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1 Introduction

The b — s transition, depicted in figure 1, is a flavor-changing neutral-current process
characterized by the emission of a photon in the final state. Decays involving this feature
are also known as radiative decays. The effective Hamiltonian in the operator product
expansion formalism describing b— s transitions at leading order is given by

He = —&V{;V}b(&(’b +CLOY), (1.1)
V2

where O7 (O%) represents the left (right) projection of the electromagnetic penguin op-
erator, which corresponds to the emission of a left (right)-handed photon. The strength
of each contribution is encoded in the Wilson coefficients C7 and C;. In the SM, the W~
boson only couples to left-handed quarks and, thus, the only source of right-handed pho-
tons is due to helicity flips. The ratio of right- and left-handed amplitudes is expected to
be O(ms/myp). Thus, the SM predicts a negligible contribution of the right-handed oper-
ator O%. Measuring branching fractions, angular and charge-parity-violating observables
in b— s7v transitions enables testing the presence of right-handed contributions. Several
analyses focusing on B-meson decays have explored this field [1-5].

Radiative decays of b-baryons provide access to the photon polarization due to the
spin Y2 ground state, the absence of flavor mixing and the presence of two spectator quarks.
Therefore, b-baryon decays provide complementary measurements to those performed with
radiative B-meson decays [6].

The branching fraction of the A) — Ay decay mode has been recently measured for the
first time [7] and constitutes the first radiative b-baryon decay observed.! Further radiative

LCharge-conjugated processes are implied throughout this paper.
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Figure 1. The b — sv penguin diagram, mediated by SM particles (left) and BSM particles (right).

b-baryon decays can be studied with the LHCb detector, providing complementary tests of
the photon polarization in the SM. This paper focuses on the search for the =~ — =7y
decay mode, which is also mediated by the b— s transition. The LHCb experiment pro-
vides unique conditions for studying the Z;" — =7+ mode thanks to the large production
of b-baryons at the LHC [8, 9] and the excellent performance of the detector optimized for
the analysis of b-hadron decays. Additionally, previous measurements at LHCb involving
radiative B meson [1-5] and b-baryon [7] decays motivates the search for new radiative
baryonic modes, such as the =," — =7+ decay.

The rare radiative b-baryon decay =, — =7~ has not yet been observed. Us-
ing light-cone sum rules, its branching fraction, B (5, — Z7v), is predicted to be
(3.03 4 0.10) x 10=* [10]. This prediction is larger than the branching fraction of other
radiative decays (B ~ O(107?)) [7, 11, 12]. A more recent study uses SU(3) flavor symme-
try rules to predict B(Z, — =) = (1.234+0.64) x 1075 [13]. This second prediction uses
the measurement of B(A) — Av) and thus it has a smaller dependency on estimated form
factors. A measurement of the branching fraction of this decay could discriminate different
approaches used in the theoretical predictions. This could help to estimate form-factors
at low ¢? (photon pole) for the semileptonic decay Z, — E~ptp~ [14]. Furthermore, the
possible signal obtained could be used to perform a measurement of the photon polariza-
tion [15].

The data sample analyzed in this paper corresponds to an integrated luminosity of
5.4fb~! of proton-proton (pp) collisions at a center-of-mass energy of 13 TeV, collected
by the LHCb detector. Potential experimenters’ bias is avoided by validating the analysis
procedure before inspecting the results. A normalization channel sharing the same hadronic
part of the final state as the radiative decay is used to cancel potential systematic effects
arising from detector efficiencies and the limited knowledge on the Z," production, fEb_'

The normalization channel is chosen to be the =, — =7 J/i decay.

2 LHCD detector

The LHCb detector [16, 17] is a single-arm forward spectrometer covering the pseudo-
rapidity range 2 < 1 < 5, designed for the study of particles containing b or ¢ quarks.
The detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located



upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The
tracking system provides measurements of the momentum of charged particles with a rel-
ative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The
minimum distance of a track to a primary pp collision vertex (PV), the impact param-
eter, is measured with a resolution of (15 £ 29/pr) um, where pr is the component of
the momentum transverse to the beam, in GeV/c. The PV is reconstructed by forming
a common vertex from a large number of tracks, consistent with originating from a pp
collision [18]. Different types of charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by
a calorimeter system consisting of scintillating-pad and preshower detectors, an electro-
magnetic and a hadronic calorimeter. Charged and neutral clusters in the electromagnetic
calorimeter are discerned by extrapolating the tracks reconstructed by the tracking system
to the calorimeter plane. Photons and neutral pions are distinguished by cluster shape,
energy and mass distributions. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers. Due to the photon energy resolution,
b-hadron decays with a high-energy photon in their final state are reconstructed with a
b-hadron mass resolution around 100 MeV/c? [3].

The online event selection is performed by a trigger system [19], consisting of a hard-
ware stage, which uses information from the calorimeter and muon systems, followed by
two software stages, which apply a partial and a full event reconstruction. At the hard-
ware trigger stage, events are required to have a high-pt photon or electron, detected in
the electromagnetic calorimeter as a cluster of transverse energy (FE7) with a threshold
that varied between 2.1 and 3.0 GeV during the data-taking period. The first stage of the
software trigger requires a track well separated from any PV, and with a pt higher than
1 GeV/e. At the second stage of the software trigger, the full decay chain is reconstructed
to identify decays consistent with the signal mode. Only events signal candidate fulfilling
the trigger requirements are kept.

Simulation is used to develop the selection strategy, compute the efficiency and deter-
mine the shape of the invariant-mass distribution of the signal decays. In the simulation,
pp collisions are generated using PyYTHIA [20, 21] with a specific LHCb configuration [22].
Decays of unstable particles are described by EVTGEN [23], in which final-state radiation is
generated using PHOTOS [24]. The interaction of the generated particles with the detector,
and its response are simulated using the GEANT4 toolkit [25, 26], as described in ref. [27].
To save computing resources, the simulated signal decay is superimposed to a limited set
of simulated underlying interactions which are used multiple times [28].

3 Selection

The reconstruction of the =" — =7 decay, with &~ — Ar~ and A — pn~, involves the
combination of two tracks with opposite charges originating from a common displaced
vertex, and compatible with the p and #~ hypotheses. This is identified as a A baryon,

—

which is combined with a 7~ track to form the =~ candidate. The =, candidate is in



Figure 2. Topology of the =" — 57~ decay, including three displaced vertices, with c7 of each
particle given.

turn reconstructed as the combination of an energetic photon and the reconstructed =~
candidate. A sketch of the full decay chain, which includes three independent displaced
vertices, is shown in figure 2.

High-quality tracks inconsistent with originating from the PV are used for the recon-
struction. For events with multiple PVs, the PV with the lowest impact parameter with
respect to the candidate is used. Because of the long lifetime and large Lorentz boost,
most of the A and =~ baryons decay outside the vertex detector. However, due to trigger
limitations, only decays that occur inside the vertex detector can be considered. Particle
identification requirements, based on a multivariate analysis technique, are applied to the
charged particles [29]. Proton and pion candidates with a minimum transverse momentum
of 630 MeV/c and 250 MeV/¢, respectively, are used to form a A candidate. The proton-
pion system is required to have a mass within 6 MeV/c? of the known A mass [30] and a
pr larger than 1.5GeV/c. The A candidate is then combined with a pion candidate with
pr > 130 MeV/c to form a =~ candidate. This candidate is required to have decayed within
400 mm of the PV, to have a pp larger than 2 GeV/c and a mass, m(nr~ 7 p) in the range
1310-1332 MeV/c? around the known value of the =~ mass of 1321.71 4 0.07 MeV/c? [30].
After the trigger and offline requirements, a clean sample of =~ candidates is obtained.
The distribution of the mass of =~ candidates is shown in figure 3. Photon candidates are
reconstructed from energy deposits in the electromagnetic calorimeter not associated to any
track. Background due to photons from 7° decays is rejected by a dedicated algorithm [31].
The =~ candidate is combined with a photon candidate with Er larger than 4 GeV. Due to
the unknown photon direction and the long lifetime of the =~ baryon, the =} decay vertex
cannot be determined. Consequently, the =}~ trajectory is calculated assuming the photon
originates from the PV with the smallest distance of closest approach with respect to the =~
trajectory. This is a good approximation given the short decay time of the =, baryon. The
v and £~ momenta are then combined to reconstruct the ;" candidate. The =~ candidate
must have pr larger than 4 GeV/c and a mass within 800 MeV/c? of its known mass [30].
The distance of closest approach between the =, and the £~ trajectories must be < 50 um.

The combinatorial background, formed by random combinations of final-state parti-
cles, is suppressed by using a boosted decision tree (BDT) [32], employing the XGBOOST
algorithm [33]. The BDT classifier is trained using simulated samples of =" — =7 de-
cays as signal, and candidates from data samples with the 5~ mass above 6.1 GeV/c?
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Figure 3. Mass distribution m(w~ 7~ p) showing the 5~ — An~ signal for events satisfying the
trigger and the offline requirements described in the text for =~ — =~ decays.

as a background proxy. The k-folding cross-validation technique [34] with k = 5 is used
to avoid overfitting the BDT model. The variables used to train the BDT classifier are:
the transverse momentum and the separation from the PV of the signal decay products;
the photon pseudorapidity; the distance of closest approach between the =~ decay prod-
ucts and between the =" and =~ flight directions; and the pt asymmetry of the =~ and
the v candidates. The pr asymmetry for a given particle is computed as the normalized
difference between the summed momenta of all tracks within a cone of 1rad around the
particle direction, and the momentum of the particle. The above variable discriminates
against partially reconstructed backgrounds, consisting of decays with additional particles
in the final state that have not been reconstructed. As the BDT classifier is trained using
simulation, good agreement between the simulation and data is needed. This is validated
using the /12 — JApK~ and BY — K*y control modes employing the selection criteria
described in refs. [35] and [3], respectively. The normalization channel =, — =~ J/), with
the selection described below, is also used for the same purpose. The event multiplicity, de-
fined as the number of tracks per event, along with the b-baryon momentum and transverse
momentum are corrected for discrepancies between simulation and data. These corrections
are extracted from Ag — J/pK ™ background-subtracted data and simulated samples. The
BDT classifier is optimized by maximizing the Punzi figure of merit [36], e5/(vB + 2.5),
where ¢ is the efficiency of the requirement on the BDT output extracted from simulated
signal events, and B is the background yield from the high-mass sideband, extrapolated
to the signal region. The chosen working point keeps 69% of the signal candidates, while
suppressing about 98% of the combinatorial background.



The online reconstruction of candidates from the =,” — =~ J/1 normalization channel,
with J/p — ptp~, follows a different strategy as compared to the =, — =7 signal
channel. The muons, originating from inside the vertex detector, must pass the trigger for
the normalization channel. This allows A and =~ baryons decaying both inside and outside
the vertex detector to be used. For the trigger selection of the normalization channel,
events are required to either have a muon with a py above 1.5 GeV/¢, or two muons with a
transverse momentum product greater than 1.6 GeV?/c2. In the first software stage of the
trigger, the event must have either a system of two well-identified oppositely charged muons
with a large mass, m(utpu=) > 2.7GeV/c?, or at least one muon with pr > 1GeV that is
inconsistent with originating from any PV. In the second stage, events containing a pu* -
pair with a mass consistent with the known J/) mass [30], and with a vertex significantly
displaced from any PV, are selected. The offline reconstruction follows similar criteria to
the 5 — Z 7 selection. The J/i) candidate is reconstructed from two oppositely-charged
tracks compatible with the muon hypothesis. The mass of the u™ ™ pair is required to be
within a window of 60 MeV/c? around the known J/3) mass [30]. In this case, the =, vertex
is reconstructed with an improved b-baryon mass resolution, with respect to the radiative
decay, due to a precise measurement of the muon momenta. The =,” candidate is required
to have a measured decay time between 0.3 and 1.4 ps, a mass within 300 MeV/c? of the
Z, measured mass [30] and a good quality decay vertex. Given the high purity of the

=, — 57 J/ib sample after the described selection, no BDT selection is used.

4 Yield determination

The signal is isolated from the background components by a fit to the reconstructed =,
mass distribution of the selected candidates. An unbinned maximum likelihood fit to the
radiative, 5" — 57+, and the normalization, 5,” — =5~ J/4, decay modes are used. The
signal-mass shape is modeled with a double-sided Crystal Ball probability density func-
tion [37], comprising a Gaussian core and a power-law tail at both sides. The parameters
for the tails are extracted from a fit to simulated samples. In the mass fit to data, the peak
position for the radiative and normalization channels is the same, while the peak width is
related using a scaling factor defined as the ratio of the signal and normalization widths
in simulation. Sources of non-combinatorial background are investigated using simulated
samples. The narrow width of the A and =~ baryons [30] and the clean sample of the latter
(see figure 3) reduces the contamination from decays where one or more final state parti-
cles are misidentified, such as 2,” — £27~. No candidates from the partially reconstructed
background =, — =n with n— v~ are expected in the selected data sample. There are no
predictions for =Z;~ baryons decaying into 7% mesons. This class of contamination is known
to be suppressed in B? decays to K*y and K*7° final states, and the same is assumed
in the baryon sector [30]. The only relevant background component is the combinato-
rial one, which is modeled with an exponential function. The mass fit is validated using
pseudoexperiments with B(Z;  — Z~v) hypotheses ranging from 107° to 1073.



Parameter Value
TS, 1.57 £ 0.04 ps [30]
A9 1.47 +0.01 ps [30]
B(A) — AJRp)  (3.36 £ 1.11) x 1074 [39, 40]

Table 1. Input parameters used to compute the branching fraction B(Z,” — =5~ J/i).

The branching fraction is determined as

B(Z, — E77)

B(Z, — =7 J)B(J/Y — pFu”)

(4.1)

where B indicates a branching fraction, N is the signal yield extracted from the mass fit,
€ denotes the combined reconstruction and selection efficiency for the given decay and «
is the single-event sensitivity. Calibration samples of A— pr~, D®— K—7%, Jhp— ptp~
and BY — K*~ are used to calculate the efficiencies of the particle identification require-
ments [29, 31]. The remaining selection and reconstruction efficiencies are determined from
simulated samples.

The value of the =" — =57 J/ branching fraction multiplied by the hadronization
fraction of =}~ baryons, fE; is provided in ref. [30]. Due to the lack of precision in the fE;

absolute value, the =, — =~ .J/i branching fraction is computed using the SU(3) relation
D(E, — Z7J/) = (3/2+£0.45) x T(A) — AJ/p) [38] instead. The quoted uncertainty is
typical for flavor SU(3) predictions. Combining the values listed in table 1, the computed
value of B(Z,” — =5~ Jf)) is

TZ,

“Jhp) = (i + 0.45) ZLB(A) — ATRp) = (5.4 +2.4) x 1074, (4.2)

B(=, — .
TAg

[N

5 Results

Figure 4 shows the distribution of (top) the mass m(7~ 7 py) for selected =~ and
(bottom) m(r~ 7 putu~) for selected =~ JA) candidates. The simultaneous mass
fit to these mass distributions returns yields of N(Z, — Z7v)=—-3.6+£3.9 and
N(=Z, = =7 Jjp) = 1407 £52. Using the yield for the normalization channel together
with the other quantities of eq. (4.1), a single-event sensitivity of a = (7.9 £ 3.6) x 1076
is obtained.

Systematic uncertainties on the measurement of the B(5,” — Z~v) value arise from
several sources. The systematic effect due to the choice of the mass fit model is assessed
by means of pseudoexperiments wherein the mass distribution is generated with an alter-
native model and fitted using the default model. The validation of fixing the value of the
scale parameter relating the radiative and normalization channel resolutions is assessed by
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Source Uncertainty (%)
Mass fit model (signal) 9.1
Mass fit model (background) 7.8
Efficiency ratio 4.6
Hardware trigger 10.0
Simulation/Data agreement 6.0
B(S; — Z-JR) 45.6
Sum in quadrature 48.7

Table 2. Dominant systematic uncertainties on the measurement of the branching fraction B
(5, = E7).

repeating the measurement considering possible differences between data and simulation.
No deviation is found with respect to the nominal measurement and, thus, no system-
atic uncertainty is assigned to this effect. The uncertainty on the selection efficiencies,
originating from the limited sample size, is propagated to the branching fraction and con-
sidered as a systematic uncertainty. The corrections applied to the simulation to improve
the agreement with data are varied within their statistical uncertainty. The effect of a
possible mismodeling of the radiative hardware level trigger is assessed by comparing the
efficiency extracted from simulation and from a method using the B® — K*v decay as a
control channel. The limited precision of the external value of B(Z, — =7 J/4) induces
the largest systematic uncertainty. Table 2 summarizes the systematic uncertainties.

Since no =, — =7+ signal is observed, the Feldman-Cousins (FC) method [41] is
used to set an upper limit on the value of B(Z,” — 5~ ). For the FC method, the relation
between the true and fitted signal yield and the statistical uncertainty are determined from
pseudoexperiments. The systematic uncertainty is added in quadrature to the statistical
uncertainty. The value of B(=Z, — =7 v) is calculated from the signal yield using eq. (4.1).
From this set of values, the 95% confidence level (CL) is built and shown in figure 5.

Combining this study with the measured yield ratio, an upper limit is set
B(Z, — =77) < 1.3(0.6) x 107* at 95% (90%) CL.

This is the first limit on this decay channel. Because the systematic uncertainty from
the normalization channel branching fraction is dominant, the ratio of the branching frac-
tions is reported, where the total systematic reduces to 17%. Using the FC approach, an
upper limit of

B(Eb_ — =

=7y)
B S =00 < 0.12(0.08) at 95% (90%) CL,

is set.
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ratio. The green line represents the relation between the yield and the

6 Conclusion

The first search for b-baryon flavor-changing neutral-current radiative =,” — =~ decay
is reported, using pp collision data at a center-of-mass energy of /s = 13 TeV collected by
the LHCD experiment. The data set corresponds to an integrated luminosity of 5.4 fb~1.
No evidence for a signal is found. Upper limits at 90% and 95% CL of the value of

B(Z, — =) are reported, which are in slight tension with the predictions from light-cone
sum rules [10] but are consistent with flavor-symmetry driven predictions from ref. [13].
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