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Abstract
Objectives  In this study, we developed a radiomic signature for the classification of benign lipid-poor adenomas, which may 
potentially help clinicians limit the number of unnecessary investigations in clinical practice. Indeterminate adrenal lesions 
of benign and malignant nature may exhibit different values of key radiomics features.
Methods  Patients who had available histopathology reports and a non-contrast-enhanced CT scan were included in the 
study. Radiomics feature extraction was done after the adrenal lesions were contoured. The primary feature selection and 
prediction performance scores were calculated using the least absolute shrinkage and selection operator (LASSO). To 
eliminate redundancy, the best-performing features were further examined using the Pearson correlation coefficient, and 
new predictive models were created.
Results  This investigation covered 50 lesions in 48 patients. After LASSO-based radiomics feature selection, the test dataset’s 
30 iterations of logistic regression models produced an average performance of 0.72. The model with the best performance, 
made up of 13 radiomics features, had an AUC of 0.99 in the training phase and 1.00 in the test phase. The number of features 
was lowered to 5 after performing Pearson’s correlation to prevent overfitting. The final radiomic signature trained a number 
of machine learning classifiers, with an average AUC of 0.93.
Conclusions  Including more radiomics features in the identification of adenomas may improve the accuracy of NECT and 
reduce the need for additional imaging procedures and clinical workup, according to this and other recent radiomics studies 
that have clear points of contact with current clinical practice.
Clinical relevance statement  The study developed a radiomic signature using unenhanced CT scans for classifying lipid-poor 
adenomas, potentially reducing unnecessary investigations that scored a final accuracy of 93%.
Key Points 
• Radiomics has potential for differentiating lipid-poor adenomas and avoiding unnecessary further investigations.
• Quadratic mean, strength, maximum 3D diameter, volume density, and area density are promising predictors for adenomas.
• Radiomics models reach high performance with average AUC of 0.95 in the training phase and 0.72 in the test phase.
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Abbreviations
AUC​	� Area under the curve
IBSI	� Image Biomarker Standardization Initiative
LASSO	� Least absolute shrinkage and selection operator
NECT	� Non-enhanced CT
ROC	� Receiver operating curve
ROI	� Region of interest
VOI	� Volume of interest

Introduction

An adrenal incidentaloma is defined as an asymptomatic 
adrenal mass discovered on imaging that was not performed 
to investigate a suspected adrenal disease [1]. In most cases, 
adrenal incidentalomas represent benign non-functioning ade-
nomas, but they may also correspond to different conditions 
requiring full clinical attention and therapeutic intervention 
(e.g., adrenocortical carcinoma, pheochromocytoma, hor-
mone-producing adenoma or metastasis). As a consequence 
of the burgeoning use of advanced diagnostic imaging in daily 
medical practice, in the last decades, we have observed a con-
stantly increasing incidence rate of incidentally discovered 
adrenal nodules. Indeed, adrenal incidentalomas are common, 
estimated to occur in approximately 3 to 7% of adults [2, 3].

Incidental adrenal masses represent diagnostic challenges 
for both radiologists and referring clinicians, particularly 
when the initial imaging features are equivocal or non-
diagnostic. The main challenge is correctly identifying the 
infrequent unexpected malignant lesions (or hyperfunction-
ing adenomas), while sparing the vast majority of patients 
with clinically insignificant disease from unnecessary fur-
ther examinations.

Diagnostic imaging is crucial in the classification of adre-
nal masses, since the precise etiology can be determined on 
both computed tomography (CT) and magnetic resonance 
imaging (MRI) for several entities without the need for fur-
ther tests [1, 4].

In particular, CT could aid the diagnosis of adrenal ade-
nomas in two ways, namely density measurement and con-
trast washout. A density lesser than 10 HU on non-enhanced 
CT (NECT) is almost always diagnostic of a lipid-rich 
adenoma, regardless of size [2]. By contrast, if there are 
no benign diagnostic imaging features (for instance, macro-
scopic fat, adrenal density <10 HU), a dedicated adrenal CT 
protocol including a 15-min delayed acquisition after con-
trast media administration is advisable, in order to assess the 
absolute—or relative—percentage washout. However, pheo-
chromocytomas and adrenal metastases from hypervascular 
primary extra-adrenal malignancies could sometimes exhibit 
a washout pattern similar to that of adrenal adenomas [5–8].

Other imaging modalities may be useful to clarify the 
nature of the nodule, in particular MRI, in which a signal 

loss between in- and opposed-phase images at chemical-
shift imaging is diagnostic of adenoma, or positron emission 
tomography (PET)-CT, in which most adenomas show FDG 
uptake less than 3.1 [9].

However, the need for additional tests puts patients at 
risk of anxiety and unnecessary harm from diagnostic pro-
cedures; additionally, the costs incurred can be significant.

Radiomics refers to a rapidly emerging discipline based 
on the extraction of mineable data from medical imaging. 
It has been used in oncology to support diagnosis, prog-
nostication, and clinical decision-making, with the goal of 
delivering precision medicine [10–13].

In recent research, O’Shea et al [14] and Cao and Xu [15] 
demonstrated that early-stage metastases may be differen-
tiated from lipid-poor adenomas using contrast-enhanced 
CT and NECT radiomics feature–based models with high 
performances. In other research, radiomics was used to dis-
tinguish lipid-poor adenomas from paragangliomas, phro-
chromocytomas, or carcinomas [16, 17].

To discriminate lipid-poor adenomas from other adrenal 
lesions, Zhang et al [18] recently developed three prediction 
models using conventional, radiomics, and combined feature 
nomograms. However, there was no significant difference in 
performance between the radiomic and traditional models.

In this study, we retrospectively assessed a dataset of 
adrenal masses with pathological confirmation that had been 
classified at NECT as indeterminate and that had not been 
distinguished by standard clinical demographic or radiologi-
cal characteristics.

We hypothesized that indeterminate adrenal lesions of 
benign and malignant nature may exhibit different values of 
key radiomics features, and we developed a radiomic sig-
nature for the classification of benign lipid-poor adenomas, 
which may potentially help clinicians limit the number of 
unnecessary investigations in clinical practice.

Materials and methods

This retrospective study was conducted according to the 
Declaration of Helsinki; local Ethics Committee approval 
for data collection was obtained (Ethics Committee of Area 
Vasta Emilia Centrale (AVEC); protocol code: 146/2022/
Oss/AOUFe, approved on 17/02/2022). All investigations 
were performed by routine clinical practice and retrospec-
tively retrieved.

Population

Hospital discharge form (Scheda di Dimissione Ospe-
daliera – SDO) database of Sant’Anna University Hospital 
of Ferrara was searched to find all ICD-9-CM (Interna-
tional Classification of Diseases, Ninth Revision, Clinical 
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Modification) coded interventions that included surgical 
resection of unilateral or both adrenal glands, between Jan-
uary 2003 and December 2018, independently by clinical 
suspicion or diagnosis.

A total of 251 patients that underwent adrenalectomy 
were identified.

All histopathology reports were reviewed, aiming to 
exclude patients with large infiltrating lesions (adrenalec-
tomy done as “en bloc” resection with other near tissues 
and organs during large retroperitoneal tumor debulking) 
or adrenal cortical hypertrophy, thus including only focal 
adrenal lesions. Subjects who were missing a complete his-
topathologic electronic report in our Institutional Pathology 
Database were excluded from further evaluation. Lesions 
with a maximum diameter of less than 1 cm were not 
included in this study.

Preoperative radiologic imaging data were retrieved by 
querying the institutional Radiological Information Systems 
- Picture Archiving and Communication system (RIS-PACS; 
Philips VuePACS, Philips Medical Systems), and only the 
patients for whom a non-enhanced CT (NECT) scan was 
available were included.

CT data

Each CT examination was reviewed independently by two 
abdominal radiologists, with 3 and 10 years of experience, 
respectively, who were blinded to the patients’ pathological 
data, in order to exclude the lesions with gross fat compo-
nent or showing median attenuation less than 10 HU, by 
applying a single region of interest (ROI) encompassing 
more than 50% of the target lesion in the axial plane demon-
strating the maximal lesion extent. Disagreements between 
the readers were resolved through consensus.

The CT studies analyzed after the application of the 
inclusion and exclusion criteria were acquired on 4 different 
multidetector scanners: Philips Brilliance 64 (Philips Medi-
cal Systems), GE Lightspeed VCT (GE Healthcare), Philips 
iCT 256 (Philips Medical Systems), Siemens Biograph 64 
(Siemens Medical solutions).

The CT examinations were acquired using standard 
acquisition parameters adjusted to patients’ biometrics and 
accordingly to the purpose of the investigation (10–400 
effective mAs, 120 kVp, 1.375–1.75 pitch, and 1.5–3 mm 
slice reconstruction thickness). Images were reconstructed 
using a standard soft tissue kernel used in clinical practice 
(namely for GE – standard, Philips – B. Siemens – Qr40).

Imaging analysis and segmentation

A last-year radiology resident retrieved the CT images from 
the RIS-PACS database, fully anonymized and de-identi-
fied, in DICOM (Digital Imaging and Communications in 

Medicine) format. First-pass segmentations were manually 
performed by the same radiology fellow who contoured 
the adrenal lesions using 3DSlicer software with SlicerRT 
extension [19] on each axial image, finally obtaining a three-
dimensional contoured volume of interest (VOI).

The contoured volumes had to contain the whole adrenal 
mass, including the edges but avoiding the peri-adrenal soft 
tissues (fat, vessels, and the parenchyma of adjacent organs) 
(Fig. 1).

The appropriateness of the contouring process was deter-
mined by the same two experienced abdominal radiologists.

The segmented VOIs were subsequently exported as 
DICOM files with the RT option enabled from the SlicerRT 
extension.

Image pre‑processing and radiomics analysis

Following manual segmentation, images were exported to 
the Image Biomarker Standardization Initiative (IBSI) [16] 
compliant software SOPHiA DDMTM Radiomics (Sophia 
Genetics). The patients’ CT images were resampled to a 
resolution of 1/1/1 mm to standardize the dataset, and grey-
level quantization was performed at 32 bins prior to radiom-
ics analysis.

Radiomics analysis software extracted 209 imaging fea-
tures for each segmented volume.

Features included first-, second-, and higher-order fea-
tures. The histogram of voxel intensities was employed to 
calculate first-order features. Intensity size-zone, co-occur-
rence, and run-length-based matrices were used to calcu-
late second- and higher-order features. The IBSI Reference 
Handbook contains a detailed description of the 209 imaging 
features extracted [20].

Statistical analysis

The endpoint of this study was to investigate the diagnostic 
performance of radiomics features extracted from patients’ 
CT images to differentiate between pathologically proven 
adenomas (labelled from now on as 0) and other adrenal 
histotypes (labelled from now on as 1). Clinical and demo-
graphical characteristics of the cohort were analyzed with 
a multivariable logistic regression for the endpoint of this 
study. We summarize the entire process of radiomics analy-
sis from feature extraction to statistical model evaluations 
in Fig. 2.

To assess the models’ performance, we employed a sto-
chastic cross-validation technique. The lesion feature data-
sets were separated into a training (2/3) and test (1/3) set 
during the modelling process. The training set was then used 
to train a logistic regression model using features picked 
using a least absolute shrinkage and selection operator 
(LASSO) technique with internal 3-fold cross-validation 
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with the objective of maximizing the distinction between 
adenomas and non-adenomas.

On the test set, the predictive ability of the model was 
calculated. This procedure was repeated 30 times, with each 
iteration’s receiver operating curves (ROC) and area under 
the curve (AUC) being recorded for both the training and 
test sets. The average value of the latter ones was then used 
to assess the overall diagnostic performance of the model. 

The features that performed better in the best model of the 
test phase were further processed with Pearson’s ρ correla-
tion coefficient to remove redundancy setting a threshold of 
0.80. As the final feature selection method, we employed the 
selection frequency of LASSO in 30 repetitions. In the end, 
we built four machine learning models (logistic regression, 
linear discriminant, support vector machine, and decision 
tree) with a fixed number of lesions per feature (10 lesions 

Fig. 1   Segmentation process 
performed on a nodule in the 
right adrenal gland showed 
respectively in the axial (a), 
sagittal (b), and coronal planes 
(c)
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per feature included in the model) to avoid overfitting the 
whole lesion dataset. The performance of the best model was 
evaluated with calibration and a decision curve to assess the 
consistency of the classification and its clinical usefulness.

Data availability

Radiomics features extracted from the 50 lesions and cor-
responding status (adenoma/non-adenoma) that were used to 
develop the models are available in supplementary material 
1. CT images of the patients are available upon reasonable 
request to the corresponding author.

Results

Patients’ characteristics and histopathology

Patients’ selection workflow is shown in Fig. 3.
The final study population consisted of 48 patients (26 

males, 22 females) accounting for 50 lesions (24 in the 
female population, 26 in the male). The age of patients 
ranged between 27 and 86 years old, with an average age of 
72 for women and 70 for men.

In detail, from the initial dataset of 251 patients who 
underwent adrenalectomy in our institution, we excluded 
from further analysis the following: 95 patients for missing 
histopathologic digital report; 85 patients due to missing 
NECT before surgery; 4 patients for cortical adrenal hyper-
plasia; 10 patients for infiltrating masses; 4 because of other 
benign conditions (i.e., hematomas, cysts); only 5 patients 
were ineligible because their NECT scans could reliably 
diagnose adenomas with a mean density lower than 10 HU.

The histopathological classification of the lesions was 
the following: 19 adenomas (38%), 9 pheochromocyto-
mas (18%), 5 adrenal carcinomas (10%), 7 myelolipomas 
(14%), 8 metastases (16%), 1 mesothelioma, and 1 cavernous 

hemangioma (4%). Patients had an average lesion diameter 
of 5.5 cm with a minimum diameter of 1.5 cm and a maxi-
mum of 14.7. The characteristics of the patients and lesions 
included in the final analysis are summarized in Table 1.

Multivariable logistic regression on clinical, demographi-
cal, and radiological characteristics of the patients is shown 
in Table 2 demonstrating that none of these parameters are 
associated with the outcome.

The 30 logistic regression models trained by LASSO 
resulted in an average AUC of 0.95 (0.81–1.00) (excluding 
repetitions when the algorithm did not reach convergence (5 
times). On the test set, the models had an average AUC of 
0.72 (0.48–1.00). The best-performing logistic regression 
model had an AUC of 0.99 in the training phase and 1.00 in 
the test phase and was composed of 13 features.

In Fig.  4, we show Pearson’s correlation coefficient 
results and features with a Rho > 0.80 were eliminated. To 
prevent overfitting, only the top 5 informative features from 
the 30 LASSO iterations (quadratic mean, strength, maxi-
mum 3D diameter, volume density, and area density) were 
retained for further analysis.

In the end, we trained the 4 final models on the entire lesion 
dataset employing logistic regression, linear discriminant, sup-
port vector machine, and decision tree as classifiers, obtaining an 
AUC of 0.95, 0.94, 0.91, and 0.96, as can be seen in Fig. 5. True 
positive rates and false negative rates and other classification 
performances can be appreciated in the confusion matrices of 
the models reported in Fig. 6. Calibration and decision curves of 
the logistic regression model with the comparison with standard 
clinical parameters are available as supplementary material 2.

Discussion

Physicians’ desire for diagnostic certainty and, on the 
other hand, discomfort with diagnostic uncertainty when 
faced with an unexpected or unexplained imaging finding 

Fig. 2   Radiomics and statistical workflow from features extraction to selection of the best-performing machine learning models
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can lead to an increase in test ordering. As a result, further 
imaging and clinical evaluation are often performed when 
an adrenal incidentaloma is discovered and when imaging 
findings are equivocal or inconclusive [2, 21, 22].

In the present study, a radiomic signature composed of 
first- and higher-order features, namely quadratic mean, 
strength, maximum 3D diameter, volume density, and area 
density, showed a very good average performance with AUC 
= 0.94 (0.91–0.96) among the four final classifiers to dis-
criminate adenomas from other adrenal lesions at NECT.

The performances of our machine learning models did not 
differ significantly, with logistic regression showing the best 
results with an AUC of 0.96 (Fig. 5a). The true positive rate 
for adenomas, according to the model, was 79%, whereas it 
was higher (93.5%) for non-adenomas, as shown in Fig. 6a. 

Fig. 3   Flowchart of patients’ 
selection

Table 1   Characteristics of patients and lesions included in the final 
analysis

Patients (n) 48
  Females; males (n) 22; 26
  Age (average; range, years) 61; 27–86

Lesions (n) 50
  Diameter (average; range, cm) 5.5; 1.5–14.7
  Laterality
    Monolateral (n; %) 46; 92%
    Bilateral (n; %) 4; 8%
  Histology (n; %)
    Adenoma 19; 38%
    Pheocromocytoma 9; 18%
    Metastasis 8; 16%
    Adrenal carcinomas 5; 10%
    Myelolipoma 7; 14%
    Other histology 2; 4%

Table 2   Multivariable logistic regression of clinical (age, sex) and 
standard radiological characteristics (maximum 3D diameter and 
mean HU). HR hazard ratio

Multivariate logistic regression

p value HR 95% C. I. of HR

Inf. Sup.

Max3Ddiameter 0.189 1.230 0.903 1.673
MeanHU 0.900 1.002 0.976 1.028
Age 0.382 1.020 0.975 1.067
M/(F) 0.564 0.688 0.193 2.454
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The decision tree performed better for both classes, with a 
true positive rate of 84.2% and 90.3% (Fig. 6d).

Our signature’s performance is comparable to that of the 
three models developed by Zhang et al [18] for differentiat-
ing lipid-poor adenomas using conventional, radiomic, and 
integrated conventional-radiomic CT features. These models 
had an AUC of 0.94, 0.93, and 0.96, respectively. However, 
in their cohort, conventional parameters such as gender, 
age, mean HU, and tumor diameter were strong predictors 
of the outcome at both univariable and multivariable logis-
tic regression. As a result, their radiomic signature did not 
significantly improve the performance of the conventional 
model, i.e., employing standard radiological features and 
demographic data, thereby diminishing the scientific impact 
of their results.

Conversely, the net benefit of using our radiomic signa-
ture in comparison to standard parameters is clearly visible 
from the decision curves shown in supplementary figure 2. 
In our opinion, these differences are easily addressed by the 
different cohorts of patients used to train and test the mod-
els in the two studies, which may have led to some selec-
tion biases while considering broader inclusion criteria for 
eligible lesions in the aforementioned work. As shown in 
Table 2, indeed, no standard parameters in our cohort were 
statistically significant predictors of the outcome using mul-
tivariable regression.

The composition of the radiomic signature reveals addi-
tional distinctions. Indeed, our signature is composed of 
quadratic mean, strength, maximum 3D diameter, volume 
density, and area density. The quadratic mean is a first-order 

Fig. 4   Pearson’s ρ correlation coefficient of the 13 features selected by LASSO in the best-performing model among the 30 iterations
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feature derived from a histogram that has a fair correlation to 
the HU median (or mean) value, which is found in the work 
of Zhang et al [18], Cao and Xu [15], and O’Shea et al [14] 
for the differentiation of lipid-poor adenomas from other 
histotypes.

Strength is a more complex second-order feature that 
is related to the texture of the image; in particular, it can 
be correlated to the concepts of coarseness, as specifically 
described by Amadasun and King [23]. In this context, a 
high strength means that the patterns that compose the tex-
ture of the tumor appear larger with broader areas of uniform 
pixel intensities whereas a low strength would correspond 
to a finer texture leading to higher variations in local pixel 
intensities. To our knowledge, this predictor has not been 
investigated in any other published study.

Maximum 3D diameter is a parameter already employed 
in clinical practice and reported in previous studies cited 
above. In the end, area and volume density are related to the 
shape and extent of the tumors and may provide additional 
information on their morphological appearance. In fact, 

adenomas present more frequently as well-demarcated round 
or oval lesions [9]. These two parameters likely reflect and 
quantify these visual characteristics of the tumor that were 
not quantified in previous studies or were only partially con-
sidered when the greatest or shortest diameters and tumor 
volume were used [15]. Our findings suggest that additional 
metrics, beyond the mere measurement of the mean density, 
should be considered for inclusion in routine radiological 
evaluation of adrenal lesions to reduce the number of inci-
dentalomas regarded as indeterminate at NECT examination, 
thus avoiding unnecessary clinical workup and follow-up 
examinations.

At NECT, adenomas present more frequently with low 
attenuation (less than 10 HU) due to a microscopic fat 
component. This cut-off is highly specific (sensitivity 71%, 
specificity 98%) [4, 6], widely accepted in the scientific 
literature, and routinely employed in radiological practice 
[24, 25]. However, NECT alone is not always diagnostic, 
since 15–30% of adenomas are lipid-poor, namely contain-
ing insufficient intracytoplasmic lipid to conform to the 

Fig. 5   Model performances in 
terms of ROC curves and AUC 
for (a) logistic regression, (b) 
linear discriminant, (c) linear 
SVM, (d) coarse tree
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non-contrast features previously described, thereby demon-
strating higher attenuation values [26]. Previous works have 
shown that decreasing the HU threshold for the identification 
of adenomas could improve the specificity but reduce the 
sensitivity, whereas increasing such a threshold could result 
in improved sensitivity but reduced specificity [27, 28].

In a study by Yi and colleagues [17], aiming to differen-
tiate histology-confirmed lipid-poor adenomas from pheo-
chromocytomas, the authors built two radiomic nomograms 
using NECT and contrast-enhanced CT data, respectively, 
and concluded that the additional contrast-enhanced adrenal 
CT may not be necessary. Indeed, the drawbacks of a sec-
ond scan can include additional costs, radiation risks, and 
potential harms associated with contrast media administra-
tion, including allergy and potential renal injury. A dedicated 
adrenal CT protocol including a 15-min delayed acquisi-
tion and considering a 60% threshold for contrast washout 
has been shown to properly classify 96% of adrenal masses, 
with 98% sensitivity and 92% specificity for discriminating 

adenomas from non-adenomas [29]. However, it should be 
noted that the additional role of dedicated CT protocols in 
characterizing incidental adrenal masses based on washout 
calculation has a low sensitivity and specificity in the lit-
erature, particularly in the case of suspected pheochromo-
cytomas or metastases from hypervascular tumors which 
frequently demonstrate rapid contrast washout [22]. Hyper-
vascular metastases from renal cell carcinoma and hepato-
cellular carcinoma are examples that may include intracellu-
lar lipids and have washout values similar to adenomas [30].

Furthermore, the patient is required to return for ded-
icated adrenal imaging if the initial NECT, in which the 
lesion had been incidentally detected, was inconclusive; this 
will obviously lengthen the diagnostic process and cause 
psychological distress to the patient.

There are several limitations to this study that should 
be considered. One major limitation is the small sample 
size of the final cohort. This was inevitable because our 
efforts to find patients who had adrenal nodules that were 

Fig. 6   Model performances in terms of confusion matrices and TPR and FNR for (a) logistic regression, (b) linear discriminant, (c) linear SVM, 
(d) coarse tree
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indeterminate at NECT, with the necessity of histological 
confirmation, resulted in a relatively small number of lesions 
meeting the inclusion criteria. Another limitation is the ret-
rospective nature of the image data acquisition: in this obser-
vational study, the type of scanner used for each patient was 
not controlled. When considering the robustness of radiomic 
applications in the clinical setting, the potential impact of 
variation in CT data acquired from different scanners should 
not be understated. However, our radiomic signature is based 
on 1 histogram-based feature, 1 second-order feature, and 3 
shape features that have been shown to be robust in previous 
radiomics studies [31, 32].

Conclusions

Including additional imaging indicators for the identification 
of lipid-poor adenomas can increase the accuracy of NECT 
and reduce the need for additional imaging and clinical 
workup, according to this and other recent studies focusing 
on radiomics that have distinct points of contact with current 
clinical practice.

Our radiomic signature based on 1 histogram-based fea-
ture, 1 second-order feature, and 3 shape features could be 
considered for integration in routine radiological assess-
ment of adrenal lesions, beyond the mere measurement of 
median density. This may serve as a method of enhancing 
the diagnostic power of NECT in order to substantially limit 
the number of adrenal incidentalomas initially regarded as 
indeterminate.
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