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The study of uncertainty propagation is of fundamental importance in plasma physics 
simulations. To this end, in the present work we propose a novel stochastic Galerkin (sG) 
particle method for collisional kinetic models of plasmas under the effect of uncertainties. 
This class of methods is based on a generalized polynomial chaos (gPC) expansion of the 
particles’ position and velocity. In details, we introduce a stochastic particle approximation 
for the Vlasov-Poisson system with a BGK term describing plasma collisions. A careful 
reformulation of such dynamics is needed to perform the sG projection and to obtain 
the corresponding system for the gPC coefficients. We show that the sG particle method 
preserves the main physical properties of the problem, such as conservations and positivity 
of the solution, while achieving spectral accuracy for smooth solutions in the random 
space. Furthermore, in the fluid limit the sG particle solver is designed to possess the 
asymptotic-preserving property necessary to obtain a sG particle scheme for the limiting 
Euler-Poisson system, thus avoiding the loss of hyperbolicity typical of conventional sG 
methods based on finite differences or finite volumes. We tested the schemes considering 
the classical Landau damping problem in the presence of both small and large initial 
uncertain perturbations, the two stream instability and the Sod shock tube problems under 
uncertainties. The results show that the proposed method is able to capture the correct 
behavior of the system in all test cases, even when the relaxation time scale is very small.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

The construction of numerical methods in plasma physics described by kinetic equations is a challenging problem. The 
main difficulties arise both from the high dimensionality of the problem and from the formation of multiscale structures 
that must be captured by a numerical solver [3,4,9,13,17,18,23,45,51]. The numerical methods for plasma physics developed 
in the literature can be essentially divided into two groups: approaches based on direct discretizations of the corresponding 
system of partial differential equations (PDEs), like finite differences and finite volumes methods [13,17,18,41,51], and ap-
proaches based on approximations of the underlying particle dynamics at different levels, like particle-in-cell (PIC) methods 
[4–6,12,23,45]. Among the latter, Direct Simulation Monte Carlo (DSMC) methods allow an efficient solution of the kinetic 
system in the presence of collisions described by the Landau operator [3,16]. To the first group, in the collisional case, 
belong the Fourier spectral methods specifically designed for the fast solution of the Landau integral term [19,22,36].

The presence of uncertainty in the parameters of the physical model results in an additional computational challenge as 
it contributes to increasing the dimensionality of the system. Recently these kinds of problems have seen considerable effort 
by the scientific community and the introduction of numerous numerical techniques for quantifying the uncertainty [7,8,11,
15,20,28,33,39,48]. Among these techniques stochastic Galerkin methods based on generalized polynomial chaos expansions 
have shown the ability to achieve spectral accuracy in the random space for smooth solutions [27,49,50]. However, due to 
the intrusive nature of such approaches most physical properties are lost, among which physical conservations and positivity 
of the solution. In addition, as emphasized in [14,15], the system of coefficients defining the sG method may lead to loss 
of hyperbolicity for nonlinear systems of conservation laws. This is the case, in particular, of the fluid limit of the Vlasov-
Poisson system for a collisional plasma leading to the Euler-Poisson system.

In this paper, following the methodology in [7,8,39,40] we introduce stochastic Galerkin particle methods for the 
Vlasov-Poisson system with a BGK collision term in presence of uncertainties. To this end we first introduce the parti-
cle approximation in absence of uncertainty and then, after generalizing the system to the case of uncertain inputs, we 
project the corresponding particle system into the space of orthogonal stochastic polynomials. As we shall see, this requires 
a careful reformulation of the particle dynamics. By construction, the resulting particle-based scheme preserves the main 
physical properties and the positivity of the reconstructed distribution function. Additionally, the use of a BGK collision term 
allows to achieve the asymptotic-preserving property in the fluid regime and to obtain a sG particle scheme for the limiting 
Euler-Poisson system that avoids the loss of hyperbolicity.

Previous results on sG schemes that avoid the loss of hyperbolicity have been based on suitable modifications of the 
gPC expansions [14,15,48] in a finite difference/volume setting. More precisely, in [15] an entropy closure method has 
been proposed, in [14] suitable conditions to preserve hyperbolicity have been derived, whereas in [48] an hybridization 
strategy between sG and stochastic collocation has been used. In our approach, instead, the problem is avoided thanks 
to the particle structure of the solution. We mention also recent results on uncertainty quantification in plasma physics 
obtained numerically in [11] and theoretically for the Landau damping in [21,43].

The rest of the manuscript is organized as follows. In the next section we introduce the Vlasov-Poisson system in 
presence of uncertainties and recall its fluid limit in the collisional case characterized by the Landau integral operator. 
A simplified collisional model based on the BGK operator is also introduced, which will later be used in the design of the 
numerical solver. Section 3 is then devoted to the detailed description of the numerical method. First the particle scheme in 
absence of uncertainties is presented and then it is generalized to the case of uncertain inputs through a stochastic Galerkin 
projection of the particle dynamics. In Section 4 several numerical results are reported, showing the ability of the method 
to achieve spectral accuracy for smooth solutions in the random space and to correctly capture the behavior of the solution 
in a series of prototypical test cases. Finally the paper ends with some concluding remarks and discussing future research 
directions.

2. Kinetic description of plasmas with uncertainties

We consider the evolution of the plasma electrons at the kinetic level described by [10]

∂ f (x, v, t, z) + v · ∇x f (x, v, t, z) + E(x, t, z) · ∇v f (x, v, t, z) = 1
Q ( f , f )(x, v, t, z), (1)
∂t ε

2
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where the one-particle distribution function f (x, v, t, z) depends on position x ∈ R3, velocity v ∈ R3 and time t > 0, and 
ε > 0 is the Knudsen number. The random vector z = (z1, . . . , zd) ∈ Rdz characterizes the uncertainties of the system due, 
e.g., to missing information on the initial states, measurements of model parameters and boundary conditions. In the fol-
lowing we will suppose to know the distribution of z, given by p(z), i.e.

P(z ∈ �) =
∫
�

p(z)dz,

for any � ∈Rdz . In equation (1), E(x, t, z) is the self-consistent electric field given by

E(x, t, z) = −∇xφ(x, t, z), (2)

where φ(x, t, z) is the potential, solution to the Poisson equation

�xφ(x, t, z) = 1 −
∫
R3

f (x, v, t, z)dv (3)

subject to suitable boundary conditions. In (3) we have considered a uniform background of motionless positive ions.
The bilinear operator Q ( f , f ) is the collisional operator describing the interactions between the charged particles. A 

classical choice is given by the Landau collision operator [29]

Q ( f , f )(x, v, t, z) = ∇v ·
∫
R3

�(v − v∗)
[∇v f (v, z) f (v∗, z) − ∇v∗ f (v∗, z) f (v, z)

]
dv∗,

where we omitted explicit dependence from (x, t) for brevity, and � is a 3 × 3 nonnegative symmetric matrix that defines 
the interactions between particles. Its usual form is given by

�(v) = |v|γ +2 S(v), S(v) = I − v ⊗ v

|v|2 ,

where γ > 0 in the case of hard potentials, γ = 0 in the Maxwellian case, and γ < 0 in the case of soft potential. In 
particular, the choice γ = −3 is the so-called Coulombian case and plays a central role in plasma physics. The kernel of the 
collision operator is characterized by local Maxwellian distributions

Mρ,U ,T (x, v, z) = ρ(x, z)
(

1

2π T (x, z)

) 3
2

exp

(
− (v − U (x, z))2

2T (x, z)

)
, (4)

where we introduced the mass, the momentum and temperature as

ρ(x, z) =
∫
R3

f (x, v, t, z)dv,

ρ(x, z)U (x, z) =
∫
R3

v f (x, v, t, z)dv,

T (x, z) = 1

3ρ(x, z)

∫
R3

|v − U (x, z)|2 f (x, v, t, z)dv.

In the collisionless case ε → +∞ from (1) we recover the Vlasov-Poisson model, whereas passing formally to the limit 
ε → 0 we obtain f =Mρ,U ,T and thus, defining

W (x, z) = ρ(x, z)
( |U (x, z)|2

2
+ 3T (x, z)

2

)
, p(x, z) = ρ(x, z)T (x, z),

we recover the Euler-Poisson system

∂tρ + ∇x · (ρU ) = 0

∂t (ρU ) + ∇x · (ρU ⊗ U ) + ∇x p = ρ∇xϕ

∂t W + ∇x · ((W + p) U ) = ρU · ∇xϕ

�xϕ = ρ − 1,

(5)

where we omitted the dependence from the uncertainty and the physical variables for the sake of simplicity.
3
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In this work, following usual approximations of collisional processes, we consider a BGK-type collisional operator [1,2]

Q ( f ,M)(x, v, t, z) = μ(Mρ,U ,T (x, v, z) − f (x, v, t, z)), (6)

with μ > 0 the collision frequency. Recent approaches to plasma dynamics involving BGK-type operators have been pro-
posed in [12,30,48].

For the numerical solution of (1) with uncertainties several approaches have been proposed in the literature [11,27,48]. 
In most cases, however, when an intrusive method like stochastic-Galerkin is adopted, most physical properties are lost and 
a particular care is required to avoid the loss of hyperbolicity of the solution in fluid regimes [14,15,48]. In the sequel, we 
will consider a different approach to the problem based on a stochastic-Galerkin projection of the corresponding particle 
approximation.

3. The stochastic Galerkin particle method

In this section, we first recall particle methods for the numerical approximation of equation (1) in absence of uncertain-
ties. Without attempting to review the very huge literature on particle methods for kinetic equations, we mention Direct 
Simulation Monte Carlo (DSMC) [34,35,37,38] and particle-in-cell (PIC) methods for collisionless plasmas, see e.g. [9,23] and 
the references therein. It is worth to mention that extensive efforts have been devoted also to deterministic methods, see 
e.g. [3,13,16–18,24,25,45,51] and the references therein.

Furthermore, we focus on fundamentals of stochastic Galerkin methods and we derive the corresponding sG particle 
approach. We highlight that these methods have been previously studied for mean-field models of collective phenomena 
[7,8,32], and subsequently extended to the space-homogeneous Boltzmann equation [39].

3.1. The particle based method in a deterministic setting

To introduce the particle method, we first consider equation (1) without uncertainties. We are interested in the evolution 
of the density f = f (x, v, t), x, v ∈ R3, t ≥ 0, solution to (1) and complemented with the initial condition f (x, v, 0) =
f0(x, v). Let us consider a time discretization of the interval [0, T f ] of size �t > 0. Denoting by f n(x, v) an approximation 
of f (x, v, tn), with tn = n�t , the starting point is a splitting between the numerical solution of the BGK collision step 
f ∗ = C�t( f n)⎧⎨

⎩
∂ f ∗

∂t
= 1

ε
Q ( f ∗,Mρ,U ,T ),

f ∗(x, v,0) = f n(x, v),
(7)

and the Vlasov transport step f ∗∗ = T�t( f ∗)⎧⎨
⎩

∂ f ∗∗

∂t
+ v · ∇x f ∗∗ + E(x, t) · ∇v f ∗∗ = 0,

f ∗∗(x, v,0) = f ∗(x, v,�t).
(8)

The solution at the time tn+1 is therefore given by the first order splitting method

f n+1(x, v) = T�t
(
C�t( f n)(x, v)

)
.

Higher order methods can be considered, such as the second order Strang splitting scheme [46]

f n+1(x, v) = C�t/2
(
T�t
(
C�t/2( f n)(x, v)

))
.

It should be noted, however, that close to fluid regimes the above Strang splitting degenerates to first order accuracy. This 
drawback can be avoided using suitable IMEX Runge-Kutta techniques which up to date are not available for particle based 
solvers [19].

To reconstruct the distribution function at each time step several approaches are possible. Possible approaches are rep-
resented by constructing a histogram of position and velocities of the set of particles in the phase space, by the weighted 
rule, where each particle is counted in a computational cell and in neighboring cells with a fractions that is proportional to 
the overlapping area, or by reconstruction techniques based on a convolution of empirical distribution with a suitable mol-
lifier, see e.g. [26]. In particular, in the following, we adopt the histogram reconstruction. We approximate the distribution 
function at each time step n with a sample of N particles {xn

i , v
n
i }N

i=1

f n
N(x, v) = m

N

N∑
δ(x − xn

i ) ⊗ δ(v − vn
i ),
i=1

4
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being δ(·) a Dirac delta and m = ∫R3 ρ(x)dx the total mass. We observe that the weight ω = m/N is shared by each particle, 
it does not influence the dynamics but it should be taken into account in the reconstruction. The particles are then advanced 
in time by solving the equations of motion derived from (7) and (8). In the following, we describe the BGK collisional step 
and the transport step separately.

Collision step. In order to present the algorithm for the BGK collision step, we rewrite (7) at discrete time steps �t as

f ∗(x, v) = (1 − e−ν�t)Mρ,U ,T (x, v) + e−ν�t f n(x, v),

where ν = μ/ε . From a particle point of view, we can interpret the previous relation in a simple probabilistic setting, see 
[34,35]. With a probability 

(
1 − e−ν�t

)
, at the time step n, a particle (xn

i , v
n
i ) is replaced by a particle with position and 

velocity sampled from the local Maxwellian Mρ,U ,T . Whereas, with probability e−ν�t the particle maintains its state.
The previous local quantities are computed with a piecewise constant approach. Let us consider N� equally spaced 

cells I� of a one-dimensional spatial domain I ⊂ R so that ∪N�

�=1 I� = I and I� ∩ Ik = ∅ for � �= k. Then, at time tn , mass, 
momentum and temperature are computed as

ρn
� = m

N

N∑
i=1

χ(xn
i ∈ I�),

Un
� = m

ρ�N

N∑
i=1

vn
i χ(xn

i ∈ I�),

T n
� = m

ρ�N

N∑
i=1

(vn
i − Un

� )
2χ(xn

i ∈ I�),

(9)

being χ(·) is the indicator function. Hence, we may rewrite the BGK collisional process for every i = 1, . . . , N in a compact 
form as follows

vn+1
i = χ

(
ξ < e−ν�t) vn

i + (1 − χ
(
ξ < e−ν�t)) N�∑

�=1

χ
(
xn

i ∈ I�
)(

Un
� + ṽ i

√
T n

�

)
(10)

being ξ ∼ U([0, 1]) and ṽ i ∼N (0, 1) a standard normally distributed random variable. In order to preserve the moments in 
each cell, we compute the samples {ṽ i}N

i=1 according to [38]. Let

Ṽ = 1

N

N∑
i=1

ṽ i Ẽ = 1

2N

N∑
i=1

ṽ2
i

be mean and energy of the sampled particles. We further rescale the samples to guarantee zero mean u = 0 and energy 
e = 1/2, that is

1

N

N∑
i=1

ṽ i − λ

τ
= u

1

2N

N∑
i=1

(
ṽ i − λ

τ

)2

= e, (11)

where

τ 2 = Ẽ − Ṽ /2

e − u/2
λ = Ṽ − τu.

As observed in [38] the above scaling ṽ i → (ṽ i − λ)/τ being a linear transformation does not alter the normal distribution 
of the particle samples and, by construction, preserves momentum and energy in each cell.

Algorithm 1 BGK collision step.

• Compute the initial position and velocity of the particles {x0
i , v0

i }N
i=1 by sampling from the initial distribution f 0(x, v);

• compute the velocities {ṽ i}N
i=1 by sampling a standard normal distribution N (0, 1) according to (11);

• for n = 0 to nTOT − 1, given {xn
i , vn

i }N
i=1:

– compute ρn
� , U n

� , T n
� in each cell I� , � = 1, . . . , N� , according to (9);

– for every particle i = 1, . . . , N:
∗ select ξ uniformly in [0, 1];
∗ compute the post interaction velocities vn+1

i according to (10);
• end for.
5
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Vlasov transport step. The equations of motion of the particles obtained from (8) are the following coupled set of ODEs:

dxi(t)

dt
= vi(t),

dvi(t)

dt
= E(xi, t), (12)

that can be solved on the computational domain through the following three steps method complemented with boundary 
conditions.

Let {xn
i , v

n
i }N

i=1 be at the time step n and we indicate with En+1/2
� the electric field in the cell I� at the step n + 1/2. We 

consider the following splitting approach

xn+1/2
i = xn

i + vn
i
�t

2
, (13)

vn+1
i = vn

i + �t
N�∑

�=1

En+1/2
� χ(xn+1/2

i ∈ I�), (14)

xn+1
i = xn+1/2

i + vn+1
i

�t

2
. (15)

The electric field in (14) is computed by solving the Poisson equation for the potential (3) with a mesh based method on 
a uniform grid. To this end, we compute as in (9) the local mass on the uniform grid at time n + 1/2. The process can be 
summarized as follows.

Remark 1. The PIC-type scheme (13)-(15) evolves each sample through the splitting strategy defined in [45] to each sample, 
thus it conserves mass and momentum. The mass is conserved if no particle gets in or out of the domain, since the total 
mass m is constant in time and does not affect the dynamics. The total momentum is conserved provided the Poisson solver 
is such that at the discrete level∫

I

E(x)ρ(x)dx = 0, (16)

see Proposition 10 in [45], Section 3.2.2. This condition is met on a periodic domain. Methods satisfying this condition can 
be found, e.g., in Section 4.2 of the same work.

Algorithm 2 Vlasov transport step.

• Compute the initial position and velocity of the particles {x0
i , v0

i }N
i=1 by sampling from initial distribution f 0(x, v);

• for n = 0 to nTOT − 1, given {xn
i , vn

i }N
i=1:

– compute the free transport on �t
2 according to (13), and apply the boundary conditions;

– compute the mass ρn+1/2 and then the electric field in each cell {En+1/2
� }N�

�=1 by solving the Poisson equation with a mesh based method satisfying 
condition (16);

– update the velocities on �t according to (14)
– compute the free transport on �t

2 according to (15), and apply the boundary conditions;
• end for.

3.2. Stochastic Galerkin particle based methods

We consider stochastic Galerkin expansion of Algorithms 1-2 for the numerical approximation of (1) with uncertain-
ties. We consider a sample of N particles xi(tn, z), vi(tn, z), i = 1, . . . , N at time tn = n�t , and we expand them by their 
generalized polynomial chaos (gPC) expansion

xn
i (z) ≈ xn,M

i (z) =
M∑

h=0

x̂n
i,h�h(z),

vn
i (z) ≈ vn,M

i (z) =
M∑

h=0

v̂n
i,h�h(z),

(17)

being {�h(z)}M
h=0 a set of polynomials of degree less or equal to M ∈N , orthonormal with respect to the measure p(z)dz∫

�h(z)�k(z)p(z)dz = Ez[�h(·)�k(·)] = δhk,
�

6
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where � ∈Rd and δhk is the Kronecker delta. The polynomials {�h(z)}M
h=0 are chosen following the so-called Wiener–Askey 

scheme [49,50], depending on the distribution of the parameters. In (17), for fixed h = 0, . . . , M , the terms x̂n
i,h and v̂n

i,h are 
the projections of the positions and velocities respectively in the space generated by the polynomial of degree h ≥ 0

x̂n
i,h =

∫
�

xn
i (z)�h(z)p(z)dz = Ez[xn

i (·)�h(·)],

v̂n
i,h =

∫
�

vn
i (z)�h(z)p(z)dz = Ez[vn

i (·)�h(·)].
(18)

Stochastic collision step. To define the sG particle algorithm of the BGK step with random inputs we consider a projection 
on the polynomial space defined by the uncertainties of the collision process in Section 3.1. Therefore, if we consider the 
discretization in N� cells as before, we compute at each time step tn uncertain mass, mean velocity and temperature as

ρn
� (z) = m(z)

N

N∑
i=1

χ(xn
i (z) ∈ I�),

Un
� (z) = m(z)

ρn
� (z)N

N∑
i=1

vn
i (z)χ(xn

i (z) ∈ I�),

T n
� (z) = m(z)

ρn
� (z)N

N∑
i=1

(vn
i (z) − Un

� (z))2χ(xn
i (z) ∈ I�),

(19)

that are approximated through the gPC particles’ expansion as

ρn,M
� (z) = m(z)

N

N∑
i=1

χ(xn,M
i (z) ∈ I�),

Un,M
� (z) = m(z)

ρn,M
� (z)N

N∑
i=1

vn,M
i (z)χ(xn,M

i (z) ∈ I�),

T n,M
� (z) = m(z)

ρn,M
� (z)N

N∑
i=1

(vn,M
i (z) − Un,M

� (z))2χ(xn,M
i (z) ∈ I�),

(20)

where m(z) = ∫ ρ(x, z)dx is the uncertain total mass. We substitute into (10) the gPC expansion xn,M
i (z), vn,M

i (z) of the 
particles

vn+1,M
i =χ

(
ξ < e−ν�t) vn,M

i

+ (1 − χ
(
ξ < e−ν�t)) N�∑

�=1

χ
(

xn,M
i ∈ I�

)(
Un,M

� + ṽ i

√
T n,M

�

)
.

(21)

Hence, the projection of (21) on the linear space, for each h = 0, . . . , M , is given by

v̂n+1
i,h = χ

(
ξ < e−ν�t) v̂n

i,h + (1 − χ
(
ξ < e−ν�t)) N�∑

�=1

Ŵ n,�
i,h , (22)

with the collision matrix

Ŵ n,�
i,h =

∫
�

χ
(

xn,M
i (z) ∈ I�

)(
Un,M

� (z) + ṽ i

√
T n,M

� (z)
)

�h(z)p(z)dz (23)

and where ṽ is a random variable with normal distribution as before.
The integral in (23) may be computed through standard Gaussian quadrature. For example, for a one-dimensional uncer-

tainty using K nodes we have

Ŵ n,�
i,h ≈

K∑
wk χ

(
xn,M

i (zk) ∈ I�
)(

Un,M
� (zk) + ṽ i

√
T n,M

� (zk)

)
�h(zk) (24)
k=1

7
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being {zk, wk}K
k=1 respectively the nodes and the weights. We remark that the local quantities in the Gaussian nodes are 

computed accordingly to (20) and the shift and scale method defined by (11) permits to preserve exactly mass, momentum 
and energy in each cell and at each collocation node.

Algorithm 3 sG BGK collision step.

• Compute the initial gPC expansions {xM,0
i , v M,0

i }N
i=1 from the initial distribution f 0(x, v);

• compute the velocities {ṽ i}N
i=1 by sampling a standard normal distribution N (0, 1) according to (11);

• for n = 0 to nTOT − 1, given the projections {x̂n
i,h, v̂n

i,h, i = 1, . . . , N, h = 0, . . . , M}:

– compute ρn,M
� (zk), U n,M

� (zk), T n,M
� (zk) in each cell I� , with � = 1, . . . , N� , k = 1, . . . , K according to (20);

– for every particle i = 1, . . . , N:
∗ select ξ uniformly in (0, 1);
∗ compute the post interaction projections v̂n+1

i,h according to (22);
• end for.

Stochastic Vlasov transport step. In the presence of uncertainties the equations of motion of the particles are given by

dxi(t, z)

dt
= vi(t, z),

dvi(t, z)

dt
= E(xi, t, z).

The gPC expansion of the particles’ systems xM
i (t, z), v M

i (t, z) is solution to

dxM
i (t, z)

dt
= v M

i (t, z),
dv M

i (t, z)

dt
= E M(xM

i , t, z).

Hence, we project the latter set of ODEs in the linear space {�h(z)}M
h=0 to obtain

dx̂i,h(t)

dt
= v̂ i,h(t),

dv̂i,h(t)

dt
=
∫
�

E M(xM
i , t, z)�h(z)p(z)dz. (25)

Considering the time and spatial discretization introduced before, given the projections {x̂n
i,h, ̂vn

i,h} and the electric field 
{En+1/2,M

� (z)}N�

�=1, the three step method at the level of projected quantities reads

x̂n+1/2
i,h = x̂n

i,h + v̂n
i,h�t/2, (26)

v̂n+1
i,h = v̂n

i,h + �t
N�∑

�=1

∫
�

En+1/2,M
� (z)χ(xn+1/2,M

i (z) ∈ I�)�h(z)p(z)dz, (27)

x̂n+1
i,h = x̂n+1/2

i,h + v̂n+1
i,h �t/2. (28)

The integral in (27) is again computed with Gauss quadrature on K nodes: as a consequence, the electric field needs to be 
calculated for every Gaussian nodes. This can be done by solving in parallel the Poisson equation as exposed in Section 3.1
for every {zk}K

k=1.
Since m(z) does not depend on time and does not affect the dynamics, the scheme conserves the total mass. Moreover, 

the following proposition holds.

Proposition 1. The sG Vlasov transport step conserves the total momentum provided the Poisson solver is such that

N�∑
�=1

En+1/2,M
� (z)ρn+1/2,M

� (z) = 0, (29)

at each collocation node used to evaluate (27).

Proof. Summing up the contributions of all the particles we obtain from (27)

N∑
i=1

v̂n+1
i,h =

N∑
i=1

v̂n
i,h + �t

N�∑
�=1

∫
�

En+1/2,M
� (z)

N∑
i=1

χ(xn+1/2,M
i (z) ∈ I�)�h(z)p(z)dz

=
N∑

i=1

v̂n
i,h + �t

∫
N

m(z)

⎛
⎝ N�∑

�=1

En+1/2,M
� (z)ρn+1/2,M

� (z)

⎞
⎠�h(z)p(z)dz,
�

8
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with ρM
� (z) defined in (20). Now, since by assumption (29) the term within brackets vanishes at the collocation nodes used 

to evaluate the above integral, we have

N∑
i=1

v̂n+1
i,h =

N∑
i=1

v̂n
i,h

which implies moment conservation. �

Algorithm 4 sG Vlasov transport step.

• Compute the initial gPC expansions {x0,M
i , v0,M

i }N
i=1 from the initial distribution f 0(x, v);

• for n = 0 to nTOT − 1,
given the projections {(x̂n

i,h, v̂n
i,h), i = 1, . . . , N, h = 0, . . . , M}:

– compute the free transport on �t/2 according to (26), and apply the boundary conditions;
– compute the mass ρn+1/2

l (zk) in the nodes and then the electric field {En+1/2
l (zk)}Nl

l=1 by solving the Poisson equation with a mesh based method 
satisfying condition (29);

– update the velocities on �t according to (27)
– compute the free transport on �t/2 according to (28), and apply the boundary conditions;

• end for.

In the following we are interested both in periodic and reflecting boundary conditions on the space domain I = [L−, L+]
discretized by means of N� cells. To this end, we may observe that periodic conditions correspond to rewrite the position 
of the ith particle at time tn as follows

xn,M
i (z) =

⎧⎪⎨
⎪⎩

xn,M
i (z) L− ≤ xn,M

i (z) ≤ L+
xn,M

i (z) + (L+ − L+) xn,M
i (z) < L−

xn,M
i (z) − (L+ − L+) xn,M

i (z) > L+.

Therefore, at the level of projections we have for all h = 0, . . . , M

x̂n
i,h =

∫
�

{
χ
(

xn,M
i (z) < L−

)(
xn,M

i (z) + (L+ − L−)
)

+ χ
(

xn,M
i (z) > L+

)(
xn,M

i (z) − (L+ − L−)
)

+ χ
(

L− ≤ xn,M
i (z) ≤ L+

)
xn,M

i (z)

}
�h(z)p(z)dz.

(30)

On the other hand, reflecting boundary conditions [34] on the pair (x̃n,M
i (z), ṽn,M

i (z)) reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn,M
i (z) = x̃n,M

i (z),
if L− ≤ xn,M

i (z) ≤ L+
vn,M

i (z) = ṽn,M
i (z)

xn,M
i (z) = L− − |x̃n,M

i (z) + L+|sgn(ṽn,M
i (z)),

if xn,M
i (z) < L−

vn,M
i (z) = −ṽn,M

i (z)

xn,M
i (z) = L+ − |x̃n,M

i (z)L−|sgn(ṽn,M
i (z)),

if xn,M
i (z) > L+,

vn,M
i (z) = −ṽn,M

i (z)

from which we have the projections for all h = 0, . . . , M

x̂n
i,h =

∫
�

{
χ
(

x̃n,M
i (z) < L−

)(
L− − |x̃n,M

i (z) + L+|sgn(ṽn,M
i (z))

)

+ χ
(

x̃n,M
i (z) > L+

)(
L+ − |x̃n,M

i (z)L−|sgn(ṽn,M
i (z))

)

+ χ
(

L− ≤ x̃n,M
i (z) ≤ L+

)
x̃n,M

i (z)

}
�h(z)p(z)dz,

(31)
9
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Fig. 1. Numerical approaches to stochastic Vlasov-Fokker-Planck equations. The left branch describes the classical sG approach based on finite differ-
ences/volumes, whereas the right branch sketches the stochastic particle Galerkin approach.

v̂n
i,h =

∫
�

{
χ
(

x̃n,M
i (z) < L−

)(
−ṽn,M

i

)
+ χ

(
x̃n,M

i (z) > L+
)(

−ṽn,M
i

)

+ χ
(

L− ≤ x̃n,M
i (z) ≤ L+

)
ṽn,M

i (z)

}
�h(z)p(z)dz.

(32)

As before, the integrals are computed with Gaussian quadrature.

Approximation of quantities of interest. To analyze the effects of uncertainties on the kinetic model (1) we are generally 
interested in quantities of interest (QoI) q[ f ] that can be computed from the distribution function. In the present setting, 
the QoI is simply the identity, i.e. q[ f ] = f . Anyway, more generally, it may be given by any moment of the kinetic solution.

In Fig. 1 we sketch two approaches for the approximation of QoI of the Vlasov-Fokker-Planck equation. In the left branch 
we find the standard sG approach, in which we first consider the gPC approximation of the original problem that generates 
a coupled system of VFP-type PDEs. The resulting systems can be solved by classical deterministic finite difference/volume 
methods. In the right branch we describe instead the stochastic Galerkin particle reformulation of the problem, in which 
the gPC approximation is considered at the particle level. We highlight that, in view of the above particle reformulation of 
the problem, the distribution is defined from a sample of N particles {xn

i (z), vn
i (z)}N

i=1 as follows

f n
N(x, v, z) = m(z)

N

N∑
i=1

δ(x − xn
i (z)) ⊗ δ(v − vn

i (z)),

where δ(·) is the Dirac delta. In particular, we approximate this quantity as

f n,M
N (x, v, z) = m(z)

N

N∑
i=1

δ(x − xn,M
i (z)) ⊗ δ(v − vn,M

i (z)),

having defined {xn,M
i (z), vn,M

i (z)}N
i=1 in (17) and where (x̂n

i,h, ̂vn
i,h) are solution of (22) for the collision step and of 

(26)-(27)-(28) for the transport step.

4. Numerical tests

In this section, we present several numerical results for the DSMC-sG Algorithm 3 and 4. In all the following tests, 
we consider the second order Strang splitting method exposed in Section 3 on the time interval [0, t f ]. We restrict to bi-
dimensional phase space (x, v) ∈ R × R, for the sake of simplicity, however the results hold also in higher-dimensional 
phase space. We reconstruct the densities through histograms with N� = 100 cells in the spatial domain and Nv = 200 cells 
in the velocity domain. The Poisson equation is solved with a finite difference method on a uniform grid of Nx = N� + 1 =
101 points, with periodic or Dirichelet boundary conditions [45], adopting a stochastic collocation approach [49]. In all the 
test we considered uniform uncertainties, that are linked to Legendre polynomials in the Wiener-Askey scheme, see [50]. 
The details of the initial sampling techniques are presented in Appendix A.

First we consider the linear and nonlinear Landau damping, then we check the spectral convergence of the scheme and 
we investigate another standard plasma test, the two stream instability, both in linear and nonlinear case. In the end, we 
investigate the hydrodynamic limit of the model with the standard Sod shock tube test.
10
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4.1. Test 1: Landau damping

The Landau damping [29,47] in one of the greatest theoretical results of the collisionless plasma physics. It corresponds to 
the exponential decay of the electromagnetic waves without energy dissipation, as a result of the wave-particle interaction. 
The charged particles in motion with a velocity lower than the phase velocity of the wave gain energy from it, leading to 
the electromagnetic energy damping. On the contrary, particles with a velocity greater than the phase velocity yield energy 
to the wave, causing its energy increasing. As a result, although the total energy of the Vlasov-Poisson equation is conserved 
for every z ∈Rdz , i.e.

d

dt

⎡
⎢⎣1

2

∫
R3

∫
R3

|v|2 f (x, v, t, z)dxdv + 1

2

∫
R3

|E(x, t, z)|2dx

⎤
⎥⎦= 0,

if there are more particles with v < vφ than particles with v > vφ , we may observe the decay of the L2-norm of the electric 
field

E(t, z) =
⎛
⎜⎝∫
R3

|E(x, t, z)|2dx

⎞
⎟⎠

1
2

(33)

with a specific damping rate γ . If we consider also a small but finite collision frequency ν , the damping is balanced by 
the interactions among the particles and, in the limit ν → +∞, we recover the fluid limit of the Vlasov equation with the 
electric field fluctuating around a constant value.

To observe the Landau damping, we consider a wave perturbation of the local Maxwellian distribution. If the perturbation 
is small, we are in the so-called linear Landau damping regime, if the wave amplitude increases, we get the nonlinear Landau 
damping regime.

Linear case. We consider, at the initial time, an uncertain perturbation of the local equilibrium

f0(x, v, z) = (1 + α(z) cos(kx))
1√

2π T
e− v2

2T , (34)

with x ∈ [0, 2π/k], k wave number and α(z) small random amplitude. The temperature is fixed T = 1.
To observe the phenomenon, the velocity domain has to be larger than the phase velocity of the wave vφ = ω/k, where 

ω is the frequency and vφ is the singularity of the dispersion relation. According to [13], the frequency ω can be estimated 
as

ω2 = 1 + 3k2,

while, for small wave numbers, a more accurate formula [31] gives

ω2 = 1 + 3k2 + 6k4 + 12k6.

In the collisionless regime [10], we are able to provide an approximation also for the damping rate γ , that is

γ = −
√

π

8

1

k3
exp

(
− 1

2k2
− 3

2

)

for large k, and

γ = −
√

π

8

(
1

k3 − 6k

)
exp

(
− 1

2k2 − 3

2
− 3k2 − 12k4

)

for smaller wave number.
We consider N = 107 particles, �t = 0.1, M = 5 for the stochastic Galerkin projection and α(z) = 1

20 + 1
10 z, z ∼ U([0, 1])

in (34). We select k = 0.5 and we investigate different collisional regimes corresponding to the choices ν = 0, 1, 103. We 
apply periodic boundary conditions on the particles in the space domain according to (30) and on the Poisson equation.

In Fig. 2 we show the logarithm of the expectation and the variance of E(t, z). As expected, in the collisionless scenario 
ν = 0, the numerical results are in agreement with the theoretical damping rate γ = −0.1533 and with the approximation 
of the electric field obtained, e.g., in [45]. With a collision frequency ν = 1, we observe that the interactions between the 
particle balance the damping and the electric field exhibits a slower decreasing with respect to the collisionless case. With 
a bigger frequency ν = 103, we note that the electric field fluctuates around a constant value, as expected (see, e.g., [17]).
11
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Fig. 2. Test 1: linear Landau damping. Logarithm of Ez[E(t, z)] (top row) and Varz[E(t, z)] (bottom row) for ν = 0 (left), ν = 1 (centre) and ν = 103 (right) 
in linear Landau damping. We choose k = 0.5, N = 107 particles, M = 5 and �t = 0.1. We considered the initial condition (34) with α(z) = 1

20 + 1
10 z, 

z ∼ U([0, 1]). The theoretical damping rate is γ = −0.1533.

As we can observe from the bottom row of Fig. 2, the dynamics of the variance shows a time evolution that is similar to 
the expected value. This is an effect of the linear perturbation regime, since the oscillation frequency of the electromagnetic 
wave depends only on the wave number.

Nonlinear case. We investigate now the nonlinear case, that is, we consider the initial distribution (34) with N = 5 · 107

particles and the same computational setting as before with the only difference of a greater perturbation amplitude. In 
particular, we choose α(z) = 2

5 + 3
5 z, z ∼ U([0, 1]), in the collisionless scenario ν = 0, and α(z) = 1

5 + 2
5 z, z ∼ U([0, 1]), for 

ν = 1, 103.
The analytical estimations obtained in the previous paragraph via the linear theory no longer hold. Since the electric 

potential is larger, it could happen that particles remain trapped in the potential well of the electromagnetic wave. This 
is the so-called electron trapping. The trapped particles, fluctuating into the well, cause both damping and growth of the 
electric field. In literature there exist several approximations for the damping γd and growth γg rates in the nonlinear 
regime, from which we can compare our numerical results, see e.g. [4,9,17,24,30,41] and the references therein.

As we can observe in Fig. 3, in the collisionless scenario the numerical results are in accordance with the theoretical 
approximations of the rates, i.e. γd = −0.2920 and γg = 0.0815. With collision frequencies ν = 1, 103, we observe that 
the interactions between the particles induce slight different behaviors of the electric energy, balancing the damping and 
growth behavior. We observe also that the variance, as the time increases, exhibits a shift in the peaks of oscillation. Unlike 
the linear case, the frequency of the electric wave appears as dependent on the initial uncertain amplitude.

In Fig. 4 we show the typical profiles of the expectation and variance of the distributions in the collisionless case, at 
fixed times t = 10, 30, 50 and we note that the expected value and the variance in z exhibit similar foliation patterns.

4.2. Test 2: spectral convergence

We numerically check for the convergence in the space of the random parameters of the Algorithm 4, i.e. the collisionless 
Vlasov-Poisson system with ν = 0.

We consider the initial distribution

f0(x, v, z) = ρ(x)
1√

2π T (z)
e− v2

2T (z) , (35)

with initial random temperature T (z) = 4
5 + 2

5 z, z ∼ U([0, 1]) and mass

ρ(x) = 1√ e−(x−6)2
π

12
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Fig. 3. Test 1: nonlinear Landau damping. Logarithm of Ez[E(t, z)] (top row) and Varz[E(t, z)] (bottom row) for ν = 0 (left), ν = 1 (centre) and ν = 103

(right) in nonlinear Landau damping. We choose k = 0.5, N = 5 · 107 particles, M = 5 and �t = 0.1. We considered the initial condition (34) with α(z) =
2
5 + 3

5 z, z ∼U([0, 1]). In the collisionless scenario the damping rate is γd = −0.2920 and the growth rate is γg = 0.0815.

Fig. 4. Test 1: nonlinear Landau damping. We report Ez[ f (x, v, t, z)] (top row) and Varz[ f (x, v, t, z)] (bottom row) at fixed times t = 10, 30, 50, in collision-
less nonlinear Landau damping. We choose k = 0.5, N = 5 · 107 particles, M = 5 and �t = 0.1. We considered the initial condition (34) with α(z) = 2

5 + 3
5 z, 

z ∼ U([0, 1]).

in the physical domain x ∈ [0, 4π ]. We use N = 106 particles and �t = 0.1, solving the Poisson equation with periodic 
boundary conditions.

To observe the convergence, we consider a reference sG particle solution obtained with M = 30 and we store the initial 
data, the only source of randomness of the scheme, so that the same data is used for the different values of M . In Fig. 5
we show in semilogarithmic scale the decay of the L2 error in the evaluation of the observable E(t, z) defined in (33), for 
13
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Fig. 5. Test 2: spectral convergence. L2 error in the evaluation of E(t, z) of the sG particle scheme at fixed time t = 1. We consider N = 106 particles, 
�t = 0.1 and a reference solution computed with M = 30. We consider the initial condition (35) with T (z) = 4

5 + 2
5 z, z ∼U([0, 1]).

Fig. 6. Test 3: linear two stream instability. Logarithm of Ez[E(t, z)] (left) and Varz[E(t, z)] (right) in collisionless linear two stream instability. We choose 
k = 0.2, N = 5 · 107 particles, M = 5 and �t = 0.1. We considered the initial condition (36) with α(z) = 3 · 10−3 + 4 · 10−3z, z ∼ U([0, 1]). The theoretical 
growth rate is γ = 0.2258.

increasing M and at fixed time t = 1. Exponential decay of the error up to machine precision is observed, which shows that 
the sG particle scheme is spectrally accurate in the space of the random parameters.

4.3. Test 3: two stream instability

Another classical effect of the collisionless plasma is the so-called two stream instability. If we initialize the electron 
velocities as a non-isotropic two beam distribution, contrary to the Landau damping, we have more particles with v > vφ

than particles with v < vφ . As a consequence, the electromagnetic wave gains energy from the electrons, giving birth to 
instabilities represented by typical swirling and warped pattern of the particle distribution function. In the following, we 
will investigate the linear and the nonlinear case.

Linear case. We consider the initial distribution

f0(x, v, z) = (1 + α(z) cos(kx))
1√

2π T

(
e− (v−v̄)2

2T + e− (v+v̄)2
2T

)
, (36)

with fixed temperature T = 1 and v̄ = 2.4. As before, we have x ∈ [0, 2π/k].
In the collisionless scenario, if the perturbation amplitude is small enough, after a certain amount of time the logarithm 

of the L2-norm of the electric energy grows linearly with a specific rate γ , see e.g. [10,30,48].
We choose N = 5 · 107 particles M = 5, k = 0.2, ν = 0 and α(z) = 3 · 10−3 + 4 · 10−3z, z ∼ U([0, 1]). As in the Landau 

damping tests, we apply periodic boundary conditions on the particles and on the Poisson equation. In Fig. 6, we show 
the expectation and variance of the electric energy and we observe that the results fit the theoretical linear growth of 
γ = 0.2258. After a certain point, we note that the mean reaches a stable value with a non zero variance, meaning that the 
uncertainties are not dampened by the dynamics of the model.

In Fig. 7, we present the expectations and variances of the distribution at fixed times t = 0, 20, 50. As the time increases, 
the typical whirling profiles of the linear two stream instability become more evident both in the mean and the variance.
14
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Fig. 7. Test 3: linear two stream instability. We report Ez[ f (x, v, t, z)] (top row) and Varz[ f (x, v, t, z)] (bottom row) at fixed times t = 0, 20, 50, in col-
lisionless linear two stream instability. We choose k = 0.2, N = 5 · 107 particles, M = 5 and �t = 0.1. We considered the initial condition (36) with 
α(z) = 3 · 10−3 + 4 · 10−3z, z ∼U([0, 1]).

Nonlinear case. We consider here the nonlinear two stream instability. We choose the initial conditions

f0(x, v, z) = (1 + α(z) cos(kx))
1√

2π T

(
e− (v−v̄)2

2T + e− (v+v̄)2
2T

)
, (37)

with fixed temperature T = 0.3, v̄ = 0.99 and wave number k = 2/13. The physical domain is x ∈ [0, 2π/k]. We apply 
periodic boundary conditions on the particles and on the Poisson equation.

We choose N = 5 ·107 particles, M = 5, �t = 0.1 and the perturbation amplitude α(z) = 4 ·10−2 +2 ·10−2z, z ∼ U([0, 1]). 
In the following, we investigate different collisional regimes corresponding to the choices ν = 0, 1, 103.

In the collisionless scenario, the nonlinear phenomenon of the electron trapping causes stronger distortions of the dis-
tribution f (x, v, t, z), which can not be treated analytically, as we can observe from Ez[ f (x, v, t, z)] in Fig. 8 at times 
t = 0, 15, 20. In the same figure we report the values of Varz[ f (x, v, t, z)] computed at the same times from which we get 
information on the deviation from expected trends.

If we consider a non-zero collision frequency ν , the interactions among the particles balance the electron trapping 
phenomenon letting the system reach the Maxwellian equilibrium quickly, as we can see from Fig. 9 and 10.

4.4. Test 4: Sod shock tube

To evaluate the capability of the sG particle scheme to capture the limit Euler-Poisson system (5), we perform the Sod 
shock tube test [44] for different collisional regimes, comparing our results with a collocation method applied to a Lax-
Fridrichs and a WENO scheme [42]. The test is a typical Riemann problem, namely it consists in a piecewise constant initial 
value problem with a discontinuity in the space domain. In particular, we consider two different settings: the first with an 
uncertain initial temperature, the second with an uncertain position of the interface.

Uncertain initial temperature. We consider the initial distribution

f0(x, v, z) = ρ0(x)√
2π T0(x, z)

e
− v2

2T0(x, z) ,

with x ∈ [0, 1]. The mass ρ0(x) and the uncertain temperature T0(x, z) are initialized as

ρ0(x) = 1, T0(x, z) = 1 + α(z) if 0 < x < 0.5

ρ (x) = 0.125, T (x, z) = 0.8 + α(z) if 0.5 < x < 1
(38)
0 0
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Fig. 8. Test 3: nonlinear two stream instability. We report Ez[ f (x, v, t, z)] (top row) and Varz[ f (x, v, t, z)] (bottom row) at fixed times t = 0, 15, 20, in 
collisionless nonlinear two stream instability. We choose k = 2/13, N = 5 · 107 particles, M = 5 and �t = 0.1. We considered the initial condition (37) with 
α(z) = 4 · 10−2 + 2 · 10−2z, z ∼U([0, 1]).

Fig. 9. Test 3: nonlinear two stream instability. We report Ez[ f (x, v, t, z)] (top row) and Varz[ f (x, v, t, z)] (bottom row) at fixed times t = 0, 1, 5, in 
nonlinear two stream instability with ν = 1. We choose k = 2/13, N = 5 · 107 particles, M = 5 and �t = 0.1. We considered the initial condition (37) with 
α(z) = 4 · 10−2 + 2 · 10−2z, z ∼U([0, 1]).

with α(z) = 0.25z, z ∼ U([0, 1]). We choose N = 107, M = 5, �t = 0.01 and we consider different collisional regimes cor-
responding to the choices ν = 1, 103. We implement Dirichelet boundary conditions for the Poisson equation and reflecting 
boundary conditions for the particles according to (31) and (32).

We compute a reference solution with N = 108 particles, N� = 200 cells, ν = 104 and the other parameters as before, 
to compare the results of the two collisional regimes. In particular, we compare the expectations of the mass ρ(x, z) and 
temperature T (x, z) at the final time t = 0.15, with respect to the reference solution. In Fig. 11 we observe that for ν = 103
16
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Fig. 10. Test 3: nonlinear two stream instability. We report Ez[ f (x, v, t, z)] (top row) and Varz[ f (x, v, t, z)] (bottom row) at fixed times t = 0, 1, 5, in 
nonlinear two stream instability with ν = 103. We choose k = 2/13, N = 5 · 107 particles, M = 5 and �t = 0.1. We considered the initial condition (37)
with α(z) = 4 · 10−2 + 2 · 10−2z, z ∼U([0, 1]).

(top row) the mean values together with the confidence intervals fit the reference solution, while for ν = 1 (bottom row) 
the frequency of collisions is obviously not enough to justify the fluid limit.

We solve the same uncertain Riemann problem with a first order in time and space Lax-Friedrichs (LF) method, and a 
third order in time, fifth order in space WENO scheme. For the uncertain parameter, we adopted a stochastic collocation 
method with 11 collocation nodes, LF is solved with 1500 cells and a CFL number equal to 0.1, WENO35 with 200 cells and 
CFL number 0.5. The results are summarized in Fig. 12. We observe that the reference particle sG solution (red circles) is in 
good accordance with the Lax-Friedrichs results (solid black line), since they both are first order.

Uncertain interface position. We consider now the distribution at the initial time

f0(x, v, z) = ρ0(x, z)√
2π T0(x, z)

e
− v2

2T0(x, z) ,

with x ∈ [0, 1]. In this scenario, we design an uncertain initial interface, i.e.

ρ0(x, z) = 1, T0(x, z) = 1 if 0 < x < 0.5 + α(z)

ρ0(x, z) = 0.125, T0(x, z) = 0.8 if 0.5 + α(z) < x < 1
(39)

with α(z) = −0.05 + 0.1z, z ∼ U([0, 1]). Again, we choose N = 107, M = 5, �t = 0.01 and we consider different collisional 
regimes corresponding to the choices ν = 1, 103. The boundary conditions for the particles and the Poisson equation are the 
same as the previous test.

The reference solution is computed with N = 108 particles, N� = 200 cells, ν = 104 and the other parameters as before. 
In Fig. 13 we show the expectations and the confidence intervals of the mass and temperature at the final time t = 0.15. 
We observe that in the collisional regime, assumed here to be characterized by the frequency ν = 103 (top row), the results 
are in agreement with the reference solution. For ν = 1 (bottom row) clearly the collision frequency is far from the fluid 
limit and the profiles computed from the kinetic density differ from the ones of reference solution.

As in the previous case, we compare the particle sG solver with a first order in time and space Lax-Friedrichs (LF) 
method, and a third order in time, fifth order in space WENO scheme. The computational setting is the same as before: we 
adopted a stochastic collocation method with 11 collocation nodes, LF is solved with 1500 cells and a CFL number equal to 
0.1, WENO35 with 200 cells and CFL number 0.5. In Fig. 14 we may observe that the reference particle sG solution (red 
circles) is in good accordance with the Lax-Friedrichs results (solid black line).
17
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Fig. 11. Test 4: Sod shock tube. We report Ez[ρ(x, t, z)] (left) and Ez[T (x, t, z)] (right) for ν = 103 (top) and ν = 1 (bottom), at fixed times t = 0.15, for 
the Sod shock test with uncertain initial temperature. We choose N = 107, M = 5, �t = 0.01. We considered the initial condition (38) with α(z) = 0.25z, 
z ∼ U([0, 1]). Reference solution computed with N = 108 particles.

Fig. 12. Test 4: Sod shock tube. Comparison of the particle sG reference solution with Lax-Friedrichs and WENO schemes. We considered the initial condition 
(38) with α(z) = 0.25z, z ∼ U([0, 1]). The particle solution is computed with N = 108, M = 5 and �t = 0.01. Lax-Friedrichs is solved with 1500 cells and 
CFL number 0.1, WENO with 200 cells and CFL number 0.5. In both cases we use a stochastic collocation approach with 11 nodes. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

5. Conclusions

We presented a novel numerical method based on a sG projection of the corresponding particle dynamics for uncertainty 
quantification in collisional plasma physics. From a mathematical viewpoint, the system under investigation is described by 
a Vlasov-Poisson kinetic model with BGK-type interactions. The numerical strategy, unlike sG approximations based on a 
direct discretization of the system of PDEs, preserves the main physical properties of the system, including the positivity of 
the solution. In addition, thanks to a splitting approach and an exact representation of the collisional process, the method 
satisfies the asymptotic-preserving property. As a consequence, in the fluid-dynamic limit, it originates a sG particle method 
for the corresponding Euler-Poisson system. A collection of numerical examples, ranging from linear and nonlinear Landau 
damping to Sod shock tube, highlighted the spectral accuracy for smooth solutions in the random space and the validity of 
the present approach for problems with different space and time scales in presence of uncertainty. Future research directions 
18
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Fig. 13. Test 4: Sod shock tube. We report Ez[ρ(x, t, z)] (left) and Ez[T (x, t, z)] (right) for ν = 103 (top) and ν = 1 (bottom), at fixed times t = 0.15, for the 
Sod shock test with uncertain interface position. We choose N = 107, M = 5, �t = 0.01. We considered the initial condition (39) with α(z) = −0.05 + 0.1z, 
z ∼ U([0, 1]). Reference solution computed with N = 108 particles.

Fig. 14. Test 4: Sod shock tube. Comparison of the particle sG reference solution with Lax-Friedrichs and WENO schemes. We considered the initial condition 
(39) with α(z) = −0.05 + 0.1z, z ∼ U([0, 1]). The particle solution is computed with N = 108, M = 5 and �t = 0.01. Lax-Friedrichs is solved with 1500
cells and CFL number 0.1, WENO with 200 cells and CFL number 0.5. In both cases we use a stochastic collocation approach with 11 nodes.

will be devoted to the introduction of a Landau type collision term for which the application of the sG particle method is 
not straightforward.
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Appendix A. Initial sampling

Given the initial condition f0(x, v, z), we consider the empirical distribution

f 0
N(x, v, z) = m(z)

N

N∑
i=1

S(x − x0
i (z)) ⊗ S(v − v0

i (z)),

in a way that formally f 0
N(x, v, z) → f0(x, v, z) as N → ∞. However, as already pointed out in [39], a direct application of 

standard sampling techniques may be nontrivial since we have to perform a gPC projection to obtain the coefficients as 
presented in Section 3.2.

Algorithm 5 sG projection of the initial positions.
• Generate a set of Gaussian nodes {zk}, for k = 1, . . . , K , from the distribution of the parameters p(z);
• discretize the spatial domain [L−, L+] in N� equally spaced cells in a way that x0 = L−, . . . , x�, . . . , xN�

= L+;
• for k = 1 to K :

– compute the mass fraction of every cell ρ0
�,k = ρ0

� (zk)/m(zk), with m(zk) =
∫

ρ0
� (zk)dx;

– set N�,k = Nρ0
�,k , number of particles to sample in cell;

– generate N�,k uniformly distributed positions {x0,M
i (zk)} in the interval [x�−1, x�], for every � = 1, . . . , N�;

end for;
• for h = 0, . . . , M:

– compute the projections x̂0
i,h according to (18);

end for.

Algorithm 6 sG projection of the initial velocities.
• Generate a set of Gaussian nodes {zk}, for k = 1, . . . , K , from the distribution of the parameters p(z);
• for i = 1 to N:

– generate a reference sample of ṽ0
i using suitable sampling method from the expected marginal Ez[ f v ] of f0(x, v, z) in x;

– compute v0,M
i (zk) =

√
T (zk)

T̃
ṽ0

i for each k = 1, . . . , K , being T̃ the temperature of Ez[ f v ]
end for;

• for h = 0, . . . , M:
– compute the projections v̂0

i,h according to (18);
end for.

Indeed, we first need to construct a random sample x0,M
i (z), v0,M

i (z), for i = 1, . . . , N such that

f 0
N(x, v, z) ≈ m(z)

N

N∑
S(x − x0,M

i (z)) ⊗ S(v − v0,M
i (z)),
i=1
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where x0,M
i (z) and v0,M

i (z) are given by (17). Hence, by direct integration we can compute the coefficients of the polynomial 
chaos expansion according to (18).

Since the integrals in the random space are approximated through a Gaussian quadrature rule, we want to generate a 
sample of positions and velocities in every Gauss collocation node {zk}K

k=1, in a way that

x̂0
i,h =

∫
�

x0
i (z)�h(z)p(z)dz ≈

M∑
k=1

x0,M
i (zk)wk�h(zk),

v̂0
i,h =

∫
�

v0
i (z)�h(z)p(z)dz ≈

M∑
k=1

v0,M
i (zk)wk�h(zk).

As a consequence, given f0(x, v, z) and p(z), distribution of the random parameters, we desire a set of samples

X1 = {x0,M
1 (z1), . . . , x0,M

N (z1)}, . . . , X K = {x0,M
1 (zK ), . . . , x0,M

N (zK )}
V 1 = {v0,M

1 (z1), . . . , v0,M
N (z1)}, . . . , V K = {v0,M

1 (zK ), . . . , v0,M
N (zK )},

such that {x0,M
i (zk), v0,M

i (zk)}, for k = 1, . . . , K , represent the different realizations of the same i-th particle {x0,M
i (·), v0,M

i (·)}. 
We observe also that we can sample independently positions and velocities since the initial distribution functions we con-
sidered are tensorised.

At the numerical level, one possible strategy in one-dimension is to sample Xk and V k independently with respect to the 
nodes zk , with any sampling method, and then to sort positions and velocities for any k = 1, . . . , K . In higher dimensions, 
the ordering technique is not possible and we need to solve an assignment problem in order to link particles. In this work, 
we focused on the 1D case, and we adopted the following techniques. To observe the physical phenomena presented in 
Section 4 we need to sample the density ρ0(z) carefully by reducing statistical fluctuations. To this aim, we adopted a 
stratified sampling method in each Gaussian node by sorting the vectors Xk for every k at the end.

Note that, if we consider continuous probability distributions with uncertainties in the variance, e.g. a Maxwellian with 
uncertain temperature, we can overcome the sorting method thanks to the scaling property of the second order moment 
(see [39]).
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