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Abstract The McNemar test can be considered the extension of the one-sample test on
proportions to the case of two dependent samples or a special case of the sign test for
paired data. In this paper we focus on the multivariate McNemar’s test by considering
an unusual but interesting application of Basket Analytics. The application is related to
the evaluation of the effect of the field factor in the performance of basket players. The
proposed method is based on the nonparametric combination of permutation tests.
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1. INTRODUCTION

The McNemar test provides a nonparametric solution to a very popular problem.
It can be considered the extension of the one-sample test on proportions to the
case of two dependent samples or a special case of the sign test for paired data
(McNemar, 1947). Medical applications are very widespread (Eliasziw and Don-
ner, 1991; Gonen, 2004; Lachin, 1992). However the fields of application are nu-
merous and very heterogeneous: computer science (Shao et al., 2021), marketing
(Bonnini et al., 2014), genetics (Akazawa et al., 2021), engineering (Ibrahim et al.,
2021), education (Stransky et al., 2021), behavioral ecology (Pembury Smith and
Ruxton, 2020) and many others. McNemar’s test is also suitable for comparing
classification rates of multiple predictive models (Demsar, 2006; Durkalski et al.,
2003; Leisenring et al., 2000; Lyles et al., 2005).
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Let us consider a binary response variable with paired observations. For ex-
ample, let us take into account a sample of basket players and a dichotomous
variable X representing the players’ performance in a given season. X takes value
1 if the performance is good (or positive) and 0 if the performance is bad (or neg-
ative). We are interested in the distinction between home and away matches and
the observed data can be represented by a 2× 2 table whose rows correspond to
good and bad performance in the home matches and the columns to good and bad
performance in the away matches. The hypothesis that the performance of basket
players is not affected by the so-called "field factor" is equivalent to the equality
of the marginal probabilities of good performance in the home and away matches.
We will see that, in order to test the significance of field factor’s effect, we must
compare the number of discordant paired observations. This is the typical goal of
McNemar’s test. Several versions and improvements of the test have been pro-
posed over time to have powerful solutions suitable for the specific framework of
the study, nature of the data and research objectives.

Methodological proposals have been published for the application of McNe-
mar’s test on clustered binary data. Some of these contributions are based on
scalar adjustments of the test statistic as if the assumption of independence on
two variables is satisfied and a further adjustment by a factor in order to keep the
null distribution approximately correct (Donald and Donner, 1987, 1990; Donner,
1992). Others are focused on the ratio estimator (Obuchowski, 1998; Rao and
Scott, 1992). Wu (2018) proposes a method for power calculation of the adjusted
McNemar test with clustered data.

For multiple comparisons of dependent proportions Westfall et al. (2010) pro-
poses a stepwise testing approach, by using discrete characteristics for exact Mc-
Nemar’s tests. This is a valid solution to several applications and is also suitable
in case of missing values, tests with different sample sizes, and other non-standard
or complex problems. In addition, to keep into account the dependence structure,
an approximate bootstrap method is also proposed. These methods control the
familywise error rate in the strong sense.

For the case of two independent samples of paired univariate dichotomous
variables, we mention the contribution of Feuer and Kessler (1989). The case
of binary crossover data was addressed by Becker and Balagtas (1993). Agresti
and Klingenberg (2005) present solutions for the comparison of two independent
multivariate binary vectors for an overall comparative evaluation of marginal in-
cidence rates in two populations. A multivariate extension of the McNemar test
is developed by Klingenberg and Agresti (2006), by discussing Wald and Score-
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Type tests, Generalized Estimating Equations approach, Likelihood Ratio and Or-
dinary Score Test.

In this paper we focus on the multivariate McNemar test by considering an
unusual but interesting application of Basket Analytics. This application concerns
the evaluation of the effect of the field factor related to the performance of bas-
ket players. The proposed method is based on the nonparametric combination
(NPC) of dependent permutation tests (Pesarin and Salmaso, 2010). The rest of
the paper is organized as follows. In Section 2, we present the classic univariate
version of the McNemar test. Section 3 is dedicated to introduce the application
of Basket Analytics, concerning the performance evaluation of Basket players by
comparing home and away performance. We will consider a review of the litera-
ture specialized on this topic in order to determine a suitable multivariate response
that represents the performance of basket players. In Section 4 we describe the
multivariate permutation McNemar test and we apply it to the problem of Basket
Analytics. Conclusions are provided in Section 5.

2. MCNEMAR TEST FOR PAIRED DATA WITH BINARY RESPONSES

The McNemar problem is also called test for marginal homogeneity. The rea-
son of this name will soon be clear according to the following description. Let us
assume that the dataset consists of n independent observations of the bivariate re-
sponse variable (Xi1,Xi2), the determinations of which are {(xi1,xi2), i = 1, . . . ,n},
where the two marginal responses can take only two categories, conventionally
denoted by 0 and 1. For example, the couple (Xi1,Xi2) could represent the pres-
ence/absence of two characteristics on the i-th statistical unit. Another example
concerns classifications according to a dichotomous scale by two evaluators on n
objects, subjects or items. Marginal homogeneity is equivalent to equality of the
marginal distributions of the bivariate response or the agreement between the two
evaluators. Data are assumed to be determinations of a bivariate Bernoulli random
variable. The joint probability distribution can be represented as in Table 1, where
θrs denotes the probability of occurrence of the couple (r,s), with r,s∈ {0,1}. The
hypotheses under testing are H0 : θ•1 = θ1• and H1 : θ•1 ̸= θ1•.

The joint frequency distribution can be represented by Table 2, where frs

denotes the absolute frequency of the couple (r,s) in the observed sample, with
r,s ∈ {0,1}. Note that this table, being not related to independent samples, is not
properly a contingency table; hence the typical techniques for contingency tables
cannot be applied.

The more similar f00 + f01 and f00 + f10 are (i.e. difference between f01 and
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Table 1: Probability distribution of the bivariate Bernoulli random variable.

X1
0 1

0 θ00 θ01 θ0•
X2

1 θ10 θ11 θ1•

θ•0 θ•1 1

f10 close to zero) the greater the empirical evidence in favor of the hypothesis
of marginal homogeneity (null hypothesis) and vice-versa. Hence, a suitable test
statistic for such problem might be based on ( f01 − f10). For small sample sizes
the test statistic (conditional on the marginal frequencies) might equivalently be

T = f01.

In fact, the sum f01+ f10 = n− f00− f11 = s is fixed and the test assesses disparity
of the discordants f01 and f10. Therefore f01 − f10 = 2 f01 − s and, consequently,
there is an exact linear relationship between the two test statistics. Thus, they
lead to the same p-values. When f01+ f10 ≤ 20, approximate distributions are not
required and not valid, and the exact distribution of one of the two equivalent test
statistics can be used for the inferential purpose. Under marginal homogeneity,
T follows a Binomial distribution with parameters f01 + f10 and 0.5, that is T ∼
Bin( f01 + f10,0.5) . The null hypothesis is rejected for either small or large values
of T . When f01 + f10 > 20 then

T = ( f01 − f10)
2 /( f01 + f10)

is typically used as a test statistic (Kvam and Vidakovic, 2007).
Under H0 it approximately follows a χ2 distribution with 1 degree of freedom.

Some authors take into account the discontinuity correction:

T = (| f01 − f10|−1)2 /( f01 + f10) .
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Table 2: Absolute frequency distribution of a bivariate binary response vari-
able

X1
0 1

0 f00 f01 f00 + f01 = f0•
X2

1 f10 f11 f10 + f11 = f1•

f00 + f10 = f•0 f01 + f11 = f•1 n

But, from the practical point of view, some experts think that, thanks to the com-
putational capabilities of modern computers, this correction becomes not relevant
(Kvam and Vidakovic, 2007). Simple changes to the decision rule must be con-
sidered for the one-sided problem. This test was proposed by McNemar (1947).
Some variations were presented by Bennett and Underwood (1970); Mantel and
Fleiss (1975); McKinlay (1975); Ury (1975).

The McNemar test can also be seen as the extension of the one-sample test
on proportion to the case of two dependent samples. It can be also considered a
special case of the sign test for paired data.

For example, let us consider the data about the performance of basket players
in the 2016/2017 Italian Championship (regular season). A reasonable measure
of individual performance in a match is the ratio between the number of scored
points (PT S) and the actual played time in minutes (T IME): PER = PT S/T IME.
In the 2016/2017 regular season of the Italian Championship, the general mean
value of PER with respect to all the players and all the matches was 0.35. Hence,
to determine whether the individual performance of a given player over the regular
season has been good/positive (X = 1) or bad/negative (X = 0) we can consider
the average value of the individual index and compare it with the general average
0.35. Formally

Xi =

{
1 if PERi ≥ 0.35
0 otherwise,

where PERi denotes the average of the values of PER over the regular season for
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the i-th player.
A typical goal of the performance analysis of athletes playing round robin

tournaments is whether the field factor affects their performance. In other words,
the question is whether the probability of good performance in home matches
is equal to the probability of good performance in away matches. Let random
variables XH and XA represent the individual performance in the home matches
and in the away matches respectively. Let θH = P(XH = 1) and θA = P(XA = 1).
We want to test H0 : θH = θA versus H1 : θH ̸= θA.

In Basketball, the distintion between functions and roles of the 5 different
players of a team is not very evident and the tasks are often interchangeable. Any-
way, there are some reference roles:

1. point guard (playmaker), with the task of calling the game patterns and
dictating the rhythms of the ball

2. shooting guard, with the tasks of supporting the point guard, with whom he
shares most of the characteristics and is usually the best shooter of the team

3. small forward, usually tall, fast and agile, he is interchangeable with the
shooting guard and the power forward; he is important for the particular
offensive peculiarities as well as for the defensive phase, especially in re-
bounding

4. power forward, occupies the same areas as the small forward, but he has
a more marked physicality, less suited to running; he is one of the tallest
players and is inclined to make space between the opposing defenders in
the area, ready to receive and reject impacts with the opponents

5. center (pivot), typically the tallest and slowest player, has most of the points
in his hands (especially in shots near the rim of the basket) and, in the
defensive phase, he is the main protector of his team’s area

In the individual performance analysis of Basketball players the role is clearly
a possible confounding factor and the distinction between roles must be consid-
ered, for instance through a suitable stratification. Since the distinction of the 5
roles presented above could be not suitable because the roles are not always so
distinct and well defined, a more general classification, very common in U.S.A.,
can be considered:

• backcourt players during ball possession, take care of playing the ball in the
back court; this category includes point guard and shooting guard
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Table 3: Absolute frequency distribution of 2016/2017 Italian Basket regu-
lar season sample of players according to their (binary) performance as a
function of the PER index.

Performance in home matches
Performance in away matches Bad Good

Bad 8 7
Good 1 8

• frontcourt players are responsible of scoring in the offensive half of the
court; this category includes small forward, power forward and center.

Data about the 2016/2017 Italian Basket regular season were collected. A
stratified random sample of 24 players (12 backcourt and 12 frontcourt) from all
the individuals who played at least 10 home and 10 away matches, was selected.
For each of these 24 players, the seasonal average performance PER in the home
matches and in the away matches was computed in order to obtain the couples of
binary data (xiH ,xiA), where xiH indicates whether the average performance of the
i-th player in home matches was good or not and xiA indicates whether the average
performance of the i-th player in away matches was good or not. A synthesis of
sample data, in the form of 2×2 table, is shown in Table 3.

In R, for the application of McNemar test, the command mcnemar.test(x) is to
be used, where x represents the 2×2 table like Table 3 or the equivalent for other
problems. If the significance level of the test is set at α = 0.10, since the p-value
of the test is 0.0703, then the null hypothesis of equal probability of performance
in the home and away matches is rejected in favor of the hypothesis that the prob-
ability of good performance changes according to the field factor (the one-sided
p-value for θH > θA is 0.0352).

3. PERFORMANCE EVALUATION OF BASKET PLAYERS

The analysis of the individual performance of basketball players has been the
subject of a vast scientific literature. Among the most recent contributions, we
mention Page et al. (2007), Cooper et al. (2009), Piette et al. (2010), Fearnhead
and Taylor (2011), Ozmen (2012) and Deshpande and Jensen (2016). Some works
focused on the prediction of the match outcomes (Brown and Sokol, 2010; Gupta,
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2015; Loeffeholz et al., 2009; Lopez and Matthews, 2015; Ruiz and Perez-Cruz,
2015; West, 2006; Yuan et al., 2015). An interesting work about players positions
and effectiveness of the shots from different areas of basketball court is that of
Shortridge et al. (2014). Zuccolotto and Manisera (2020) present an overview of
methods, models and R packages for the analysis of Basketball data.
In the considered case study, related to the Italian Basketball Championship regu-
lar season 2016/2017, we select a stratified random sample according to the latter
role classification.

Typically, there are two approaches of performance analysis in Basketball
Analytics: the bottom-up approach starts from the individual contributions of each
athlete to predict the team’s performance or the final result of a match; the top-
down approach uses the overall contribution of the team to determine the individ-
ual contributions of players. Our contribution, although not specifically aimed at
calculating the team’s performance, is compatible with the bottom-up approach of
which it could be a preliminary step. Since, the starting point and the raw data
refer to the individual performance, let us consider some scientific contributions
about performance measures of individual players.

The ratio between the number of scored points PT S and the played time in
minutes T IME mentioned in the previous section is a simple, reasonable but in
many cases not adequate performance measure of a player in a match. Typical
more sophisticated measures are:

• Player Efficiency Rating (PER): it takes into account and weighs the number
of 3-points shots, of 2-points shots and of free shots, the number of assists,
the stolen balls, the blocks and other quantities. It is a reliable measure of
performance only for the offensive phase and the reference values change
season by season

• Win Shares: they measure the contribution of each single player to the
team’s overall victories, by distinguishing and summing the offensive and
the defensive contribution. It is not suitable for small tournament such as
the Italian Championship with a total of only 30 matches in the regular sea-
son.

• Tendex: proposed by the sports journalist Dave Heeren in 1959, the Tendex
Rating is a measure of efficiency based on a weighted algebraic sum of par-
tial indices such as PT S, number of rebounds, number of assists, number
of stolen balls, number of blocks, turnovers, free throws made, field goals
made and personal fouls. This index is used to determine the Efficiency
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Rating used still today, especially in the United States, as an efficiency
assessment index and based on the ratio between Tendex and number of
played matches. It is very popular because it uses simple variables, usu-
ally included in the box-scores, and takes into account both offensive and
defensive performance.

• Performance Index Rating (PIR): it can be considered the European version
of Tendex. In 1991 it appears, for the first time, in the Spanish ACB League.
It is still used today to determine the Most Valuable Player (MVP) of the
week in the Spanish National League and in the EuroLeague. It includes
in the algebraic sum the same variables of Tendex with, in addition, Fouls
Drawn and (with negative sign) Shots Rejected.

• Offensive Efficiency Rating (OER): this is another very popular index de-
fined by Dean Oliver as the number of points done by a player per 100 total
possessions or simply the ratio between PT S and number of total posses-
sions (PO).

The goal of this work is not to determine an optimal performance index but
it is evident that each index has pros and cons and represents a partial aspect of
a complex phenomenon. Consequently, the concept of performance of a basket
player is multidimensional. In order to consider the multivariate nature of the
response variable, we take into account the two most commonly used indices,
PIR and OER, and we transform them with a logic similar to what we did with the
PER index in order to compute a bivariate binary response variable representing
the performance of a basket player in the regular season.

4. MULTIVARIATE EXTENSION OF MCNEMAR TEST: PERMUTATION
SOLUTION

Let us consider the multivariate extension of the problem illustrated above. The
dataset consists of multivariate paired data with q binary variables. The data are
assumed to be determinations of the random variables (X1ih,X2ih) with i = 1, . . . ,n
and h = 1, . . . ,q. Let θrs,h denote the probability (or population proportion) of
the couple (r,s) for the h-th response, with r,s ∈ {0,1} and h = 1, . . . ,q. The
multivariate McNemar test can be defined as

H0 :
q⋂

h=1
[θ01,h = θ10,h] ,
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against

H1 :
q⋃

h=1
[θ01,h ≮=> θ10,h] ,

where, in the overall alternative hypothesis, some of the partial hypotheses can be
two-sided and some others one-sided. Each partial testing problem can be solved
with the binomial test based on the test statistic Th = f01,h which, when H0 is true,
follows a binomial distribution with parameters f01,h + f10,h and 0.5, where frs,h

denotes the sample absolute frequency of the couple (r,s) for the h-th variable,
with r,s ∈ {0,1} and h = 1, . . . ,q.

Equivalently, we can consider the following data transformation

Yih = g(X1i,h,X2i,h) =


+1 i f X1i,h < X2i,h
−1 i f X1i,h > X2i,h
0 otherwise,

and apply the permutation test for paired data based on the test statistic

T ∗
h = ∑

n
i=1YihS∗i

with S∗i = +1 with probability 0.5 and −1 with probability 0.5 under H0. The
application of the NPC methodology for multivariate permutation tests provides a
solution to this testing problem (Pesarin and Salmaso, 2010).

The procedure requires the examination of all 2n possible permutations. In
practice, when this number is large (224 = 16 777 216), their complete exami-
nation may become unpractical. Thus, according to the literature (Pesarin, 2001;
Pesarin and Salmaso, 2010), especially in the q-dimensional case, we suggest con-
sidering a random sample from the set of permutations consisting in carrying out
B independent permutations. In other words, this is realized by a random gener-
ation of B sets of n-dimensional vectors of signs (note: the same permutation of
signs jointly for all q variables). To emphasize that the B permutations are taken
conditionally on the given dataset, this procedure is named "Conditional Monte
Carlo" (CMC). Once the q partial tests are carried out, the related q partial sig-
nificance level functions are to be combined by means of a suitable combining
function through the NPC methodology (Pesarin, 2001). According to the null
permutation distribution of the combined test statistic, the p-value can be com-
puted and compared with the significance level α in order to take the final decision
about either rejection or acceptance of the null hypothesis H0. This method can be
considered a particular case of the more general permutation test for multivariate
paired observations. Suitable combining functions are:
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• Fisher combining function: TF =−2∑h log(λh),

• Liptak combining function: TL = ∑h φ−1(1−λh), φ−1 being the standard
normal quantile function,

• Tippett combining function: TT = maxh(1−λh),

where λh is the partial p-value.
The CMC procedure works as follows:

1. Compute the vector of observed values of the q partial test statistics as a
function of the observed dataset X: Tobs = [T1(X), . . . ,Tq(X)]

′
= [T1(0), . . . ,Tq(0)]

′

2. Consider B random permutations and compute the values of the test statis-
tics corresponding to each permuted dataset. For the b-th permuted dataset
X∗
(b) (with b= 1, . . . ,B), the test statistics are: T∗

b = [T1(X∗
(b)), . . . ,Tq(X∗

(b))]
′
=

[T ∗
1(b), . . . ,T

∗
q(b)]

′

3. Estimate the p-values according to the null permutation distribution: λ̂h =

L̂h(Th(0)), λ̂ ∗
h(b) = L̂h(T ∗

h(b)), with L̂h(t) = [∑B
r=1 I(T ∗

h(r) ≥ t)+ 0.5]/(B+ 1)
and I(A) being the indicator function of the event A

4. Compute the observed value and the permutation values of the combined
test statistic based on the combining function ψ , Tψ =ψ(λ1, . . . ,λq): Tψ,obs =

ψ(λ̂1, . . . , λ̂q) and T ∗
ψ(b) = ψ(λ̂ ∗

1(b), . . . , λ̂
∗
q(b))

5. Estimate the p-value of the combined test according to the null permutation
distribution: λ̂ψ = L̂ψ(Tψ,obs)

Since all partial tests are marginally unbiased, the combined test is unbiased.
In other words, the probability of rejecting the null hypothesis in favor of the al-
ternative, when the latter is true in at least one of q components, is greater than
the significance level α (Pesarin and Salmaso, 2010). Even if each partial test
is distributed according to the binomial law, the multivariate (global) test is not
multinomial. Moreover, when q > 2, the asymptotic approximation of the multi-
variate distribution cannot be considered, because the dependence relations among
component binomials cannot be restricted to the q(q−1)/2 pair-wise correlations
coefficients (Joe, 1997; Pesarin, 2001). Indeed, also dependence three-wise, four-
wise, etc. should be considered. Thus the described NPC by the CMC procedure
based on B iterations is a suitable solution.

11



Let us consider again the example of the Italian Championship regular season
2016/2017. The bivariate response variable is based on the indices, PIR and OER,
transformed by a rationale similar to what we did with the PER index. In the
2016/2017 regular season of the Italian Championship, the mean value of PIR
with respect to all the players and all the matches was 8.5. Hence, in order to
determine whether the individual performance of a given player over the regular
season has been good/positive (X1 = 1) or bad/negative (X1 = 0) with respect to
PIR, we can consider the average value of the individual index and compare it
with the general average 8.5. Formally

X1i =

{
1 if PIRi ≥ 8.5
0 otherwise,

where PIRi denotes the average of the values of PIR over the regular season for
the i-th player. Similarly

X2i =

{
1 if OERi ≥ 0.84
0 otherwise,

where OERi denotes the average of the values of OER over the regular season for
the i-th player and 0.84 is the average mean over all players.

Let us consider a random sample of 24 players, stratified with respect to role
(12 backcourt and 12 frontcourt). Data are shown in Table 4. We want to test if
the proportion of good performances in the home matches is different from the
proportion of good performances in the away matches for at least one of the two
response variables.

The significance level of the test is set at α = 0.10. The application of the
combined permutation test, using B = 10 000 CMC runs with Fisher, Liptak and
Tippett combining function provides the p-values 0.003, 0.004 and 0.026 respec-
tively (see Figure 1). Hence, according to all three combined permutation tests,
the null hypothesis of equal performance in the away and home matches is re-
jected in favor of the alternative hypothesis that the performance depends on the
field factor. Note that the partial p-values of the univariate tests of the two com-
ponents of the bivariate response (OER-based and PIR-based performance) are
0.021 and 0.044 respectively, as shown in Figure 1. To attribute the significance
of the overall test to one of the two partial tests or to both of them, the p-values of
the two partial tests must be adjusted. This is necessary to avoid the probability
of type I error in the overall test exceeding the nominal significance level α . The
p-values of the two partial tests, adjusted with the well-known Bonferroni-Holm
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Table 4: Sample data about PIR-based and OER-based performance of play-
ers of the Italian Championship in the 2016/2017 regular season, in the away
and home matches.

Player X1(PIR) X2(OER)
Name Role Away Home Away Home
Alibegovic backcourt 0 0 0 1
Bushati backcourt 0 0 0 0
Cournooh backcourt 0 1 0 1
Dowdell backcourt 1 1 0 1
Forray backcourt 0 0 0 0
Harvey backcourt 1 0 0 1
Mian backcourt 0 0 0 1
Obasohan backcourt 0 0 0 0
Randolph backcourt 0 1 0 1
Spanghero backcourt 0 0 0 1
Vitali backcourt 0 1 0 1
Tonut backcourt 1 1 1 1
Abass frontcourt 0 1 1 1
Cusin frontcourt 0 1 0 1
Fesenko frontcourt 1 1 1 0
Iannuzzi frontcourt 0 1 0 1
Kangur frontcourt 0 0 0 1
Mazzola frontcourt 0 0 1 1
Pascolo frontcourt 0 1 1 1
Sacchetti frontcourt 1 1 1 1
Thomas A. frontcourt 0 1 0 0
Watt frontcourt 1 1 1 1
Wojciechowski frontcourt 0 0 1 1
Viggiano frontcourt 0 0 1 0
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Figure 1: P-values of the combined permutation McNemar tests with Fisher,
Liptak and Tippett combination for the two-tailed alternative hypothesis

method, are both significant (0.042 and 0.044 respectively). Hence, the perfor-
mance of the players in the home matches is not equal to their performance in the
away matches. This conclusion concerns both the Performance Index Rating and
the Offensive Efficiency Rating.

It is worth noting that the method can also be applied to directional tests,
i.e. with one-tailed alternatives. For example, the alternative hypothesis could be
H1 : [P(X1H = 1) > P(X1A = 1)]∪ [P(X2H = 1) > P(X2A = 1)], where (X1H = 1)
and (X1A = 1) mean that the seasonal performance according to OER in the home
and away matches respectively is good and (X2H = 1) and (X2A = 1) have a similar
meaning for PIR. In fact, it is reasonable to think that the performance at home is
better than the performance away according to both partial indices. In other words,
the probability of good performance at home is higher than the probability of good
performance away. This multivariate test with restricted alternatives (one-tailed
alternative hypotheses) admits a difficult asymptotic solution also for q= 2, where
the normal approximation for the two marginal distributions would be assured but
with an unknown approximation rate for finite n, such as n = 24. Therefore, the
application of a parametric approach based on the assumption of (approximately)
normal underlying distribution is not suitable because this assumption is not plau-
sible with these sample sizes. Hence, in these conditions, the proposed solution
is appropriate and valid because distribution-free and robust with respect to the
departure from normality. For the one-tailed test with B = 10 000, we obtained
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the partial p-values λ̂PIR = 0.0201 and λ̂OER = 0.0112, and the Liptak combined
λ̂TL = 0.0013. Hence, we have empirical evidence that the performance at home
is better (home-field effect) and this is true for both the performance measures
considered in the study.

5. CONCLUSIONS

A solution to a multivariate version of the well-known McNemar test, has been
proposed. The method is based on the NPC of dependent permutation tests. The
case study relates to Basket Analytics. Specifically, the goal is to evaluate the
performance of Basket players of the Italian Championship (2016/2017 regular
season) in order to test the so-called field effect. In other words, the goal is to
test whether, according to a given list of response variables, the proportion of
good performant players in the away matches is equal to the proportion of good
performant players in the home matches or not.

The proposed non parametric test is flexible, robust, unbiased and consistent
with respect to departure from assumptions in at least one component of the mul-
tivariate distribution of the response. It is particularly interesting to underline that
the NPC procedure does not require any specific assumption about the dependence
structure of the dichotomous components of the multivariate response. Indeed,
the dependence structure is implicitly considered without the need of modelling
or estimating any unknown population nuisance parameters (Pesarin and Salmaso,
2010).
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