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Abstract

Recently, Artificial Intelligence (AI) and Machine Learning (ML) have
been successfully applied to many domains of interest including medi-
cal diagnosis. Due to the availability of a large quantity of data, it is
possible to build reliable AI systems that assist humans in making deci-
sions. The recent Covid-19 pandemic quickly spread over the world and
caused serious health problems and severe economic and social dam-
ages. Computer scientists are actively working together with doctors
on different ML models to diagnose Covid-19 patients using Computed
Tomography (CT) scans and clinical data. In this work, we propose a
neural symbolic system that predicts if a Covid-19 patient arriving at
the hospital will end in a critical condition. The proposed system relies
on Deep 3D Convolutional Neural Networks (3D-CNNs) for analyzing
lung CT scans of Covid-19 patients, Decision Trees (DTs) for predicting
if a Covid-19 patient will eventually passes away by analysing its clinical
data and a neural system that integrates the previous ones using Hier-
archical Probabilistic Logic Programs (HPLPs). Predicting if a Covid-19
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patient will end in a critical condition is useful for managing the lim-
ited number of intensive care at the hospital. Moreover, knowing early
that a Covid-19 patient could end in serious conditions allows doctors
to gain early knowledge on patients and provide special treatment to
those predicted to finish in critical conditions. The proposed system,
entitled Neural HPLP, obtains good performance in terms of area under
the receiver operating characteristic and precision curves with values of
about 0.96 for both metrics. Therefore, with Neural HPLP, it is possi-
ble not only to efficiently predict if Covid-19 patients will end in severe
conditions but also possible to provide an explanation of the predic-
tion. This makes Neural HPLP explainable, interpretable, and reliable.

Keywords: Covid-19, Decision Trees, Deep Learning, Hierarchical
Probabilistic Logic Program, Severity

1 Introduction

The global emergency caused by the spread of Covid-19 has highlighted the
necessity for early-stage identification of complications and risk status of
patients caused by the Covid-19 infection. This because early diagnosis is vital
for Covid-19 positive patients [1]. Thanks to the huge amount of data and much
research on healthcare (Medicine 4.0), Artificial Intelligence (AI) technologies
are increasingly applied to medical field [2–4]. Predicting complications of a
certain disease by analysing medical records of patients is hindered by many
problems such as difficulty in finding patterns in structured clinical data, miss-
ing values, and a lack of annotation. For these reasons, predicting the risk of
developing complications in the medical field is a relevant challenge. Currently,
the analytical capability of Deep Learning (DL) algorithms has proven to be
extremely accurate but not interpretable, understandable and therefore often
not reliable. It is therefore necessary to build systems that are able to provide
clear explanations of their decisions [5, 6] particularly in sensitive areas such
as medicine. More importantly, it is necessary to motivative medical diagnoses
or decisions with detailed reasoning and explanations. Due to the current his-
torical period and thanks to the wide availability of data, applying ML and
DL to Covid-19 data is an active and ongoing area of research [7, 8]. In this
paper, neural and symbolic approaches of AI are investigated. Neural mod-
els, that belongs to DL family, are used to analyse unstructured data like
Computed Tomography (CT) scans and symbolic models are used to analyse
structured clinical data. The aim of this work is to design and implement a
neural-symbolic model that is able to predict the severity of Covid-19 patients
from clinical data and lung CT scans, and enable the model to provide an
explanation of its prediction. The idea is to extract relevant patterns from
heterogeneous data collected from patients to produce a more comprehensive
analysis.
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Fig. 1: Neural-Symbolic Integration system: DT and 3D-CNN are integrated
using HPLP.

The rest of the paper is organized as follows: Section 2 describes the adopted
method and presents the different medical data used in present work. Experi-
ments on Decision Trees (DTs), 3D Convolutional Neural Network (3D-CNN),
and Neural Hierarchical Probabilistic Logic Programs (Neural HPLP) are pre-
sented in Section 3. Section 4 presents the obtained results. Section 5 discusses
the proposed approach with some related work and finally, Section 6 concludes
the paper.

2 Methods

In order to predict the health state of Covid-19 patients arriving at the
hospital, we propose a novel Neural-Symbolic method shown in Figure 1,
that integrates both symbolic, Probabilistic programs [9–11] and neural sys-
tems [12–14]. The neural symbolic block is based on Hierarchical Probabilistic
Logic Programming (Hierarchical PLP) [15], which is a ML model that is able
to build scalable, reliable and explainable AI systems. HPLP receives as input
the integration of the outputs of a DT system that predicts the severity state of
Covid-19 patients from clinical data and a 3D-CNN that predicts the patients’
lungs state using lung CT scans. Then, HPLP learns a set of probabilistic rules
that predicts, at an early stage, if a Covid-19 patient arriving at the hospital
will end in a critical condition. Therefore, we trained a 3D-CNN for predicting
the severity of lung lesions and a DT to predict the probability of a patient’s
death during hospitalization. The output of these two systems are combined
to generate the dataset for the final part of the system which integrates the
neural and the symbolic approaches through HPLP.

2.1 Dataset

The dataset is composed of two sub-datasets: clinical data and lung CT scans.
The clinical dataset was provided by an hospital in Ferrara, Italy. It contains
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Fig. 2: Example of images of a slide of a DICOM voxel for the three
classes. From left to right images belonging to class CT-0, CT-1 and CT-234
respectively.

records of 502 Covid-19 positive patients collected during spring 2020 from
which 126 died during hospitalization. Thus, the dead patients correspond to
about 25% of the whole dataset. Each patient in the dataset has 59 clinical
attributes. Additionally, 96 of the patients also had an associated CT scan.
The 96 patients were kept as the test set. Of these 96 patients, 30 passed away
during the hospitalization period. Table A1 in Appendix shows the clinical
attributes of each patient with the corresponding acronyms.

The CT scans dataset is described in MosMedData [16]. It contains human
lung CT scans with Covid-19 related findings, as well as without such findings.
The CT scans were collected in 2020 and provided by municipal hospital in
Moscow, Russia. The dataset contains CT scans divided by the severity of lung
tissue abnormalities with Covid-19. There are five classes: without injures,
with mild, moderate, severe and critical injures respectively. The dataset is
distributed as follows: CT-0, CT-1, CT-2, CT-3 and CT-4 contain 254, 684,
125, 45 and 2 patients respectively. It can be observed that the dataset is
unbalanced towards the CT-1 class, the mild injures class. Due to the reduce
numbers of the last three classes,they were merged into one class obtaining
the following distribution: CT-0 with 254 (22,8%), CT-1 with 684 (61,6%) and
CT-234 with 172 (15,6%) patients respectively. Figure 2 shows an example of
image for each class. These classes correspond to three different level of severity
of the lung injures that are: healthy, minor and serious. We used as test set
the CT scans of the 96 patients named previously. All images in this dataset
are in Digital Imaging and COmmunications in Medicine (DICOM) format.
So, a CT scan in DICOM format can be seen as a set of consecutive images
that form a 3D image. For this reason we used a convolutional neural network
with 3D filters.
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3 Experiments

3.1 Experiments on Clinical Data

In this experiment, done on clinical dataset, see Section 2.1, a ML model
that predicts the probability of a patient’s death during the hospitalization
period is built. To balance the data, the Synthetic Minority Over sampling
Technique (SMOTE) [17, 18] was applied. SMOTE selects a minority class
instance and picks its n nearest neighbours belonging to the same class. The
generated synthetic instance is then created by choosing one of the n nearest
neighbours and connecting them with the chosen real instance to form a line
segment in the feature space. Then is used SMOTE to oversample the class
of dead patients since it corresponds to 25% of the dataset. The ML models
used for these experiments were DTs [19] and Random Forests (RFs) [20, 21].
The experiment is divided in two steps: the first step uses a RF to extract
the most relevant clinical features that determines the patient’s death during
hospitalization and the second step trains a DT using only the relevant features
previously extracted. In fact, a new version of the dataset was created with
the same number of patients but with only 10 clinical parameters. This new
dataset was used to train a DT whose accuracy was similar to the one provided
by the RF. A DT was used because it is possible to extract the entire decision
path (in the form of a rule, see Rule 1) which provides an initial explanation
of the prediction.

if condition1 ∧ condition2 ∧ ... ∧ conditionnthen outcome (1)

The most relevant clinical attributes extracted by the RF, with an accu-
racy of ∼ 80%, are: Age, Sex, Glomerular Filtration Rate (GFR), C-reactive
Protein (CRP), Troponin, Creatinine, Lactate Dehydrogenase (LDH), Brain
Natriuretic Peptide (BNP), Procalcitonin (PCT), White Blood Cells (WBC),
Charlson Index. This result is in line with the work done by Yan li et al.
[22] which states that LDH, lymphocytes and CRP are crucial predictive
biomarkers of disease mortality with an accuracy of 90%.

After training a DT with the clinical attributes listed above, we achieved
about 70% accuracy on the test set (i.e., on the 96 patients described at the
beginning of this section).

3.2 Experiment on Lung CT scans

The second experiment was performed on patient’s lung CT scans dataset,
see Section 2.1. A deep neural network that predicts the gravity of lung injuries
from patient’s CT scans is implemented. Before training the model, the CT
scans were pre-processed using a segmentation that creates a lung’s binary
mask followed by an application of a mask to eliminate unnecessary parts of
the images, see Figure 3. The segmentation was done using the Hounsfield
(HU) scale. The HU scale is a quantitative scale for describing radiodensity
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(a) Original slice (b) Binary mask (c) Original slice (d) Binary mask

Fig. 3: Segmentation of CT scans. The odd images represent an original slice of
DICOM voxel that depict the lungs of the patient. The even images represents
the binary masks obtained after the pre-processing.

in medical CT. On HU scale, air is represented by a value of −1000 and bone
between +700 to +3000. As bones are much denser than the other soft tissues,
they show up much better in CT scans. Using this information, it was possible
to identify which part of the image contains lungs and create a binary mask,
lungs are represented by a value between −700 to −600 in the HU scale.
After the segmentation and the application of the binary mask, the images
were normalized between 0 and 1. It should be noted that, the use of a fixed
threshold for the segmentation of lungs, might be affected by different scanners
and acquisition conditions [23]. This problem can be addressed via techniques
based on unsupervised Fuzzy C-Means (FCM) clustering called spatial FCM
(sFCM) [24]. Fundamentally, the FCM method [25] is a partitional clustering
technique that minimises the intra-cluster variance, as well as maximises the
inter-cluster variance, in terms of a distance metric between the feature vectors
[26]. The FCM clustering does not take into account any spatial relationship
among pixels since all the samples are used as disperse and independent points.
The sFCM [27] enables the retention of the same formulation and objective
function as the classic FCM algorithm, just by modifying the update rules
with the local spatial content in the image.

When working on 3D scans, in addition to the spatial characteristics of
the images, the volumetric aspect of the CT scans has to be learned. The
network trained in this work is a 3D-CNN composed as follows: two blocks
with two 3D convolutional layers with 5×5×5 kernel and ReLU like activation
function followed by a max pooling layers with 98 and 160 neurons respectively.
These two blocks are followed by two fully connected layers. The first with 110
neurons and the second is the output layer with 3 neurons corresponding to
the three classes, CT-0, CT-1, CT-234.

The 3D-CNN was trained and validated on the MosMedData dataset
achieving ∼ 70% accuracy on the validation set. It was also tested on the CT
scans of the 96 patients described in Section 3.1 achieving ∼ 54% accuracy.
This result is heavily conditioned by the low amount of CT scans in the dataset.
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3.3 Neural Hierarchical Probabilistic Logic Program
(Neural HPLP)

In this section, a neural-symbolic system that allows an easy integration of
both symbolic and sub-symbolic models is proposed. It allows to build efficient,
interpretable and explainable system for early-stage prediction of the critical
state of Covid-19 patients. The proposed system relies on HPLP [10, 15, 28–30],
an extension of Liftable PLP [31], which is a recent AI approach for integrat-
ing symbolic (e.g, PLP) and sub-symbolic (e.g neural networks) approaches of
AI. The proposed system, named Neural HPLP, learns a predicate, also called
target predicate using a set of examples called interpretations. Each interpre-
tation is associated with each patient and is composed of the outputs of the
DT and the 3D-CNN described in Sections 3.1 and 3.2 respectively. How to
generate the interpretations is described in Section 3.3.1. The target predicate
is, for a Covid-19 patient, that being in a critical state.

Now, suppose we want to compute the probability of atoms1 for a target
predicate r using a PLP. In particular, we want to compute the probability of
a ground atom r(~t)2, where ~t is a vector of terms3. We consider a specific form
of PLP that defines r in terms of input predicates (their definition is given as
input and is certain) and hidden predicates, defined by clauses of the program.
A discrimination is done between input predicates, which encapsulate the input
data and the background knowledge, and the target predicate, which is the
predicate we are interested in predicting, i.e. in our case Covid-19 patient in a
critical state. We introduce the notion of hidden predicates which are disjoint
from input and target predicates. Each clause in the program has a single head
atom annotated with a probability. Furthermore, the program is hierarchically
defined so that it can be divided into layers. Each layer defines a set of hidden
predicates in terms of predicates of the layer immediately below or in terms
of input predicates. A generic clause C is of the form

C = p( ~X) : π :− φ( ~X, ~Y ), b1( ~X, ~Y ), . . . , bm( ~X, ~Y )

where φ( ~X, ~Y ) is a conjunction of literals4 for the input predicates. The vector
~X represents variables appearing in the head of C and ~Y represents the vari-
ables introduced by input predicates. bi( ~X, ~Y ) for i = 1, . . . ,m is a literal built

on a hidden predicate. Variables in ~Y are existentially quantified with scope
the body. Only literals for input predicates can introduce new variables into
the clause. Moreover, all literals for hidden predicates must use the whole set
of variables of the predicate in the head ~X and of input predicates ~Y . More-
over, we require that the predicate of each bi( ~X, ~Y ) does not appear elsewhere
in the body of C or in the body of any other clause, i.e each hidden predi-
cate literal is unique in the program. We call Hierarchical PLP the language

1An atom is a predicate, p, applied to some terms
2An expression (atom, literal, term or formula) is ground if it does not contain any variable
3A term is a variable, a constant, or a functor, f , applied to terms, f(t1, t2, . . . , tn).
4A literal is an atom or its negation
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that admits only programs of this form [15]. A generic hierarchical program is
defined as follows:

C1 = r( ~X) : π1 :− φ1, b1 1, . . . , b1 m1

. . .

Cn = r( ~X) : πn :− φn, bn 1, . . . , bn mn

C1 1 1 = r1 1( ~X) : π1 1 1 :− φ1 1 1, b1 1 1 1, . . . , b1 1 1 m111

. . .

C1 1 n11
= r1 1( ~X) : π1 1 n11

:− φ1 1 n11
, b1 1 n11 1, . . . , b1 1 n11 m11n11

. . .

Cn 1 1 = rn 1( ~X) : πn 1 1 :− φn 1 1, bn 1 1 1, . . . , bn 1 1 mn11

. . .

Cn 1 nn1
= rn 1( ~X) : πn 1 nn1

:− φn 1 nn1
, bn 1 nn1 1, . . . , bn 1 nn1 mn1nn1

. . .

where r is the target predicate and r1 1... n is the predicate of b1 1... n, e.g.
r1 1 and rn 1 are the predicates of b1 1 and bn 1 respectively. The bodies of
the lowest layer of clauses are composed only of input predicates and do not
contain hidden predicates. Note that here the variables were omitted except
for rule heads.

A generic program can be represented by a tree, see Figure 4 with a node
for each clause and literal for hidden predicates. Each clause (literal) node is
indicated with C~p (b~p) where ~p is a sequence of integers encoding the path
from the root to the node. The predicate of literal b~p is r~p which is different
for every value of ~p.

Fig. 4: Generic Hierarchical Probabilistic Logic Program

Given the target predicate to learn i.e., a Covid-19 patient in a critical
state, Neural HPLP learns from data a HPLP which consists of a set of logical
clauses annotated with probabilities. The learned program is able not only to
predict whether a patient arriving at the hospital will end in a critical state
but it is also able to give a useful explanation of its prediction. To learn a
HPLP, an algorithm entitled Structure LEArning of Hierarchical Probabilistic
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logic programming (SLEAHP) generates a set of clauses called bottom clauses
from examples called interpretations. An interpretation is a whole description
of a particular example. In our case it contains all clinical information con-
cerning a patient, see Example 1. Then, an initially large HPLP is randomly
generated from the bottom clauses. This large HPLP is converted into a deep
neural network and algorithms such as Gradient Descent/Back-propagation,
see [32], and Expectation Maximization, see [29], are applied to learn the prob-
abilities associated with the clauses. Finally, clauses with very small values of
probabilities are removed. For a detailed description on HPLP, see [15, 28]5.
The following section described how to generate examples used to train the
neural-symbolic block. Experiments predicting the critical state of a Covid-19
patient are described in Section 3.3.2

3.3.1 Data generation

Since Neural HPLP takes as input a set of interpretations which consists of the
whole description of information regarding a single Covid-19 patient, we gen-
erated as many interpretations as the number of available patients by applying
the following criteria: each interpretation is annotated with a predicate that
defines the critical state of the corresponding patient: a patient is in a critical
state if the DT classifies him/her as subject to death soon (dead) or if the 3D-
CNN classified its lung as in serious condition. Two more predicates are added
in the interpretation which corresponds to the output of the DT (dead or alive)
and the 3D-CNN (state of its lung, serious, minor or healthy) respectively. In
order to enrich each interpretation, we also added in each the decision path,
i.e the set of predicates applied by the DT to take its decision, see Example 1.

Example 1 Consider the following interpretation that describes a Covid-19 patient
with id 98:

critic(98).

vital state(98, dead).

lung injury(98,minor).

age(98, 94).

pcring(98, 13.59).

ldhing(98, 71.89).

troponina(98, 0.0).

pcting(98, 403.0).

where the first three predicates indicate that the patient was labelled as in critical
conditional, the DT classifies him/her as dead and the 3D-CNN classifies his/her lung

5An online version of the system is available at https://cplint.eu/e/phil/phil examples.swinb.
The manual is also available at https://arnaudfadja.github.io/phil

https://cplint.eu/e/phil/phil_examples.swinb
https://arnaudfadja.github.io/phil
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as in mild state. The other predicates are those included in the body of the decision
path applied by the DT to predict the vital state of the patient, vital state(98, dead).

3.3.2 Main Experiments on Neural HPLP

After training the DT and the 3D-CNN, inference was performed on the corre-
sponding test sets (96 patients) as described in Section 2.1. Classifications on
the test set for both DT and 3D-CNN were compared with those given by an
expert in the domain, a radiologist in particular. According to the expert 51
were correctly classified. We then built 51 interpretations using the procedure
described in the previous section. Among the interpretations, 20 were labelled
as in a critical state and 31 as in a non-critical state. Given the reduced amount
of data, the training procedure was done using cross validation i.e the dataset
is split into three folds with 17 interpretations in each fold. Every fold is bal-
anced in terms of patients criticality. Interpretations in two folds are used for
training and the remaining for testing. The procedure is repeated for the three
crossed-combinations. Two versions of SLEAHP are applied: SLEAHP DEEP
that uses Gradient Descent/Back-propagation (specifically with Adam opti-
mizer) for learning the parameters and SLEAHP EM that uses Expectation
Maximization as parameter learning. Both versions were trained with L 2 reg-
ularisation [33–37] as described in [15] e.g. after learning, clauses annotated
with probabilities less than a certain threshold are dropped. We used 10−5 as
threshold. Both algorithms were trained for 1000 iterations with early stop.
The default Adam hyper-parameter were used in SLEAHP DEEP.

3.4 Additional Experiments on Neural HPLP

Before presenting the result of the present experiments in Section 4.1, an addi-
tional experiment was performed on a dataset similar to the one presented
previously but . This additional experiment was performed to assess Neural
HPLP both on a limited and a consolidated dataset. The dataset used for the
additional experiment was provided by Huazhong University of Science and
Technology [38], Wuhan, China and consists of 1521 patients of which 1126
from Union Hospital (HUST-UH) and 395 from Liyuan Hospital (HUST-LH).
The dataset includes 894 Covid-19 positive patients (COVID+) and 627 non-
Covid-19 patients (COVID−). All patients had 120 clinical attributes, and 1342
subjects had both CT and clinical data. To perform the experiments, patients
with normal CT (class Normal) and with lung lesions (class Pneumonia) are
considered. More precisely, 1006 patients with pneumonia and 336 patients
with normal lungs. All examples in the dataset are in DICOM format. In the
experiment, for each image, individual slices were extracted and processed.
More precisely, only part of the images containing the lungs was considered.
Tables A2 in Appendix A list all clinical attributes. A total of 47260 2D images
were obtained and used for the training of a CNN. The dataset, grouped by the
patient, was divided into training (75%), validation (10%), and testing (15%).
Therefore, the test set includes 203 patients.
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The trained CNN is composed of the following parts: four blocks composed
of one convolutional layer with kernels of shape 3× 3 and ReLU as activation
function followed by a batch normalization layers with 64, 64, 128 and 256
neurons respectively. These blocks are followed by a global average pooling
layer, one fully connected layer with 512 neurons and one dropout layer. The
output layer consists of 2 neurons associated with the two classes, Normal,
Pneumonia lung.

Regarding clinical data, a similar approach applied in the previous experi-
ment, described in Section 3.1, is adopted. The only difference is that the RF
and DT were used to predict COVID+ or COVID− instead of the death of a
patient during hospitalisation.

4 Results

This Section presents the results on both the main and the additional
experiments.

4.1 Results on the Main Experiment

This section presents the results of Neural HPLP. Since data used are unbal-
anced in both categories, we draw, for each test fold, the Receiver Operating
Characteristics (ROC) and the Precision-Recall (PR) curves and compute the
area under each curve (AUCROC and AUCPR) as described in [39]. The val-
ues of the areas, the final loss values and the associated average (over the
folds) for both SLEAHP DEEP and SLEAHP EM are shown in Tables 1 and 2
respectively. While these systems provide high performance both in terms of
AUCROC and AUCPR, it is worth noting that SLEAHP EM performs better
than SLEAHP DEEP. The perfect result obtained in Fold 3 was due to the
fact that the combination of data included in folds 1 and 2 used for training
was informative enough and enable the algorithm to learn a better theory. It
could also be observed that the value of the loss function associated with Fold
3 is better than the ones associated with Fold 1 and 2. It also is worth not-
ing that, SLEAHP EM converges faster than SLEAHP DEEP as observed in
Figures 5 and 6.

Table 1: Areas under the curves and loss for SLEAHP DEEP

AUCROC AUCPR Loss
Fold 1 0.67347 0.80148 -10.80451
Fold 2 0.83333 0.90110 -8.99724
Fold 3 1.00000 1.00000 -5.57603

Average 0.83560 0.90086 -8.45926

An example of a learned rules is shown in Example 2. From the example,
it can be clearly highlighted the fact that the feature pcting is one of the most
relevant clinical attribute useful to predict if a patient will end in a critical
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Epochs

Fig. 5: SLEAHP DEEP loss function: training using the first two folds.

Epochs

Fig. 6: SLEAHP EM loss function: training using the first two folds.
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Table 2: Areas under the curves and loss for SLEAHP EM

AUCROC AUCPR Loss
Fold 1 0.95918 0.95876 -4.64181
Fold 2 0.93750 0.94097 -5.45861
Fold 3 1.00000 1.00000 -4.17694

Average 0.96556 0.9665766667 -4.75912

state. The first clause states that a Covid-19 patient is very likely to end in
a critical state if his/her lungs are in a serious condition. This explanation
is a clear consequence of the criteria for labelling interpretations defined in
Section 3.3.1. Another interesting explanation can be observed using the com-
bination of rules highlighted in bold: these rules state that if the troponina
value of the Covid-19 patient is greater than 14.5, then the patient is very
likely to end in a critical state. Similar explanations can be observed for the
other clinical attributes. Based on the present work, doctors could pay more
attention to these clinical values of a Covid-19 patient arriving at the hospital
and improve their diagnosis and decision relying on the learned explanation.

Example 2 Learned rules for predicting the critical state of a Covid-19 patient

critic : 0.9983201826613162 : −lung injury(serious).
critic : 0.07404512050456119 : −troponina(B).
critic : 0.0031878498774003394 : −bnp(C), hidden 3(C).
critic : 0.009686597460037139 : −age(D).
critic : 0.017233160198335595 : −pcring(E).
critic : 0.9999999999999978 : −pcting(F ).
critic : 0.009842737641589272 : −gender f 2(G), hidden 8(G).
critic : 0.31365106628607303 : −age(H), hidden 9(H).
critic: 0.9441254441618012:- troponina(I),hidden 10(I).
critic : 0.0037801053824951802 : −ldhing(J), hidden 12(J).
critic : 0.0037629815686686108 : −charlsonindex(K), hidden 13(K).
critic : 0.00843829776843874 : −age(L), hidden14(L).
critic : 0.003175373172965623 : −pcring(M), hidden 15(M).
critic : 0.025554356497234587 : −ldhing(N), hidden 16(N).
critic : 0.009720608547637732 : −gender f 2(O), hidden 17(O).
critic : 0.20913363931689946 : −age(P ), hidden 18(P ).
critic : 0.00023631655161687748 : −pcring(Q), hidden 19(Q).
critic : 0.05738042137315996 : −ldhing(R).
critic : 0.010041915381422406 : −gender f 2(S), hidden 21(S).
hidden 3(C) : 0.00323811617948383 : −greater than(C, 393.0).
hidden 8(G) : 0.009921403222347414 : −greater than(G, 2.0).
hidden 9(H) : 0.31230871757212836 : −greater than(H, 70.0).
hidden 10(I) :0.9441254441618012:- greater than(I,14.5).
hidden 12(J) : 0.0037799297021227085 : −greater than(J, 101.87).
hidden 13(K) : 0.0037630849919179643 : −greater than(K, 21.0).
hidden 14(L) : 0.010897346883759151 : −greater than(L, 78.0).
hidden 15(M) : 0.0031347295724000745 : −greater than(M, 22.79).
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hidden 16(N) : 2.911186251403075e− 5 : −greater than(N, 54.37).
hidden 17(O) : 0.0084854038369232 : −greater than(O, 2.0).
hidden 18(P ) : 0.20917254607034547 : −greater than(P, 85.0).
hidden 19(Q) : 0.043254912362177045 : −greater than(Q, 7.82).
hidden 21(S) : 0.009506938720927838 : −greater than(S, 2.0).

4.2 Results on the Additional Experiment

This section presents the results of Neural HPLP applied to a more consol-
idated dataset described in Section 3.4. This further experiment serves to
confirm the reusability, the validity and more importantly the efficiency of
Neural HPLP. As mentioned in Section 3.4, the target is to identify patients
positive to the Covid-19. First, we trained a RF on all clinical data classifying if
the patients are positive or negative to the Covid-19. As results, we obtained an
accuracy of 93.9%, an AUCROC of 0.93 and an AUPRC of 0.86. Then, using
the trained RF, the first 10 (most important) clinical attributes are extracted
and are the following: Temperature, Coefficient variation of red cell volume
distribution width, Standard deviation of red cell volume distribution width,
Age, Lymphocyte count, Eosinophil percent, Eosinophil count, Neutrophil per-
cent, Hemoglobin and Lymphocyte percent. Considering only these features, a
new dataset for training a DT is generated. After training the DT, the follow-
ing metrics on the set are obtained: an accuracy of 90.14%, an AUCROC of
0.9045 and an AUCPR of 0.9208. Experiments on the trained CNN achieved
the followings results on the test set: an accuracy of 81.77%, an AUCROC of
0.823 and an AUCPR of 0.8709.

The last part of the experiment is performed using SLEAHP EM and
SLEAHP DEEP. From the outcome of the DT and CNN, a dataset consist-
ing of 203 interpretations (one for each patient in the test set) is generated
for training SLEAHP systems. From the experiment, the following results are
obtained: SLEAHP DEEP achieved an AUCROC of 0.8188 and an AUCPR
of 0.7210 while SLEAHP EM achieved the better results with an AUCROC of
0.8956 and an AUCPR of 0.8144.

In summary, this additional experiment on a consolidated dataset confirms
the accuracy and more importantly the effectiveness of Neural HPLP.

5 Discussion

Different studies demonstrate that early diagnosing of Covid-19 considerably
decreases its mortality rate [1]. Our work introduces an explainable AI sys-
tem, Neural HPLP, that predicts if a Covid-19 will end in a severe condition
and therefore will need intensive care or more intensive treatment. Predict-
ing if a Covid-19 patient will end in a critical condition is useful in managing
the pandemic and save human lives. In the peak of the crisis with numerous
Covid-19 patients in severe conditions, managing the limited number of inten-
sive care in any hospital becomes vital. Knowing early that a Covid-19 patient
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could end in serious conditions has many advantages: it allows doctors to gain
early knowledge on patients and provide special treatment to those predicted
to finish in severe conditions. Moreover, it allows doctors to predict the future
number of patients in intensive care and therefore enable an optimal distribu-
tion of those places with respect to other critical diseases. Finally, by providing
a rules-based explanation of its prediction, e.g the clinical attributes relevant
to detect the severity condition as in Example 2, Neural HPLP not only guides
doctors to provide special treatments to those patients, but appears to be a
more interpretable and reliable predictive model.

Based on the format of the medical data such as structured clinical data,
CT, radiographs, ECG etc., it is possible to find in the literature different
approaches and applications of ML and DL algorithms that analyse and cre-
ate predictive models on Covid-19 positive patients. Regarding clinical data,
Chansik An et al. [40] used different ML models to diagnose Covid-19 patients
based on socio-demographic information and medical status, for the nation-
wide cohort of South Korea. Dan Assaf et al. [41] used DL, RF and DTs to
improve the management of the pandemic through the optimization of both
medical resources allocation and triage procedures. An Italian study conduced
by Augusto Di Castelnuovo et al. [42] used ML algorithms to analyse clinical
data of about 3000 Covid-19 patients. The work aim at identifying the underly-
ing characteristics affecting Covid-19 patients who died during hospitalization.
Another study conduced by Yan Li, et al. [22] uses eXtreme Gradient Boost-
ing (XGBoost) and DTs to find some decision rules to detect patients with the
highest risk of mortality.

Concerning work on CT scans and/or chest X-Ray, Ardakani et al. built
a ML system that evaluates radiological features of CT images collected from
patients with Covid-19 and non-Covid-19 disease. They used different ML algo-
rithms to find the computer-aided diagnosis system with the best performance
in distinguishing Covid-19 patients from non-Covid-19 pneumonia. Alsharman
et al. [43] used a CNN to detect Covid-19 on CT scans in the early stage
of disease course. Albahli [44] highlighted the high performance of DNNs in
detecting Covid-19 patients. His model reach 89% of accuracy on synthetic data
produced by GAN-based model. Parnian Afshar et al. [45] try an alternative
framework based on Capsule Networks [46] called COVID-CAPS that is capa-
ble of handling small datasets. COVID-CAPS achieved an accuracy of 95.7%,
sensitivity of 90%, specificity of 95.8%, and Area Under the Curve (AUC) of
0.97. In [47], the authors propose an interesting approach, similar to Neural
HPLP, that works on both clinical and images data for predicting Covid-19
severity. The paper developed a ML model to predict Covid-19 severities and a
model to predict progression to critical disorder. These models were trained on
radiomics features and clinical variables. The work accurately predict Covid-
19 severity and progression to critical illness from radiomics features joined
with clinical attributes. Differently from Neural HPLP, the proposed models
do not provide a clear explanation of its prediction.



16 6 CONCLUSIONS

Other work addressing Covid-19 thematic is being done. For example, based
on the intensive care unit (ICU), the work of Cheng, Fu-Yuan et al. [48] exploits
ML to create a risk prioritization tool that predicts the ICU transfer within
24 hours. Another interesting work done by Montomoli et al. [49] exploits
Extreme Gradient Boosting (XGBoost) algorithm to predict the increase or
decrease in patients’ Sequential Organ Failure Assessment (SOFA) score on
day 5 after ICU admission.

The novelty of Neural HPLP mainly lies in the possibility of obtaining
an explanation from the whole system thanks to the HPLP. In systems that
exploit a different form of data, when using neural networks, it is almost diffi-
cult to provide an explainable interpretation of the results due to their black
box nature. This differentiates Neural HPLP from the other works.

6 Conclusions

In this paper, we propose Neural HPLP, a neural-symbolic system for early-
stage prediction of critical states of Covid-19 patients. Neural HPLP integrates
two ML models to build efficient, interpretable, and explainable system for
predicting the risk of developing complications in patients affected by Covid-
19 infection. The system is made up of symbolic part (DT) that predicts a
patient’s death during hospitalization, a neural part (CNN) for predicting the
severity of the patients lung lesions, and a probabilistic logic model that relies
on the previous models to predict if a Covid-19 patient will end in a critical
state and therefore will need intensive care. The application of Neural HPLP to
a similar and consolidated dataset confirmed its efficiency. The obtained results
confirmed not only the reliability of Neural HPLP but also its interpretability.
By the synergy of three ML approaches, Neural HPLP provides an accurate,
understandable and reliable predictive model.

As future directions of work, firstly we plan to integrate a method for the
automatic segmentation for the CT scans to avoid to use a fixed threshold
on the HU scale to extract the lungs from the images. The second future
work consists to build an end-to-end training process for Neural HPLP based
on a customized optimization function. To implement an end-to-end training
process, the ML model working on clinical data must also be a neural network.
In this way, the end-to-end training process is to propagate the HPLP part
weight updates back to the other system components as well. Furthermore,
we also plan to integrate multiple other machine learning algorithms using
hierarchical probabilistic logic programming. Finally, we plan to investigate
the scalability of Neural HPLP by applying it to a large amount of clinical
data obtained from different hospitals in different countries.

Acknowledgements

The authors want to thank Azienda Ospedaliera of Ferrara for providing each
data used in this work and for the support on everything concerning medicine
and Aldo Carnevale MD. from the Department of Translational Medicine at



17

the University of Ferrara as a specialist in radiology. The second authors also
acknowledge “SUPER: Supercomputing Unified Platform - Emilia-Romagna”
project, financed under POR FESR 2014-2020. The work of the second author
is supported by a PhD scholarship funded by the Emilia-Romagna region,
under the POR FSE 2014-2020 program and partly supported by the “National
Group of Computing Science (GNCS-INDAM)”.

Declarations

Conflict of interest The authors declare no competing interests.

Authors bibliography

Arnaud Nguembang Fadja is a researcher
and Contract Professor at the Department
of Mathematics and Computer Science, Uni-
versity of Ferrara. He received his degree in
Computer science and automation engineering
at the Department of Engineering, University
of Ferrara, in 2016 and his Ph.D. degree in
Computer Science in 2020. His research mainly
focuses on eXplainable artificial intelligence
(XAI) and neural-symbolic integration sys-
tems. He has been working on topics related
to deep learning, computer vision, computer
logic, and integration of symbolic and sub-
symbolic artificial intelligence.

Michele Fraccaroli is a Ph.D. student at the
Department of Engineering, University of Fer-
rara. He graduated in Computer Science and
Automation Engineering at the Department of
Engineering, University of Ferrara, in 2019. His
research is mainly focused on deep learning,
in particular on neural-symbolic integration
systems and eXplainable Artificial Intelligence
(XAI). He also deals with issues relating to
industrial visual inspection, deep and machine
learning applied to medicine and computer
vision.



18 6 CONCLUSIONS

Alice Bizzarri is a Ph.D. student in Artificial
Intelligence at the Department of Engineering
of the University of Ferrara. She received her
degree in Computer and Automation Engi-
neering from University of Ferrara Italy, in
March 2021.

Giulia Mazzucchelli has a master degree in
Computer Engineering from University of Fer-
rara. ly works as a backend engineer for an
agile factory specialized in developing data-
intensive solutions to enrich and preserve the
data asset of a multi-branch insurance com-
pany.

Evelina Lamma is Full Professor of Com-
puter Science - Artificial Intelligence at the
Department of Engineering of the University
of Ferrara. She received her degree in Elec-
tronic Engineering from University of Bologna,
Italy, in 1985 and her Ph.D. degree in Com-
puter Science in 1990. Her research activity
focuses around artificial intelligence, knowledge
representation, medical imaging and computer
vision, computational logic, data mining and
machine learning.



19

Appendix A Clinical Data

Table A1 represent the list of the clinical data of the first dataset described in
the paper. Tables A2 represent the list of clinical data of the second dataset
for the additional experiment described in the paper.
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Table A1: Clinical data for the main experiment

Clinical attribute Acronym

Age -
Gender -
Organization Cost Centre CdcoUO
Intensification of care -
Pneumology department -
Anesthesia and resuscitation department -
Clinical onset with fever -
Hospitalization day -
Discharge day -
In-hospital days -
Symptoms cardiopulmonary onset -
Gastrointestinal onset symptoms -
Systolic Blood Pressure at the entrance SBP
Diastolic Blood Pressure at the entrance DBP
Heart rate -
Breath frequency -
Body temperature -
Modified Early Warning Score MEWS
Partial pressure of oxygen in a gaseous environment pO2
PO2 / FiO2 ratio PF
High Resolution TC HRTC
High Resolution TC per ground glass HRTCpergrpoundglass
White blood cells WBC
Lymphocytes -
C-reactive Protein CRP
Procalcitonin PCT
Creatinine -
Glomerular Filtration Rate GFR
Lactate Dehydrogenase LDH
Brain Natriuretic Peptide BNP
Fibrinogen -
D-Dimero -
Isoamylase -
Alanine Aminotransferase ALT
Creatine Phosphokinase CPK
Ferritin -
Troponin -
Smoking habit -
Hypertension -
Ischemic heart disease -
Heart failure -
IRCIIIIVV -
ICTUSoTIA -
Chronic Peripheral Obliterative Arteriopathy AOCP
Chronic Obstructive Pulmonary Disease COPD
Mild liver disease -
Moderate liver disease -
Peptic ulcer -
AIDS -
Hemiplegia -
Localized or haematological neoplasm -
Metastasis -
Dementia -
Charlson index -
Microcythemia -
Inflammatory Bowel Disease IBD
Diabetes -
Diabetes without organ damage -
Diabetes with organ damage -
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Table A2: Clinical data for the additional experiment

Clinical attribute Clinical attribute

Age Alkaline phosphatase
Sex Alanine aminotransferase
Temperature Aspartate aminotransferase
malattie pregresse Urea nitrogen
covid Calcium
CT Chlorine
Morbidity Total carbon dioxide
Mortality Creatinine
Erythrocyte sedimentation rate Latitude-glutamyltransferase
C-reactive protein Globulin
Procalcitonin Potassium
Mean corpuscular hemoglobin concentration Magnesium
Mean corpuscular hemoglobin Sodium
Mean corpuscular volume Phosphorus
Hematocrit Total bilirubin
Hemoglobin Serum total protein
Red blood cell Uric acid
Platelet distribution width Total cholesterol
Plateletcrit Creatine kinase
Mean platelet volume High density lipoprotein cholesterol
Platelet count Lactate dehydrogenase
Basophil count Triglyceride
Eosinophil count Anion gap
Monocyte count Direct bilirubin
Lymphocyte count Glucose
Neutrophil count Low density lipoprotein cholesterol
Basophil percent Osmotic pressure
Eosinophil percent Prealbumin
Monocyte percent Total bile acids
Lymphocyte percent Pseudo-hydroxybutyrate dehydrogenase
Neutrophil percent Cystatin C
White blood cell Leucine aminopeptidase
Platelet larger cell ratio 5’nucleotidase
Standard deviation of red cell volume distribution width Homocysteine
Coefficient variation of red cell volume distribution width Serum amyloid protein A
D-Dimer Small density low density lipoprotein
Thrombin time CD3+ T cell
Fibrinogen CD4+ T cell
Activated partial thromboplastin time CD8+ T cell
International normalization ratio B lymphocyte
Prothrombin time Natural killer cell
Albumin/Globulin ratio CD4/CD8 ratio
Albumin Interleukin-2
Interleukin-4 White blood cell count
Interleukin-6 Squamous epithelial cell
Interleukin-10 Viscose rayon
TNF-pseudo Unclassified crystal
IFN-latitude Specific gravity
Fibrin/fibrinogen degradation products Complement C1q
Antithrombin III Hyaline cast
B-type brain natriuretic peptide precursor Pathological cast
Indirect bilirubin pH
Fungi (1-3)-tail-D-glucan Complement C3
Urea Immunoglobulin M
High-sensitivity C-reactive protein Immunoglobulin A
Red blood cell count Immunoglobulin G
Non-squamous epithelial cell Yeast
Choline esterase Complement C4
Sialic acid Lipase
Pseudo-L-Fucosidase Anti-streptolysin O
Lipoprotein A Rheumatoid factor
Apolipoprotein A1 Bacterial count
Apolipoprotein B Lactic acid
Leukocyte mass
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