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We study modulational instability in a dispersion-managed system where the sign of the group-
velocity dispersion is changed at uniformly distributed random distances around a reference length.
An analytical technique is presented to estimate the instability gain from the linearized nonlinear
Schrödinger equation, which is also solved numerically. The comparison of numerical and analytical
results confirms the validity of our approach. Modulational instability of purely stochastic origin
appears. A competition between instability bands of periodic and stochastic origin is also discussed.
We find an instability gain comparable to the conventional values found in a homogeneous anomalous
dispersion fiber.

Modulational instability (MI) is a pervasive phe-
nomenon in the physics of nonlinear dispersive waves.
It manifests itself as the destabilization of a uniform
wavepacket by the exponential growth of small har-
monic perturbations around the carrier frequency of the
wavepacket [1]. Its study originated in hydrodynamics
[2, 3], but analogous phenomena were also discovered in
electromagnetic waves [4] and optical fibers [5]. The main
ingredients to observe MI are focusing cubic nonlinearity
(like the Kerr effect in silica) and anomalous (negative)
group-velocity dispersion (GVD).

Notwithstanding, MI can be found also in normal (pos-
itive) GVD, if higher-order dispersion [6] or birefringence
[7] are considered. Moreover, in single-mode fibers, the
periodic variation of GVD along the fiber length can also
give rise to MI in the normal GVD regime. This effect
is similar to the destabilization of a parametrically ex-
cited harmonic oscillator and is denoted as parametric
MI [8–12].

Optical fibers featuring random GVD variations were
also extensively studied. In the late 90s the exactly solv-
able white noise process was considered [9, 13–15]. More
recently some of the present authors focused on different
processes such as localized GVD kicks [16] and coloured
processes of low-pass and band-pass type [17].

So far, both periodic and random fluctuations have
been mostly assumed to occur around an average GVD
different from zero (and more often normal, to avoid
competition with conventional MI, which exhibits much
higher MI gain). The fluctuations can be large, though.

On the contrary, systems with zero average GVD have
attracted a lot of attention for the suppression of the
dispersion-induced pulse broadening and the optimiza-
tion of nonlinear pulse transmission [18, 19]. This ap-
proach is commonly denoted as dispersion-management
(DM): segments of positive and negative GVD alternate
along the fiber. The study of MI in periodic DM fiber
links [20] shows a behavior different from the parametric
MI: a threshold is found for the segment lengths below
which no MI appears. The amplitude of GVD variations
influences the MI spectral range, but has no effect on this

threshold.
Here we consider random fluctuations of the DM seg-

ment lengths. While pulse propagation in a similar sys-
tem was analyzed in Ref. [21], we focus here on MI, by
applying the technique developed in Ref. [14, 16]. Af-
ter deriving some analytical relations for uniformly dis-
tributed fluctuations around the periodic arrangement,
we compare them to numerical solutions. We find MI
bands of purely stochastic origin and characterize the
transition from periodic to stochastic DM.
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FIG. 1. Schematic representation of the GVD profile in a
typical fiber realisation.

We consider the propagation of optical pulses ruled by
the nonlinear Schrödinger equation (NLSE)[18],

i∂zU −
1

2
β2(z)∂ttU + γ|U |2U = 0, (1)

where U(t, z) is the complex envelope of the optical field,
(t,z) are the physical time and propagation distance in
a frame moving at the group velocity of the fiber mode,
γ the (constant) nonlinear coefficient, and β2(z) = ±β0

2

(β0
2 > 0) is the GVD, which takes only two values. As

schematically illustrated in Fig. 1, the sign changes occur
at z1, z2, . . . , zN , where zn = zn−1 + Ln, n = 1, 2, . . . , N
and z0 = 0. The lengths Ln are independent, identi-
cally distributed random variables with uniform proba-
bility distribution function in [L̄(1− ε), L̄(1 + ε)], where
L̄ is the average length of one fiber segment (half of the
DM period) and ε the amplitude of the fluctuation.
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Equation (1) has a continuous wave (t-independent)

solution U0(z) =
√
P exp(iγPz). In order to study

its stability, we insert in (1) the Ansatz U(z, t) =[√
P + x̌1(z, t) + ix̌2(z, t)

]
exp(iγPz), where x̌1,2 are as-

sumed to be small, linearize and Fourier-transform the
resulting equation with respect to t (ω is used as the as-
sociated angular frequency detuning from the carrier U0).
We obtain

dx

dz
=

[
0 −g(z)

h(z) 0

]
x, (2)

with x ≡ (x1, x2)T (functions of ω and z), g(z) = β2(z)ω
2

2
and h(z) = g(z) + 2γP . (2) is a system of stochastic
differential equations (SDEs) for each value ω.

Equation (2) is solved in the interval (z0, zN ) as a prod-
uct of random matrices, depending on the random vari-
ables Ln as

x(zN ) = T−(LN )T+(LN−1) . . . T−(L2)T+(L1)x(z0),

(3)

T±(Ln) =

[
cos(k±Ln) −µ± sin(k±Ln)

µ−1
± sin(k±Ln) cos(k±Ln)

]
, (4)

with k2
± = ±β

0
2ω

2

2

(
±β

0
2ω

2

2 + 2γP
)

, µ± = ±β
0
2ω

2

2k±
. The

sign ± is chosen according to the sign of GVD in the
corresponding segment. The wave-number k+ is always
real and positive, whereas k− is purely imaginary in the

conventional MI band 0 ≤ ω ≤
√

4γP
β0
2

.

If the DM link is periodic, i.e., ε = 0, we can apply
Floquet theory [20]. The unit cell of DM to be period-
ically replicated is represented by one positive and one
negative GVD trait of length L̄. The MI gain is defined
as G1(ω) ≡ 1

2L̄
ln max{|λ̃|, 1}, where λ̃ is the eigenvalue of

the monodromy matrix associated to (2) of largest mod-
ulus. This corresponds to T2L̄ ≡ T−(L̄)T+(L̄). In [20], it
was observed that a critical value L̄ ≈ 1.07 exists, below
which G1 = 0 identically. The MI gain is represented as
a false-color map in Fig. 2 for ω ≥ 0 (for ω ≤ 0 we obtain
its mirror image). The MI gain exhibits several lobes, in
general.

For random Ln, in Ref. [14, 16] it was shown
that we have to resort to the Lyapunov exponent
of the random linear map: the sample gain GS(ω) ≡
limzN→∞

1
zN

ln‖T+(LN )T−(Ln−1) . . . T+(L2)T−(L1)x(0, ω)‖2
converges for almost all realizations of the fiber and is a
deterministic quantity.

By taking the average of (3) and letting N → ∞, we
can estimate the MI gain as G1(ω) ≡ 1

2L̄
ln max {|λ|, 1},

where λ is the largest modulus eigenvalue of T ≡
〈T+〉〈T−〉 and the angle brackets denote the expectation
operation over the random lengths Ln. We can split the
averages because Ln are all mutually independent. Ele-

mentary integration gives

〈cos(mk±n)〉 = cos(mk±L̄)
sinmk±ε

mk±ε

〈sin(mk±n)〉 = sin(mk±L̄)
sinmk±ε

mk±ε
,

(5)

thus

〈T±〉 =
sin k±ε

k±ε

[
cos(k±L̄) −µ± sin(k±L̄)

µ−1
± sin(k±L̄) cos(k±L̄)

]
(6)

and T can be easily obtained as

FIG. 2. MI gain for a periodic DM fiber as a function of
detuning ω and period L. The red dashed horizontal line
identifies L̄ = 1.07 (MI threshold), while the cyan dotted line
denotes the reference value L̄ = 1.15, used in the inset and
below in the random length fluctuation examples.

T =
sin(k−ε)

k−ε

sin(k+ε)

k+ε
T2L̄. (7)

As common in random dynamical systems [22], we may
have G1 = 0 for all ω, implying that x1,2 decay on aver-
age. Particularly, it is apparent that for L̄ < 1.07, where
both eigenvalues of T2L̄ are on the unit circle, (7) implies
that G1(ω) = 0 identically, because T differs from T2L̄

only by a factor no larger than one.
Nevertheless, a different kind of instabilitity may oc-

cur, to understand which the study of second moments
is required. We let X1 = x2

1, X2 = x2
2, and X3 = x1x2

and derive from (2)

d

dz
X =

 0 0 −2g(z)
0 0 2h(z)

h(z) −g(z) 0

X, (8)

with X ≡ (X1, X2, X3)T. (8) can be again solved in
terms of transfer matrices X(zn) = M±(Ln)X(zn−1),
with

M±(Ln) =

 cos2 k±Ln µ2
± sin2 k±Ln −µ± sin 2k±Ln

µ−2
± sin2 k±Ln cos2 k±Ln µ−1

± sin 2k±Ln
µ−1
±
2 sin 2k±Ln −µ±

2 sin 2k±Ln cos 2k±Ln

 .
(9)
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The generic DM unit cell is associated to
M−(Ln)M+(Ln−1). After Ref. [14, 16], we define
G2(ω) ≡ 1

4L̄
ln max{|κ|, 1}, where here κ is the largest

modulus eigenvalue of M ≡ 〈M+〉〈M−〉. In the periodic
limit, the monodromy matrix associated to (8) is
M2L̄ ≡M−(L̄)M+(L̄) and G2 = G1, for every ω.

In the random case, we can easily find the expression of
M analytically by using (5), but the expression is rather
lengthy and it is not reported here.

In contrast to T , M is not, in general, trivially pro-
portional to M2L̄. This simple algebraic consideration
implies that we may have G2 > 0 even when G1 = 0.
Therefore new MI sidebands of purely stochastic origin
exist. The eigenvalues κ of M may be found analytically,
too. Their expression is very involved, though; we thus
rely on a numerical routine.

In order to assess the accuracy of our estimates, we also
solve (2) numerically, by taking a fixed number, N = 20,
of fiber segments. We take (x1(0), x2(0))T = (1, 0)
[equivalently, X(0)T = (1, 0, 0)] and multiply by the
transfer matrix (4) N times alternating the GVD sign
according to (3). We compute Pout = x2

1(zN ) + x2
2(zN )

(obviously, Pin = x2
1(0) + x2

2(0) = 1). We repeat this
calculation taking Niter different fiber realizations. The
mean gain is defined as either [16, 17, 23]

G1(ω;N) ≡ 1

NL̄
ln (|〈x1(zN )〉|+ |〈x2(zN )〉|) (10)

G2(ω;N) ≡ 1

2NL̄
ln

〈
Pout

Pin

〉
, (11)

which are compared to either G1 or G2, respectively.
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FIG. 3. MI gain curves for different values of L̄ and ε, for
ω ≥ 0. (a) L̄ = 1, ε = 0.2; (b) L̄ = 1, ε = 0.5; (c) L̄ = 1.15,
ε = 0.2; (d) L̄ = 1.15, ε = 0.5. Blue crosses (resp. purple
circles) represent G2 (resp. G1) from numerical data, the solid
yellow (resp. dash-dotted red) lines the theoretical estimates
G2 (resp. G1), the dashed blue (resp. dotted purple) lines

the semi-analytical estimates G̃2 (resp. G̃1). In (c)-(d), we
include as thin green dashed line the MI gain in the periodic
case ε = 0.

For definiteness, we take γ = P = β0
2 = 1, which

amounts to introduce the normalized distance z/znl → z,

time t/t0 → t, and field U/
√
P → U , where znl =

(γP )−1 is the so-called nonlinear length and t0 =
√
β0

2znl

is a characteristic time. The conventional MI in anoma-
lous GVD thus reaches the maximum value of G1,max =

G2,max = 1 at ω =
√

2; the MI sidelobes are found in
0 ≤ |ω| ≤ 2. We show in Fig. 3 four illustrative ex-
amples of MI sidelobes. We notice that, in general, G2

converges to G2 for Niter = 1 × 106, whereas in general
a much larger Niter = 1 × 107 − 1 × 108 is required to
achieve a stable and reliable estimate of G1.

We notice that G1 = G2 = 0 is expected at ω = 0.
G1 exhibits a single lobe (dash-dotted red lines), while
G2 grows monotonically to reach a maximum value at
around ω ≈ 2, then decays in an oscillatory way (solid
yellow lines). This is not the case in numerical re-
sults (blue crosses and purple circles), which are af-
fected by the limited size of the numerical domain and
present a finite G1,2 at ω = 0. This can be quan-
tified by deriving alternative semi-analytical estimates

of gain. We notice that T−(LN ) . . . T+(L1) ≈ T
N/2

(resp. M−(LN ) . . .M+(L1) ≈MN/2
) and define

G̃1 ≡
1

NL̄
ln
[(
T

N
2

)
11

+
(
T

N
2

)
21

]
, (12)

G̃2 ≡
1

2NL̄
ln
[(
M

N
2

)
11

+
(
M

N
2

)
21

]
, (13)

where matrix power are computed numerically and the
subscripts refer to the corresponding numerically com-
puted matrix elements. We notice in Fig. 3 that in every
case this estimate performs very well not only for ω ≈ 0,
but in the whole domain.

In Fig. 3(a)-(b), L̄ = 1 < 1.07 and ε increases from 0.2
to 0.5. The MI is of purely stochastic origin. The local
maximum value achieved by G2 at ω = ω2,max > 0, say
G2,max, increases with ε and becomes of the same order
of magnitude as the conventional MI (i.e., for constant
anomalous GVD). The width of the sidelobes increases
significantly as well.

In Fig. 3(c)-(d), L̄ = 1.15 > 1.07. There is thus a
competition between the periodic and the stochastic ef-
fects. We include also the periodic-DM MI sidelobe for
comparison (thin green dashed line).

For ε = 0.2 [Fig. 3(c)] the random fluctuations yield a
broadened MI sidelobe. In contrast to the case of con-
stant anomalous GVD perturbed by white-noise, where
the broadening is accompanied by a reduction of G2,max

[9], here this value is slightly enhanced. We notice also
that G1 is always less than its periodic counterpart, con-
sistently with (7). Comparison of Fig. 3(a) and Fig. 3(c)
shows that the main sidelobe appearing in the former
is located in the same region of the periodic sidelobe.
The random fluctuations facilitate the emergence of the
MI sidelobes in a range that coincides with the periodic
DM.

For a larger fluctuation (ε = 0.5), Fig. 3(d), the resid-
ual effect of periodicity is completely erased and we
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obtain a single wide lobe similar to the corresponding
below-threshold example of Fig. 3(b), but with a larger
G2,max.
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FIG. 4. (a) Maximum gain values and (b) their corresponding
ω as a function of ε. The cross (resp. plus) markers correspond
to the maxima G2,max for L̄ = 1 (resp. L̄ = 1.15). The
dashed (resp. solid) blue lines correspond to the maxima of
G2 for L̄ = 1 (resp. L̄ = 1.15). The green dash-dotted lines
report for reference the constant values found in the periodic
limit, i.e., the maxima of G1 = G2 for ε = 0. Finally the red
circles show the values of G1,max and ω1,max for L̄ = 1.15, for
which red dotted lines illustrate the corresponding maxima of
G1. In panel (b) the line stops at ε ≈ 0.54 (cut-off for G1).

In order to summarize our findings, we show in
Fig. 4(a)-(b), respectively, Gj,max and the correspond-
ing ω value, ωj,max, with j = 1, 2, as a function of ε.

Obviously, G1,max is the local maximum value of G1 at
ω = ω1,max > 0. We compare them to their corre-
sponding theoretical estimates, i.e., the maxima of G1

(resp. G2). Solid blue lines, crosses, red lines and circles
correspond to L̄ = 1.15, while dashed lines and pluses
correspond to L̄ = 1. In Fig. 4(a) we notice that G2,max

increases monotonically with ε. As expected, for ε → 0
the gain vanishes for L̄ = 1 and converges to the peri-

odic G1,max = 0.31 (for ε = 0, dash-dotted green line) for
L̄ = 1.15. For large ε they converge to two very similar
values, which is around 30% smaller than the conven-
tional MI value. The dotted red line in Fig. 4(a) shows
the maxima of G1 obtained from (7). For ε > 0.54,
G1 = 0 for every ω. For this value of the fluctuation
amplitudes, randomness completely overrule the effects
of periodicity. This is corroborated by the values G1,max

(red circles), which match very well with the theoreti-
cal estimates (provided that a large enough Niter is cho-
sen). In Fig. 4(b) we observe that for both L̄, ω2,max

decreases with ε and converges to a value larger than the
conventional MI value. It is always below its periodic
counterpart for L̄ = 1.15, apart from numerical fluctua-
tions. We also notice that ω2,max < ω1,max < 2.18, i.e.,
slightly below the ε = 0 value. For L̄ = 1, ω2,max is above
its periodic counterpart and crosses it for ε ≈ 0.3. The
theoretical estimates work very well for every considered
value of ε.

To conclude, we investigated the effect of uniformly
distributed random fluctuations of the length of DM fiber
links. We considered the MI problem and developed an
analytical technique to estimate the instability gain. The
MI gain attains values comparable with the conventional
ones in a homogeneous anomalous GVD fiber and up
to 50% larger those found for the periodic arrangement.
Comparison to the direct numerical solution in a Monte
Carlo fashion confirm the soundness of the method.

This may be of of interest for tailoring and control
of MI sidebands for telecommunications and parametric
sources.

ACKNOWLEDGMENTS

The present research was supported by IRCICA (USR
3380 CNRS), Agence Nationale de la Recherche (Pro-
gramme Investissements d’Avenir, I-SITE VERIFICO,
Labex CEMPI); Ministry of Higher Education and Re-
search; Hauts de France Council; European Regional De-
velopment Fund (Photonics for Society P4S, Wavetech),
CNRS (IRP FELANI).

[1] V. E. Zakharov and L. A. Ostrovsky, Modulation insta-
bility: The beginning, Physica D: Nonlinear Phenomena
238, 540 (2009).

[2] T. B. Benjamin and J. E. Feir, The disintegration of wave
trains on deep water Part 1. Theory, Journal of Fluid
Mechanics 27, 417 (1967).

[3] V. E. Zakharov, Stability of periodic waves of finite am-
plitude on the surface of a deep fluid, Journal of Applied
Mechanics and Technical Physics 9, 190 (1968).

[4] V. I. Bespalov and V. I. Talanov, Filamentary structure
of light beams in nonlinear liquids, ZhETF Pis ma Redak-
tsiiu 3, 471 (1966).

[5] K. Tai, A. Hasegawa, and A. Tomita, Observa-
tion of modulational instability in optical fibers,
Phys. Rev. Lett. 56, 135 (1986).

[6] S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and
A. S. Gouveia-Neto, Modulation instability in the region
of minimum group-velocity dispersion of single-mode op-
tical fibers via an extended nonlinear Schrödinger equa-
tion, Physical Review A 43, 6162 (1991).

[7] F. Biancalana and D. V. Skryabin, Vector modulational
instabilities in ultra-small core optical fibres, Journal of
Optics A: Pure and Applied Optics 6, 301 (2004).

[8] N. J. Smith and N. Doran, Modulational instabilities in
fibers with periodic dispersion management., Optics let-



5

ters 21, 570 (1996).
[9] F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and

F. Lederer, Modulational instability in optical fibers with
variable dispersion, Physics Letters A 220, 213 (1996).

[10] M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli,
and A. Mussot, Experimental demonstration of modula-
tion instability in an optical fiber with a periodic disper-
sion landscape., Optics letters 37, 4832 (2012).

[11] A. Armaroli and F. Biancalana, Tunable modulational
instability sidebands via parametric resonance in period-
ically tapered optical fibers, Optics Express 20, 25096
(2012).

[12] A. Mussot, M. Conforti, S. Trillo, F. Copie, and
A. Kudlinski, Modulation instability in dispersion oscil-
lating fibers, Advances in Optics and Photonics 10, 1
(2018).

[13] F. K. Abdullaev and J. Garnier, Modulational instability
of electromagnetic waves in birefringent fibers with peri-
odic and random dispersion, Physical Review E 60, 1042
(1999).

[14] J. Garnier and F. K. Abdullaev, Modulational instability
induced by randomly varying coefficients for the nonlin-
ear Schrödinger equation, Physica D: Nonlinear Phenom-
ena 145, 65 (2000).

[15] M. Chertkovt, I. Gabitov, and J. Moeser, Pulse confine-
ment in optical fibers with random dispersion, Proceed-
ings of the National Academy of Sciences of the United
States of America 98, 14208 (2001).

[16] G. Dujardin, A. Armaroli, S. R. Nodari, A. Mussot,
A. Kudlinski, S. Trillo, M. Conforti, and S. De Bievre,

Modulational instability in optical fibers with randomly
kicked normal dispersion, Physical Review A 103, 1
(2021).

[17] A. Armaroli, G. Dujardin, A. Kudlinski, A. Mussot,
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