerian equations [47] in the co-moving
frame of reference, that is the time derivative is the Lagrangian derivative (or material derivative), while the spatial
derivatives are the Eulerian ones. The space is defined in R? with d = {2,3} representing the number of space
dimensions. The time coordinate is given by ¢, while x = (x,y,z) denotes the spatial position vector. The system of
governing equations for the unknowns Q := {w, v, E, J, G.} therefore reads

d
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where p is the mass density, w = p‘1 is the specific volume, v = (u, v, w) is the velocity, T is the Cauchy stress tensor,
E(p, p,v, G,) is the total energy
E = Ep(p, p) + E.(G,) + Ey()) + Ex(v), (3a)
Cgh 212 | . Lo
E; = &(p, p), E, = TIIGeII , Ey = 7@ 12 [ Ey = EIIVII , (3b)



with E;, = &(p, p) being the pure hydrodynamics part, p being the hydrodynamics pressure defined only from the
hydrodynamics equation of state £(p, p), E, being the elastic energy stored in the deformed material elements, with
csh being the shear sound speed which characterizes the rigidity of the material elements, and ée =G, - %tr(Ge)l
being the deviatoric part of the metric tensor G,, and I is the identity tensor. The third term E;;, represents the energy
carried by the thermal impulse J with « characterizing the velocity of propagation of thermal perturbations (defined
later in Section 2.3). The last term Ej denotes the standard kinetic energy of the continuous medium. The source
terms in (2d) and (2e) are the algebraic relaxation sources defined in Section 2.2 and 2.3. The temperature T in (2d)
is not a state variable and must be defined from the equations of state &(p, p), q is the heat flux defined later in Section
2.3. The Cauchy stress T is split into two parts:

T=-pl+o, o= —2pGea—E = —pctheGoe, €
0G,

where the pressure p is defined from the hydrodynamics energy Ej(p, p) and the tangential (or viscous) stress o results
from the definition of the elastic energy E.(G,). In all computational examples for viscous fluids and elasto-plastic
solids in Section 5, we use E, in the form (3b), simply because the asymptotic analysis for the Navier-Stokes limit
in [47] was performed for this particular choice and we aim at demonstrating the asymptotic property for the fully
discrete scheme. Nevertheless, other elastic energies could be used. We remark that the spherical part of o for our
choice of the elastic energy is not zero but scales as ~ ||ée||2, i.e. quadratically in ée. For example, for fluid flows
it is negligibly small, while for hyperelastic solids it might be not small and the total pressure should be defined as
P=-1(T) = p - (o).

2.1. Equation of state for E,

In the numerical examples in Section 5, we use three equations of state (EOS) for the hydrodynamics energy Ej,.
For gases, we use the ideal gas EOS:
P P

&
e, ) = s T = D) Cz = s (5)
0P =260"h ¢ " p

where y = ¢, /c, is the ratio of specific heats, ¢, is the specific heat at constant pressure, ¢, is the specific heat at
constant volume, and cy is the adiabatic sound speed.
For liquids and solids, one can use the Mie-Griineisen equations of state:

P = pocyf(J) _U-DU—shU-) o p ©
polo J-s(J -1y po’
where ¢y = const is the adiabatic sound speed, ['g = const, s = const are material constants, and py is the reference
mass density.

The third type of hydrodynamics EOS used in Section 5.11 and 5.12 is the volumetric part of the Neo-Hookean
hyperelastic EOS that reads
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G G log(J
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where G = pocfh is the shear modulus, which also corresponds to the second Lamé coefficient. Material mechanical
properties are often described in terms of Young modulus Y and Poisson ratio v. These parameters are linked as
follows:

Sp— ®)
T 2(1+v)
In this case the adiabatic sound speed can be computed as the square root of the bulk modulus K, hence
Y 2G
A=K 4 ik )

=+ —.
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2.2. Closure for inelastic deformations and fluid flows

The source terms in (2d) and (2e) describe the dissipative dynamics of the system and must be consistent with the
second law of thermodynamics (entropy must be non-decreasing). It can be shown that the specification of the source
terms used in this paper guarantees that the entropy is indeed not decreasing, see [47, 92]. Without providing further
details (which can be found in [47]) we specify them as follows.

The source term in (2d) handles inelastic deformations of the continuum with the relaxation function ® given by

2
C
0= néi'weersff’, (10)

where |G,| = det(G,) and 7 is the strain relaxation time which, in general, is a function of state variables 7 =
71(0, T, G,). In particular, 7, = const for Newtonian fluids, while 7; — oo for pure elastic solids. The Navier-Stokes
stress tensor is recovered in the relaxation limit of system (2), that is € = 7| /f;40r0 << 1 at first order in €, with #,,4cr0
being the macroscopic characteristic time of the physical process. The effective shear viscosity is then given by [47]

1
H = 6,007'16‘3}1. (11)

For elasto-plastic solids 7| can be taken as [5, 90, 21]

n 3 1
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where oy is the material yield strength under quasi-static loading conditions and 719 = const is a material-specific
constant. The parameter n controls the rate-dependence of the plasticity mode, e.g. the greater n the more the material
is rate-independent. For other examples of 7 suitable for the modeling of non-Newtonian fluids see [91, 65].

2.3. Heat conduction

The closure of the heat conducting part of system (2) is also conditioned by the consistency with the second law
of thermodynamics [47, 92] as well as with the Fourier law of heat conduction. Thus, the relaxation function in the
right hand-side of (2d) is given by

T
¥ = a’1y2, 720=£—0~ (13)
po T
The consistency with the first law of thermodynamics (total energy conservation) requires that the heat flux q is
defined as (see [47])
q=a’TJ. (14)
At the mechanical and thermodynamical equilibrium, the characteristic velocity of the thermal perturbation propaga-
tion is
T
Py
The Fourier law of heat conduction q = —«VT is recovered in the relaxation limit (local equilibrium) with 75 < #,,4¢105
at first order in 75 /t,4cr0- The effective heat conductivity is given by [47]

= (15)

k=T’ —. (16)
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3. Lagrangian finite volume scheme on unstructured meshes

3.1. Discretization of the space-time computational domain

We start by providing the details about the discretization of the time interval and the spatial computational domain.



Time computational domain. The time coordinate is defined in the time interval ¢ € [0, 7], where t; € R(’; represents
the final time. A sequence of discrete points #* approximates the temporal computational domain such that ¢ € [¢"; 7'*!],

t=1"+aA",  acl0,1], (17)

with " and A¢" denoting the current time and time step, respectively. As done in [79, 27], the time step is limited by a
classical CFL stability condition combined with a criterion on the growth rate of the time step, hence

Af* = min (CFL . mTin @, C,,,At”‘l). (18)
i a

The CFL number is chosen to be CFL < 1/d as usual on unstructured meshes, with d being the number of space
dimensions, while h; = |Tj|'/ is the characteristic mesh size with |T;| being the volume of the spatial element T;.
Finally, a; is the maximum eigenvalue estimate (equilibrium estimate) of the governing PDE given by

[ 4
L 2,2 2
a; = C0+3CSh+Ch

The criterion for controlling the growth rate of the time step is set with C,, = 1.1, so that the increase of the time step
size is mild without sharp discontinuities.

19)

L

Space computational domain. In the updated Lagrangian framework, the time-dependent computational domain €Q(f)
is discretized at the current time " by a set of non-overlapping unstructured control volumes 77" with boundary 077,
that are given by triangles (d = 2) or tetrahedra (d = 3). Ng denotes the total number of elements contained in the
domain and the union of all elements is called the current tessellation DY, of the domain

Ng
Dy = U TI. (20)
i=1

To ease notation, we omit the superscript # in the following description, meaning that the spatial domain is discretized
as follows at each time level ¢”. The index i refers to the element 7, f addresses a face (which is of dimension d — 1)
and r denotes a node. The double index ri is used to express a quantity defined at node r from element 77; likewise, fi
is used to express a quantity defined at the barycenter of face f from element 7;. The Neumann neighbor of element
T; which shares face f is denoted with T';, and the outward pointing unit normal vector is ng;. Finally, the cell volume
is |T;| and the length (2D) or surface (3D) of a face f is addressed with sy.

At the aid of Figure 1, the following notation is adopted for the definition of different topological sets:

e R; is the set of nodes r of element T7;

Ry is the set of nodes r of face f;

¥ is the set of faces f of element T7;

¥, is the set of faces f sharing node r;
e ¥, is the set of faces f sharing node r and belonging to element T;;
e 7, is the set of elements T sharing node r, i.e. the Voronoi neighborhood of node r.

Each cell can be divided into subcells 7,;, that are obtained by connecting the cell centroid with the barycenter of the
faces belonging to F,;. The cell centroid x; is defined as

7/
x; = — | xdx, 21
7] J
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while the barycenter of a face x is given by

1
Xp= o D% (22)

rf rERf

with N, representing the total number of nodes which share face f, i.e. all nodes belonging to R. Let us now
introduce the corner vector ¢,; [40, 83], which is a geometric object defined at node r within element 7;:

1
€= Z sy (23)
feFri

These corner vectors are a linear combination of the oriented surfaces s/n;, which assume a linear velocity field over
the face so that they remain planar. Therefore, the corner vectors ¢,; provide a consistent discretization of the cell

boundary 07T so that
Dlei=0, (24)

reR;

which is a second order discretization of Gauss theorem over the control volume T;.

Each control volume defined in the physical space x can be mapped onto a reference element 7, in the reference
coordinate system & = (&,1,(), see Figure 2. The reference element is the unit triangle in 2D with vertices &}, =
(E1esmie) = (0,0), &0 = (E2e,m20) = (1,0) and &3, = (&3¢, m30) = (0, 1), or the unit tetrahedron in 3D with vertices

gle = (‘fle, Nie>» {16) = (0, 0, 0), §29 = (526, M2e» 4’29) = (1’ 0, O)’ §3e = (6369 N3es 4’38) = (0, 1, O) and §4e = (546’ N4es §4e) =
(0,0, 1). The spatial mapping in 3D reads

X = Xq; + (Xo — X)) €+ (X3 — X1) 17 + (X4 — X13) {, (25)

where X;; = (X, Yrir Zki) TEpresents the vector of physical spatial coordinates of the k-th vertex of element 7; for
k ={1,2,3,4}. Notice that the mapping (25) corresponds to the linear isoparametric approximation of the Lagrange-
Euler transformation between the deformed (physical) and undeformed (reference) configuration.

3.2. Integral form of the governing equations

Let Q(f) ¢ RY denote the time-dependent control volume in d = {2,3} space dimensions, and dQ(f) ¢ R4 its
surface with n being the outward pointing unit normal vector. The time coordinate is ¢ € Rj and the physical space is

Figure 1: Notation for the mesh. Left: cell barycenter x; of element T, face barycenter x; and normal vector ny; relative to face f, corner vector
¢,; relative to node r. Right: subcell T,; associated with corner r of element 7.



defined by the position vector X = (x,y, z). To derive a conservative finite volume discretization, the governing equa-
tions (28) must be integrated over the control volume Q(¢). Mass conservation directly follows from the Lagrangian
description of continuum mechanics and holds true by construction, that is

d
— dx = 0. 26
= f px (26)
Q1)
After addressing a generic physical variable with ¢ = ¢(X, 1), let us introduce the transport relation

d d¢

— dx = — dx, 27

dtfpaﬁXfpth (27)

Q(r) Q1)

which is derived from the Reynolds transport theorem [86] using the mass conservation property (26). The control
volume formulation of the PDE system (28) can then be expressed as follows:

d
1 dx — fv-nds:O, (28a)
Q1) aQ(t)
dit fpv dx — f Tnds =0, (28b)
Q1) Q1)
d
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H
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Figure 2: Mapping from the physical element 77" in the global coordinate system x = (x, y) to the reference element 7, in the reference coordinate
system & = (&, 7).



Equation (28a) is also referred to as Geometric Conservation Law (GCL) and it is equivalent to the local kinematic
equation which governs the mesh motion:
dx
T
where X denotes the initial position at time ¢ = 0 of the material particle. The velocity gradient operator IL(v) used in
(28e) is defined by applying the divergence theorem as

Vv, x(t = 0) = xo, 29)

1
L(v)=Vv=— v®nds, 30)
1Qf Jaa

which is the cornerstone for a compatible space discretization with the geometric conservation law (28a).
The above integral formulation (28) of the GPR model is suitable for the design of cell-centered finite volume
methods.

3.3. Fully discrete first order scheme
Equation (26) implies that the mass of a generic control volume remains constant in time, that is

= fpdx, 31)
Ti(r)
with m; denoting the mass of cell 7;(¢) over time. As usual for finite volume schemes, data are stored and evolved in

time as piecewise constant cell averages. Therefore, for a generic variable ¢(X, 1), its mass averaged value ¢; over the
element T;(¢) is defined as

1

¢i=— fp¢ dx. (32)

m;
Ti(1)

Following [81], let us introduce the subcell force f,;, which is the traction force exerted on the outer boundary of the

subcell T,; (see Figure 1). Specifically, the surface integral of the momentum equation (28b) is split over the subcell

boundaries, hence obtaining
f Tnds= ) f Tnds, (33)

aT; R o1,
which yields the definition of the subcell force [81, 82] as

Fii= f Tnds. (34)
oT,;NIT;

Using the definition of the subcell force and the mass average quantity introduced above, a fully discrete finite volume
scheme for system (28) writes

At 1
n+tl _  n o [en n+1/2 n+l
of = of + ; W (cr+ 4> + e, (352)
At p
V:’l+1 — Vlr} + — Zf;‘l’ (35b)
mi reR;
At = _—
EM =B+ — | fre Vi Y dnong )| =0, (35¢)
mi reR; feFi .
At — n H(Hl
+1 _ i
J:l = J:l - E Z Tfl’ . nfi S;l- - Atw, (35d)
=z i
n+1
n+l _ n n ok N i
G/ =Gl - MGl Li(v) + Li(v) G ) + AtﬁW, (35¢)

10



which must be coupled with the discrete trajectory equation to move the grid nodes:
1 o
X=X+ AV (36)

The vector of state variables is Q = {w, v, E, J, G.}, and these quantities are evolved in time with the discrete equations
written above. Let us now examine more in details the finite volume scheme (35).

Time discretization. All terms in (35) are discretized explicitly, apart from the sources in the thermal impulse equation
(35d) and in the equation for the metric tensor (35¢), because they might become stiff when approaching the limit cases
of Navier-Stokes and Fourier. The stiff source terms are handled with an exponential integrator for ODE that will be
presented in Section 3.5, which is applied to both the thermal impulse (35d) and the metric tensor equations (35e).
Consequently, an implicit discretization of GE”,_+1 implies that the stress tensor 0';’” is also taken implicitly. Therefore a
formally implicit treatment is considered for the total stresses in the momentum and energy equations (35b) and (35c),
embedded in the subcell force f,; according to (34), as well as for the node velocity. These terms are marked with the
asterisk superscript, i.e. ﬂ » and ;.. To overcome the resulting non-linearity in the stress tensor, i.e. 0'?“ = o{’“(Gg’i“)
according to (4), an iterative Picard technique will be introduced later for the computation of the node velocity and
the subcell force in the nodal solver. The tilde ‘*” and hat ‘™ in (35) reference to two different types of numerical
fluxes explained below.

According to (36), the coordinate position X, is a linear function of time. The corner vector ¢,; in (35a) exhibits
a linear or quadratic time dependency, in 2D or 3D, respectively. Therefore, the flux in the equation for the specific
volume (u:'” must be exactly integrated in time in order to ensure the satisfaction of the GCL at the discrete level. In
(35a), the fourth order accurate Kepler quadrature rule is used, which might be replaced by a simple midpoint rule for
2D meshes. This ensures that the new density pj?“ computed from the GCL (35a) is equivalent to the density deduced
from the mesh motion, i.e. p'*!' = m;/|T"*!|, see [79, 84] for further details.

Numerical fluxes. The finite volume scheme (35) involves two different types of numerical fluxes for the discretiza-
tion of the divergence operators, namely vertex-based and face-based fluxes. The computation of the nodal velocity
is based on the nodal solver presented in Section 3.4, where multiple one-dimensional Riemann problems are simul-
taneously solved across all faces impinging to a node. Numerical dissipation is embedded into the nodal solver, thus
the resulting node velocity v} is numerically stable. This velocity is subsequently used to compute the subcell force
fji, and the tilde symbol in (35) indicates these vertex-based numerical fluxes.

The second type of fluxes are face-based and those terms are marked with the hat symbol. A Rusanov-type
numerical flux function [99] is adopted, thus the heat flux in the energy equation (35c) and the temperature gradient
in the thermal impulse equation (35d) are explicitly given by

e 1 1
ai-mgi = 5 ((QZTJ)fi + (Q’ZTJ)fj) “ngi = 24yl (Efj - Efi), (37)
Tsil-my = 5 ((T’)fi + (Tl)fj) Ny — §|/1f| (ij - in), (38)

where the subscripts fi and fj denote the value of the physical quantity computed at face f from element 7; and
from the neighbor element T';, respectively. The numerical dissipation is given in terms of the maximum eigenvalue
estimate Ay in spatial normal direction between the elements sharing face f, which is evaluated as

Ay = max(a;, a;), 39)
with the wave speeds (a;, a;) defined by (19).

Non-conservative products. The last equation (35¢) contains non-conservative products between the metric tensor G,
and the velocity gradient . = Vv. This equation can be also seen as a pure geometric relation and thus, according
to [27, 23], we do not consider the jump contribution across the cell boundaries of the non-conservative products as
done in [19], but only the smooth part in the cell volume is taken into account. The discrete version of the velocity
gradient (30) writes

1
Li(v) = — v, ® Cpi, (40)
T r;(:i)
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which is used to evaluate the products Gy IL;(¥") and L;(Vv*)"G; in (35¢). Let us notice that the discrete gradient
operator (40) is applied to the velocity field ¥*, which results from the nodal solver.

3.4. Nonlinear nodal solver

The nodal fluxes are computed starting from the nodal solver algorithm proposed in a series of works [83, 81, 80,
84, 31]. The nodal solver aims at evaluating a unique velocity vector at each node ¥} by satisfying global conservation
of momentum as well as compatibility with the second law of thermodynamics, meaning that the entropy variation in
the cell is non-negative.

The starting point is the knowledge of the state variables Q" and the geometry x" at time *. Next, the nodal
velocity V; is obtained by solving the system

M) = > Mv; - T/c, (41)
€T,

with the discrete subcell matrix M;, and nodal matrix M, given by

M= Zsimienl, M=) M, 2)
feFri €T

The numerical dissipation is introduced by the swept mass flux z] = p! a, with a! given by (19). Notice that the
above matrices are symmetric positive definite by construction, thus M, in (41) is always invertible. Once the node
velocity is computed, the subcell force can easily be evaluated as

Fo= ST + M =), 43

whereas the node coordinates are updated to the new position with the trajectory equation (36).

The geometric quantities ¢, and n} are considered at the current time level 7" as well as the cell quantities v} and
z7, which are evaluated at the cell centroid, i.e. v,(x;)" and z;(x;)". However, the total Cauchy stress T, and more
specifically the tangential stress tensor o, should take into account elastic, viscous or plasticity effects that might
occur in the material, yielding a significant change in the node velocity. Therefore, a formally implicit discretization
is used for the tangential stress tensor, that according to (4) leads to (for the energy potential (3))

o.n+l _ pn+] 2 Gn+l Gn+l (44)

so that the nodal solver (41) must be coupled with the trajectory equation (36), the GCL (35a) and the equation for G,,
(35e), in order to obtain x*!, p;'“ and G?,.H’ respectively. This choice wold lead to a strongly nonlinear system to be
solved, whose convergence would become difficult to control. Consequently, we rely on a Picard iterative technique
that has been already used in the context of all Mach flow solvers [16, 17]. More precisely, let [ be the index for the

Picard iteration, and let the viscous stress tensor be initialized at time ", i.e. 0'5’”” = o’ for [ = 0. The nodal solver
algorithm proceeds then iteratively as follows for [ = 1,..., L:
,.,l+l n+1 [Z M,«V _ Tln+1 n]M— (453)
€7,
X£+l’n+l _ X + ALV ~l+1 n+l (45b)
L+ln+l _ L
Pi T T (45¢)
I+1,n+1
I+1n+l _ en n T ol+ln+l (el Ln+INT An i
G = G - Ar(G) L8 + L8 G ) + Azp—mm ST (45d)
l
0'ﬁ+1'n+1 — —pﬁﬁ’nHCthéTl’nH ééj—l,nﬂ. (456)

The only fully implicit discretization is concerned with the computation of Gf,fl’”“, where the non-linearity contained

in the source term is solved by an exponential integrator discussed in the next section. To improve the efficiency of
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[+1,n+1
i

the iterative scheme (45), the new density p is deduced from the new volume |T;|"*!""*! computed with the new

coordinates X! thus the GCL (35a) is not directly solved. However, due to the compatible time update of the

fluxes in (35a), this approach is equivalent to explicitly solve the GCL. The multi-index {/,n + 1} is shorten to the
asterisk index {*}, hence the result of the nonlinear nodal solver is the nodal velocity v, and the subcell force fr*l,
evaluated according to (43), with the total Cauchy stress T (which is a function of &) computed within the Picard
loop (45). The iterative scheme stops when one of the following exit conditions is satisfied, based on a tolerance set
tod = 10712,

o The material is an ideal gas, thus the hydrodynamics limit of the model is reached:

1+1

€, =

I+1n+1\2/3
) I <6, (46)

Géjl,nﬂ _ (P —

which corresponds to the stiff relaxation limit for G,.

e The material is a purely elastic solid, therefore
€£+1 = Géj’l,'l“’l _ Gf:l,n+l| < 5, (47)

where Gf:]"”l is the solution of the homogeneous equation related to (45d). This condition means that the
source term vanishes and no relaxation is needed.

e Convergence is achieved between two consecutive iterations for any of the following residuals:

ler! — €] <6, el — €| <o (48)

The maximum number of iterations is set to £ = 10. In the numerical tests shown in Section 5, the nonlinear nodal
solver has always achieved convergence before reaching £ iterations. Furthermore, let us point out that if the material
is either an ideal fluid or an elastic solid, the nonlinear solver converges in one Picard iteration, namely one of the
exit conditions between (46) and (47) is fulfilled. In these particular situations, the discretization of the tangential
stresses o becomes fully explicit and the nodal solver exactly reduces to the EUCCLHYD scheme [79] for ideal
hydrodynamics, or the corresponding version for hyperelasticity materials presented in [27, 23].

Remark. Boundary conditions are imposed in a compatible way with our numerical scheme. More precisely, either
the Cauchy stress or the velocity normal to a boundary face must be prescribed in the nodal solver in order to ensure
global conservation of momentum. All the details can be found in [83, 80, 22, 23]. The face-based fluxes are computed
with a standard finite volume scheme that requires ghost states to properly set the boundary condition. The reader
is referred to [15] and references therein for an exhaustive explanation on the treatment of boundary conditions in
cell-centered finite volume schemes on moving unstructured meshes.

3.5. Exponential integrator for stiff source terms

Due to the wide span of possible timescales characterizing the evolution of the elastic metric tensor G, the strain
relaxation source on the right hand side of Eq. (2e) oftentimes is of stiff nature and cannot be easily treated with an
explicit method. The same holds for the simpler thermal impulse equation (2d). For this reason we employ an efficient
semi-implicit, semi-analytical integration scheme that can handle such arbitrarily stiff source terms, and in particular
can accurately recover the asymptotic equilibrium state associated with viscous fluxes in the Navier-Stokes equations
and also relax to the Fourier limit of thermal conduction.

3.5.1. Thermal impulse relaxation solver
The thermal impulse equation (2d) can be written in extended form as

dJ VT &*T 1
e B 49)
dr ol pPK T




which, once the discretization of —VT /p is fixed (to the constant value P,), can be seen as a system of three uncoupled
first order linear ordinary differential equations (ODEs) and an exact solution is indeed found thanks to the linearity
and independence of the three equations. Explicitly, the solution is

J"+l = (Jn ) P*) eXp(—At/Tz) + 72 P*7 (50)

with P, = =3 rerr Tﬂﬂn s; /m; being approximated as the constant discrete time-derivative of J as given by the
update formula (35d) when the source term is neglected. The only degenerate case to be considered is that if Az/7;
is very small (of the order of 107®), i.e. if the source term is not stiff at all, then (50) might yield inaccurate results,
due to floating point representation issues. In this case, the solution algorithm simply opts to switch to explicit Euler
integration, which for such mild (vanishing) sources yields perfectly valid solutions.

Finally the result can be combined with the implicit-explicit Runge—Kutta framework by separating the (formally
implicit) contribution due to the relaxation source AJ,,; = J**! — (J* + AtP,) from the explicit operator associated
with the convective discretization AJ.,,, := AtP..

3.5.2. Strain relaxation solver

The solver for the strain relaxation source is based on the exponential integrator developed in [107] for the com-
putation of diffuse interface fractures and material failure, but exploits in a deeper manner the particular structure of
the equation being solved, following the technique presented in [36] for the integration of stiff finite-rate pressure
relaxation sources.

An important aspect of the scheme is that it avoids fractional-step-type splitting, so that the Navier-Stokes stress
tensor and the Fourier heat flux can be recovered regardless of the ratio between the computational time step size and
the relaxation timescales. This means that the global time step size need not to be adjusted to accommodate for the
fast dynamics of the relaxation sources.

Moreover, we recall that the solver employed in [107] required, in general, the solution of a sequence of a non-
homogeneous nine-by-nine systems of linear ordinary differential equations for the nine independent components of
the distortion field A., which involves the numerical computation of matrix exponentials and the inversion of the
Jacobian matrix of the ODE system. Both these operations constitute delicate tasks in linear algebra that require
special care to be carried out in an efficient and accurate manner.

The approach used in this work entirely foregoes the solution of such nine-by-nine systems (six-by-six, in the case
of the symmetric tensor G,) and the associated linear algebra intricacies. Thus, we compute the analytical solution to
one of the several different linearized equations (automatically chosen by the solver) that approximate the nonlinear
ODE

dG,
dt

while admitting simple solutions that can be evaluated in a robust fashion. Here, with L. we denote a constant
convective forcing term to be given in the following paragraphs, in analogy to the previously defined P, discrete time
derivative of thermal impulse.

This is achieved by first computing, cell by cell, the update to G, associated with the left hand side of (2e), and
then including its effects in (51), in the form of the constant forcing term L.. Formally, this first step amounts to
computing the solution G,, = G,(#,+) to the initial value problem

.- S gt 6, 6. 1)
T1

dG. +G,Vv+VV' G, =0,
drs (52)
G.("") = G,",

which, in our case, is solved with the compatible method applied to the equation for the metric tensor G, yielding a
point-wise update to the cell averages that allows to define the constant convective forcing term

Ge* - Gen

L, =
At

(53)

Then a sub-timestepping loop with adaptive step size 6™ is entered in order to approximate the solution of (51)
with a sequence of solutions of linearized ODEs. Such a sub-timestepping loop is useful for ensuring the robustness
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and accuracy of the solver in complex flow configurations, but generally in our computations the solver achieves
convergence in one single sub-time-step " = At. We remand to [36, 107] for more details on the sub-timestepping
approach, and we carry on our presentation of the method by listing three possible approximation choices for the
solution of (51).

3.5.3. Approximate analytical solution for strain (1)

When dealing with fluid flows (i.e., when the source term acts on fast timescales), rather often one may assume
that G, is a perturbation of a spherical tensor, that is, C:‘e can be assumed small. Then, it is advantageous to rewrite the
evolution equation for the elastic metric tensor (51) as

dG,
dt

2
trGe) I—k trG, G.. (54)

=L, kGeGe+k( 3 3
with k = 6det(G,)*/%/7, taken constant for the sub-time-step. This splits the source in four pieces. The first is the
constant L., associated with convection which, by definition, cannot be stiff as its size is limited by the CFL constraint
of the global timestepping scheme. The second is a (small by hypothesis) quadratic term in G, which can be safely
approximated as constant. The third is a function of trG, only, again formally taken constant. This assumption can be
justified by writing the evolution equation for the trace of the metric tensor G,

d o o
5, (G = L, — kt(G, G). (55)

which shows that either trG, varies on a timescale associated with convection (by definition, slow), or as a quadratic
function of G, (small by assumption). The approximate equation (54) then admits the simple exact solution

trG,

G = G.(I" + 61™) = exp (—k 6tm) (G." + Fy) — Fo, (56)

with

trG, 2 o o
Fy = (L*-i‘k( 3 ) l—kGeGe]. 57
We should remark that nowhere in this approximate solution we neglected the contributions due to ée, they only
have taken to be constant for a sub-time-step, so that, in principle there are no hypotheses restricting the use of such
an approximation, beside increased requirements imposed on the sub-timestepping scheme when G, is not small.
Specifically, in this work our constant approximations are initially set to trG, = trG,"” and G, = éem and then updated
within a fixed point iteration as trG, = tr(G,” + G.”*')/2 and G, = dev(G,” + G,"*")/2.

Tk trG,

3.5.4. Approximate analytical solution for strain (2)
Whenever the deviatoric part of G, cannot be assumed small, i.e. in practice when

tr(Goem Gem) > ¢ det (G,™)'?, (58)

better accuracy in the approximation of (51) can be obtained by observing that it is possible to switch the order of the
operands of the matrix product G, ée appearing in (51). In this work the coefficient € is permanently set to €; = 0.2,
which means that this approximation mode has been used also when ée is not strictly small and indeed one may in
principle choose higher values for €; without compromising the behavior of the solver. Then we can rewrite (51) as

G,
dr

L. - kG,G,, (59)

where we will take L., k = 6det Ges/ 6 /7, and ée to be constant at each sub-time-step. At the implementationalevel,
in order to simplify the solution of (59), we work in the principal reference frame, which diagonalizes G, and G,, i.e.
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we compute the orthonormal matrix E such that G, = E™' G, E and G, =E'G,E are diagonal matrices and apply
the associated change of basis to all vectors and tensors in our equation. In this way the exact solution to Eq. (59) is

-1

2 1 2 5 1
G = G,(*" +61") = E [exp (—k G 61’”) (E" G+ G E L*) G E L*]. (60)

1
k
The three-by-three matrix E having for columns the eigenvectors of G, can be quickly and robustly computed to
arbitrary precision by means of Jacobi method for the eigenstructure of symmetric matrices, and its inverse is simply

given by E-! = E". Furthermore, G, can be inverted trivially in the principal reference frame by just taking the
reciprocal of each diagonal entry. Like for the previous solution we iteratively update the constant estimate G, =
dev(G." + éem+1) /2 so to gain higher accuracy while maintaining the linearity of the ODE being solved.

3.5.5. Determinant constraint

In the solution of the equation for the metric tensor G,, specifically when the computation involves fluid-type
behavior, special care must be paid to preserve the nonlinear algebraic constraint det G,(z, X) = (p(t, X)/po)?>. For the
purpose of notation compactness, in the following we will denote the target determinant as D(t, X) = (o(t, X)/po)>.
Thanks to the compatible discretization of the scheme presented in this work, the GCL is fulfilled, and the solution
for density is evolved in a way that is compatible with the mesh motion, thus the convective part of the equation
satisfies the determinant constraint up to the order of accuracy of the time discretization (see [23] for further details).
However, the same constraint must be actively enforced when source terms are present. A simple approach to the
problem consists in uniformly multiplying all components of G, by (D/ det G,)!/? so that the resulting determinant
will be D.

The specific numerical value of the target determinant D is clearly known (as a function of density) at the time
levels " and #**!, however it must be somehow approximated for all the in-between times during which we operate
our sub-timestepping procedure. In this work we impose that for a given sub-time-step indexed by m, connecting ¢
and ™!, the determinant D is computed as

D =Dy +(1-p) Dy, (61)

where we define D = det (G, + (#" + 0™ — 1) L,) to be the value that the determinant would have following a linear
segment path connecting the two states G, and G,., that is, the value that would allow exact integration of the (zero)
source term in the solid limit to be preserved. In the fluid limit instead, we take D, = det G, + (" + 61" —1") (det G, —
det G,") as a second order approximation of the determinant. The mixing ratio 8, for the two approximations D; and
Dy is a heuristic measure of how close to a solid can the material be considered and in particular the expression we
adopt is

4
IIL.I15

Bs =min| 1, -
' I6/71 det(G.™*'° G, G," |12 + 1014

(62)

with || e ||§ denoting the square of the Frobenius norm of a given tensor.

3.5.6. Approximate analytical solution for strain (3): fixed point iteration for the Navier-Stokes equilibrium state

Oftentimes the timescale 7; of strain relaxation is so fast that one may decide, out of computational efficiency
concerns, to just compute the strain state for which the forcing term due to convection L, and the relaxation source
are balanced yielding a local equilibrium state corresponding to the Navier-Stokes limit of the GPR model. Such an
equilibrium state can be easily computed by means of a fixed point iteration in the form

L. - G, dev(G,;' L.))
r(G.;' L)

G)=—
'™ 6 det(G,,)5/6

1/3
— D
Ge1 = Gel(—~) ,
det Ggl

dev(G,;' L.)+ ul

b}

(63)
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with D the target determinant as defined in (61) and / the iteration index in the fixed point procedure. We found that
the fixed point iteration (63) is always convergent regardless of the initial guess, but nonetheless we care to provide a
simple and efficient choice in the form

l

Gel =

9]

D 1/3 ~ .
e — , with G, =l+—ld L.. 64
’ (det Geo) e 6 det(G,")/6 (64)

We remark that, when the relaxation timescale is much faster than the time step size, this approximate solution is not
only very efficient and robust, but will also converge to the Navier-Stokes equilibrium state up to machine accuracy.

3.5.7. Summary of the selection procedure for the approximation method

At each sub-timestep between " and #"*!, our solver for the equation of the elastic metric tensor G, has to select
the optimal approximation method for the specific flow configuration at hand. The selection procedure is carried out
as follows:

1. If the source is not stiff, i.e. in practice if 8, > 1 — 10~'4, then we use explicit Euler integration and compute the
ae)
71 det(G.")'° G, G,/
2. Else, we define the indicator matrix A = abs(Ge’"_l L. -k Gem) and if the sum of the off-diagonal components
of A is less than trA/5 while also 6" > 7; holds, then the scheme opts for the fixed point iteration (63). Here,
abs(e) is applied component-wise to a given matrix.

3. Else, if \/tr(éem éem) < € det(Gem)l/ 3 orif any of the diagonal entries of ée has magnitude smaller than

6 tréem, then the scheme selects (54). In this work we permanently set €, = 1073 in order to prevent division
by small numbers in (59).
4. If none of the above, then we apply approximation (59).

solution at the next time sub-level as Geerl =G + At (L* -

Regardless of the chosen approximation method, at the end of each sub-timestep, the result G,"*! = G,("*') must be

multiplied by (D/ det (C-r‘eerl))l/3 so that the determinant constraint is satisfied.

3.6. Second order extension in space and time

The accuracy of the Godunov-type scheme (35) is improved up to second order in space and time by performing a
spatial TVD linear reconstruction of the state variables and an IMEX Runge-Kutta time stepping scheme, respectively.

TVD piecewise linear reconstruction. To achieve second order of accuracy in space, a piecewise linear reconstruction
is performed for all variables in the state vector Q. The starting point is given by the known cell averages QY and the
mesh configuration at time ¢*. As a result, piecewise linear polynomials w(x") are obtained for each cell and each
variable of the governing system (2). This reconstruction polynomial is expressed in terms of a set of piecewise linear
spatial basis functions that form a modal basis, that is

M
Wi = > @ W, = p@ Wy, (65)
=1

where the classical tensor index notation based on the Einstein summation convention is adopted, which implies
summation over two equal indices. The modal basis functions ;(§) are defined in the reference system and count a
total number M = d + 1 of unknown degrees of freedom. They explicitly write

(1, €=1/3,7-1/3)" in 2D

Yi(€) = { (1, E-1/4,n-1/4, 2 - 1/4) in 3D (00)

ne

A so-called reconstruction stencil S; = | Tr”n(j) is needed, where 1 < j < n, is a local index that counts the elements
J=1

belonging to the stencil, while m(j) maps the local index to the global element numbers used in the mesh configuration
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(20). Due to the unstructured mesh, neither the stencil nor the element configuration is symmetric, thus the stencil
contains a total number of n, = d- M elements to avoid ill-conditioned reconstruction matrices, as suggested in [3, 69].
The reconstruction stencil is filled considering the Voronoi neighbors of T (i.e. the neighbor elements sharing at least
one vertex with element T7"), that are recursively added until n, is reached. The reconstruction is based on integral
conservation for each element T;? € §;, that is

# fwl(f)Wii dx = Qf, VT; € S, 67)

7
where the degrees of freedom W;l refer to the high order unlimited polynomial obtained from a central reconstruction.
To enforce conservation of the reconstruction polynomial we must at least require that the above expression holds
exactly for cell T}, that is ﬁ f lm(f)’v?zi dx = Q. This linear constraint is added to the overdetermined system

"
(67), which is solved only for the unknown expansion coefficients W;’J. relying on a classical Lagrangian multiplier
approach, see [19, 45]. The integrals appearing in (67) are evaluated with second order accurate quadrature rules and
they are defined in the reference element 7.

The above procedure generates a second order reconstruction polynomial within each cell, that is linear in the
sense of Godunov [105], thus it is oscillatory and non-monotone across discontinuities of the numerical solution. To
overcome this problem, the higher modes W;'J. of the expansion (65) must be limited so that the cell gradient respects
the following monotonicity condition, which also ensures the TVD (Total Variation Diminishing) property:

Q;L,min < W:’(X”) < Q;l,max’ Q:l,miﬂ — I’IliIl {Q:Z’ min Q;} , Q:l,max = max {Q:’, max Q;’} N (68)
JET Hiy JET vy
with 7, denoting the set of elements which share at least one node with cell 7;. To respect the above relation (68),
let us define a scalar b; € [0; 1], that is used to limit the higher modes of the reconstruction polynomial. For each state
variable and for [ = 2,..., M we compute

Wi =biWy,;  with  b=minb;, (69)
rer;

while the cell average ’VV'I'J = Wii is ensured by construction thanks to the constrained least square approach used to
solve the linear system (67). Once the limiting procedure (69) has been carried out, the final degrees of freedom W;fi
are known and the limited reconstruction polynomial (65) is fully defined for each cell. The coefficient b; in (69)
depends on the element node and is computed according to [4] as

min (1, Sorer) it WD > Q)
bir =\ min(1, Forg] i Wi < Q) - (70)
I it Wi = Q!

Implicit-Explicit Runge-Kutta time stepping. The second order in time extension is based on an implicit-explicit
(IMEX) Runge-Kutta approach [2, 89], that is particularly suitable for discretizing hyperbolic systems of PDE with
relaxation source terms. For the sake of clarity and compact notation in the description of the second order in time
method, we call £, the implicit operator and L., the explicit one, hence obtaining the semi-discrete form of the
governing equations (2):

% = £.(1.Q.YQ) + Lin(1. Q). 1)
with
p'V.v 0
p'V.T 0
L..QVQ =] p'V-(Tv+q |, LwcQ=| 0 | (72)
o'V TI —H/¥
—(G,Vv + VV'G,) 20/(0®)
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The vertex-based fluxes are considered explicitly as well as the flux in the trajectory equation (29), because the
nonlinear nodal solver described in Section 3.4 reduces to a fully explicit scheme in the stiff relaxation limits of the
model (2). In this way, the first order finite volume scheme (35) is compactly written in semi-discrete form as

Q! = Q' = At Loy, Q,TQ) + At Ly, Q). (73)

To improve the time accuracy of the first order method (73), we use the second-order ARS(2,2,2) IMEX scheme [2]
detailed in Table 1 by means of its two tableaux, where 8 = 1 — V2/2and @ = 1 - 1/(2B). Remarking thata = 8 — 1

- 0l0 0 o0 - 0l0 0 o0
) )
= BB 0 0 = 10 B 0
£ l]la l-a 0 £ 10 1-8 B
@ T-a 0 0 1-8 B
Table 1: Butcher tableaux for the ARS(2,2,2) time discretization. Left panel: explicit tableau. Right panel: implicit tableau. 8 = 1— 5= p-1.
and 1 — @ = 2 — 3, the following two-step scheme for the Lagrangian GPR model (2) is obtained:
QY -Q" M o
T = BLE.’C(ZH’ Qn9 VQ”) +ﬁ£1m(t ’ Q )9 (74)
Q'-Q _ " O VO M oM. yob
—x C B—1 L@, Q" VQ") + (2 -B) Lex(17,Q", VQ)
+ BLn(QM) + (1 = B) Lin(V, Q) + B Lin(", QD) (75)

where the superscript (1) denotes the intermediate Runge-Kutta stage. The trajectory ODE also follows the explicit
tableau, since it contains only vertex-based fluxes, thus one gets

X(l) —_x" .
Al = BV, (76)
n+l _ on
—— = B-pvrre-pv (77

Let us notice that the ARS(2,2,2) IMEX scheme in Table 1 has the property of being stiffly accurate (SA), meaning
that the last Runge-Kutta stage coincides with the new solution at time #**!. This is a crucial feature for developing
asymptotic preserving time discretizations, as detailed in [89]. Furthermore, the scheme is only diagonally implicit,
therefore it requires the solution of one implicit equation for the heat source and for the source of the metric tensor
equation. This is also confirmed by looking at the time stepping scheme (74)-(75), where the implicit contribution is
only taken into account by the terms 8 £;,,(Q") in the first stage (74) and B £;,,(Q"*") in the second stage (75).

4. Asymptotic analysis of the scheme

In this section we analyze the stiff relaxation limits of the fully discrete first order finite volume scheme (35),
which are retrieved for 7y — 0 and 7, — 0. The numerical method is proven to be asymptotic preserving for the
viscous stress tensor o and for the thermal impulse J. To that aim, let us introduce the k-th order Chapman-Enskog
expansion of a generic variable ¢ in powers of the stiffness parameter t (i.e. T = 7| or T = 73), that reads

¢ = ¢(0) + T¢(1) + T2¢(2) +...+ O(Tk). (78)
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Application of the expansion (78) up to the first order in 7 to G,, and J; in the cell-centered evolution equations (35d)
and (35¢e) yields

Gn+1 + TIGnH -G". - 7 G"
«© il i© i1 % o
¢;(0) el )At ¢;(0) ei(1) = —(GZ(O) +T1GZ‘,-(1)) Li(v )_Li(v )T (GZ’(O) +T]G;(l))
6 +1 +1 5/6 +1 +1 ontl ot
T n |G, + 71 Gi) <GZ(0> tT GZ,-(I)) (GZ,«» +tT Gg-m)
+ 0, (79)
J;’” +T el g~ 1 | T
(0) i(1) i(0) i 1 = L 1177 00 el el 5
At - m Z Tf[l nfl Sf - TO p;ﬁ'l (JI(O) + T2Ji(1)) + O(TZ)' (80)

! feFi

Asymptotic limit of the viscous stress tensor at zeroth order approximation. Multiplying by 7, equation (79), letting
71 — 0 and retaining leading order terms for G,, leads to

6|Gr " G Gl = O, 81)

According to the GPR model at the continuous level [93] and due to the compatible discretization of the GCL (35a)
along the lines of [23], the finite volume scheme (35) ensures the following compatibility condition

P’~1+1
|GZ+1| =—— +0(Ar) > 0. (82)

Po

11376 . . . .
Therefore, |GZ’_J(r0) > 0 in (81) and at zeroth leading order the discrete metric tensor becomes trace-free for 7y — 0,
ie. GZTOI) = O(T%). Inserting this result in the discrete viscous stress tensor (44), we obtain
1 12 1 & 2

ot = —pi*lc Gl Gl = O(T)). (83)

Hence, viscous stresses vanish and we retrieve the inviscid case which corresponds to the compressible Euler equa-
tions. Let us notice that, in the absence of heat conduction (o = k = 0), the finite volume scheme (35a)-(35¢) exactly
reduces to the EUCCLHYD scheme presented in [79]. Furthermore, we can write

n 1 n n
Ge:('ol) = gtrGeIOl) 1+0%) := g, (84)
thus allowing us to write the Chapman-Enskog expansion of GZ,-” as

G/ =g+ 1@l + O, (85)
The unknown coefficient g}”' can be determined by computing the determinant of GZ,_” from the above relation and
neglecting terms of the order O(ty), that is

o 2/3

G =@+ o), = gt = (—] +0(t1). (86)
PO

Asymptotic limit of the viscous stress tensor at first order approximation. Here, a first order approximation of the

viscous stress tensor is analyzed in the stiff limit 7; — 0. Let us start from the previous expansion (85), which also

implies ég*l =T é;’?ll) + O(T%). The compatibility condition (82) allows the density p;’” to be computed as

1 1 1)1/2 2 132, Tl 1y1/2 1 2
ot = polert + 1 G|+ O = po ((g;?+ 72+ g trGg;l)) + O, 87)
thus a first order expansion of the discrete viscous stress tensor (44) writes

T o
o™ = —poct, ((g7+1)3/2 + E(g;?“)l/%regg)) (' 1+ 7@ i GlEl) + O, (88)

l
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By neglecting high order terms in 7}, the above expression leads to

ot = —T100C; h(g”“)S/ZGZGI) + O(T%)' (89

1

Following [47] and recalling that Gl e0) = O(T%) from the zeroth approximation asymptotic analysis, the deviatoric
operator is applied to the discrete equation (35e), then only first order terms for 7; are retained, hence obtaining

n ok ok n 2 n % 7/6
Gl Li(v) + Li(¥") G, — 5tr(evel_{ol) L)) 1= -6|Gl)| " Gl + 0. (90)

USil’lg (84), the above equation simpliﬁes to
2 o
:Hl ( i(i*) Li(?*)T 3tr (]Li(?*)) ’) =-6 (8?+])7/2 G:Ill) O(Z%),

(¢')" &1l = % (Li(v*) + L) - %tr (Li(¥) I) 10, o1)

1

By substituting now the left hand-side of the above expression into the first order approximation of the viscous stress
tensor (89), we eventually obtain

O';H'l = %pgcgh (L,(V*) + LI(V*)T - %tr (L,(f’*)) I) + O(T%), (92)

which is the discrete version of the stress tensor of the compressible Navier-Stokes equations based on Stokes hypoth-
esis, in which the effective dynamic viscosity coeflicient is defined by

1
= 6poT1th, 93)

that retrieves the analytical formulation (11).

Asymptotic limit of the heat flux at first order approximation. From the leading order term 7 Uin (80), it follows that

Tio) = 0. 94)
Assuming well-prepared initial data, i.e J:(O) = O(T%), and inserting the above result into (80) while letting 7, — 0
yields
T pn+l
n+1 0
. T ,l i sh+0 95
Jiay = Tn oo /; ! nf St (3). (95)

Finally, using (94) and (95) in the Chapman-Enskog expansion (78), we obtain

Ty 1
= 1 zT—‘j— ] DT nyg s 0@, T = mifp, (96)

feF:

Therefore, in the stiff relaxation limit, the discrete heat flux vector ¢} = csz;’J;1 in the energy equation (35¢) becomes

To
q’ =_T2a2 . T ZTf,l ny; s+ 0. ©97)
feFi

Notice that the term 1/|T7| 3. Tmﬁn s; in (97) is nothing but the discrete gradient operator for the temperature,
feFi

i.e. VT. Hence, taking the heat conduction coefficient « as in (16), equation (97) is an asymptotically consistent
discretization of the Fourier law of heat conduction q = —«VT, that is recovered by the finite volume scheme (35) in
the stiff relaxation limit 7, — 0.
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5. Numerical results

In this section, we perform some numerical applications which aim at demonstrating the accuracy and the ro-
bustness of the new Lagrangian finite volume scheme (35) for the solution of the GPR model (2). We refer to this
numerical algorithm with the abbreviation LGPR. A wide range of test cases is proposed, that covers simulations for
ideal and viscous heat conducting fluids, elasto-plastic solids as well as purely elastic solids. We emphasize that for
each test case the full GPR model is solved, without neglecting any evolution equation.

The setup of the test problems shown hereafter requires some parameters that will be specified, the most important
being the relaxation times 7; and 7, which determine the mechanical amd thermodynamical behavior of the material
under consideration. The parameters of the GPR model are summarized in Table 2, together with the equation of
state used for each test problem. For solids, the shear modulus is always computed as G = pg cfh, while for fluids
either the viscosity u or the relaxation time 7; must be prescribed, which are linked by the relation (11). In the case of
heat conducting fluids, the relaxation time 7, is deduced from (16). The adiabatic sound speed ¢ for ideal gas EOS
is evaluated according to (5), for Mie-Griineisen EOS it is a parameter of the material, whereas for Neo-Hookean
materials relation (9) holds true.

Table 2: Parameters of the GPR model for the test problems shown in Section 5. The hydrodynamics equation of state (EOS) is chosen among the
ideal gas (IG), Mie-Griineisen (MG) or Neo-Hookean (NH).

Test o) Csh u Cy a K Ty T T EOS
Isentropic vortex 1 0.5 - 1 0 0 1 107" 10| IG
Swinging plate 1100 73 - 1 0 0 1 10" 10| NH
Kidder 1 0.5 - 1 0 0 1 107 107 | IG
Saltzman 1 0.5 - 1 0 0 1107 107 | IG
Sedov 1 0.5 - 1 0 0 1 107 107 | IG
Riemann problems 1 10 [1073;1072] 25 O 0 1 (1) 107 IG
Heat conduction 1 1 1072 25 2 1072 1 a1y  a1e) IG
Viscous shock 1 50 21072 25 50 933-102 1 (1) (16) IG
Shell collapse 1845 9073.62 - 1 0 0 1 (12) 107 | MG
2D projectile 2785 3150 - 1 0 0 1 (12) 107 | MG
3D Taylor bar 8930 2245 - 1 0 0 1 (12) 107" | MG
Elastic plate 1845 9046.59 - 1 0 0 1 10" 10| NH
Twisting column 1100 73 - 1 0 0 1 10" 107 | NH

If not specified, the material is initially unloaded, thus we set G, = (o/po)>’? I according to (86). Furthermore,
the thermal impulse vector is initialized with J = 0 and the initial density distribution is p = py. The CFL number
in (18) is taken to be CFL = 0.45 in 2D and CFL = 0.3 in 3D. The simulations are run using the fully second order
space-time scheme described in Section 3.6.

Physical units are based on the [m, kg, s] unit system, thus Young and shear moduli for solids are measured in
[Pa], as well as pressure and stresses. Energy is expressed in Joule [J].

5.1. Numerical convergence studies

The convergence studies of the LGPR scheme are carried out by considering both limits of the model, namely
for 1y — 0 and 7y — oco. The first case corresponds to the simulation of an ideal inviscid fluid (see Section 4),
while the latter is concerned with a purely elastic material. These particular limits of the model permit to retrieve at
the discrete level the EUCCLHYD scheme [79] for hydrodynamics, and the cell-centered Lagrangian algorithm for
nearly incompressible hyperelastic solids presented in [23].
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Convergence studies in the stiff limit 11 — 0. We consider the isentropic vortex problem initially introduced in a
two-dimensional setting [64] for the compressible Euler equations. The initial computational domain is Q*°(0) =
[0;10] x [0;10] and Q3P(0) = [0;10] x [0; 10] x [0;5] with periodic boundaries. The ideal gas EOS (5) is used
with y = 1.4, and the relaxation time is set to 7; = 107!4, so that the hydrodynamic limit is retrieved. The fluid is
characterized by a homogeneous background field on the top of which some perturbations are added, thus

pP=po+0p, u=u.+0ou, v=v.+9ov, w=w., T =Ty+T, (98)
where the perturbations for density and pressure read
Sp=(1+6T)7 -1, 6p=(1+6T)" -1, (99)

with the temperature fluctuation 67 = —Me"’z. According to [64], the vortex strength is A = 5 and it moves with

a convective velocity v, = (u., ve, we) = (1, 1,0). The velocity field is affected by the following perturbations:

ou A =2 =y ;o ,
( 6V )_ ﬂe 2 ( x/ )’ X =X — X y =YY (100)
where the center of the vortex is (xc, ye, Z.) = (5,5,2.5) and the generic radial position is r = +/x’> + y’2. The final time

of the simulation is chosen to be f; = 0.1 and the exact solution is simply given by the time-advected initial condition
with convective velocity v.. The simulation is performed on a sequence of four successively refined unstructured grids
in 2D and in 3D, and the numerical convergence results are reported in Table 3. The errors are measured in L, norm
for the variables {w, u, E}, and h(£2(¢)) represents the mesh size which is taken to be the maximum diameter of the
circumspheres or the circumcircles of the elements in the final domain configuration Q(zy). The expected first and
second order of accuracy are achieved in all cases.

Convergence studies in the limit Ty — co. Here, we study the convergence of the LGPR scheme when 7; = 104,
thus the source term in the metric tensor equation vanishes and purely elastic solids are simulated. The swinging
plate/cube test problem is considered, according to the setup proposed in [102, 103]. The initial computational domain
is Q(0) = [0;2]¢ and the analytical solution for the velocity is given by

n
—sin(—x)cos (—y) 2

v22(¢,x) = AU, cos(At) 2 270, A= T=, (101)

cos (—x) sin (—y) 2\ po

2 2
. T T Ve
—2sin (—x) cos (—y) cos (—z)

2\ G
v?P(1,x) = AUy cos(A1) cos (—x) sin (—y) cos (—z) , A=m4|—, (102)

72r 2 2 4p0

TN\ . (7
cos (Ex) cos (Ey) sin (EZ)

with Uy = 5-107*. The Neo-Hookean hydrodynamic EOS (7) and shear elastic energy (3b) are adopted, with Poisson
ratio v = 0.45 and Young modulus ¥ = 1.7 - 107, thus a nearly incompressible solid is modeled. The velocity
and displacement fields are divergence-free, leading to the exact pressure p = 0. Space-time dependent boundary
conditions are prescribed for the normal velocities, according to the exact solution (102). The final time of the
simulation is chosen to be ¢ = /A, thus the final displacement corresponds to the initial one. As done for the stiff
limit case, the swinging plate/cube test is run on a sequence of triangular and tetrahedral meshes that become finer,
hence allowing the convergence rates to be computed. The results are collected in Table 4, demonstrating that the
formal order of accuracy is achieved even when simulating elastic solids with the same set of equations and the same
LGPR scheme (35) used for the hydrodynamics limit.

5.2. Kidder problem

The Kidder test case [71] describes the isentropic compression of a shell filled with perfect gas that is initially
bounded between the internal radius r;,; = 0.9 and the external radius r,,, = 1.0. The initial condition is given in terms
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Table 3: Numerical convergence results for the isentropic vortex test in 2D and in 3D using the LGPR scheme with relaxation time 71 = 107'% on
a sequence of refined unstructured meshes of size 1(€(¢7)) measured at the end of the simulation #; = 0.1. The errors are measured in L, norm for
specific volume w, horizontal velocity u and total energy E.

2DLGPRO1 (1 = 10714)
W) | @i 00/ w,  Ow _ E, _ O&)
3.26E-01 | 5.405E-02 - 1.547E-01 - 2.579E-01 -
2.47E-01 | 4.164E-02 0.96 1.219E-01 0.88 2.044E-01 0.86
1.63E-01 | 3.053E-02 0.74 8.866E-02 0.76 1.471E-01 0.78
1.28E-01 | 2.286E-02 1.20 7.041E-02 096 1.164E-01 0.97

2D LGPR 02 (1, = 1071%)

Q@) | @i 00/ w,  Ow __ E, _ OF)
3.26E-01 | 4.996E-02 - 4.895E-02 - 9.281E-02 -
2.47E-01 | 3.312E-02 1.49 3.020E-02 1.76 5.509E-02 1.90
1.63E-01 | 1.913E-02 1.32 1.534E-02 1.63 2.858E-02 1.58
1.28E-01 | 1.327E-02 1.51 9.153E-03 2.13  1.770E-02 1.98

3DLGPRO1 (1) = 1074
Q) | Wi,  OUjp)  w,  Ow __ E, _ O®E)
5.29E-01 | 2.389E-01 - 5600E-01 -  8.781E01 -
3.62E-01 | 2013E-01 035  4.075E-01 0.65 6.660E-01 0.56
231E-01 | 1.752E-01 031  2.882E-01 0.77 4.877E-01 0.69
1.81E-01 | 1.454E-01 076  2.301E-01 091 3.974E-01 0.83

3DLGPRO2 (1 = 1074

QW) | @i O0U/p)  w,  Ow _ E, _ OEF)
5.29E-01 | 2.899E-01 - 2.946E-01 - 5.185E-01 -
3.62E-01 | 1.426E-01 1.44 1.188E-01 1.85 2.275E-01 1.67
2.31E-01 | 8.304E-02 1.20 5.829E-02 1.59 1.099E-01 1.62
1.81E-01 | 5.931E-02 1.37 3.600E-02 196 7.206E-02 1.72
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Table 4: Numerical convergence results for the swinging plate test in 2D and in 3D using the LGPR scheme with relaxation time 7; = 10'* on a
sequence of refined unstructured meshes of size h(€2(tr)) measured at the end of the simulation ¢y = 7/w. The errors are measured in L norm for
horizontal velocity u, total energy E, metric tensor component G, and Cauchy stress component Ty;.

IDLGPRO1 (1) = 10"
h(€(ty)) ur, O(u) Ep, O(E) (Ge,))1, O(G.,) (T, O(Ty)
1.56E-01 | 6.928E-02 - 3.926E-03 - 1.815E-04 - 1.126E+03 -
7.78E-02 | 5.291E-02 0.39 3.100E-03 0.34 1.093E-04 0.73 6.707E+02 0.74
5.46E-02 | 4.134E-02 0.70 2.712E-03 0.38  6.766E-05 1.35 4.225E+02 1.30
3.92E-02 | 3.374E-02 0.61 2.338E-03 045 4.620E-05 1.15 2.958E+02 1.08

2DLGPRO2 (1) = 1014)

h(Q(ff)) ur, O(u) ELZ O(E) (Ge“ )L2 O(Gel 1 ) (T, )Lz o(Ty))
1.56E-01 | 1.377E-02 - 1.505E-03 - 1.696E-04 - 1.303E+03 -
7.78E-02 | 2.888E-03 224 2.730E-04 2.45 4.224E-04 1.99 2.845E+02 2.18
5.46E-02 | 1.131E-03 2.65 9.735E-05 291 1.860E-05 2.31 1.228E+02 2.37
3.92E-02 | 6.081E-04 1.87 5.080E-05 1.96 1.088E-05 1.62 6.990E+01 1.70

3DLGPRO1 (1, = 10'%)
Q1)) w, Ow _ E, OE (G, OG.) (T, O
1.56E-01 | 6.179E-02 - 5.892E-03 - 1.859E-04 - 5.111E+03 -
7.78E-02 | 5.190E-02 0.77 5.286E-03 0.48 1.639E-04 0.56 4.676E+03 0.39
5.46E-02 | 4.845E-02 091 4971E-03 0.81 1.603E-04 0.30 4.631E+03 0.15
3.92E-02 | 4219E-02 1.06 4.433E-03 0.88 1.473E-04 0.65 4.279E+03 0.61

3D LGPR 02 (1) = 10')

h(€(ty)) ur, O(u) E, O(E) (Ge,, )1, O(G.,) (T, O(T)
1.56E-01 | 1.792E-02 - 2.752E-03 - 1.297E-04 - 4.262E+03 -
7.78E-02 | 1.171E-02 2.08 1.864E-03 1.91 1.080E-04 0.89 3.606E+03 0.82
5.46E-02 | 7487E-03 1.69 1.223E-03 1.59  8.105E-05 1.09 2.723E+03 1.06
3.92E-02 | 6.235E-03 224 1.013E-03 2.31 7.160E-05 1.52 2.405E+03 1.52
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of the general radial coordinate r = Vx? and it reads

1
rlz,w—rz -1 rz_rﬁzr -1 a
p(0,7) (_rz',fr.z P:-yn, + 75 rrzrrpz/xt )
V(O’ r) = ext int O{.’( exi s (103)
p(0,r) 5p(0, )Y

where p;,; = 1 and p,,, = 2 are the initial values of density at the corresponding frontier of the shell, while y = 5/3

is the ratio of specific heats for the ideal gas EOS. The initial entropy distribution is assumed to be uniform, hence

s = pﬁ = 1. The final time t; = gf is determined in such a way that the shell is bounded by 0.45 < r < 0.5, which

2 =
provides a reference solution for the shell configuration at the end of the simulation. The focalisation time is given

byi= 7%1 (f;%’i") with the internal and external sound speeds ¢;,; = /7%’ and ¢,y = y/p)%‘/’. Pressure boundary
ext™ Cint m ex

conditions are set on the internal and external frontiers of the shell according to the exact solution available in [71].

Since this is a smooth problem, the numerical convergence is studied again on a sequence of successively refined

computational meshes. The errors are measured in L., norm and reported in Table 5 for the second order version of

the LGPR scheme, where the formal accuracy is reached in 2D/3D. The corresponding errors related to the internal

and external frontier location, i.e. R;,(f) and R,(?), are estimated as the arithmetic average of the difference between

the analytical and the numerical radial coordinate for each node lying on the internal and external frontier.

Table 5: Numerical convergence results for the Kidder problem in 2D and in 3D using the LGPR scheme with relaxation time 7; = 10~'% on
a sequence of refined unstructured triangular and tetrahedral meshes of size h(€(ty)) measured at the end of the simulation ;. The errors are
measured in L, norm for specific volume 1/p, total energy E, final position of the internal R;,; and external R, radius of the shell.

2DLGPR O2
h(Q(tf)) ( 1 /p)Loo O( 1 /,D) ELm O(E) (Rint)Loo O(Rint) (Rext)Lm O(Rext)
2.15E-02 | 7.648E-02 - 5.302E+00 - 5.538E-03 - 5.001E-03 -
1.42E-02 | 2.900E-02 2.36 2.316E+00 2.01  2.061E-03 240  2.122E-03 2.08
7.95E-03 | 1.356E-02 1.30 4.888E-01  2.67 5.991E-04 2.12 7.702E-04 1.74
4.14E-03 | 3.836E-03 1.94 1.670E-01  1.65  2.145E-04 1.57 2.528E-04 1.71

3DLGPRO2

h(Q(lf)) ( 1 /p)Lm 0(1 /,D) ELm O(E) (Rint)Loo O(Rint) (Rext)Lw O(Rext)
2.15E-02 | 4.150E+00 - 2.162E+01 - 9.825E-02 - 1.810E-02 -
1.42E-02 | 2.982E+00 227 1.757E+01 142  5.620E-02 3.84 1.101E-02 3.41
7.95E-03 | 1.327E-01 7.22 9.911E+00 1.33  3.009E-02 1.45 7.078E-03 1.03
4.14E-03 | 5.634E-02 1.80 3.437E+00 222 1.161E-02 2.00 3.343E-03 1.58

Figure 3 depicts the initial and final pressure distribution in 2D and 3D, which preserves a good symmetry despite
the unstructured meshes. The time evolution of the internal and external frontiers of the shell is compared against the
analytical solution during the entire simulation, exhibiting an excellent agreement.

5.3. Saltzman problem

The Saltzman problem involves a strong shock wave that is generated by the motion of a piston traveling along the
main direction of a rectangular box. This is a challenging test case first proposed in [44, 30] on a skewed quadrangular
mesh to verify the robustness of Lagrangian schemes when the mesh is not aligned with the fluid flow. The initial
computational domain is Q2P(0) = [0; 1] % [0; 0.1] and Q3P (0) = [0; 1] % [0; 0.1]x[0; 0.1], with zero velocity slip-wall
boundary conditions everywhere, except for the piston, which is assigned with moving slip-wall boundary condition.
The usage of unstructured meshes allows any prescribed skewness to be ignored, since the computational mesh does
not exhibit any face aligned with the fluid flow, as depicted in Figure 4 at the final time of the simulation ¢ = 0.6. The
characteristic mesh size is & = 1/100 for both 2D and 3D grids.

The initial pressure of the fluid is p = 107 and the ideal gas EOS is used with y = 5/3. The piston lies on the left
side of the domain and moves with velocity v, = (1, 0,0). The CFL number is set to CFL = 0.01 up to time = 0.01 in
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Figure 3: Kidder problem in 2D (left) and in 3D (right). Top: pressure distribution and geometry configuration at the initial and final time of the
simulation. Bottom: evolution of the internal R;,; and external R, radius of the shell and comparison between analytical and numerical solution.
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Figure 4: Saltzman problem. Mesh configuration in 2D (left) and in 3D (right) at time ¢ = 0.6.

order to prevent the generation of invalid elements in those cells lying near the piston that are instantaneously highly
compressed for ¢ > 0. The numerical results are shown in Figure 5 as a scatter plot of all cell values. Compared to
the analytical solution [18, 114], a good approximation of the shock plateau and the shock wave location is observed.
The decrease of density near the piston, especially in 3D, is due to the well known wall-heating problem, see [113].

5.4. Sedov problem

The Sedov problem is concerned with the evolution of a blast wave with cylindrical or spherical symmetry, gen-
erated at the origin O = (x,y,2) = (0,0, 0) of the initial computational domain Q(0) = [0; 1.214. Symmetry boundary
conditions are imposed on those faces which share the origin, while the remaining sides are treated as slip-walls. The
characteristic mesh size is 4 = 1/60 in 3D, whereas we use two different computational meshes in 2D, namely with
h =1/40 and h = 1/80. The ideal gas with y = 1.4 is initially at rest with an initial pressure of p = 107° in the entire
computational domain, apart in those cells containing the origin O where the pressure is prescribed as

por= (= Dpntte it E = { Doz (104)
with V,, denoting the volume of the elements attached to the origin. The factor « takes into account the cylindrical
or spherical symmetry and is set to @ = 4 and @ = 8, respectively. An analytical solution can be derived from self-
similarity arguments [68], making this test widely used in literature [79]. Figure 6 collects the results for all three
simulations, plotting the final mesh configuration as well as a scatter plot of the cell density compared against the
exact solution. The shock wave is correctly captured by the conservative LGPR scheme, and a very good symmetry
of the density distribution can be appreciated. The density peak is well retrieved thanks to the Lagrangian nature of
the scheme, which introduces much less numerical viscosity compared to Eulerian schemes on fixed grids at the same
order of accuracy.

5.5. Riemann problems with viscous fluids

The test cases presented so far deal with the stiff hydrodynamics limit of the GPR model (2). Here, we want to test
the new LGPR scheme for the simulation of viscous fluids using the same set of equations. To this purpose, we solve in
a two-dimensional setting the well-known Sod shock tube problem, which is a classical one-dimensional test problem
that involves a rarefaction wave traveling towards the left boundary as well as a right-moving contact discontinuity
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Figure 6: Sedov problem. Mesh configuration (left) and scatter plot of cell density (right) at the final time ¢ = 1 obtained with mesh size & = 1/40

in 2D (top), & = 1/80 in 2D (middle) and & = 1/60 in 3D (bottom).



and a shock wave traveling to the right. However, instead of ideal fluids, viscous ones are now considered, with three
different viscosity coefficients, namely g = 1073, g = 5- 1072 and ¢ = 1072, The initial computational domain is the
rectangular box Q(0) = [0; 1] x [0;0.1] which is discretized with a characteristic mesh size of & = 1/200. Slip-wall
boundaries are set everywhere, hence prescribing zero normal velocity in the nodal solver. The final time is #; = 0.2 so
that all waves remain bounded in the computational domain. The initial condition consists in a discontinuity located
at xo = 0.5 between the left and the right state:

w000 ={ Gt oy, i raa s 10 109

The fluid is initially at rest and the ideal gas EOS is adopted with y = 1.4, while thermal conduction is neglected.
According to the asymptotic analysis presented in Section 4, the viscous stress tensor of the Navier-Stokes equation
should be retrieved, therefore the results of the LGPR scheme are compared with a reference solution of the Navier-
Stokes equations without thermal conduction computed on a very fine one-dimensional mesh of 10000 cells with a
MUSCL-TVD finite volume method. Figure 7 plots a three-dimensional view of the density distribution as well as the
mesh configuration across the contact discontinuity at the final time, whereas Figure 8 shows a scatter plot for density,
horizontal velocity and pressure of the numerical solution compared against the reference solution of the Navier-
Stokes model. An excellent agreement is obtained for all different values of the viscosity coefficient, demonstrating
that the novel LGPR scheme is capable of simulating viscous fluids as well.
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Figure 7: Riemann problems with viscous fluids. Three-dimensional density distribution at the final time 7 = 0.2 with viscosity coefficient u = 1073
(left) and = 1072 (middle). A zoom in view of the mesh configuration across the contact discontinuity for u = 1073 (right).

5.6. Heat conduction in a gas
The aim of this test case is to verify the correct behavior of the novel LGPR scheme in the case of a problem domi-
nated by heat transfer via heat conduction. A high density circle of gas is initialized at the center of the computational
domain Q(0) = [-0.5,0.5]?, that is
2 r<Ry

p(O,r)z{ 05 x>Ry ’ (106)

with r = /x2 + y? representing the generic radial coordinate and Ry = 0.2 being the radius of the circle containing
the high density gas. The fluid is initially at rest (u = v = w = 0) with constant pressure p = 1 and obeys an ideal gas
law with v = 1.4. The heat wave velocity and heat conduction coefficient are specified in Table 2. The computational
domain is discretized with a characteristic mesh size of 7 = 1/100 and slip-wall boundaries are imposed on all
sides. Figure 9 shows the pressure distribution as well as the metric tensor components (G,,,, G.,,) at the final time.
Despite the highly unstructured and non-symmetric mesh shown in Figure 9, the numerical solution exhibits excellent
symmetry. Finally, the solution along a 1D cut with 200 points along the x-direction at y = 0 is compared against the
reference solution of the Navier-Stokes-Fourier equations for temperature and the heat flux, achieving an excellent
agreement. This demonstrates that the stiff limit of the heat conduction equation (2d) is properly retrieved by the
LGPR scheme (35d), hence giving numerical evidence of the asymptotic preserving property of the scheme studied
in Section 4.
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5.7. Viscous shock profile

In order to verify the numerical method against supersonic viscous flows, we propose to solve the problem of an
isolated viscous shock wave which is traveling into a viscous heat conducting fluid at rest with a shock Mach number
of M = 2. The analytical solution can be found in [7], where the compressible Navier-Stokes-Fourier equations are
solved for the special case of a stationary shock wave at Prandtl number Pr = 0.75 with constant viscosity. The exact
solution for the dimensionless velocity i = M:‘CU of this stationary shock wave with shock Mach number M is then
given by the root of the following equation, see [7]:

_ (1-«7) 2
i — 1] 1 - «? M: -1
= ~Re,——x], 107
it — k2 2 R VY VR (107
with )
1+ X=m?
K= —2 (108)
M
Equation (107) allows the dimensionless velocity # to be obtained as a function of x. The form of the viscous profile
of the dimensionless pressure p = p‘: ;25;3 is given by the relation
ly+1l@-1
1o+ YL@ D G o) (109)
2yy—-1

Finally, the profile of the dimensionless density p = ;—; is derived from the integrated continuity equation: piz = 1. To
obtain an unsteady shock wave traveling into a medium at rest, it is sufficient to superimpose a constant velocity field
u = Mjcy to the solution of the stationary shock wave found in the previous steps. The initial computational domain
is the rectangular channel Q(0) = [0, 1] x [0, 0.2] which is paved with two different triangular meshes of characteristic
mesh size 4 = 1/100 and & = 1/200. On the left side of the domain (x = 0) the constant inflow velocity is prescribed,
whereas periodic boundaries are set along the y direction and a constant pressure is imposed at x = 1. The initial
condition involves a shock wave centered at x = 0.25 propagating at Mach M = 2 from left to right with a Reynolds
number of Re = 100. The polytropic index of the ideal gas is y = 1.4 and the upstream shock state is defined by p = 1,
u=v=_0,p=1/y. Figure 10 shows the initial and final mesh configuration at time #; = 0.2 with the shock front
located at x = 0.65.

Figure 11 illustrates a comparison against the analytical solution at the final time, where one can note an excellent
matching. We compare the exact solution and the numerical solution, extracted as a 1D cut with 200 points along the
x-direction at y = 0.1, for density, horizontal velocity, pressure and heat flux. Mesh convergence is also qualitatively
demonstrated by the numerical results obtained with 4 = 1/100 and # = 1/200. Finally, the heat flux and the viscous
stress component o are depicted in Figure 12 and compared against the Navier-Stokes-Fourier model, where the
Navier-Stokes stress tensor is recovered in the stiff limit by the LGPR scheme, as proven in Section 4.

5.8. Collapse of a thick-walled cylindrical beryllium shell

The next test case aims at exploiting the capability of the GPR model (2) to simulate elasto-plastic solids. We con-
sider a test problem firstly proposed in [63], which describes the collapse of a cylindrical beryllium shell responding to
an initial radial velocity field directed towards its center. The initial setup is taken from [67], thus the computational
domain Q(0) is the shell with inner and outer radii r;,; = 8 x 1072 and r,,, = 10 x 1072, Free-traction boundary
conditions are considered everywhere. The material is beryllium and the Mie-Griineisen equation of state (6) is used
with parameters Iy = 1.16 and s = 1.124. The adiabatic sound speed results to be ¢o = 12870. The initial pressure

2
is p = 0 and the radial velocity magnitude is given by v,(0,r) = =V, (’/—r'”) , with r = +/x% +y2. According to [1],
three different values of V{ are considered, namely V(()l) =417.1, V(()z) = 454.7 and V(g3) = 490.2. The corresponding

final times are 7" = 125.67 - 1076, /% = 131.6 - 1076 and 1 = 136.26 - 107%. The initial kinetic energy due to the
velocity distribution is entirely dissipated by the plastic deformation of the material leading to a deceleration of the
shell. Therefore, in [63] a closed form solution at the stopping time is derived under the ideal plasticity assumption,
which leads to a relationship between the initial velocity Vj and the inner and outer stopping radii. In this test case, the
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Figure 10: Viscous shock profile. Initial (left) and final (right) mesh configuration with # = 1/100.

material experiences elasto-plastic deformations, thus the closure relations (12) are adopted to account for plasticity
effects. Specifically, the yield strength is oy = 330 - 10° and the parameters of the power law for the computation of
the relaxation time 7, are the exponent n = 12 and 719 = 1077, The test case is run for all the three velocities V, on
two different unstructured meshes with characteristic mesh size of 4 = 1/100 and & = 1/140, in order to show mesh
convergence of the numerical solution. The final mesh configuration for Vy = 417.1 is depicted in Figure 13, while
the plastic map n = o /oy and the normalized relaxation time 7 /7o at the final time of each simulation are shown in
Figure 14.

The time evolution of the internal and external frontiers of the shell, i.e. R;,(f) and R,(?), is plot in Figure 15,
which is compared against the exact displacement of the shell at the final time of each simulation. A good agreement
can be observed and the finer mesh correctly retrieves a more accurate solution. We underline that the usage of a high
quality, though unstructured, computational mesh is crucial for maintaining the symmetry of the numerical solution
as demonstrated by Figure 14. Finally, the analysis of energy conservation over time is plot in Figure 15, where we
report the volumetric and shear internal energy (E;, and E,, respectively), kinetic (E;) and total (E) energy. We clearly
see that all initial kinetic energy is dissipated into internal energy due to elasto-plastic deformations that occur in the
material. Indeed, the volumetric energy contribution is rather small compared to the shear internal energy E..

5.9. 2D projectile impact

This problem consists of the impact of a two-dimensional aluminum bar impacting on a rigid wall and the setup
is taken from [82]. The computational domain is the initial projectile Q(0) = [0; 5] x [0; 1] that is paved with two
different triangular meshes of characteristic size 4 = 1/100 and & = 1/200. A slip-wall boundary is set on the left
side of the domain, while free-traction boundary conditions are imposed elsewhere. The final time of the simulation
is ty = 0.005 and the material undergoes plastic deformations that convert the initial kinetic energy into shear internal
energy. The closure relation for the hydrodynamics part of the energy is the Mie-Griineisen EOS with Iy = 2 and
s = 1.338, while the relaxation time 7; is computed relying on the formulation (12) with n = 10 and 79 = 5 - 1074,
The yield stress for aluminum is oy = 300 - 10° and the adiabatic sound speed is ¢y = 5328. Initially, the material
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is assigned p = 0 with a velocity set to v = (—150,0,0), thus the projectile hits the wall located at the left side
of the domain. Although there exists no exact solution for this problem, it is nonetheless employed for verifying
robustness and accuracy. Figure 16 depicts the plastic map n = o/oy at different output times as well as the final
mesh configuration and the normalized relaxation time 7/7}¢. Plasticity effects are experienced by the material during
the impact and the stresses at the end of the simulation visible in Figure 16 are residual stresses. This observation
is also confirmed by the energy conservation analysis presented in Figure 17, where all the initial kinetic energy Ej
is converted into shear internal energy E,. Finally, the time evolution of the maximum length of the projectile is
depicted, obtaining a final length of approximately L = 4.62 which is in good agreement with the literature [82, 90].
Mesh convergence is shown as well by comparing the results with 2 = 1/100 and 2 = 1/200.

T: 0.069 0.168 0.268 0.368 0468 0.568 0.668 0.767 0.867 0.967 1.067 M: 0.051 0.117 0.182 0.248 0.313 0.379 0.444 0509 0.575 0.640 0.706

Tty 200E+01 161E+03 129E+05 1.04E+07 8.33E+08 6.69E+10 537E+12

Figure 16: 2D projectile impact. Top: numerical distribution of plastic map () at time ¢ = 2.5 - 1073 (left) and t = 5 - 1073 (right). Bottom:
numerical distribution of normalized relaxation time (t/71o) at the final time # = 5 - 1073 (right) and mesh configuration (left).

5.10. 3D Taylor bar impact on a wall

Next, we consider the fully three-dimensional simulation of a copper target that impacts a solid wall, according
to the setup provided in [109]. A cylindrical rod made of copper has an initial length Ly = 0.0324 and an initial
radius Ry = 0.0032. At ¢ = 0, it hits a rigid flat plate with velocity v(0,x) = (0,0,-227) and pressure p = 0.
The computational mesh is composed of Ng = 16464 tetrahedra with characteristic mesh size 7 = 1/50. Free-
traction boundary conditions are set everywhere, apart on the impact surface where wall boundaries are imposed.
The simulation is carried on until the final time ¢ = 80 - 107 and the Mie-Griineisen EOS is used for copper with
Iy = 2, s = 1.48 and yield strength oy = 400 - 10°. To take into account plastic deformations, the relaxation time
7| is dynamically computed with (12) using n = 10, while we study the different behavior of the material by setting
710 = 1077 and 719 = 1073, The plastic map 7 and the pressure distribution are shown in Figure 18 for 79 = 107> at
time r = 2 - 1075 and ¢ = t;, highlighting that most of the plasticity effects take place close to the wall at the initial
instants of the impact. Figure 19 presents the study of energy conservation over time as well as the time evolution of
the length of the copper rod. As 7 increases, the material behavior gets closer to elastic solids, while a more realistic
setting is recovered using 719 = 1077, which correctly accounts for plastic deformations.

5.11. Elastic vibration of a beryllium plate

This test case describes the elastic vibration of a beryllium plate or bar, see [90, 27] for instance. Here we
consider both the 2D and the 3D version. The computational domain is Q2P (0) = [-0.03;0.03] x [-0.005; 0.005] and
Q3P(0) = [-0.03;0.03] x [-0.005; 0.005] x [—-0.005; 0.005], thus the length of the bar is L = 0.06. A characteristic
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Figure 17: 2D projectile impact. Left: time evolution of the projectile length. Right: analysis of energy conservation in terms of volumetric and
elastic energy (Ej and E,, respectively), kinetic (Ey) and total (E) energy. Results with mesh size 2 = 1/100 are drawn with dashed lines, while
solid lines refer to mesh size & = 1/200.

mesh size of & = 1/200 is used in 2D, while 2 = 1/100 is adopted in 3D. Free-traction boundary conditions are set
everywhere and the final time of the simulation is chosen to be #; = 3 - 107, so that approximately one oscillating
period is completed. The hydrodynamics part of the energy is given by the Neo-Hookean EOS (7), with Young
modulus ¥ = 3.1827 - 10!! and Poisson ratio v = 0.0539. The material is initially loaded via a perturbed initial
velocity field v2P(0, %) = (0, Vo(x),0) and v*2(0,x) = (0,0, Vy(x)) of the form

Vo(x) = Aw [ay(sinh(x") + sin(x")) — ax(cosh(x") + cos(x"))], (110)

where X' = a(x + L/2), @ = 78.834, A = 4.3369 x 1075, w = 2.3597 x 10°, a; = 56.6368 and a, = 57.6455.
In this setting, the LGPR scheme exactly collapses to the cell-centered finite volume scheme recently introduced in
[23]. Figure 20 depicts the mesh configuration and the pressure distribution at three different output times during
one flexural period, whereas in Figure 21 we show the time evolution of the vertical component of the velocity of
the barycenter of the bar, i.e. the mesh point originally located at xy = (0, 0, 0). The first and second order schemes
are compared, demonstrating that second order accuracy in space and time is responsible of a remarkable reduction
of numerical dissipation. The bar dissipates almost all initial kinetic energy for the first order scheme, which is not
due to plastic deformations, since the material is a purely elastic solid, but only because of an excessive numerical
dissipation in the nodal solver and the face-based fluxes. This demonstrates the advantages induced by a higher order
scheme in space and time.

5.12. Twisting column

Finally, a highly nonlinear scenario is considered by simulating a twisting column according to the test problem
set up in [61] and the references therein. The computational domain is given by an initial unit squared cross section
column of height H = 6, i.e. Q(0) = [-0.5;0.5] x [-0.5;0.5] x [0;6]. The z = 0 face of the column is embedded
into a wall, while the rest of the faces are assigned free-traction boundary conditions. An initial sinusoidal angular
velocity field relative to the origin is given by v(0,X) = wp sin(w5%5)(y, —x, 0)’, while pressure is set to p = 0. Two
different magnitudes of the angular velocity are considered, namely wy = 100 and wy = 200. The main objective
of this problem is to assess the capability of the proposed methodology to deal with the limit of incompressibility.
A material with Neo-Hookean hydrodynamics EOS is used with Young modulus ¥ = 1.7 - 107 and Poisson ratio
v = 0.45. The simulation is run until 7, = 0.3. Qualitatively one should observe a severe twist of the column which
returns to its initial position. Driven by its own inertia, the bar keeps twisting until the final time. The mesh of the
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LGPR scheme.

column is made of Ng = 119092 tetrahedra with characteristic mesh size of & = 1/80. Figure 22 shows the pressure
distribution at different output times for the case wy = 100, while Figure 23 collects the results at the same output
times for wg = 200. The initial column is represented as a hollow bar for comparison purposes and the expected
behaviors are reproduced by the numerical simulation. Notice that there is no spurious oscillations nor nonphysical
pressure distribution, thus the results obtained with the LGPR model are in agreement with the literature [23, 73]. The
pressure distribution is shown using 21 contour levels in the range [-5; 3] - 10°.

In Figure 24 we plot the time evolution of the dimensionless height of the column measured at the point initially
located at xy = (0,0, 6), showing that the case with wy = 200 exhibits a much stronger distortion and compression
of the entire column. Furthermore, the analysis of energy conservation is also reported for both simulations, demon-
strating that the total energy is fully conserved by the novel LGPR scheme (35). For comparison purposes, the total
energy is normalized to unity for both simulations.

6. Conclusions

We have presented a second-order in space and time updated Lagrangian IMEX scheme for the unified first-
order hyperbolic formulation of continuum mechanics, also referred here as the Godunov-Peshkov-Romenski (GPR)
model. The novelties of the paper can be summarized as follows. Firstly, for the first time, the GPR model was
discretized with an updated Lagrangian scheme. Previously it was treated with either pure Eulerian [47, 20, 28] or
total Lagrangian [57] schemes, or even in the Arbitrary-Lagrangian-Eulerian (ALE) framework [90, 21]. Secondly,
since the GPR model is equipped with nonlinear relaxation source terms which may become stiff, the Lagrangian
scheme is combined with a semi-analytical ad-hoc ODE solver, and second order extension is achieved via IMEX
time discretization. This allows us to obtain the numerical solution consistent with the Navier-Stokes-Fourier limit for
arbitrarily small relaxation times, thus satisfying the asymptotic preserving property. Moreover, the implicit treatment
of the source terms is necessary to achieve better stability properties of the scheme in the stiff cases (r; — 0 and
7, — 0). Thirdly, in this paper, we use a reduced version of the GPR model in which the evolution equation for the
distortion field A, is substituted by the evolution equation of its symmetric part only (the metric tensor G,). This
simplification can be used if the rotational degrees of freedom of material particles encoded in the distortion field
A, are negligible. The Lagrangian scheme is compatible with the GCL and the study of the asymptotic behavior
of the first order fully discrete scheme is derived, demonstrating the asymptotic preserving property exhibited by
the new scheme. Furthermore, because the GPR model provides a unified framework for the modeling of various
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100 (solid lines) and wg = 200

(dashed lines).

material responses varying from ideal fluids to elastic solids, we have solved an extended series of 2D and 3D test
cases covering examples from inviscid hydrodynamics, viscous heat conducting fluids, elastic and elasto-plastic solid
mechanics. We emphasize that in all the presented test-cases for fluids and solids the same set of governing equations
(2) and the same scheme have been used. Whenever possible, we have compared the numerical solution obtained
with the LGPR scheme against analytical solutions of inviscid Euler equations, Navier-Stokes-Fourier equations, and
elasto-plasticity theory (e.g. see Section 5.8). A very good agreement between the solutions has been achieved,
showing the capability of the scheme of dealing with different material properties. Finally, the new LGPR method
collapses to already existing and well-established schemes when approaching the model limits, i.e. the hydrodynamics
limit [83] and the ideal hyperelasticity limit [27, 23].

Future work will consist in an extension of the present approach to general unstructured polygonal meshes as well
as of generalization towards high-order (higher than 2) schemes which will require accounting for the mesh curvature
via evolving the mesh characteristics (e.g. metric tensor) with high-order of accuracy. We also plan to discretize the
original GPR model with the evolution equation for the distortion field A, and address the question of constructing
structure preserving (e.g. curl-preserving) integration such as discussed in the pure Eulerian [20] and total Lagrangian
frameworks [62].
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