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Abstract—The next stage for robotics development is to
introduce autonomy and cooperation with human agents in tasks
that require high levels of precision and/or that exert consid-
erable physical strain. To guarantee the highest possible safety
standards, the best approach is to devise a deterministic automa-
ton that performs identically for each operation. Clearly, such
approach inevitably fails to adapt itself to changing environ-
ments or different human companions. In a surgical scenario,
the highest variability happens for the timing of different actions
performed within the same phases. This paper presents a cogni-
tive control architecture that uses a multi-modal neural network
trained on a cooperative task performed by human surgeons and
produces an action segmentation that provides the required tim-
ing for actions while maintaining full phase execution control via
a deterministic Supervisory Controller and full execution safety
by a velocity-constrained Model-Predictive Controller.

Index Terms—Medical robotics, cognitive robotics, R-MIS,
action segmentation, model-predictive control.

I. INTRODUCTION

NY ROBOTIC Minimally-Invasive Surgery (R-MIS)

system has to comply with tight requirements to be
allowed within an operating room, where the actuated instru-
ments must interact with both soft tissues and hard surfaces,
such as needles, clips, and between themselves. Currently, all
robotic platforms within an operating room primarily rely on
surgeons to provide all guarantees through their experience
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and direct instrumental control via teleoperation. For instance,
the most advanced robotic platform available today in the
operating room is the daVinci Surgical Platform, a remote
teleoperation platform for laparoscopic surgery that does not
present any automation degree and provides only video as
feedback to the surgeon to maintain the highest possible level
of control stability.

The autonomous execution of a task by robots is mostly
relegated to industrial applications where robotic platforms
execute repetitive tasks with minimal to no cooperation with
humans: the focus is on executing precisely the same motions
in the most efficient way when positioned in a highly struc-
tured environment. The research in robotics, however, is
pushing for the introduction of cooperative tasks in which
both the motion accuracy and cognition level need to be robust
under any condition [1]. In medical robotics, the main effort
is nowadays spent in the development of autonomous and
semi-autonomous technologies to R-MIS. A comprehensive
study performed in [2] evaluates the impact of autonomous
technologies on medical/surgical practice and emphasises the
need of human cooperation and supervision in the future
of autonomous robotic surgeries. Among many applications
available in literature, the most relevant ones are the recogni-
tion of the different phases in an endoscopic surgery addressed
with deep neural networks [3] and the implementation of a
knowledge-based ontology approach [4]. Other works apply
unsupervised learning technique to overcome the problem of
human labelling of data [5], [6], with the latter focusing specif-
ically on its potential for robotics application. The necessary
level of interaction to achieve full cooperation with surgeons
will push the dexterity, perception and cognition capabilities
beyond the current limits of robotics applications.

The SARAS! solo-surgery platform will be a very sophisti-
cated example of a shared-control system: a surgeon operates
remotely a pair of robotic laparoscopic tools (i.e., the daVinci
Surgical Platform) and cooperates with the two novel SARAS
autonomous robotic arms inside a shared environment to per-
form complex surgical procedures. The goal of the project is
to define the required technologies to provide an experimental

ISARAS is an EU founded project and stands for Smart Autonomous
Robotic Assistant Surgeon, details at www.saras-project.eu
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robotic platform that intends to effectively substitute the
assistant surgeon next to the patient within the operating room.

Within the classification of autonomy grade in a surgi-
cal system [7], this work locates at a level 2: the system is
bounded to operate reactively to the surgeon’s actions and fol-
low their lead during the operation while providing assistance
to complete the tasks. The general architecture of the cog-
nitive control has been formalised in our previous work [8].
This paper refines the architecture to fulfil the requirements
for completing a laparoscopic pick-and-place cooperative task,
which is a standard training procedure for trainee surgeons, in
a semi-autonomous manner using the novel SARAS robotic
minimally-invasive tools. It represents a solid basis to reach the
further goals for a cooperative robotic platform for an entire
surgical procedure.

II. PROBLEM STATEMENT AND ARCHITECTURE
DESCRIPTION

This paper contributes to the state-of-the-art primarily by
integrating multiple perception and control technologies with
specific attention given to the safety of operation. Safety has
obvious implications in the field of surgical robots and is
reflected in how the majority of publications are dedicated to
overcome issues that arise during both manual and teleoperated
surgeries [9], [10], [11]. Specifically, previous applications of
Model Predictive Controllers (MPCs) can be found to improve
visual servoing control of underactuated devices within the
confined environment of the human anatomy [12], [13], [14].
For the advancement of autonomous controls in this scenario,
most of the literature presents case study applications of classic
control [15], [16], [17], with only the work presented in [18]
formulating a control strategy in line with the goal of this
work. However, to the best of our knowledge, this work and
its predecessor [8] represent the first attempts at direct coop-
eration between a surgeon and an autonomous laparoscopy
manipulator using high-level cognition with improved safety
control strategies.

Figure 1 shows the block diagram of the overall system.
The main surgeon is the central figure with control over the
entire process: they teleoperate the daVinci Surgical System
which produces images Z and Cartesian poses &. These are
processed by the AI module along with the Cartesian poses
of the SARAS arm x using the knowledge of the training
data (Z, x, é). The evaluated action A and confidence & are
passed to the supervisory controller that formalizes in a deter-
ministic manner the task knowledge, thus missing only the
correct temporal execution and unexpected events. Finally, the
MPC receives the current goal x, and confidence level a(k),
with k as the discrete time variable, needed to control the
SARAS arm.

The entire system represents an initial evaluation for a semi-
autonomous robotic surgical assistant system that aims at the
integration of perception, decision, planning, and action. It has
been evaluated over a surgical training scenario that is clearly
a simplification of a surgical operation, yet it is still realistic
and challenging.

C Pre-operative Data
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O ar
(z,€)
74 Action Supervisory
[ | Segmentation Aa Controller z,, a(k) MPC
(Z,2,6)
Training g Mait i
urgeon
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e
Arms Arms

Fig. 1. Control architecture schematics. The dashed line indicates an event-
based information stream between the Supervisory Controller and the Main
Surgeon, i.e., an user input request after displaying an error condition. MPC
stands for Model-Predictive Controller.

The foremost attention has been dedicated to the design
of an Action Segmentation neural network architecture: it
uses multi-modal learning capabilities over image data and
kinematic trajectories of the robots to provide high level of
confidence for a correct real-time temporal sequencing. The
network topology is designed to be easily adapted to more
complex tasks than the one presented hitherto. As the neural
network provides the estimated timing for the action execution,
a hybrid automaton formalizes the pre-operative task knowl-
edge into a sequence of sub-tasks by controlling the robot with
required goal points and grasp directives.

We introduce the sensible concept that a manipulator should
move faster whenever it is confident on what it is expecting
to do in the scene and with caution (slower) every time it is
not sure on what movement it has to perform. Therefore, the
correct control velocities for the SARAS arm’s lower level
controller are computed by a Model Predictive Control by
modulating over both the confidence of the action segmen-
tation module and the distance to obstacles in the scene, pri-
marily the surgeon’s teleoperated arm. The former constraint
assures both continuity and safety in execution by restraining
the velocity in the event of misidentified actions; the latter
guarantees that the autonomous arm and the teleoperated one
maintain a minimal safety distance to minimize interference
and unintended contacts between them. This becomes a non-
trivial problem when applied to the standard laparoscopy
instruments mounted on the robot and their relative mechanical
limitations, the foremost being the requirement for a remote
center-of-motion (RCM) at the instrument entry point (trocar).
The RCM represents a prerogative for laparoscopic surgery
since it guarantees the safety of the patient as the pivot point
remains fixed relative to the epidermis, thus preventing tis-
sue tears. Together with the RCM constraint, the absence of
a spherical wrist in laparoscopic instruments on the SARAS
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Experimental setup. (a) daVinci® arm (right) and SARAS arm

Fig. 2.
developed by Medineering™ (left). (b) same scene seen through the left
endoscope camera.

arm at the end-effector limits the degrees of freedom available
for obstacle avoidance and grasping.

A. Robot Description

Along with the commercial daVinci robot, which is tele-
operated by the surgeon, SARAS employs for the task a
novel, specifically-designed assistant robot to operate in mini-
mally invasive scenarios of laparoscopic surgeries. Indeed, the
SARAS robot is based on an actuated dual-trapezoid parallel
structure that allows to set a software RCM constraint at any
point along the laparoscopic tool. The tools mounted on the
SARAS robot are standard laparoscopic tools, i.e., rigid cylin-
ders &~ 400mm long and a varying diameter (5 &~ 12mm),
with an actuated instrument on the tip, as shown in Figure 2.
Finally, the scene is captured through a stereoscopic endoscope
held by the dedicated endoscopic arm of the daVinci platform,
which operates under the same constraints as the other arms.

B. A Semi-Autonomous Cooperative Task

Validation is performed by completing an experiment that
consists in a pick-and-place exercise where one daVinci arm is
teleoperated and one SARAS arm is autonomous. The user is
instructed to pick up a colored ring placed in the scene, either
red, blue or green, and to bring it closer to the camera for
color identification. The SARAS arm, using both cognitive and
geometrical information inferred from image and kinematic
data, moves towards the ring; after grasping it, the robot waits
until the other arm releases the ring and, finally, leaves the
exchange area to deliver the ring to the corresponding target
by color.

Each data acquisition session was prepared over multiple
sittings with the intent of avoiding overfitting by excessive
duplicates: both the orientation of the target square, shown in
Figure 2, and the initial position of the ring were randomized,
along with the light conditions and the endoscopic camera
angle. Moreover, the final dataset contains five recordings per
ring color to provide a sufficient and differentiated amount of
data to the learning process. The process was divided into 8
different fine-grained actions for the main surgeon (MS) and
the assistant surgeon (AS):

IR MS moves to the ring;

0PN MS picks the ring;

A03 MS moves the ring to the exchange area;

XIZ8 AS moves toward the ring;
AS grasps the ring and MS leaves the ring;

A06 AS moves with the ring to the correct delivery area;
LUZR AS drops the ring in the corresponding target;
AS moves back to the starting position.

The task can be also divided into three distinct phases:

o The surgeon phase, where the daVinci moves to the ring
and picks it up (actions -);

o The cooperation phase where the ring is brought to the
exchange area and the SARAS arm moves there and picks
the ring (actions [A03 ——-);

« The execution phase in which SARAS, autonomously,
brings the ring to the correct target area and moves away

(actions A06 ---).

C. Contributions

This paper showcases a valid approach to design shared
control architectures for semi-autonomous, robotic minimally-
invasive surgery that adopts high level semantics deduced from
the surgical scene to coordinate with a human surgeon. The
main contributions over the state-of-the-art in surgical controls,
and specifically the results in [8], can be summarized in:

o a multi-modal cognitive system that improves action
segmentation performance in terms of edit score by
encompassing both visual and kinematic information
and the adoption of a Temporal Convolutional Neural
Network that allows for a better identification of actions
of different duration;

o a re-designed supervisory controller that guarantees a
higher safety level through the adoption of thresholds on
the confidence of predicted actions.

As in [8], a Model-Predictive Controller computes the optimal
control velocities modulated by both the confidence level of
the cognitive system and a minimum safety distance among
the tools; its improved computational performance from the
version adopted in [8] allows to operate at higher control
frequency over a longer prediction horizon. The choice of the
weighting matrices and the control horizon within the MPC
metric have not been addressed in detail as they are not the
focus of this paper.

III. ACTION SEGMENTATION

The action segmentation has to operate within stringent tim-
ing and performance requirements to be applied online as a
soft-sensor. Indeed, the underlying model must:

o be reliable, which can be verified by the low incidence
of false positives and negatives, and the percentage of
correctly evaluated sequences;

o be robust, which is tested under varying conditions for the
experimental setup (lighting, camera orientation, target
variation etc.)

o provide real-time evaluation for its application as an
advanced soft-sensor taking as input fast-changing sig-
nals and providing as output commands to lower-level
controllers. This requires both data buffering operations
and a small memory footprint not to hinder cyclic
computations.

To comply with these requirements, we chose to imple-

ment a neural network, called EdSkResNet, that integrates
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Fig. 3.

multi-modal learning over the data available during a robotic
minimally-invasive surgical operation. It outperforms many
state-of-the-art solutions for both spatial, i.e., the instantaneous
description of the scene, and temporal information analysis.

A. Neural Network Specifications

The resulting neural network architecture (Figure 3) is com-
posed of two sub-networks: the Spatial-Kinematic Network,
which produces high-level features by processing image and
kinematic data, and the Temporal Convolutional Network [19],
which filters such features temporally over a sliding window
to stabilize their changes over time.

The backbone of the Spatial Kinematic Network structure
is the Deep Residual Network (ResNet [20]) with 34 layers.
Its task is to process each image taken from the endoscope
(in this case, the left image of the stereo camera assembly)
at a rate of 10 frames per second to produce meaningful
features. Additionally, it represents one of the few structures
capable of scaling according to the data, i.e., its depth can be
easily increased or decreased depending on the scene complex-
ity without suffering from model overfitting during training.
Its structure is composed by a cascade of convolutional fil-
ters increasing in number layer after layer; the residual paths
allow the gradient not to vanish during training, which would
decrease its effectiveness. The kernel size (3, 3) is maintained
throughout all layers to improve feature detection at different
scales.

To further enhance the capabilities of ResNet for the specific
problem of action segmentation, we introduced:

« an additional image channel called the Motion History
Image (MHI) [21], [22], implemented as a decay factor
that weights more recent and older grayscale frames over
a temporal window 7.
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Neural network schema for action segmentation: the RGB and MHI images are processed simultaneously as a 4-channel enhanced frame.

« a sequence of kinematics position, also with duration 7',
of the end effector for both the SARAS and daVinci arms
including the closing percentage of the graspers at the end
effector.

The features computed by the enhanced ResNet are con-
catenated to the temporal sequence of kinematic positions to
generate an expanded feature vector. This concatenation is per-
formed to balance the information produced by the spatial and
kinematic sides. The output for ResNet-34 is constrained by
its own architecture to 512 features. Conversely, the kinematic
sequence, which is a succession of normalized Cartesian coor-
dinates and opening percentage of the tool for both arms, is
restricted only by the operative frequency of the robots. To
generate 512 data points and balance the spatial output, the
latter has been, indirectly, set to 6.4 Hz to match the temporal
window T and the video acquisition frequency of 10 Hz. The
combination of image and kinematic information allows the
network to better discriminate actions that appear too similar
in either the image data or the relative motions to be classified
correctly.

All the feature tensors computed by the spatial-kinematic
network in real-time are pushed into a sliding window buffer
containing up to 100 samples (10s) to be processed within
the Temporal Convolutional Network. The buffer is designed
not to interrupt the training of the neural network since it
allows to maintain the gradient needed for the backpropagation
end-to-end, i.e., from the labeling at the end of the Temporal
Convolutional Network to the input sequence of the Spatial-
Kinematic Network. There are multiple benefits in the use of
the temporal network:

1) it stabilizes the output relative to input changes, which

has a considerable impact for online use;

2) it increases robustness to the segmentation of actions of

different duration;
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Fig. 4. Scheme of the hybrid automaton supervisor.

3) it allows to obtain a prediction horizon by simply
shifting the temporal output sequence during
training.

Regarding the second point, the issue with non-balanced
labelling, which occurs with actions of different duration
across the dataset, could still have an impact on the Spatial-
Kinematic network side as it risks overfitting over replicated
data. However, the use of both kinematic and motion his-
tory images naturally differentiates among the input data due
to the different velocities of the instruments. Additionally, a
simple solution to respond to this issue is to pre-train the
Spatial-Kinematic network with scaling coefficients applied
to the labels to improve the single-shot recognition capabili-
ties. Regarding the third point, the prediction results were not
used explicitly in this work, yet they demonstrate the shift-
invariance [23] capability of this network architecture and
represent another proof of how the overall system is optimized
for processing streaming data. This property also reduces sen-
sitivity to the relative lengths of tasks, which can be observed
in the different total temporal lengths of the offline and online
tests, with the former being less than half the duration of
the latter. This network operates following the autoencoder
principle of filtering the least relevant information over time
by size reduction and expansion. As the name suggests, it
employs temporal convolution with a kernel size of k; = 60
and stride s = 2 to reduce halve the tensor length for each level
in the downsampling (for this task, only one level has been
found necessary); upsampling operates in a opposite manner
to restore the temporal sequence length. Finally, the classifier
adopts a softmax operator to fit the probability density func-
tion for a categorical distribution. The loss function computes
the categorical cross-entropy between the predicted (y) and
expected (y) values

k C
==Y (vlog(dy)) ()

i=0 j=0

with k and C being the temporal length for the current batch
and the number of classes, respectively.

IV. SUPERVISORY CONTROL

For each iteration, after the action segmentation module esti-
mates the current action A and confidence level &, the next task
to be performed by the autonomous robot, i.e., the next goal
position x, and confidence level (k) (as the non-modified
output of the neural network at time sample k) (Fig. 1), is
determined by a supervisory controller.

For the scenario described in Section II, this controller can
be implemented as the hybrid automaton shown in Figure 4.
It differentiates from a classic Finite-State Machine from its
dependency on the time-varying variables A and «. We define
three distinct thresholds that control the next-state function of
the automaton. The first one is the lower threshold 77, which
represents the minimum value for trustworthiness below which
the network is producing defective results (i.e., below the ran-
dom extraction probability, approximately 12% for 8 actions).
The second is the higher threshold 73, which is the mini-
mum level of confidence to discriminate among actions; it
can be empirically set to 85% since it relates to the output
of the softmax layer used for classification learning. Finally,
the M;,; which discriminates over the amount of time the seg-
mentation output remains within the two confidence thresholds
(T; < a(k) < Tp); it has been introduced to avoid having
the classification stuck in uncertainty and it has been cali-
brated on the time-steps required to complete the grasping
action. A nominal execution of the task would see the neu-
ral network producing confidences over 7, and the next-state
function using only the segmented action A to trigger a transi-
tion; a non-nominal execution would see a confidence profile
that rises and drops over such threshold, thus requiring addi-
tional supervision to operate safely. The threshold 7; acts as
a safety switch that indicates a computation or communica-
tion failure within the system since the neural network cannot
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produce values lower than the random extraction chance by
design.

Guided by these thresholds, the automaton presents five
states in which the SARAS robot acts autonomously.

| Idle, the initial state in which the system needs to
remain until the detected action corresponds to tasks
performed by the daVinci arm (i.e., ——
A03 );

Go To Ring, when the fourth action is
detected, the supervisor directs the SARAS arm to
move towards the ring by changing the goal position
Xgs

G Grasp, corresponding to the - action, the robot
is required to grasp the ring (direct control over the
graspers);

Go To Target: once the robot arm has grasped the
ring, it needs to reach the delivery target as defined
by action AO06 ;

R Release: as soon as the target is reached and the
action segmentation module detects the releasing
action (i.e., ), the supervisor orders the SARAS
arm to release the ring.

Three additional control states are necessary to fulfill the
description. The End state follows the Release state and sig-
nals the SARAS arm that it can move away from the target:
this is identified with action JAO81. From each state, the next
state is described by ERR (Error) whenever @ < T;. Finally,
the state UI (user input) acts as a safeguard measure to ensure
that complete control over the task is given to the surgeon
whenever the condition for the maximum tolerance time is
met (M,,;): the system will stop all activities and the surgeon
is required to manually input the action to be executed next
whenever the confidence level remains below the threshold
Ty,. The authors remark that, since the implemented supervi-
sory control model is clearly deterministic in its formulation,
the requirement of user input in the event of task failure (for
instance, the token slipping from the grasper) is the most con-
servative and safest approach. The error state is considered
as a last resort only for catastrophic system failures, such as
software or hardware failures.

GTR

GTT

V. MODEL PREDICTIVE CONTROL

The requirement of working in restricted environments, such
as the abdomen of a patient in a laparoscopic setup, alongside
human-operated tools bearing hard to predict motions leads to
the implementation of reactive control methods to guarantee
safety [24]. Specifically, MPC-based control methods allow
formulating constraints for the robot motion planning that can
consider limitations forced by both the environment and the
physical characteristics of the robotic manipulator that needs
to interact with it [25].

A. Constraints Formulation

As the controller is intended to maximize both the
performance and the safety of the autonomous arm within the
operative scenario, it was designed to incorporate both:

1) a collision avoidance formulation;

2) a velocity modulation based on the uncertainty of the
action segmentation module.
For the first point, given the mechanical structure of laparo-
scopic tools, the constraint is formulated as a minimum of the
distance between capsule-like bounding shapes that approxi-
mate the laparoscopy tools. Considering the two tools a and
b, respectively the autonomous and teleoperated arms, we can
consider the constraint
d (k) = disio (k) — ri =

ax(a)

i > dy )

assuming dggg being the distance between the instruments

when collapsed into a line, r;, r; the corresponding radii of
the respective tools, and d; the safety distance. The veloc-
ity constraint follows the simple principle of modulating the
motion following the certainty profile over the action to be exe-
cuted. This is computed by the action segmentation module as
a at each discrete time. Let #™®* be the maximum allowable
velocity for the tool, the velocity modulation can be simply
expressed as

] < a(k)u™ 3)

taking into account any desired maximum tool velocity.

B. Control Model

The robot Cartesian kinematic model is expressed by the
simple motion of a material point in space located at the end
effector, i.e., a discrete time-domain integrator

X(k+ 1) = X(k) + Bu(k) 4)

where X = [x,y,2,0] € R* is the state vector containing the
coordinates and the rotation of the tool, and B = diag(AT) €
R**# is the input matrix integrating the input velocity u on the
discrete-time domain ¢t = kAT, k € Z, with AT the sampling
time. This system formulation is sufficient to move the end
effector of the robot given the intrinsically limited dynamics
of the slow-moving tool; the motion towards the goal always
follows the shortest line with the current position. However,
this does not guarantee that the resulting motion is feasible for
all the goal positions with the presence of obstacles along the
path and the remote center-of-motion constraint. Therefore, a
geometrical solution has been developed to provide the MPC
with a real-time sequence of waypoints towards the goal [26].
This solution exploits the fact that a laparoscopy tool always
presents an obstacle-free motion along the instrument axis
towards the insertion trocar. The algorithm operates in two
steps: (1) it samples uniformly a circle centered around the
obstacle, and (2) it selects the point which is closest to the
trocar. Afterwards, this point is projected onto the plane of
the motion to find the nearest waypoint to avoid the obstacle.
Figure 5 shows a solution found by this algorithm to generate
a waypoint around the obstacle.

This simple solution fails only whenever the required goal
position is non-approachable a priori.

C. Optimization

Given the foregoing requirements and constraints, we evalu-
ate the optimal control problem over a finite temporal horizon
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<

Fig. 5. Tool position (blue capsule), desired tool position (light-blue capsule)
and obstacle (red capsule). Legend: T indicates the trocar entry point; W is the
waypoint computed over the circumference around the obstacle (first image
to the left, green dashed line); u is the new velocity vector pointing to the
waypoint.

of length p and generate a sequence of velocities 0™ (k + -) by
minimizing the Euclidean distance between the target and the
predicted states,

p—1
@ = argmin ) |x, (k) — (k + i)
it =0
st dk+i+1) =%k + i) + Bik + i)
lit(k 4 )| < or(k)u™
do(k) = di.
2(k) = x(k) (5)

in which p indicates the length of the prediction horizon (in
discrete steps), x,, is the waypoint state (x, whenever this state
corresponds to the final goal position) as evaluated in (4),
and Xx(k + i), a(k + i) are the state and the velocity pre-
dicted i steps ahead within the future horizon, respectively.
The obstacles and the action segmentation confidence level
are both considered frozen over all |p| time steps. By repeat-
ing the optimization process at every time step, the result
is the optimal control velocity for the current discrete time
u(k) = 0" (k + 0) that satisfies the requirements and adapts to
the environment containing human-controlled tools as moving
obstacles.

VI. EXPERIMENTS
A. Neural Network Training

The neural network for action segmentation has been trained
on a customized dataset of videos acquired using the setup
shown in Figure 2. When acquiring training data, both the
daVinci and SARAS arms were teleoperated by two operators.
Videos are recorded using the left camera of a stereo endo-
scope mounted on a robotic arm with the poses of both robots
synchronized to each frame via ROS [27]. In total, 15 videos of
approximately 200 frames each at 10 frames per second have
been taken, all representing the same cooperative task, with
the corresponding ground truth labelling. Each action lasted
for an average of 1.04s to 6.24s with a standard deviation
between 30% and 50% of their lengths. This statistics indi-
cates that the trained model can generalize over high variances
in duration. To facilitate the training phase, the parameters
have been initialized with weights from the ImageNet com-
petition [28]. We adopted a data acquisition protocol in the

training set to improve the robustness that involves varying,
for each acquisition session,

« the image acquisition perspective through the endoscope
camera, with orientations kept within a 20° cone approx-
imately,

o the lighting of the scene, by turning on and off both
ambient and endoscope illumination,

« the position of the objects.

B. Ablation Studies

To better understand the net contribution of each term
included in the proposed network architecture, called
EdSkResNet shown in Figure 3, we tested several networks
by turning on and off single parts of the architecture to
identify each specific contribution to the overall result. The
sub-networks are:

o ResNet, the standard RGB-only ResNet34 image classifi-

cation network [20];
o SResNet, the ResNet34 computed over the RGB + MHI
enhanced frames (which is similar to [22]);

o skResNet, the sResNet with the addition of kinematic

sequences.

We included a baseline result, identified by the name kClass,
which is a simple kinematics classifier composed of two fully-
connected layers (a similar structure has been tested also
in [29] for the JIGSAWS dataset);

The results of each network have been evaluated using three
statistical indices related to the segmentation reliability:

- the Accuracy Score, computed as the percentage of

correctly labelled samples relative to the ground truth,

__ # true samples
" # total samples

- the Edit Score, i.e., the normalized Levenshtein dis-
tance [30] between the longest of two strings (s, 5), thus
it rewards the capability of the network to produce the
correct sequence of actions; the distance is computed as

max(i, j)
LG, j—D+1
min{ LG —1,/)+ 1 otherwise
LisG—1,j— 1D+ 1(s #5)

with 1 being the indicator function;

- the F| Score is the harmonic mean of the precision (which
is the ratio between correct positive results and totally
positive results) and recall (that is the number of correct
positive results divided by the number of samples that
should have been identified as positive). It is calculated as

if min(i,j) =0

Ls,ﬁ(ivj) =

precision - recall
Fl=2— "
precision + recall

Testing was conducted following a Leave One Sample Out
(LOSO) cross-validation approach for every trial to be trained
over full sequences of actions. The median neural network
model has been maintained to improve generalization in online
usage where conditions can differ relative to the acquired data.
The optimization algorithm for training is Adam [31] with a
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TABLE I
ABLATION STUDIES RESULTS OF THE MEDIAN MODEL FROM
THE LOSO EVALUATION (%)

Network Accuracy Edit Score Fq
kClass 77.90 94.12 78.68
ResNet 83.98 76.19 83.85
sResNet 77.90 84.21 77.41
skResNet 90.05 100.00 90.25
EdSkResNet 93.37 100.00 93.32

validation strategy that saves the weights of the model with
priority given to increments in edit score over increments in
accuracy and reloads these weights for the following iterations.
The best results have been obtained using a 2.0 seconds his-
tory time window for both the kinematic position trace and the
MHI. Table I reports the median model’s results for each score
and network topology when segmenting at the latest times-
tamp (without a prediction horizon). The average percentage
values for Accuracy, Edit Score, and F are, respectively,
92.934+1.53, 96.86£3.63, and 92.21 £3.02. As expected, the
scores confirm the assumption that the combined contribution
of video and kinematic data overcome the limitations of either
when they are used separately, with the skResNet gaining over
both the simple kinematic classifier and the enhanced sResNet.
Finally, the introduction of the temporal convolutional filter
provides

1) an additional increase in recognition, mainly over the
accuracy score since the edit score was already maxi-
mized by the skResNet network alone;

2) increased continuity and stability in recognition when
used online for controlling the robot, as shown in
Section VI.

The scores presented in Table I are better visualized in
Figure 6. It shows the sequence of actions as color boxes
encoded following the convention in Section II-B: most
notably, the segmentation around the critical phase changes,
indicated in the figure by the black dashed vertical lines, is
closer in timing to the ground truth, hence the improved accu-
racy score obtained in training. The temporally-filtered model
produces, therefore, increasingly stable results that are more
suitable to be used as an online soft-sensor.

Additional information can be extracted by looking at the
confusion matrix for the same results, presented in Figure 7.
The most uncertain actions can be identified as -, A06 ,
and . The relative error clearly falls within the respective
temporally-adjacent actions, with - being confused in all
occurrences with Ja\048. This will be more evident in the real-
time segmentation of the task, as presented in Section VI-C,
Figure 8. Thanks to the buffering nature of the Temporal
Convolutional Filter, it is possible to introduce a look-ahead
action prediction. This is not a requirement for the task at
hand, but it proves how the temporal convolution reacts to
being trained with time-shifted labels. The results show an
expected decrease in both accuracy and edit score as the hori-
zon is pushed further; nevertheless, with a prediction horizon
of 1.0s the overall segmentation quality remains acceptable
according to both metrics (as shown in Table II and Figure 6).

Execution
Phage

EBoperation

Phasc

Ground Truth

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

skResNet

EdSkResNet

14.0 16.0 18.0

EdSkResNet-p1.0

0.0 2, 4. X i i 2, 14.0 16.0 18.0
Time

Fig. 6. Segmentation graphs for kernel size k; = 60 performed on
RGB + MHI enhanced images and kinematic data. From the top: the
ground truth labelling; the results respectively without (skResNet) and
with (EdSkResNet) temporal filtering. The bottom plot is the estimate via
EdSkResNet with a look-ahead horizon of 1.0 seconds. The dashed lines sep-
arate the three main phases (Surgeon, Cooperation, and Execution) relative to
the ground truth.

A0l AD2 AO03 A04 AD5 A06 A07 A08

True

Predicted

Fig. 7. Normalized confusion matrix of the median model obtained by the
Leave One Sample Out cross-validation.

The look-ahead prediction can be used in the Model Predictive
Controller to provide an estimate of the confidence level during
optimization instead of maintaining a steady state condition;
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Fig. 8. Plot of an experimental task instance performed autonomously by the SARAS arm: the middle plot shows the norm of the Cartesian velocity vector
with superimposed automaton states; the bottom plot shows the confidence level with the corresponding identified actions.

TABLE II
LOOK-AHEAD LABELLING ON EDSKRESNET (%)

Horizon Accuracy Edit Score F1
0.5s 87.29 88.89 87.86
1.0s 85.63 88.89 86.22

TABLE III

RESULTS FOR THE MEDIAN USER OF THE JIGSAWS SUTURING
FOR THE LOUO EVALUATION (%)

Algorithm Accuracy  Edit Fq
ED-TCN [19] 814  83.1 87.1
Sym. Dilation w/ pooling + attn [32] 90.1 89.9 92.5
EdSkResNet [our] 81.71 91.74 80.08

the MPC would still evaluate the prediction horizon at each
computation cycle to properly update all command velocities.
To validate the neural network model over the state-of-the-art,
we provide the readers with a comparison of the EdSkResNet
over the JIGSAWS dataset [29] for two of the best performing
solutions (Table III). The improvement in Edit Score indicate
the prowess of the model to identify the correct sequence
of actions as performed by human operators teleoperating
laparoscopy instruments.

C. Robot Control Results

The combined contributions of action segmentation, super-
visory controller, and model-predictive controller allow the
cooperation task as presented in Section II to be completed
successfully. The autonomous arm understood whenever the
teleoperated arm requires the exchange to happen and delivers

the ring to the required colored patch. Specifically, within the
critical cooperation phase (actions , , and -),
the reduced level of confidence for the prediction, as presented
by the confusion matrix, is correctly handled by both the super-
visory control, through the correct evaluation of the "Idle"
state, and the MPC, which modulates the velocity. Therefore,
the uncertainty of the network does not ultimately hinder
the execution of the task. The full execution can be seen
in Figure 8. The top plot shows the view from the endo-
scope camera. The plot in the middle shows the velocity
profile of the SARAS arm, computed as the magnitude of
the Cartesian velocity vector, in response to the optimal input
velocities produced by the MPC. The states of the automaton
are superimposed over the profile. The upper limit u,,,, for
the MPC has been set to 0.03ms™!. The lower plot presents
the confidence profile of the action segmentation module with
the corresponding actions, highlighted using the same colour
convention of Section II. The relationship between the automa-
ton states and the recognised actions is evident since the
robot reacts to the correct perceived user action. It is worth
noting how the confidence modulation affects the maximum
velocity during the robot movement in the states GoToRing
and GoToTarget. During the Idle control state, the SARAS
arm is kept in motion in order to simplify the identification
of action (the recognition appears uncertain between
actions and ); as soon as the pick-up action is
completed by the surgeon, the system recognises action
(at approximately second 25) and SARAS enters the state
GoToRing, thus executing the correct action. After a few sec-
onds of low action confidence, the task proceeds nominally
with the grasp and delivery of the ring to the target, the approx-
imate coordinates of which is located by using both cameras of
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the stereo endoscope to triangulate the center of the matching
bounding boxes.

The test has been performed under different conditions of
light and endoscope angle to verify the behavior within possi-
ble imaging conditions for laparoscopy operations with good
overall performance by the system.

D. Discussions

The goal for this architecture is to perform tasks in a high-
risk scenario, therefore all the uncertainties occurring in the
decision-making for the task need to be reduced as much as
possible. The EdSkResNet has been designed with the possibil-
ity of computing the spatial and temporal networks to address
the issue of oversegmentation through temporal filtering only
for faster fine-tuning. As presented in Table I, once empirical
choices have been made for the MHI and kinematic queue
length depending on the granularity of the desired actions, the
skResNet already achieves high performance in offline action
segmentation after fine-tuning from a non-correlated dataset.
However, the Spatial-Kinematic Network acts as a single-shot
detector without considering temporal correlation, which usu-
ally is a source of segmentation noise. The output stabilises
with the introduction of the Temporal Convolutional Network,
especially for online evaluations as presented in Figure 8.

It is necessary to address the difference between the offline
and online testing results. During the training of the model
for the neural network, the test results, which drive the choice
for the final parameter set to be applied, are inevitably higher
than the online results appearing over the real-time experi-
ment. This could be attributed to the sensitivity to the user
performing the task, with the SARAS arm was teleoperated
during data acquisition, whereas it operated autonomously dur-
ing real-time experiments. The different motions performed by
the human and autonomous operators explain, at least in part,
the higher relative confusion between actions [JaX0ZY and h
(Figure 7), which generates the oversegmentation that occurs
at the beginning of the task (Figure 8). In fact, during this
phase, the SARAS robot was purposefully kept in motion with
a minimal sine wave motion to try to mimic the inevitable
movements present in the data acquired through teleopera-
tion. In addition to this occurrence, the authors address that,
despite the previously mentioned precautions taken during data
acquisition, the lighting condition had a remarkable effect on
the task execution as the latter progressed only after dimming
the light of the endoscope. The overall uncertainty, however,
reduces the confidence level for any single action which makes
it manageable through the supervisory controller. Finally, an
initial uncertainty is present also between the actions h
and that did not occur during the offline evaluations
and that manifested during the online evaluation. This can
be attributed to the initialization of the daVinci kinematics
that read the forceps as closed at the very beginning, a fact
that confused the network and induced the swap between
the actions. Indeed, the grasping angle is a strong feature
for the multi-modal learning process to evaluate the effec-
tive pick up action. Under the constraints of the experimental
conditions, the model predictive controller formulation and

the pre-operative task knowledge, represented by the finite-
state machine, provide the required level of safety and control
stability to avoid damage in the event of incorrect action
evaluation, thus it operates as a safe reactive cognitive system.

VII. CONCLUSION

In this paper we proposed a control architecture that satisfies
the requirements for a semi-autonomous assistant. It integrates
the necessary task determinism to operate in a surgical sce-
nario by means of the Supervisory Controller, the motion
safety offered by the velocity-constrained Model Predictive
Controller formulation, and the adaptability to human task
execution timings provided by the Action Segmentation (and,
possibly, prediction) module. The combined efforts of these
three elements managed to complete the cooperative pick-
and-place task successfully without external intervention on
the autonomous part. The experiments presented in this work
showcase the difficulties in the adoption of neural networks to
surgical scenarios, a fact that induces to think that the way for-
ward is represented by different task-specific neural network
models orchestrated by supervisors rather than a single model
for entirely different classes of tasks.

As future works, the system needs to be tested on more
realistic surgical scenarios with a greater amount of data to be
processed by the neural network to increase robustness under
all possible experimental conditions.
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