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Abstract: Per- and polyfluoroalkyl substances can be referred to as the most critical group of contami-
nants of emerging concern. They can accumulate in high concentration in the kidney and are known
to potentially affect its function. Nonetheless, there is a lack of knowledge about their morphopatho-
logical effect on the glomerular filtration barrier. Since previous research suggests perfluorooctanoic
acid (PFOA) induces glomerular protein leakage, the glomerular filtration barrier of 30 carp from the
same parental stock (10 unexposed; 10 exposed to 200 ng L−1 of PFOA; and 10 exposed to 2 mg L−1

of PFOA for 56 days) was screened for possible PFOA-induced ultrastructural lesions in order to
shed light on the related pathophysiology. PFOA exposure affected the glomerular filtration barrier
in carp experimentally exposed to 2 mg L−1, showing ultrastructural alterations compatible with
glomerulonephrosis: podocyte effacement, reduction of filtration slits and filtration slit diaphragms,
basement membrane disarrangement, and occurrence of proteinaceous material in the urinary space.
The results of the present research confirm the glomerular origin of the PFOA-induced protein leakage
and can contribute to the mechanistic comprehension of PFOA’s impact on renal function and to the
assessment of the exposure effect of environmental pollutants on animals and humans, according to
the One Health approach.

Keywords: kidney; toxicologic pathology; environmental pathology; fish model; glomerular protein
leakage; per- and polyfluoroalkyl substances

1. Introduction

Despite the structural diversity of excretory organs among metazoan taxa, two mor-
phofunctional excretory compartments can be identified: the primary urine-producing
apparatus and the modulating tubule [1]. Notably, podocyte-based metanephridial systems
are the primary urine-producing apparatus of eucoelomates, including vertebrates, where
podocyte basic architecture is phylogenetically conserved [1]. Exclusive to vertebrates
are the more developed primary processes in the podocyte, the presence of glomerular
capillary loops, lined by fenestrated endothelial cells and the occurrence of mesangial
cells, specialized pericytes [1,2]. Accordingly, the glomerular filtration barrier is mainly
constituted by the vascular (fenestrated endothelial cells and mesangial cells) and epithe-
lial (podocytes) compartments and the interposed basement membrane [1]. Such basic
architecture is completed by the presence of glycocalyx on fenestrated endothelial cells,
but also between podocytes and basement membrane, and of a slit diaphragm between
contiguous pedicels, mainly formed by the transmembrane protein nephrin [3–7]. Since the
morphofunctional integrity of the glomerular filtration barrier is of paramount importance
to grant proper renal excretory functionality and all the integrated/related functions, it has
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been extensively studied for possible morphofunctional alteration, with particular regard
to proteinuria (urine protein leakage) [4,8–11].

Among other water pollutants, contaminants of emerging concern (CECs) are partic-
ularly relevant because they may cause ecological, wildlife, and human health impacts
because they are not fully regulated and/or not routinely monitored in the environment [12].
Per- and polyfluoroalkyl substances (PFAS) can be referred to as the most critical group of
CECs [13]; they can accumulate at high concentration in the kidney, playing a primary role
in their excretion, and are known to potentially affect renal function [14–24]. Nonetheless,
there is a generalized lack of knowledge about the morphopathological and ultrastructural
effects of these pollutants on the glomerular filtration barrier [14–24]. PFAS represent a
heterogeneous class of synthetic fluorinated chemicals, containing at least one fully flu-
orinated methyl or methylene carbon atom [25]. PFAS have been widely used in many
industrial processes and products (e.g., fire-suppressing foams, food packaging, textile
treatments) [26–28]. They are released into the environment during industrial production,
commercial use, final usage, and disposal, and being extremely stable and mobile in both
abiotic and biotic matrices, they are considered ubiquitous contaminants, belonging to
the group of persistent organic pollutants (POPs) [29,30]. Perfluorooctanoic acid (PFOA),
one of the best-known PFAS, shows amphiphilicity, having a hydrophobic 7-carbon chain
in which hydrogen atoms are substituted by fluorine atoms and a hydrophilic carboxylic
group [31]. PFAS are of high concern for aquatic ecosystems due to their strong water
solubility, persistence, and long half-life in organisms [32,33]. Recently, the European
Commission amended Annex I to Regulation (EU) No. 2019/1021 on persistent organic
pollutants (POPs Regulation) to ban PFOA, its salts, and PFOA-related compounds [34].
More recently, the U.S. Environmental Protection Agency has issued interim updated
drinking water health advisories for PFOA and perfluorooctane sulfonic acid (PFOS) [35].
In particular, the interim updated health advisories for PFOA are 0.004 ppt, which is
10−3 of the detection limit of the currently approved analytical method for PFOA, pos-
ing significant challenges in developing ultrasensitive analytical methods [36,37]. These
stresses underscore the worldwide concern about the effects of PFAS in general and PFOA
in particular.

Fish are certainly the best candidates for aquatic ecosystem monitoring purposes,
completing all their life cycle in water and being the most representative vertebrates [38].
With regard to PFAS, most fish studies have been performed on cyprinids, especially
Danio rerio (Hamilton, 1822) [39]. In spite of the unquestionable success and usefulness
of D. rerio in biomedical research, common carp (Cyprinus carpio Linnaeus, 1758) should
be regarded as an animal model both for field and experimental studies on PFAS due to
its widespread and abundant presence in freshwater ecosystems worldwide, the fact that
it is easy to rear and maintain in captivity, the fact that it is a food source, and the fact
that it has been considered an “ecological engineer” [22,40–42]. It is worth mentioning
that animals may be used according to the One Health approach, both as experimental
models in biomedical research and as indicator species for assessing the exposure effect of
environmental pollutants on humans and animals [43,44]. Common carp has already been
indicated as a sentinel fish for PFOA-induced damages and as a related fish model [45].

The effect of PFOA on the nephron modulator tubular compartment has previously
been tested in the same fish as the present study [22]. Ultrastructural evidence of glomerular
protein leakage was deduced from the increased glomerular protein ultrafiltrate pinocy-
tosis by epithelial cells in the first proximal tubular segment. Apart from glomerular
capillary bed dilation and reduction of the normal glomerular folding pattern, no appre-
ciable pathological changes were noted at light microscopy, despite the observation of
epoxy resin-embedded semithin sections [22]. Though these alterations were particularly
evident in specimens from fish exposed to the highest tested concentration (2 mg L−1), they
were also present, as incipient features, in fish exposed to the lowest tested concentration
(200 ng L−1), despite the fact that the analytical PFOA renal concentration was below the
limit of detection (LOD) [22]. The apparent discrepancy between morphopathological but
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also gene expression results and the related analytical PFOA tissue concentration under the
LOD in carp exposed to 200 ng L−1 PFOA has also been observed and discussed for the
liver, the renal hemopoietic tissue, the gonads, and the renal thyroid follicles from the same
carp as the present research, stressing the possible limitation/bias in the adoption of PFOA
analytical detection in tissues as a biomarker of exposure [22,45–47].

Though light microscopy should be regarded as the first line of investigation in pathol-
ogy, the adoption of transmission electron microscopy should be considered mandatory
in renal pathology, with particular regard to the study of the glomerular filtration bar-
rier [11,48–50]. Therefore, the carp from the previous research [22], experimentally exposed
to two PFOA concentrations (200 ng L−1 and 2 mg L−1) for 56 days, were specifically
screened for ultrastructural lesions at the glomerular filtration barrier level in comparison
to the unexposed ones, in order to shed light on the possible PFOA-induced glomerular
protein leakage pathophysiology.

Perfluorooctanoic acid exposure was shown to affect the glomerular filtration barrier
in all three of its main components (fenestrated endothelium, basement membrane, and
podocyte) in carp experimentally exposed to 2 mg L−1, showing ultrastructural signs com-
patible with the diagnosis of glomerulonephrosis. Accordingly, this is the first experimental
study documenting PFOA-induced lesions at the glomerular filtration barrier and can
contribute to the mechanistic comprehension of PFOA’s impact on renal function, with
particular regard to glomerular protein leakage, and the assessment of the exposure effect
of environmental pollutants to animals and humans, according to the One Health approach.

2. Materials and Methods

The renal samples examined during the present study were obtained from a previous
one [51], where 31 two-year-old common carp (total length: 19.32 ± 2.49 cm, body mass:
104.84 ± 27.80 g [mean ± standard deviation]) from the same parental stock were exper-
imentally exposed to two PFOA (PFOA standard, chemical purity 96%, Sigma-Aldrich
catalogue number 171468, Merck KGaA, Darmstadt, Germany) concentrations (200 ng L−1

[n = 10] and 2 mg L−1 [n = 11]) for 56 days, coherently with a sub-chronic exposure, in
a flow-through open system (500 mL of water min−1) and tissues examined for possible
induced alteration in comparison to unexposed, control fish (n = 10). In particular, the
dose of 200 ng L−1 was adopted as an environmentally relevant concentration based on
PFOA reports in surface water [52], whereas the dose of 2 mg L−1 was chosen to induce a
certain histological response, as previously reported in other cyprinid fish [53]. Fish were
euthanized by spinal cord severing after an anesthesia overdose with tricaine methane-
sulfonate (MS-222). Tissue PFOA concentrations were found to be below the limit of
detection (LOD = 0.4 ng g−1), using high performance liquid chromatography with electro-
spray ionization tandem mass spectrometry, in fish exposed to the lowest concentration
(200 ng L−1), while PFOA concentrations in fish from the highest tested concentration
(2 mg L−1) were 64.87 ± 24.25 in blood and 1.08 ± 0.54 in kidney (ng g−1 wet weight,
mean ± standard deviation) [51]. The reader is referred to Giari et al. (2016) [51] for further
details about the experimental design, fish biometry, and analytical quantification of PFOA
concentrations in tissues/organs, and to Manera et al. (2021, 2022) [22,45,54] for electron
microscopy technique.

In brief, referring only to the topic of the present study, 30 representative kidney
samples from 30 carp (10 unexposed, 10 exposed to 200 ng L−1 of PFOA, and 10 exposed
to 2 mg L−1 of PFOA) were collected and processed for electron microscopy as follows:
Samples were fixed in 2.5% glutaraldehyde buffered with sodium cacodylate (pH 7.3)
at 4 ◦C for 3 h, post-fixed in 1% osmium tetroxide for 2 h, dehydrated in a graded se-
ries of acetone, and embedded in epoxy resin (Durcupan™ ACM, Fluka, Sigma-Aldrich,
St. Louis, MO, USA). Ultrathin sections (90 nm) were contrasted with uranyl acetate and
lead citrate and examined under a Zeiss EM 910 transmission electron microscope (Carl
Zeiss Microscopy GmbH, Oberkochen, Germany) operating at 120 kV.
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3. Results

Unexposed fish showed the typical renal corpuscle structure found in vertebrates,
where podocytes, fenestrated endothelial cells, and the interposed basement membrane con-
stitute the glomerular filtration barrier. Podocytes showed a large cell body with elongated
branching cell processes (primary and secondary processes) ending in fine interdigitated
finger-like tertiary foot processes, also known as pedicels (average width = 228 nm), contact-
ing the basement membrane (average thickness = 146 nm) (Figure 1A). Contiguous pedicels
displayed interposed gaps where the basement membrane was not covered by the afore-
mentioned podocyte processes, thus forming the filtration slits (average width = 82 nm).
In correspondence with each filtration slit, a filtration slit diaphragm was appreciable as
a fine, electron-dense line bridging contiguous pedicels (Figure 1B). Glomerular endothe-
lial cells appeared as elongated, flattened cells, displaying the characteristic transcellular
perforations known as fenestrae (average width = 136 nm) (Figure 1A,B).
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Figure 1. Transmission electron micrographs of the glomerular filtration barrier in unexposed carp
(A,B), carp exposed to PFOA 200 ng L−1 (C), and carp exposed to 2 mg L−1 (D–F). (A) The normal
architecture of the glomerular filtration barrier is shown. The large bodies of podocytes (P) are
appreciable, along with the typical interdigitated finger-like tertiary foot processes (pedicels) (thin
arrows), contacting the underlying basement membrane, interposed between the foot processes and
the fenestrated endothelium (large arrows) of glomerular capillaries (GC). (BC) Bowman’s capsular
epithelium. (E) Erythrocyte. (*) Urinary space. Scale bar = 1 µm. (B) The slit diaphragm is appreciable
as a fine electron-dense line bridging contiguous pedicels (thin arrows) in correspondence of each
filtration slit. The typical fenestrae (large arrows) of the fenestrated endothelium of glomerular
capillaries (GC) are visible. (*) Urinary space. Scale bar = 0.5 µm. (C) The glomerular filtration barrier
of a carp exposed to the lowest tested concentration (200 ng L−1) shows a substantially maintained
architecture (cf. (A)), with particular regard to the relative number of filtration slits and the integrity of
slit diaphragms (thin arrows) and fenestrae (large arrows) of the fenestrated endothelium of glomeru-
lar capillaries (GC). (BC) Bowman’s capsular epithelium. (*) Urinary space. Scale bar = 0.25 µm.
(D) The glomerular filtration barrier shows podocyte effacement, with a drastic reduction in the
number of filtration slits, the fusion of pedicels, and the occurrence of a large, continuous cytoplas-
mic sheet (thin arrows). Focal vacuolations are visible in the podocyte (P) cell body and processes
(arrowheads). Furthermore, foamy proteinaceous material (ˆ) is observable in the urinary space (*).
(E) Erythrocyte. (GC) glomerular capillary. (Large arrows) fenestrated endothelium. Scale bar = 1 µm.
(E) Evidence of foot process fusion (thin arrows) is appreciable with the disappearance of filtration
slits in the glomerular filtration barrier. A single focal vacuolation (arrowhead) is observable in
an epithelial cell of Bowman’s capsule (BC). (*) Urinary space. (E) Erythrocyte. (GC) glomerular
capillary. (Large arrows) fenestrated endothelium. Scale bar = 1 µm. (F) At higher magnification,
pedicles (thin arrows) appear distorted, enlarged, and filtration slits drastically reduced, compared to
unexposed carp (cf. (B)) and carp exposed to the lowest tested concentration (cf. (C)). There is no
evidence of slit diaphragms in the occasionally present filtration slits. Evidence of close contact is
appreciable between the cell membranes of two contiguous pedicels (arrowheads). Disarrangement
and enlargement of the basement membrane (#) are also present compared to the carp of the other
two experimental groups (cf. (B,C)). Furthermore, irregular villous-like cytoplasmic projections
are visible (dotted arrows). (Large arrows) fenestrae of fenestrated endothelium. (*) Urinary space.
(GC) glomerular capillary. Scale bar = 0.4 µm.

The glomerular filtration barrier was affected by PFOA exposure, but only at the
highest tested concentration (2 mg L−1), whereas the ultrastructural architecture was main-
tained in fish exposed to the lowest tested dose (200 ng L−1) (Figure 1C). At the highest
dose, podocyte effacement occurred with retraction, widening, disarrangement, and fusion
of the normally interlocked finger-like pedicles, which were substituted by a continuous
cytoplasmic sheet (average width = 1713 nm) and/or pleomorphic, deformed pedicles
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(average width = 286 nm) (Figure 1D). As a consequence, there was a drastic reduction
in the number of filtration slits and filtration slit diaphragms and a general disarrange-
ment and relative enlargement of the basement membrane (average thickness = 237 nm)
(Figure 1E,F). Underlying fenestrated endothelial cells showed slightly enlarged fenestrae
(average width = 180 nm) and irregular villous-like cytoplasmic projections (Figure 1F).
Moreover, focal cytoplasmic vacuolations were observed in podocyte processes, and foamy,
proteinaceous material was detected in the urinary space (Figure 1D).

4. Discussion

The architecture of the glomerular filtration barrier of unexposed carp agrees with
previous studies in eucoelomates and vertebrates, in general, and in common carp, in
particular [1,55,56].

Perfluorooctanoic acid exposure was shown to affect the glomerular filtration bar-
rier in all three of its main components (fenestrated endothelium, basement membrane,
and podocyte) in carp experimentally exposed to 2 mg L−1, promoting the outflow of
proteinaceous material in the urinary space, hence confirming the glomerular origin of
the protein leakage reported in a previous study on the same fish [22]. The pathophys-
iology of proteinuria (urine protein leakage) continues to intrigue researchers, focusing
on the glomerular filtration barrier and/or proximal tubule integrity. With regard to the
glomerular filtration barrier, all the constitutive components may be altered to a various
degree and through possible reciprocal association due to the cross-talk between the main
cellular components: fenestrated endothelial cells and podocytes [5,7,57–60]. As the first
component of the glomerular filtration barrier, the glycocalyx is known to function as a
negatively charged ion sieve, making it particularly efficient to prevent/reduce albumin
leakage through the glomerular filtration barrier. As a consequence, its alteration is consid-
ered to be an incipient cause of proteinuria [4,5,57,61]. Unfortunately, glycocalyx requires
dedicated processing/staining techniques to ensure its best evaluation under transmis-
sion electron microscopy [62,63], and because specimens were processed routinely for the
present study, it was not possible to rule out possible alterations of glycocalyx related to
PFOA exposure and its possible contribution to proteinuria. More recently, transcytosis
by both the fenestrated endothelial cells and the podocytes has been proposed to be in-
volved in the pathogenesis of albuminuria (urine albumin leakage), also without glycocalyx
alteration, overtaking the conventional theory of “impairment of the size- and/or charge-
selective filtration barrier” [60,64,65]. As a consequence, the possible role of glycocalyx
and transcytosis should be addressed in further studies, with particular regard to the
lowest, environmentally relevant PFOA concentration (200 ng L−1), where no ultrastruc-
tural evidence of alteration of the glomerular filtration barrier was noted. Referring to the
highest tested PFOA concentration (2 mg L−1), the reported architecture disarrangement
agrees with the known morphopathological evidences of glomerulonephrosis (i.e., the
morphofunctional alteration of the glomerular filtration barrier), with particular regard
to podocyte effacement [9,11,48,58,66,67]. Though PFOA and other PFAS can accumulate
at high concentrations in the kidney and potentially affect renal function, no previous
research has specifically addressed the effect of these pollutants on the glomerular filtration
barrier [14–24], making it difficult to interpret and compare the observed alterations and
speculate about the possible underlying pathophysiology. Interestingly, none of the lesions
seen in other anatomical districts (namely mitochondrial cristolysis, vesiculation, swelling,
and ballooning, autophagosomes occurrence, rough endoplasmic reticulum degranulation,
disarrangement and enlargement in hepatocytes [54]; increased number and volume of
cytoplasm vesiculations in cells of the first proximal tubular segment, mitochondrial focal
vesiculation in cells of the distal tubular segment and of the collecting ducts in kidney [22];
rough endoplasmic reticulum enlargement and fragmentation, cytoplasm vacuolation,
enhanced phagolysosomes formation in thyroid follicles [45]) were appreciated at the
level of glomerular filtration barrier, suggesting a somewhat different pathogenesis com-
pared to the previous tissues. Given the ultrastructural alterations documented during
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the present study, the plasma membrane, cytoskeleton, and adhesion molecules should
be considered as possible targets of PFOA-induced damages. Indeed, PFOA and other
PFAS have been shown to alter plasma membrane potential and to acidify cytosol in a
human colon carcinoma HCT116 cell model due to their amphipatic structure, suggest-
ing these alterations may precede reactive oxygen species production and mitochondrial
transmembrane potential impairment [68]. Moreover, membrane potential dysregulation
and alteration of the organization of membrane microdomains have been reported in boar
spermatozoa experimentally exposed to PFOA and perfluorooctane sulfonate (PFOS) [69].
Recently, exposure of human HepaRG hepatoma cells to PFOA and PFOS has resulted in
altered bile canalicular structure and bile flow impairment, caused by actin cytoskeleton
disarrangement and to structural redistribution of the tight-junctional protein ZO-1 [70].
More information on the effects of PFOA and PFOS on F-actin, actin binding proteins, and
adhesion molecules is available in Wang et al. [71]. Actin filament remodeling and an in-
crease in endothelial permeability have been reported in human microvascular endothelial
cells exposed to PFOS as a consequence of reactive oxygen species production [72]. The
integrity of the plasma membrane, cytoskeleton, and adhesion molecules is of paramount
importance in the maintenance of a proper and functional structure of the glomerular filtra-
tion barrier [5,10,11,61,73,74]. As a consequence, further studies should specifically address
the topic with particular regard to the effect of PFOA and other PFAS on the fenestrated
endothelium and on podocytes, both affected during the present study.

In the carp of the present study, the highest PFOA concentration was found in
blood [51], the same as in other studies on fish and other vertebrates, though differences
may arise according to the route of contamination, dosage/concentration, duration of
exposure, and other biological parameters [18,20,23]. Worth noting is that PFAS bind to
albumin and other blood proteins [23,75,76], so following the albumin route across the
glomerular filtration barrier may contribute to shedding light on the underlying pathogen-
esis. Irrespective of how albumin can transit across the endothelial (e.g., transcytosis) and
basement membrane barriers, it can be internalized by podocytes, partially bypassing the
filtration slit diaphragm through transcytosis [77], allowing PFOA to enter the cells that are
critical for maintenance of the morphofunctional integrity of the glomerular filtration bar-
rier. Moreover, in humans, PFOA is known to be filtered freely in the glomerulus, actively
excreted in the proximal tubule, and then readsorbed by organic anion transport (OAT)
peptides [78,79]. Interestingly, in the mouse, kidney OAT-like peptides have been described
in blood vessels, parietal epithelial cells, podocytes, distal convoluted tubules, connecting
tubules, and collecting tubules [80]. The role of small molecule membrane transporters
found in the mammalian podocyte in glomerular pathogenesis and as a possible therapeutic
target has been discussed by Zennaro et al. (2014) [81]. OAT peptides are phylogenetically
conserved and present in zebrafish, where marked variation according to tissue and sex
has been reported [82,83]. As previously stressed by Manera et al. (2022), and differently
from humans, where nephron segments are known to be differentially affected by toxicants,
according to the implied transporter and its possible sex- and genetic-based modifications,
there is a generalized lack of knowledge about nephron topographic toxicologic pathology
for fish [22].

As a possible alternative/complementary pathogenesis, the effect on the glomerular
filtration barrier of PFOA-induced hypertension should be considered, at the light of the
histological signs of glomerular hyperperfusion observed in a previous study on the same
carp [22]. In such a case, podocyte damage would be secondary to glomerular capillary
dilation, as proposed by Kriz et al. (2022) in two hypertensive rat models of focal and
segmental glomerulosclerosis [84]. Nevertheless, the association of PFAS with hypertension
is still a matter of debate, with some studies claiming it and others rejecting it [85–87].

It is worth mentioning that pathology, as a discipline, relies on lesions to formulate a di-
agnosis, a lesion being the morphological evidence (at any integration level) of a disrupted
function [88], providing precious information to elucidate the underlying pathogenesis.
Furthermore, current nephropathological diagnostic guidelines, with particular regard
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to the glomerular filtration barrier, rely on qualitative detection and evaluation of cod-
ified ultrastructural alterations [11,48–50]. Nevertheless, and in spite of the paramount
importance of electron microscopy to assess toxicity [89], further targeted studies are
needed to elucidate at best the likely pathogenesis of PFOA at the glomerular filtration
membrane level.

5. Conclusions

Perfluorooctanoic acid exposure was shown to affect the glomerular filtration barrier
in carp experimentally exposed for 56 days at 2 mg L−1. Fenestrated endothelium, base-
ment membrane, and podocytes showed ultrastructural lesions compatible with glomeru-
lonephrosis, confirming the glomerular origin of the PFOA-induced protein leakage. The
underlying pathogenesis needs to be elucidated with further targeted studies address-
ing PFOA’s effect on the plasma membrane, cytoskeleton, and adhesion molecules at the
glomerular filtration barrier level, along with toxicological studies specifically addressing
the possible implications in terms of toxicodynamics and toxicokinetics. The results of the
present research can contribute to the mechanistic comprehension of PFOA’s impact on
renal function, with particular regard to glomerular protein leakage, and can be used to
assess the exposure effect of environmental pollutants on animals and humans, according
to the One Health approach.
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