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9 Abstract Coastal risk assessments rely on proper quantification of storm-induced erosion and 

10 flooding, and often involve calculations via numerical models. When the real time-series data 

11 of a storm are not available as forcing conditions and only bulk information is accessible, 

12 synthetic simplified time-evolutions are assumed. The most common approach in coastal 

13 studies uses a symmetric triangular storm shape, characterised by the assumptions that the peak 

14 of the waves occurs in the middle of the storm, and that the forcing varies linearly. This study 

15 aims to investigate this additional source of uncertainty in hazard estimation, using the 

16 XBeach-1D model, to assess the differences in simulated erosion and flooding associated with 

17 real and synthetic storm definitions. Analysis is performed for real conditions ranging from 

18 moderate to extreme at the Northern Adriatic and North-Western Mediterranean coasts, using 

19 beach profiles ranging from dissipative to reflective. The storm definitions generate 

20 considerable differences in terms of wave power and timing at the peak of the storm. When 

21 synthetic storms were applied, coastal hazards were not adequately reproduced in most of the 

22 simulated cases. The energy of the storms, profile characteristics, local storm climates, and 

23 water levels did not consistently influence the differences between the synthetic- and reality-

24 based outputs.
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28 1 Introduction
29 The reliability of the quantification of a hazard component is crucial for coastal risk studies. 

30 Coastal inundation and erosion hazards must be satisfactorily evaluated, especially when 

31 managing local assessments on sandy beaches. As an example, the magnitudes of a water 

32 discharge inundating the hinterland or of an eroded sediment volume are important for 

33 adequately evaluating the associated consequences for exposed elements. Moreover, local 

34 managers are interested in quantitative information to design risk reduction measures, such as 

35 dikes or nourishments, and to prepare management plans.

36 Nowadays, hazard assessments largely rely on numerical model simulations. Models are indeed 

37 capable of reproducing a large amount of processes affecting the interaction between the beach 

38 morphology and the storm event, to provide results from multiple hazards (Roelvink and 

39 Reniers, 2012). Nonetheless, these models rely on assumptions and simplifications that may 

40 produce unreliable results when compared with observed coastal hazards. As an example, the 

41 main factors affecting the simulation of flooding in urbanised coastal areas are linked to the 

42 mathematical formulations, the topographic data and the forcing boundary conditions (Gallien 

43 et al., 2018). Generally, the degree of robustness of a numerical model is related to the data 

44 availability and reliability. This is valid for the information on the morphology of the beach, 

45 the characteristics of the sediment, and the hydrodynamics. Therefore, the storm event needs 

46 to be suitably described and included in the numerical models as forcing data. Continuous 

47 (observed or hindcasted) storm time-series data of waves and water levels (WLs) are extremely 

48 important for capturing the evolution of the event, and thus its dynamic interaction with the 

49 beach. 

50 When continuous forcing time-series data are unavailable, the event is generally described 

51 through observed or assessed bulk information, e.g. maximum significant wave height (Hs), 

52 peak wave period (Tp), maximum WL (mean sea level+surge+tide), duration (Dur), and main 

53 direction (Dir). The lack of continuous data leads to the introduction of simplifications and 

54 assumptions to proceed with the analysis of the storm hazard impacts. The most simplified 

55 approaches calculate impacts directly using statistical bulk information (see Ranasinghe and 

56 Callaghan, 2017). However, accounting for wave and WL variations during the storm is 

57 necessary for feeding process-based models (see e.g. Roelvink et al., 2009). In these cases, the 

58 evolution of the storm must be defined by means of a synthetic shape, hereafter called a 

59 synthetic storm (SS), with the assumption that it is representative of the real storm (RS). SSs 

60 are regularly used to define the shape of probabilistic storm events (i.e. representative of a 
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61 given return period). A first attempt to standardise a procedure for SS applications can be found 

62 in Carley and Cox (2003), wherein they proposed a synthetically-designed storm with 

63 exponential-like growth and decay phases, and a symmetrical evolution around the peak. This 

64 was obtained by assessing Hs exceedances over various durations and associated with different 

65 return periods. Simpler approaches have been proposed to adapt synthetic storm shapes to the 

66 development of real storms. The triangular shape (Boccotti, 2000; Fedele and Arena, 2009; 

67 Corbella and Stretch, 2012a; Laface et al., 2016) is the most frequently applied due to its 

68 simplicity, while some studies investigated other shapes, such as the parabola or the trapezoid 

69 (Martin Soldevilla et al., 2015; Lin Ye et al., 2016), as well as exponential laws (Laface and 

70 Arena, 2016). The most recent approaches focused on robust statistical analysis of wave time-

71 series to model the storm evolution (Solari and Losada, 2018; Lira-Loarca et al., 2020) or to 

72 generate joint time-series of wave parameters (Jäger et al., 2019). With some exceptions, most 

73 of above-mentioned methods rely on the availability of the storm time-series to properly mimic 

74 the storm development. Among all of them, the simplest approach that is widely applied in 

75 coastal studies is the symmetric triangular synthetic storm (STSS) (e.g. McCall et al., 2010; 

76 Corbella and Stretch, 2012b). It represents the evolution of an event from bulk characteristics 

77 at the peak and in the storm duration. STSSs are often used to cover all of the possible 

78 combinations of forcing (including those not previously recorded) when hazard and risk 

79 assessment approaches are applied, by simulating a large number of realistic storm conditions 

80 (e.g. Poelhekke et al., 2016; Plomaritis et al., 2018; Sanuy et al., 2018; Santos et al., 2019).

81 Thus, the use of any type of SS represents a useful approach for coastal hazard assessments, 

82 and the use of an SS is recommended for planning purposes by Nielsen and Adamantidis 

83 (2007). However, SSs show some inherent limitations, and represent an additional source of 

84 uncertainty in the analyses. Although there are some studies analysing the performance of SSs 

85 to represent the storm climate (e.g. Lin-Ye et al., 2016) but only a few analyse their effect in 

86 modelling coastal hazards. Sánchez-Arcilla et al. (2009) compared computed erosion impacts 

87 from RSs and SSs in the Spanish Mediterranean. The study used schematised, linearly-varying 

88 Hs and Tp mimicking the shape of the RS, and thus would have had little practical application 

89 if only the bulk parameters were known (e.g. as in the case of the STSS). Callaghan et al. (2009) 

90 assessed the reliability of an approach proposed by Carley and Cox (2003) for erosion 

91 assessments at Narrabeen Beach (Sydney, Australia), by comparing erosion impacts computed 

92 from adopting statistical events (i.e. representative of given return periods and simulated with 

93 synthetically-designed storms) and statistics of measured impacts. This study found a tendency 
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94 to underestimate computed eroded volumes (EVs) with return periods between three and ten 

95 years. However, the results in Callaghan et al. (2009) demonstrate two different components 

96 of the uncertainty: the use of the SS, and the uncertainty of the methodology for assigning 

97 probabilities to the hazard (e.g. Sanuy et al., 2019). Therefore, the effect of the synthetic 

98 approach on the uncertainty was not isolated. More recently, the performance of triangular 

99 synthetic storms (including the STSS) has been evaluated for reproducing damage progression 

100 (Martín-Hidalgo et al., 2014) and overtopping (Martín Soldevilla et al., 2015) in marine 

101 structures. Triangular SSs showed a good performance but, depending on the characteristics of 

102 the storm, they tend to overestimate or underestimate damage. No study has ever assessed the 

103 role of commonly-used SSs in the propagation of uncertainties when modelling both coastal 

104 inundation and erosion hazards.

105 Within this context, the main aim of this work is to investigate the differences in storm-induced 

106 erosion and inundation assessments associated with the definition of storms (i.e. RS versus SS 

107 time-series) when using numerical modelling for specific storm conditions. The focus of this 

108 study is on the use of the most common and straightforward way of defining a SS, i.e. the 

109 STSS. To this end, the magnitude of coastal flooding and erosion is assessed using an extensive 

110 dataset of RS data and equivalent synthetic representations. The obtained variations are 

111 analysed, and are characterised from the differences observed in the storms. The analysis is 

112 performed for real conditions typical of the Northern Adriatic and North-Western 

113 Mediterranean coasts (Figure 1a). These cover beach profiles ranging from dissipative to 

114 reflective, and are subjected to storm conditions ranging from moderate to extreme. Storm-

115 induced hazards were simulated with the XBeach-1D model (Roelvink et al., 2009).

116
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117

118 Figure 1. (a) Locations of the sites in the Northern Adriatic and North-Western Mediterranean 

119 Seas. The site (f), i.e. Lido Estensi-Spina is located on the (b,d) Emilia-Romagna (Italy) coast; 

120 whereas the site (g), i.e. the Tordera Delta is on the coast of (c,e) Catalunya (Spain). The main 

121 cities and towns are shown in (d), (e), (f), and (g) as circles. The locations of the wave buoys 

122 used to retrieve the wave data used in this study are shown in (d) and (e) as triangles. The 

123 partial tracks of the profiles used to select the representative data analysed in this study are 

124 shown in (f) and (g) as grey lines. 
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125 2 Methods and Data
126 2.1 Study area and data
127 The study area comprises two coastal stretches: in the Northern Adriatic (hereafter NA), Lido 

128 degli Estensi-Spina (Italy); and in the North-Western Mediterranean (hereafter NWM), the 

129 Tordera Delta (Spain) (Figure 1). These two areas are composed by fine and coarse sandy 

130 beaches, respectively. Both have been impacted by coastal storms, and they have already been 

131 classified as critical coastal sectors at the regional level (Armaroli and Duo, 2018; Jiménez et 

132 al. 2018). Sun-and-sand tourism is the main coastal economic sector at both sites and, owing 

133 to this, the related infrastructures and services (e.g. beach facilities, campsites, restaurants) are 

134 directly located on the beach, or in the immediate first part of the hinterland. Thus, these 

135 beaches provide space for accommodating beach users during the bathing season, and 

136 protection to the hinterland during the storm season. The general characteristics for each site, 

137 as well as the main references regarding site conditions, can be found in Table 1. The main 

138 data used in the analysis are shown in Table 2.

139
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140

141 Table 1. General characteristics of study sites.

Site

ID

Site Sea Basin Environment Tidal 

range

Storm 

Surge

Waves Main 

references 

for regional 

and local 

scales

Italy 

(IT)

Lido degli

Estensi-

Spina

(Comacchio, 

Italy)

Northern

Adriatic

(NA)

Micro-tidal;

Low-

energetic;

Dissipative.

neap: 

0.3–0.4 

m

spring: 

0.8–0.9 

m

1-in-

10 yrs:

0.72 m

Mean 

wave 

height:

~0.4 m;

Max 

wave 

height:

4.6 m*.

Masina and 

Ciavola, 

2011;

Armaroli et 

al., 2012;

Armaroli 

and Duo, 

2018;

Duo et al., 

2018;

Sanuy et 

al., 2018.

Spain 

(ES)

Tordera

Delta

(Blanes-

Maresme, 

Spain)

North-

Western

Mediterranean

(NWM)

Micro-tidal;

Medium-

energetic;

Intermediate-

reflective.

neap: 

0.2–0.25 

m

spring: 

0.3–0.4 

m

1-in-

10 yrs: 

0.51 m

Mean 

wave 

height:

~0.7 m;

Max 

wave 

height:

5.4 m**

Mendoza et 

al., 2011;

Jiménez et 

al., 2018;

Sanuy et 

al., 2018;

Sanuy et 

al., 2019.

142 *recorded in February 2015 at the buoy in Figure 1f; **at the virtual node in Figure 1g.

143
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144

145 Table 2. Summary information on the topo-bathymetric and wave datasets.

Site

ID

Dataset Type Resolution Period Source

Wave time-

series

(Hs, peak 

wave period 

(Tp), main 

direction 

(Dir))

Offshore buoy

Wave buoy at 10 m 

depth

(see Figure 1f)

0.5 h 2007–

2018

(83% 

coverage)

ARPA E-R

Available at: 

https://simc.arpae.it/dext3r/

Topography 

digital 

surface 

model 

(DSM)

Lidar 1 × 1 m October 

2014

National Oil Company, Eni

Nearshore 

Bathymetry

Lidar 1 × 1 m 2012 National Oil Company, Eni

IT

Offshore 

Bathymetry

Multibeam 1 × 1 m 2013 National Oil Company, Eni

Wave time-

serie

(Hs, Tp, Dir)

DOW hindcast

20 m depth virtual 

buoy

(see Figure 1g)

1 h 1960–

2014

IH-Cantabria (Reguero et 

al., 2012; Camus et al., 

2013)

Bathymetry Multibeam 1 × 1 m 2010 Spanish Ministry of 

Agriculture, Food and 

Environment

ES

Topography 

(DSM)

Lidar 1 × 1 m 2010 Institut Cartogràfic de 

Catalunya

Available at: www.icgc.cat

146

147 2.2 Real storms
148 The first step in the analysis consists of defining the storms. To this end, storms were identified 

149 at each site by applying the peak-over-threshold (POT) method, with a double threshold for 

150 Hs, i.e. the 0.98 and 0.995 quantiles of the respective time-series, and by imposing a minimum 

https://simc.arpae.it/dext3r/
https://www.icgc.cat/


9

151 Dur based on local experience (see Table 3). The first Hs threshold (0.98 quantile) was used to 

152 calculate Dur, and to define the period between consecutive events. Events with shorter 

153 durations than the minimum Dur were not considered. Consecutive peaks with conditions under 

154 the threshold lasting less than the meteorological independence criterion (Table 1) were 

155 considered as part of the same storm event. The second Hs threshold was applied to identify 

156 the most significant storms, which are defined here as extreme events. Table 3 summarises 

157 main characteristics of the POT analysis for both sites. A total of 227 storms were identified to 

158 build the storm dataset (48 and 179 for the NA and NWM basins, respectively). As both wave 

159 datasets correspond to different water depths (10 m at NA, deep waters at NWM; see Table 2), 

160 the NA storms were linearly back-propagated to the deep waters to generate a consistent 

161 dataset. 

162 Once the storms were identified, each storm was characterised through a set of wave 

163 parameters: Hs at the storm peak (Hs,max); Tp; Dir, and Dur. Then, the energy content (E) of 

164 the storm was calculated in the form of a proxy, as previously done by Mendoza et al. (2011), 

165 as:

166 (1)𝐸 = ∫𝐻𝑠2𝑑𝑡

167 where t is time in hours. Additionally, the wave power of the storm (P) was calculated to 

168 characterize its strength, since induced hazards depend on the rate at which wave energy is 

169 delivered (e.g. Burgint et al., 2017), and due to this it is becoming a main parameter to analyse 

170 temporal and spatial patterns in storminess (see e.g. Bromisrki and Cayan, 2015). P was 

171 calculated as:

172 (2)𝑃 =
𝜌𝑔
8 ∫𝐻𝑠2 ∙ 𝐶𝑔 𝑑𝑡,

173 Where t is time in seconds, ρ is the water density, g is the gravity, and Cg is the group velocity, 

174 which depends on Tp and water depth. Since storm definition is specified at the XBeach model 

175 outer boundary, and this is located at 20 m water depth, P was calculated by using the 

176 intermediate water version. Note that, in this study, E and P are calculated by integration over 

177 time for the entire duration of the storm, thus they units are [m2·s] and [(W/m)·s], respectively. 

178

179 Table 3 Characteristics of the peak-over-threshold (POT) analysis for identifying storms at 
180 each study site. 
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Site

ID

Sea Basin Hs

98% 

quantile

Hs

99.5% 

quantile

Minimum

storm

duration

Meteorological

independence

criterion

Nr. of 

storms

IT NA 1.85 m 2.6 m 4 h 12 h 48

ES NWM 2 m 2.6 m 6 h 72 h 179

181

182 2.3 Synthetic storms
183 To define a SS representing a real event, a simple shape describing the evolution of wave 

184 parameters during the storm must be selected (McCall, 2010; Poelhekke et al., 2016; Sanuy et 

185 al., 2018). As previously mentioned, this work focuses on the use of STSSs, where Hs linearly 

186 grows from the threshold value up to a Hs,max halfway through the storm duration. From there, 

187 it linearly decreases down to the threshold value (Figure 2).

188 To fully define the storm, it is necessary to assign a Tp to each Hs condition. This is a common 

189 problem in extreme wave analysis, when is necessary to associate a Tp with a height of a given 

190 return period (Mathiesen et al 1994). This is a site-specific problem which is solved by deriving 

191 empirical relationships, with copula-based approaches being widely used when real storm data 

192 are available (e.g. Corbella and Stretch, 2013). However, unless copula-based transformations 

193 for any site become available, the most usual way to do it is by using Tp-Hs deterministic 

194 relationships which are supplied together with extreme distributions of Hs (see e.g. Sanuy et 

195 al. 2019). For instance, in Spain, the State Ports Authority (Puertos del Estado) following 

196 Mathiesen et al (1994) provides a specific Tp-Hs relationship to be used together with the 

197 extreme wave height distribution for different areas along the Spanish coast. It is out of the 

198 scope of this work to analyse which is the best way to derive such relationships, thus, site 

199 specific relationships were applied. To assign the corresponding wave periods to each STSS, 

200 an empirically-derived Tp-Hs linear relationship, separately assessed for each storm dataset 

201 (Table 2) by using Hs and Tp bulk data at the peak of the events (for NA: 

202 Tp[s]=1.32·Hs[m]+3.86; for the NWM: Tp[s]=1.75·Hs[m]+3.69), is used (see e.g. Mathiesen 

203 et al., 1994). The linear fitting resulted in RMSEs ~0.9 s for both datasets, only considering the 

204 storm peaks. When evaluated for the entire timeseries (i.e., using the real Hs to model Tp), the 

205 RMSEs increased to ~1.15 s. With this, the synthetic wave period time-series will depend on 

206 the obtained empirical relation Tp-Hs, and on the adopted symmetric triangular shape of the 

207 synthetic Hs. Dir would correspond to the mean wave direction during the peak of the event, 

208 although in this study it is not considered. This is because in this analysis, the worst-case 
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209 scenario is investigated, which corresponds to normal incidence. Since this study focuses on 

210 the schematization of the wave component, the effects of time-varying WLs (i.e. mean sea 

211 level+surges+tides) are ignored, and the WL is assumed to be constant for the duration of the 

212 storms.

213 To compare the SSs and RSs, a set of parameters have been selected. These parameters 

214 essentially characterise differences in storm shape (storm peak), E, Tp and P (see Table 4). The 

215 peak delay (PD) is defined as the time lag between the peaks of the RSs and SSs (Figure 2).

216

217

218 Figure 2. Real storm (RS) and symmetric triangular synthetic storm (STSS). 

219

220 Table 4. Indicators to compare real and synthetic storms. Subscripts refer to real (r) and 
221 synthetic (s) storms.

Symbol Name Formula

ΔE Storm energy relative 

difference

100 ∙ (𝐸𝑠 ‒ 𝐸𝑟) 𝐸𝑟

ΔTp Peak period relative 

difference

100 ∙ (𝑇𝑝𝑠 ‒ 𝑇𝑝𝑟) 𝑇𝑝𝑟

ΔPD Relative peak delay 100 ∙ [𝑡(𝐻𝑠,𝑚𝑎𝑥𝑠) ‒ 𝑡(𝐻𝑠,𝑚𝑎𝑥𝑟)] (0.5 ∙ 𝐷𝑢𝑟)
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ΔP Storm wave power relative 

difference

100 ∙ (𝑃𝑠 ‒ 𝑃𝑟) 𝑃𝑟

222

223 2.4 Modelling of storm-induced hazards
224 To simulate storm-induced hazards, the process-based morphodynamic model XBeach 

225 (Roelvink et al., 2009) was used. It can be considered as a state-of-the-art model for simulating 

226 the impact of extreme events, and it is one of the most-used models for this purpose (e.g. 

227 McCall et al., 2010; Vousdoukas et al., 2012; Williams et al., 2015; Harley et al., 2016; Passeri 

228 et al., 2018). The model was applied in profile mode (1D), similarly to Vousdoukas et al. (2012) 

229 and Harley et al. (2016). Beach morphology, WL, waves, and water discharge were simulated 

230 and stored during the entire simulation of the storms. The parameters of the model were defined 

231 as the default values, except for morfac (5), D50, D90 (see Table 5), and bedfriction (white-

232 colebrook-grainsize). In this way, the friction was calculated as a direct function of the 

233 sediment grain size. 

234 In this application, topographic and bathymetric datasets (Table 2) of each site were merged to 

235 build a coastal digital terrain model, from which a significant number of profiles (i.e. 80 at the 

236 site in Italy (IT), Figure 1f; 67 at the site in Spain (ES), Figure 1g) were extracted to describe 

237 the local morphology of the beach in detail. At each site, the extracted profiles were classified 

238 into five groups, covering a range of local beach morphology. Grouping was performed by 

239 minimising the variability of all profiles with respect to an average profile, which was used to 

240 represent the beach morphology of the sector. This resulted in five average profiles for each 

241 site (Figure 3). All the profiles were artificially extended to a 20 m depth for consistency with 

242 the forcing time-series. The basic characteristics of the representative profiles and sediments 

243 (D50 and D90) are summarised in Table 5. 

244 The storm conditions for the simulation consisted of 227 real events (see Section 2.2), and their 

245 227 synthetic representations (see Section 2.3). Each real and synthetic event was simulated 

246 for each of the 10 profiles. To include the potential variability owing to the mean sea level 

247 conditions, three WL scenarios were defined (baseline WL, +0.25 m, +0.75 m). As a result, a 

248 total of 13620 simulations were computed.

249 The obtained results were the morphology and water discharge for each simulation. The water 

250 discharge (Q) time-series was extracted for each profile at the locations shown in Figure 3. The 

251 discharge positions were defined in areas that were not significantly affected by erosion for the 
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252 entire dataset of simulations, and that were close enough to the shoreline to capture significant 

253 floodwater volumes. 

254

255

256 Figure 3. Overview of the profile dataset with indication of the discharge locations.

257
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258 Table 5. Summary information on the profile dataset.

Grain size

[mm]

Site ID

D50 D90

Representative

average

profile

Berm

elevation

Slope Dune Bar

1 1.06 m 0.043 Yes Yes

2 0.79 m 0.033 No Yes

3 1.00 m 0.031 No Yes

4 0.95 m 0.029 No No

IT 0.23 0.3

5 1.11 m 0.005 No Yes

1 3.76 m 0.096 No No

2 2.89 m 0.099 No No

3 3.11 m 0.117 No No

4 2.70 m 0.117 No No

ES 1.3 1.9

5 2.10 m 0.080 No Yes

259

260 2.5 Analysis of simulated hazards
261 The EV of the emerged beach (i.e. from the shoreline to where erosion ends) was calculated by 

262 comparing the initial and post-storm profiles. The maximum and significant (i.e. the average 

263 of the highest third, to capture the average magnitude near the peak of the event) water 

264 discharges were calculated (as Qmax and Qs, respectively), as well as the total water volume 

265 (TWV) inundating the hinterland. These variables give quantitative information on both the 

266 peak of the storm (i.e. Qmax) and its event-integrated values (i.e. EV, Qs, and TWV).

267 For each variable, the differences between the real- and synthetic-driven outputs were assessed 

268 in an event-to-event manner through the expressions shown in Table 6. Positive values of the 

269 comparative variables indicate an over-estimation of the STSS in comparison to the RS, and 

270 vice versa. The use of relative differences can, however, generate misleading interpretations of 

271 the results for high-intensity events, as important absolute differences are smoothed relative to 

272 a large hazard output. 

273

274
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275 Table 6. Summary of the functions adopted to quantify the comparison between real- and 

276 synthetic-driven outputs.

Symbol Name Formula

ΔQD Relative Peak Discharge Delay 100 ∙ [𝑡(𝑄𝑚𝑎𝑥𝑠) ‒ 𝑡(𝑄𝑚𝑎𝑥𝑟)] 𝐷𝑢𝑟

ΔQs
Significant Discharge Relative 

Difference
100 ∙ (𝑄𝑠𝑠 ‒ 𝑄𝑠𝑟) 𝑄𝑠𝑟

ΔQmax
Maximum Discharge Relative 

Difference
100 ∙ (𝑄𝑚𝑎𝑥𝑠 ‒ 𝑄𝑚𝑎𝑥𝑟) 𝑄𝑚𝑎𝑥𝑟

ΔTWV
Total Water Volume Relative 

Difference
100 ∙ (𝑇𝑊𝑉𝑠 ‒ 𝑇𝑊𝑉𝑟) 𝑇𝑊𝑉𝑟

ΔEV Eroded Volume Relative Difference 100 ∙ (𝐸𝑉𝑠 ‒ 𝐸𝑉𝑟) 𝐸𝑉𝑟

277

278

279 3 Results
280 3.1 Storm characteristics 
281 The application of the POT method to both datasets resulted in a total of 227 storms, 48 in the 

282 NA, and 179 in the NWM basin. As mentioned before, because the NA wave data were 

283 recorded at 10 m depth, the storm Hs values were back-propagated to the deep waters to obtain 

284 the corresponding offshore values and thereby generate a consistent dataset. The main 

285 characteristics of the identified storms (RS) at each site can be seen in Figure 4.

286
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287

288 Figure 4. Main characteristics (wave height (Hs), duration (Dur), energy content (E), and wave 

289 power (P)) of RSs at both study sites. Black bars: relative frequency distribution for the whole 

290 dataset (NA+NWM); Red bars: relative conditional frequency distribution for Northern 

291 Adriatic (NA) storms; Green bars: relative conditional frequency distribution for North-

292 Western Mediterranean (NWM) storms. 

293

294 The comparison between a normalised shape of a RS versus its reproduction by means of the 

295 use of SSTS is shown in Figure 5. In addition, the median and associated 75% probability range 

296 (given by the 0.175 and 0.825 quantiles) of the normalised Hs time series of both storms are 

297 represented. As can be seen, the STSS mimics the typical Hs evolution, although some 

298 differences also occur. The average RS shows higher growth rates during a shorter Dur as 

299 compared to the average STSS. The average shape of the RS presents a plateau, indicating a 
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300 natural variability in the occurrence of the peak during the storm. As a difference (and by 

301 definition), the average STSS shows a point peak at the middle of the storm. The shadowed 

302 areas in Figure 5 represent the variability of the Hs evolution during the storm, which, as 

303 expected, is larger for the RS.

304

305 Figure 5. Significant Hs evolution for representative RSs and STSSs. From left to right: 

306 Northern Adriatic (NA) storms; North-Western Mediterranean (NWM) storms; and the whole 

307 dataset of storms (NA + NWM). Variables (Hs and Dur) are normalised. Solid lines correspond 

308 to the median for each storm type for the entire dataset, and the shadow area delineates the 

309 0.175 and 0.825 quantiles.

310

311 Figure 6 illustrates a comparison between parameters defining RSs and SSs, in terms of the 

312 relative differences in PD, E, Tp, and P. As can be seen, the timing of the storm PD is 

313 reasonably well-captured, with more than 60 % of the total cases having a phase lag shorter 

314 than 6 h. In general terms, the adopted symmetric shape of the SSTS resulted in peaks slightly 

315 more frequently delayed with respect to the RS. However, when this parameter is measured in 

316 relative terms (ΔPD), the results indicate that 66% of storms present a phase lag of the peak 

317 that is longer than 20% of the Dur (as a reference, this corresponds to a phase lag of ~10 h on 

318 a 2-day storm). With respect to the E, approximately 40% of the cases were well-reproduced 

319 by using the STSS as they presented a relative difference smaller than 5%. The remaining cases 

320 presented both higher and lower energy values, with a slight tendency to underestimate E. 

321 Figure 6 also shows the differences in Tp between the STSS and RS. The relative difference 

322 for Tp is shown for the storm peaks only (Peak ΔTp), and as average over the whole duration 

323 of the storms (Mean ΔTp). By definition of the adopted approach, Peak ΔTp represents the 

324 difference due to the adoption of the Tp-Hs empirical relations (see Section 2.3) alone. In 
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325 general, the results show that the adopted approach (i.e. empirical linear relation Tp-Hs) 

326 reasonably reproduces real wave periods at the storm peak (more than 50% of the cases 

327 presented an absolute relative difference lower than 5% in Peak Tp). The remaining cases show 

328 a slight tendency towards overestimating Tp at the storm peak. On the other hand, Mean ΔTp, 

329 which is calculated considering the whole duration of the storm, represents the combined 

330 difference due to the empirical relations and the synthetic storm shape. Results show a tendency 

331 of the approach to underestimate the Tp evolution of the storm, although the absolute values 

332 of Mean ΔTp are always lower than 20%, and for large part of the dataset (44%) are lower than 

333 5%. The wave power presents relative differences (ΔP) lower than 5 % in less than 40 % of the 

334 cases. Actually, differences are contained within ± 20 % in almost 70 % of cases, with a 

335 tendency towards underestimation.

336

337

338 Figure 6 Variability in storm properties between STSS and RS according to the selected control 

339 parameters (Figure 2 and Table 4).

340

341 3.2 Storm-induced hazards 
342 The previously-obtained differences in storm definition propagate to differences in hazard 

343 estimation. Figure 7 shows examples of model outputs from integrating the results of all of the 
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344 performed simulations. The median of the position of the post-storm profile and normalised 

345 discharge time-series and the associated 75% probability ranges given by the 0.825 and 0.175 

346 quantiles for the RS and STSS, respectively, are presented for two profiles of the dataset (one 

347 intermediate-reflective and one dissipative). The discharge normalization was implemented 

348 considering the average value between the real and synthetic Qmax for each combination 

349 storm-profile. The normalised discharges in Figure 7 provide information on how the STSS 

350 and RS compare in different phases of the storm relative to Dur, and cannot be interpreted to 

351 compare discharge peaks. This is because all STSSs have their peak in the centre of the storm, 

352 whereas only 7% of RSs do. 

353 When assessing results across all profiles, the analysed events induced erosion and inundation 

354 hazards covering a large range of values (Figure 8). Thus, approximately 60% of the cases 

355 induced an inner EV larger than 60 m3/m (this is equivalent to an average beachface retreat of 

356 approximately 30 m, assuming 2 m of beachface height), and more than 10% generated an 

357 erosion larger than 120 m3/m (this is equivalent to an average beachface retreat of 

358 approximately 60 m, assuming 2 m of beachface height). With respect to inundation, more than 

359 approximately 25% of the events resulted in a TWV overtopping the beach and larger than 100 

360 m3/m (as reference, this is an average discharge of ~0.001 m3/s over 24 h of storm). 

361 The use of the STSS to represent the RS resulted in a general underestimation of storm-induced 

362 EVs (Figure 8), with approximately 20% of the cases underestimating the EV by more than 

363 20%. With respect to the inundation hazard, the analysed variables were not properly simulated 

364 by using the STSS. As seen in Figure 7, the differences in the flood-related hazards are larger. 

365 In general, and independently of the beach type, the use of the STSS results in an under-

366 prediction of the water discharge during most of the event, except during the central phase of 

367 the storm, when the discharge tends to be overestimated. This agrees with the phase lags 

368 obtained for the peak discharge (ΔQD, Figure 8). Overall, only a few cases resulted in a good 

369 reproduction of the maximum and/or significant discharges (Qmax and Qs), or the TWV. 

370 Notably, most cases underestimated or overestimated these variables with relative errors larger 

371 than 20%, with a higher tendency towards underestimation (Figure 8). 

372
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373

374 Figure 7. Real- (red) and synthetic-driven (blue) post-storm profiles calculated for the whole 

375 dataset of simulations for a predominantly intermediate-reflective (top-left) and dissipative 

376 (top-right) beach profile. Real- (red) and synthetic-driven (blue) normalised discharge time-

377 series calculated for the whole dataset of simulations for a predominantly intermediate-

378 reflective (bottom-left) and dissipative (bottom-right) beach profile. All graphs are represented 

379 by the median (solid line) and the 75% of the dataset (shaded area) given by the 0.175 and 

380 0.825 quantiles.

381
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382

383 Figure 8. Variability in storm-induced hazards between STSS and RS according to the selected 

384 control parameters (Table 6).

385

386 4 Discussion
387 The analysis has shown that, although using synthetic time-series to represent wave forcing for 

388 simulating storm-induced coastal hazards is a widely-used approach (e.g. McCall et al., 2010; 

389 Corbella and Stretch, 2012b; Poelhekke et al., 2016; Plomaritis et al., 2018; Sanuy et al., 2018), 

390 the obtained results can significantly differ than those obtained using the real time-series they 

391 are intended to represent. This study represents the first attempt to quantify the uncertainty 

392 related to the use of these types of synthetic events in deterministic modelling.

393 The use of an STSS can be discussed in two different and complementary ways. The first one 

394 regards how well this approach represents the characteristics of an RS. The obtained results 

395 showed that, for this purpose, the use of an STSS provides a reasonable representation of 

396 reality, as it implies a perfect representation of Hs at Hs,max and the Dur of RSs. When the 

397 adopted shape has a potential influence on the magnitude of a variable to be characterised, the 

398 results begin to differ (e.g. E content). Thus, the selected triangular shape determines the PD 

399 between both approaches. As has been shown here, even when the analysed storms are 

400 retrieved from localised areas (two in this case) where the meteorology presents well-defined 
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401 and stable patterns, the peak occurs at different phases of the RS development, depending on 

402 specific conditions. This results in a relatively wide fraction of the storm duration where the 

403 peaks can be verified, as contrasted with a single fixed point in the STSS. This prevents the 

404 proper representation of the storm growth and relaxation phases and, in consequence, 

405 potentially affects any process depending on these characteristics. Regarding wave periods, the 

406 adopted linear fitting approach (i.e., Tp-Hs) introduces additional errors. The RMSEs evaluated 

407 for the linear fit are low (~ 0.9 – 1.15 s; see Section 2.3) for both wave datasets and, as a 

408 consequence, the Tp at the storm peaks is reasonably well-captured (Peak ΔTp) because they 

409 are only affected by the uncertainty of the adopted linear model. However, because Tp values 

410 within the synthetic storm depend on the adopted storm shape – triangular in this case (see 

411 Section 2.3) – the reproduction of Tp during the entire storm was less accurate (Mean ΔTp). 

412 Since P depends on Hs (thus, on E) and Tp, errors in both variables are transferred to errors in 

413 P.

414 The second consideration regards how changes in storm properties are transferred to storm-

415 induced hazards. As opposed to the previous parameters, according to the obtained results, the 

416 adopted STSS has important effects on the reproduction of the induced hazards. Indeed, the 

417 storm-induced erosion was properly captured in just 22% of cases, whereas the TWV 

418 inundating the hinterland was properly captured in only 4% of cases. The better representation 

419 of the erosion hazard is a consequence of the morphodynamic feedback taking place during the 

420 impact of the storm, where the modifications of the beach morphology affect beach 

421 overtopping. In consequence, errors in beach morphology reproduction will propagate (and 

422 expand) to beach inundation. 

423 In this study, the differences in the EV (ΔEV) were strongly related with differences in P (ΔP) 

424 between the real and triangular time-series (Figure 9). Secondarily, ΔEV are related to 

425 differences in wave period (ΔTp), in storm energy (ΔE), and the delay of the peak (ΔPD). As 

426 expected, consistent under- and over-estimation of the wave power lead to under- and over-

427 estimation of the eroded volume.. Thus, if the wave power is not well represented, models 

428 based on the average equations of mass and momentum cannot properly compute erosion and 

429 flooding. In this sense, it has to be considered that most of current definition of synthetic 

430 storms, and STSS in particular, are based on representing wave height and, in consequence, 

431 they do not necessarily conserve wave power during the storm. Notably, approaches to design 

432 SS based on P conservation may solve this issue, but they are not applicable when the only 

433 available information are the bulk characteristics (at the peak) of the storm event. In Figure 9, 



23

434 ΔE and Peak ΔTp are only moderately linked to ΔEV when considered separately, while the 

435 dependency is emphasized when considering Mean ΔTp. This suggests that both the initial 

436 assumptions, on the adopted synthetic shape and on the Tp-Hs relation, affect the proper 

437 assessment of EV. However the contribution of the adopted shape has a double impact as 

438 directly affecting E (i.e. through Hs) and the Tp time-series of the storm. Note that, the under-

439 /over-estimation of the EV was also linked to the delay of the peak (ΔPD>20%) and storm peak 

440 anticipation (ΔPD<-20%) respectively. 

441

442

443 Figure 9. Relation between the eroded volume relative difference (ΔEV) with the variables 

444 describing the relative differences between the real and triangular time-series. The relative 

445 conditional frequency distributions are shown through coloured tables, where each row 

446 represents a conditioning range of ΔEV. On the left, top and bottom: distribution of eroded 

447 volume relative difference (ΔEV) for the whole dataset. From left to right, top to bottom: 

448 conditional distributions of energy relative difference (ΔE); period mean relative difference 

449 (Mean ΔTp); relative peak delay (ΔPD); period at the peak of the storm relative difference 

450 (ΔTp); and wave power relative difference (ΔP).

451
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452 Sánchez-Arcilla et al. (2009) also compared the use of RSs and SSs to assess beach erosion 

453 using the Sbeach model (Larson and Kraus, 1989). In their study, they used simplified Hs and 

454 Tp time-series in linear segments following the evolution of the RSs, and thereby captured 

455 storm peaks. Their study showed an over-estimation of EVs and shoreline erosion when using 

456 a synthetic event, possibly owing to the fact that the approach over-estimated E and Tp, in 

457 general. The present study, however, evidenced a general under-estimation of the EV as shown 

458 in Figure 8. This was linked (Figure 9) to the more frequent under-estimation of P with the 

459 STSS, which is determined by under-estimation of E and Tp. Such differences between both 

460 studies reflect the use of a different approach to represent the storm evolution. Despite this, the 

461 differences between real- and synthetic-based outputs were smaller in Sánchez-Arcilla et al 

462 (2009) than those found in this study. However, to apply that approach, the shape of the event 

463 must be known a priori to mimic the storm evolution, whereas the STSS approach only requires 

464 storm bulk information. In addition to this, the number of cases simulated here to obtain a 

465 robust statistic of errors is much larger, and covers a wider range of conditions than in Sánchez-

466 Arcilla et al (2009).

467 The apparent trend highlighted for the ΔEV-ΔE and ΔEV-ΔTp relationships, agrees with the 

468 findings of McCall et al. (2010). In that work, the authors performed a sensitivity analysis of a 

469 2D XBeach model of the barrier island of Santa Rosa (FL, US), varying the synthetic 

470 symmetric triangular Hs, and the Tp time-series of the Hurricane Ivan event (the base case) by 

471 the 30%. Notably, the variation introduced on the wave time-series of the base case did not 

472 influence its symmetric triangular shape. An analysis of the morphological impact on a 

473 foredune area showed that, in addition to expected changes in the EV following changes in Hs 

474 (and thus, E), the varying Tp conditions (Mean and Peak ΔTp = ±30%) resulted, in the under-

475 estimation (ΔEV ~-30%) and over-estimation (ΔEV ~18%) of the EV, respectively. However, 

476 the same study also concluded that the erosion model output was more sensitive to (some) 

477 sediment transport parameters than to varying hydrodynamic conditions. This suggests that the 

478 differences induced using triangular storms (or SSs, in general) can potentially be compensated 

479 for by a calibration process. However, as the results obtained in this study show both under- 

480 and over-prediction, deeper investigations are required to verify this hypothesis under a wide 

481 range of storm conditions.

482 The obtained results demonstrate the existence of a strong relation between differences in 

483 erosion and inundation hazards (see Figure 10). The differences in the EV (ΔEV) and the phase 

484 lag of the water discharge (ΔQD) are linked, confirming the importance of morphodynamic 
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485 feedback when simulating coastal inundation. A good/reasonable agreement (between real and 

486 triangular storms) on the computed EV (|ΔEV|<20%) leads to a good agreement on the 

487 positioning of the peak of the water discharge (|ΔQD|<5%). This should be important when the 

488 interest is in accurately timing the peak of the floodwater volume. However, this fine 

489 reproduction of the peak timing does not necessarily imply that the total floodwater during the 

490 event will be accurately reproduced. In fact, the obtained results showed that a good 

491 reproduction of the EV (|ΔEV|<5%) is not accompanied by a good simulation of the inundation 

492 (|ΔTWV|<5%). Despite this, under- or over-estimation of erosion (|ΔEV|>5%) leads to strong 

493 under- or over-estimation of inundation (|TWV|>20%), respectively.

494

495

496 Figure 10. Relation between the ΔEV with the relative differences in flooding-related variables. 

497 The relative conditional frequency distributions are shown through coloured tables, where each 

498 row represents a conditioning range of ΔEV. From left to right: distribution of ΔEV for the 

499 whole dataset; conditional distributions of relative peak discharge delay (ΔQD); and total water 

500 volume relative difference (ΔTWV).

501

502 To determine if the previously-observed differences are related to the structure of simulated 

503 conditions, they were further analysed according to the energy of the storm, the profile 

504 conditions (dissipative or reflective), location (storm dataset), and WL (Figure 11). Focusing 

505 on the -20% to +20% range of uncertainty in the hazard estimation, the results presented in 

506 Section 3 are not strongly conditioned by any of the analysed conditions. Although a slightly 

507 better estimation of EVs is obtained for reflective conditions and extremely energetic storms, 

508 the obtained results are consistently homogeneous throughout the dataset, especially when 

509 looking at the relative differences between -5% and +5%. 
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510

511

512 Figure 11. Relation between ΔEV (on the left) and ΔTWV (on the right) with (from top to 

513 bottom) the storm energy (E) class; the profile characteristics (reflective, dissipative); location 

514 (i.e. the storm sub-datasets: Northern Adriatic, NA; North-Western Mediterranean, NWM); 

515 and water level (WL). The relative conditional frequency distributions of ΔEV and ΔTWV are 

516 shown through coloured tables, where each row represents a different conditioning range of 

517 the analysed variables.

518

519 5 Conclusions
520 This study investigated the differences generated when simulating the hazard impacts of coastal 

521 storms using a STSS of waves, instead of the real data. It was demonstrated that the synthetic 

522 method, applied in an event-to-event manner, leads to highly uncertain and misleading 

523 deterministic hazard assessments, strongly limiting the reliability of the modelling approach.

524 After analysing the computed differences in reproducing storm-induced hazards by using 

525 STSSs, it can be concluded that they hardly reproduce the real magnitude with independence 

526 from the structure of storms or profiles. Differences in wave power are the dominant factor in 

527 transferring errors to hazards, and are determined by differences in storm energy (i.e., 
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528 significant wave height) and period. These are mainly controlled by the adopted synthetic 

529 shape, which directly affects the synthetic significant wave height (and thus, energy), and 

530 indirectly affects wave period while calculating it with empirical predictive relations (i.e., Tp-

531 Hs) applied to the synthetic wave heights; and secondarily, by the empirical predictive relations 

532 (i.e., Tp-Hs), which directly affects the synthetic period. 

533 This is applicable to the range of simulated conditions, and permits one to conclude that 

534 although the use of STSSs adequately reproduces some of the main bulk variables defining the 

535 storm, they only reasonably reproduce the storm-induced hazard magnitude, i.e. accepting 

536 uncertainty in the order of (or greater than) +20% and -20%. Notwithstanding the fact that this 

537 type of synthetic approach has been used in recent projects and for engineering purposes, its 

538 use should be discouraged, whereas its results should be carefully discussed considering the 

539 shortcomings related to its use.

540 This highlights the need for further investigations towards a generalised synthetic approach 

541 that can optimise the simulation of coastal hazards, while minimizing the uncertainty related 

542 to the use of design events.
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