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Abstract
Purpose of Review  This review will cover the most relevant findings on the use of machine learning (ML) techniques in the field 
of non-affective psychosis, by summarizing the studies published in the last three years focusing on illness detection and treatment.
Recent Findings  Multiple ML tools that include mostly supervised approaches such as support vector machine, gradient boosting, and 
random forest showed promising results by applying these algorithms to various sources of data: socio-demographic information, EEG, 
language, digital content, blood biomarkers, neuroimaging, and electronic health records. However, the overall performance, in the 
binary classification case, varied from 0.49, which is to be considered very low (i.e., noise), to over 0.90. These results are fully justified 
by different factors, some of which may be attributable to the preprocessing of the data, the wide variety of the data, and the a-priori 
setting of hyperparameters. One of the main limitations of the field is the lack of stratification of results based on biological sex, given 
that psychosis presents differently in men and women; hence, the necessity to tailor identification tools and data analytic strategies.
Summary  Timely identification and appropriate treatment are key factors in reducing the consequences of psychotic disorders. 
In recent years, the emergence of new analytical tools based on artificial intelligence such as supervised ML approaches showed 
promises as a potential breakthrough in this field. However, ML applications in everyday practice are still in its infancy.
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Introduction

Psychosis affects 3% of the global population over their life-
time [1, 2]. The economic burden of these mental disorders 
is also substantial, both in terms of lost work productivity 

and direct costs (medications, hospitalizations) [3]. Indi-
viduals affected by psychosis have a high likelihood of  
relapse, with reported rates up to 81.9% five years after an ini-
tial recovery [4]; patients also have a higher risk for suicide,  
especially during the first episodes [5]. Psychosis is still  
considered a chronic condition associated with considerable 
disability [2]: in fact, the rates of recovery from psychosis 
remain low (median is 13.5%) [6] and individuals affected  
suffer from an astonishing premature mortality [7]. The per-
sonal toll suffered by patients and their caregivers in addition 
to the economic burden for the community make psychosis 
prevention and early treatment a public health priority [8].

Consistently, with the critical period hypothesis [9, 10], 
an overwhelming amount of evidence supports the ben-
efits of implementing early detection and intervention in 
psychotic disorders [11]. Early detected patients show less 
severe symptoms at care presentation, better global function-
ing and an overall better quality of life at 2 years [12], lower 
rates of suicidal behaviors [5] and risk of hospitalizations 
[4], reduced encounters with the criminal justice system [13, 
14], and overall better outcomes up to 10 years after their 
first episode [15].
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Psychotic disorders are usually preceded by a period of 
variable duration characterized by subthreshold symptoms 
of psychosis, known as prodromes [16, 17], that include 
suspiciousness, social withdrawal, diminished attention and 
concentration, and a drop in overall functioning [16, 17]. 
However, not all the subjects who will experience prodromal 
symptoms, or defined as being at high risk for psychosis 
(CHR-P), will progress to frank psychosis [17–21]. Identi-
fying biomarkers that could be used to determine who will 
progress to psychosis would allow the delivery of preventive 
measures to the subgroup that would benefit the most [22].

Studies have struggled so far to identify valid biomark-
ers of progression to psychosis [23] or schizophrenia [24]. 
Promising candidate biomarkers have been tested in multiple  
domains in patients with schizophrenia and individuals with 
prodromes of psychosis: genetic (e.g., NRG1 gene) [25, 26], 
brain structures (e.g., gray matter loss, increased levels of 
neurotransmitters) [27, 28], neurocognitive performance 
(e.g., working memory, attention deficit) [29], and neuroen-
docrine anomalies [30].

Within the many strategies that have been tested during 
the past year to improve the detection and outcomes of psy-
chosis, machine learning (ML) methodologies have seen a 
tremendous development [31–34]. The term machine learn-
ing refers to the subdomain of statistics and computer sci-
ence focusing on the elaboration of complex algorithms able 
not only to build models from often huge datasets but also to 
improve their accuracy, imitating the way humans learn. ML 
can be employed to uncover patterns of risk of conversion 
to psychosis that could enable clinicians and stakeholders to 
implement timely intervention to delay or prevent psychosis 
[35•]. ML tools offer promise for early detection (i.e., to 
detect first signs of psychosis and help with differential diag-
nosis) and prediction of treatment response [33]. Lastly, ML 
could offer a tool to analyze data obtained from Electronic 
Health Records (EHRs): this represents a complex but inval-
uable source of information that is routinely collected in a 
routine clinical setting but infrequently analyzed because of 
the poor quality of the data, the lack of standardized instru-
ments, and the large volume of information.

Given the tremendous development of ML approaches to 
analyze data regarding non-affective psychosis, a review of 
the most current literature is needed.

Methods

This narrative review will cover the most relevant findings on 
the use of ML techniques in the field of non-affective psycho-
sis, by summarizing the studies published in the last 3 years.

The authors searched the following electronic databases: 
Ovid MEDLINE, Embase, Psycinfo, and Cochrane.

The search used a combination of controlled vocabulary 
and free-text terms to capture the concepts of “psychosis” 
and “machine learning.” Example searches are as follows: 
bipolar or delusion* or hallucination* or psychoses or psy-
chosis or psychotic or schizophren* or schizoaffective or 
mania or manic and “artificial intelligence” or “deep learn-
ing” or “machine learning” or “neural network*.” In addi-
tion, a manual search was conducted based on literature ref-
erences of relevant articles. We focused on recent articles 
in the English language. Full-text review of the included 
studies was carried out, and data were extracted on study’s 
characteristics and outcomes.

Results

Given the lack of standardized identifiable biomarkers for 
psychosis, research has explored different sources of reli-
able information that could be analyzed by means of ML to 
improve their accuracy and statistical power.

Specifically, sociodemographic information, EEG, neuro-
imaging (MRI, PET), neurocognitive assessments, psycho-
metric scales, genetic genotyping, blood and CSF immu-
nology, digital phenotyping (e.g., social media, smartphone 
use), and speech profiling have been investigated.

The studies included in this review employed an assort-
ment of ML techniques, mainly supervised algorithms, 
comparing their performance in various clinically signifi-
cant tasks.

The most frequent types of data explored were neuroim-
aging data, mostly from MRI, followed by EEG, language 
characteristics, and genetic information. There was con-
siderably less evidence regarding the immediate clinical 
utility of analyzing digital phenotyping data and electronic 
health records (EHRs). This difference might be explained 
by the better suitability of the certain type of information 
to be processed by currently established ML algorithms, 
as well as the wide heterogeneity in data sources and struc-
ture. The technique that was most frequently applied in 
the included studies was SVM, while unsupervised ML 
algorithms were rarely employed, principally for data pre-
processing, for example adopting PCA for dimensionality 
reduction.

The main sources of information that have been employed 
in ML algorithms will be summarized below.

Socio‑Demographic Factors

Given the complex interconnectivity of this type of data, 
ML might represent a powerful tool able to untangle it and 
extract relevant patterns. In our review, the studies address-
ing this challenge employed socio-demographic data to 
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predict the quality of life, healthcare services utilization, 
transition to psychosis, treatment response, and functional 
recovery. The combination of socio-demographic factors 
with other markers, such as clinical features, appeared to 
improve the accuracy of the ML algorithms.

Beaudoin et al. analyzed with a LASSO algorithm (a 
regression analysis method that uses variable selection and 
regularization to improve the predictability and interpret-
ability of the produced statistical model) a cohort of 919 
patients with schizophrenia and found patients and parents’ 
educational level (most likely also associated with socio-
economic status) were strong predictors of quality of life, 
also, female gender was a strong predictor [36].

In order to build the NAPLS2 calculator [37], Koutsouleris 
et al. included demographic and clinical features and found 
that a supervised ML approach was able to have a balanced 
accuracy of 68% in the identification of those individuals who 
will subsequently transit to psychosis (specificity was 73%, 
sensitivity 63%) [38].

In order to predict resources used by patients with non-
affective psychosis, logistic regression, classification tree, 
and random forest methods were applied: Kwakernaak 
et al. found that the number of psychotic episodes, paid 
employment, and engagement in social activities affected 
healthcare consumption [39]. Moreover, the random for-
est method was found to be the best suited to model risk 
factors. Legge et al. found that ML approaches such as the 
conditional inference random forests model identified age 
at onset, premorbid IQ, and poor social adjustment to be 
the best predictors of treatment-resistant psychosis, with 
an accuracy of 0.59, mirroring findings from regression 
analyses [40].

Similarly, Leighton found that clinical routine data 
assessment such as employment status at baseline and 
severity of psychotic symptoms (suspiciousness, hostil-
ity, delusions) were able to positively or negatively predict 
rates of functional recovery respectively (measured as being 
employed, in education, or training), with an accuracy of 
85% by applying elastic net regularized logistic regression 
models [41].

EEG has often been investigated as a potential tool for 
early identification: it is a non-invasive assessment, versa-
tile, and with a limited cost [42•]. In our review, the most 
promising results obtained by exploiting encephalographic 
data were achieved in discriminating individuals with schiz-
ophrenia from healthy subjects and in predicting response 
to clozapine and ECT [43]. As expected, a generally lower 
accuracy was noted for the algorithms seeking to classify 
psychotic and depressed patients.

For instance, Baraditis demonstrated that microstate 
alterations obtained by resting state EEG and analyzed with 
SVM supervision were able to discriminate individuals 

with schizophrenia by healthy controls, with high accuracy 
(82.7%), sensitivity (83.5%), and specificity (85.3%) [44]. 
Deep learning convolution neural network was successfully 
applied to examine multi channels auditory related EEG 
single trials to distinguish subjects with schizophrenia from 
healthy controls with an accuracy of 78% [45]. A linear dis-
criminant analysis classifier was successfully applied to test 
if resting state EEG was not only able to discriminate schizo-
phrenia patients from controls (with an accuracy of 80.66%) 
but also to stratify patients based on their symptom severity, 
with an accuracy as high as 88.10% for positive symptoms 
[46]. Masychev et al. found that patients with schizophrenia 
have distinctive features at the auditory odd-ball P300 EEG 
(a measure of brain connectivity, where the presentation of 
a continuous series of similar tones at a somewhat moder-
ate rate, and the reaction of the participant to this “oddball” 
stimulus is recorded with EEG) when analyzed by means 
of supervised ML tools with an accuracy of 92.68% [47]. 
Moreover, the inferior frontal gyrus EEG features, analyzed 
with supervised ML methods, most accurately classify 
schizophrenia patients from controls (accuracy 78.95%) 
and positive from negative type schizophrenia (accuracy 
89.29%) [48]. Linear discriminant analysis and SVM clas-
sifiers were also applied to data drawn by the application of 
EEG to distinguish features of the disease in subjects with 
schizophrenia from others with depressions, or controls: 
the SVM classifier showed good accuracy in distinguishing 
schizophrenia or depressed patients from controls (71.31% 
and 74.55% respectively), lower performance in distinguish-
ing patients with schizophrenia by those with depression 
(59.71%) [49]. Finally, Ciprian et al. developed a linear dis-
criminant analysis algorithm to study auditory EEG meas-
ures of connectivity activities in the brain of 57 individuals 
with schizophrenia, to predict response to clozapine treat-
ment with an impressive accuracy of 95.83% [50]. From the 
same group, Masychev et al. applied a two-step ML analysis, 
that was able to distinguish most responders to clozapine 
from least responders, with an accuracy of 89.90% [43]. 
Moreover, resting-state EEG was found to be a good predic-
tor of response to ECT in patients with schizophrenia [51] 
(total accuracy 92.68%): transfer entropy, which represents 
information flow at the EEG, was used as the key informa-
tion in the random forest method. These studies provided 
further evidence to support the use of ML tools to analyze 
EEG data to discriminate the best candidates to clozapine 
or ECT treatment.

Language

Given that psychotic disorders are often characterized by dis-
organized speech (loosening of associations) and content dis-
orders (delusions, echolalia) [52], investigators have applied 
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a variety of natural language (NLP) techniques supervised 
linear discriminant analysis and supervised leave-one-subject-
out cross validation + convex hull classifier to perform speech 
analysis to identify schizophrenia early in the course of the dis-
ease. In the studies included in this review, both form and con-
tent features of speech were examined not only in identifying 
psychosis or transition to illness but also in differentiating schiz-
ophrenic patients based on symptom clusters. In our sample, 
the speech analysis of individuals at clinically high risk for psy-
chosis appears to provide the best results in terms of accuracy.

A study conducted in prodromal individuals found that 
language alterations including reduced usage of possessive 
pronouns and semantic coherence had an 83% accuracy in 
predicting psychosis onset in the training dataset (and 79% in  
a further independent prodromal sample) and an accuracy of  
72% in discriminating patients who recently converted from 
psychosis from controls [53]. This finding was confirmed by  
Rezaii et al. that investigated speech in prodromal individuals  
[54]: progression to psychosis was predicted by low levels 
of semantic density and an increased tendency to talk about 
voices and sounds (with an impressive 90% of accuracy, ana-
lyzed by a supervised neural network). Speech profile was  
analyzed with several ML tools, such as supervised gradi-
ent boosting [55], latent semantic analysis [56•, 57], ran-
dom forest [55, 56•], SVM with radial basis function [58•],  
and multi-layer perceptron [58•]. In their extensive 
reviews, Ratana et al. [58•], Corcoran et al. [59•], and De 
Boer et al. [56• ,60] provided an overview of the use of 
speech analysis such as semantic coherence, semantic den-
sity, and acoustic analysis via ML, especially within the 
NLP processing framework, to detect early signs of psy-
chosis: such tools should be considered reliable and valid  
in the challenging field of early detection of psychosis and 
major psychiatric disorders. Also, speech analysis could be  
a useful tool to detect subjects with schizophrenia within the  
general population, by analyzing their written excerpts tran-
scribed from their verbal utterances, employing supervised  
techniques (word2vec, SVM with radial basis kernel) [53]. 
Results from the study by [57] Sarizynksa-Wawer et al.  
were superior in terms of accuracy than clinically-based 
assessment, with an accuracy of 80%, highlighting the need to  
include such analysis in routine evaluation. Within this line of  
investigation, Tan et al. found that schizophrenia patients had 
higher incidences of speech aberrance across five types of 
variables [55]: utterance, single words, speaking rate, turns,  
and formulation errors. By using supervised gradient boost-
ing and random forest algorithm, 21 speech variables across 
the above-mentioned types were significant classifiers for a 
schizophrenia diagnosis with a specificity and sensitivity up 
to 90% for both models. Moreover, ML techniques can distin-
guish subjects with positive or negative symptoms based on 
their speech acoustics, with an accuracy of 86.2%, as shown  
by De Boer et al. [60].

Digital Phenotyping

Given the availability of passive data from electronic devices 
such as smartphones or smartwatches, it is easy to postulate 
that ML techniques have great potential to become extremely 
useful for analyzing these large volumes of data for the early 
identification of psychosis or the transition between the dif-
ferent phases of illness [53, 61–63]. Researchers scanned 
Facebook content, texts, and Google searches to be able 
to predict psychosis or relapse applying SVM and random 
forest that mastered the task with a maximum accuracy of 
96%. More so, latent semantic analysis can be extremely 
helpful to monitor social media in order to screen for and 
predict transition to psychosis, as summarized in Feldman 
et al. review [64]. For example, a random forest algorithm 
was able to distinguish the social media post text of sub-
jects with schizophrenia from those of healthy control with 
an accuracy of 96% [65]. SVM algorithm and random for-
est were valid tools to predict a diagnosis of schizophrenia 
spectrum disorder and a relapse, with an AUC of 0.74 and 
0.71 respectively [66] by analyzing text originating from 
Google searches. Moreover, by analyzing Facebook activity 
archives with a supervised random forest, the algorithm was 
able to distinguish subjects with schizophrenia, from those 
with mood disorders or healthy controls, with high accuracy. 
More importantly, the analysis of Facebook content alone 
(e.g., choice of words, punctuation) was able to predict a 
diagnosis over a year in advance of hospitalization. A vali-
dated, structured questionnaire was administered through the 
smartphone to 260 patients with psychosis and 212 controls, 
in order to capture mental states daily: within the various 
ML techniques applied (supervised random forest, SVM, 
Gaussian processes, logistic regression, and neural net-
works), the SVM with radial kernel achieved an accuracy 
of 82% in distinguishing emotional patterns of patients from 
controls [67].

Blood and CSF Biomarkers

Blood biomarkers have also been studied as potential can-
didates that could identify individuals at risk of developing 
psychosis early in the course of illness [25]. Some of the 
studies we analyzed focus their attention on plasma prot-
eomic data and inflammatory alteration (such as neurotro-
phins and oxidative stress markers) in cerebrospinal fluid. 
These markers combined with ML techniques were able to 
discern between SCZ and BD and to predict progression to 
psychotic [21]. Peripheral plasma proteomic data (mostly 
indicating a dysregulated complement and coagulation cas-
cade) paired with baseline clinical data were successfully 
used to identify those individuals who will convert from 
clinical high risk to frank psychosis: ((AUC), 0.95) [68]. 
Moreover, the model was able to predict who, 6 years later, 

928 Current Psychiatry Reports (2022) 24:925–936



1 3

will have psychotic experience (PPV, 67.8%; and NPV, 
75.8%) [68]. Different algorithms have also been tested to 
analyze CSF alterations to investigate if subjects with schiz-
ophrenia show compartment-specific alterations from clas-
sical inflammatory CNS disease with high accuracy (0.88 
psychosis vs intracranial hypertension) [69]. Supervised 
ML has been also used to analyze biomarkers including 
neurotrophins, inflammatory (IL-10), and oxidative stress 
markers (e.g., glutathione peroxidase), associated with psy-
chosis: the supervised algorithm failed to distinguish BD 
from SCZ (accuracy = 49%), but was able to reach a predic-
tion accuracy of 77.5% and 72.5% to identify, respectively, 
patients with SCZ and BD from controls [70]. It is possible 
that affective and non-affective psychosis share the same 
pathophysiological mechanisms so that it is hard to distin-
guish them by using these biological markers [71, 72].

Genetics

The high degree of complexity in genetic data represents a 
hurdle for traditional statistical genetics; however, with the 
exponential growth of computing power and datasets volume 
of recent years, ML has emerged as an attractive option. As 
expected, the studies in our review showed a wide range of 
performance rating, likely caused by high heterogeneity in 
study design. Even for this type of biomarker, the integra-
tion with different data sources, e.g., brain morphology or 
cognitive features, seems to yield better predicting results.

Genetic analysis is also becoming popular in the field, 
given the initial evidence of a potential role of both inher-
ited as well as de novo mutation variants [105] in neu-
ronally expressed genes [73, 74], contributing to synaptic 
dysfunction in the pathogenesis of SCZ. Trakadis applied 
the supervised Extreme Gradient Boosting (XGBoost) with 
regularization in a case–control study (2545 SCZ and 2545 
controls) to identify genetic markers of a risk for developing 
SCZ (accuracy = 0.85, sensitivity = 0.85, specificity = 0.86) 
including genes that regulate neurogenesis and neuronal 
development, synaptic plasticity, memory, and axonal devel-
opment [75]. A larger schizophrenia case–control study of 
11,853 subjects applied supervised support vector machines 
(SVM) with linear and radial basis function kernel methods 
to identify possible genes contributing to the risk of devel-
oping SCZ [76]: the sensitivity and specificity were lower 
compared to the Trakadis study (AUC 0.60–0.66); moreover, 
its prediction accuracy was lower than that obtained by the 
use of polygenic risk score [77, 78]. A further study [79] 
tried to test the effect of 77 risk loci known to be strongly 
associated with SCZ to predict six different cognitive phe-
notypes in subjects with schizophrenia, finding that poly-
genic risk scores and random forest had similar predictive 
strength and error. However, as highlighted in the systematic 
review conducted by Bracher-Smith et al. [31], ML methods 

performance measures have a wide range of abilities (from 
0.48 to AUC 0.95) and are still inadequate for prediction 
modeling: the most commonly employed were supervised 
naïve Bayes, k-nearest neighbors, penalized regression, 
random forest, Gaussian processed, SVM, and neural net-
works. Finally, as Yang et al. underlined in their research 
on individuals with schizophrenia, ML tools can become 
even more precise predictive tools when combining genetic 
and brain morphology data [80]. A further example in this 
sense is the work by Chen et al. [81, 82] that applied an 
updated biologically imported machine learning (BioMM) 
approaches to identify a blood DNA methylation signature 
that could differentiate schizophrenia from healthy control, 
and investigate the association of peripheral biomarkers, and 
neural functioning. Blood-based immunological biomarkers 
were combined with cognitive data in a multi-domain data 
integration machine learning model in order to differentiate 
subjects with schizophrenia from healthy controls with a 
sensitivity of 84% and specificity of 81% [83].

Neuroimaging

Given the high clinical heterogeneity of psychiatric dis-
orders, the kaleidoscopic presentation at onset and the 
dynamic evolution, ML methods have been largely employed 
to analyze neuroimaging data, alone or in combination with 
other evaluations including blood biomarkers, neuropsy-
chological tests, and clinical structured assessment. With a 
very few exceptions represented by the application of unsu-
pervised algorithms (non-negative matrix factorization) to 
analyze data from magnetoencephalography and structural 
MRI in first-episode schizophrenia patients [84], most stud-
ies applied supervised ML techniques.

The vast majority of the studies focusing on the prediction 
of psychosis conversion applied ML to resting state MRI. 
Koutsouleris et al. found that it was possible to increase by 
40% the diagnostic certainty of subjects who will convert 
to frank psychosis by applying the MRI-based biomarker, 
specifically the prefrontal perisylvian and subcortical brain 
structures [85, 86]. Transition outcomes were correctly 
predicted in 80% of test cases using MRI-based predictors, 
which increased prognostic certainty by 36% (sensitivity: 
76%, specificity: 85%) [87].

Kambeitz et al. tried to test an ML tool to predict global 
functioning outcomes at the individual level, by focusing on 
cortical area reductions in superior temporal, inferior frontal, 
and inferior parietal areas, with an accuracy of 82%, under-
lining the utility of ML in stratifying the risk to progression 
towards psychosis in ultra-high risk individuals [88, 89].

Resting state MRI alone can help build a machine-
learned classifier for diagnosing schizophrenia with an 
accuracy of 87% [90]. Structural MRI is gaining impor-
tance to help differentiate between SCZ and healthy 
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controls, as summarized in de Filippis et al. review [91•], 
as SVM could reach an accuracy of 100% if combined 
with more recent ML tools [92]. A parameter that has been 
studied as a potential biomarker of psychosis is the dis-
rupted functional asymmetry: this value in the left thala-
mus discriminated control vs FEP/UHR individuals with 
high sensitivity (68.42% and 81.08% respectively) [93]. 
Antonucci et al. found that SVM built with a repeated 
nested cross-validation framework was able to distinguish 
schizophrenia patients from HC by computing attentional 
control task in fMRI, to identify a pattern of connectivity 
alterations, with an accuracy of 66.9% [94]. An explain-
able deep neural network framework provided insight on 
some brain-based imaging markers, especially decreased 
density in the insula and frontal and superior temporal 
lobe, and reduce white matter in the cingulum, hippocam-
pus, with high accuracy (up to 84%) for gray matter [95]. 
ML was also employed to discriminate subjects with schiz-
ophrenia from healthy control with an accuracy of 0.72% 
[96], or predict the response to treatment in first-episode 
drug naïve subjects, with an accuracy of 82.5% [97]. Also, 
deep neural network models were applied to identify brain 
abnormalities with an accuracy of 81.5% [98] supervised 
SVM-RFE combining functional and structural MRI was 
able to distinguish schizophrenia patients from HC with an 
accuracy of up to 80% [99], and combining polygenic risk 
score and structural imaging methods with 71.6% accuracy 
by exploring data of more than 1000 subjects from eight 
independent sites across China [100].

Individual structural and functional connectivity net-
works can also help to distinguish subjects with SCZ from 
healthy controls, as shown by Arbabshirani et al. [101] and 
Han et al. [102]. These networks were analyzed by Han et al. 
using SVM in SCZ and MDD patients. SCNMF (supervised 
convex nonnegative matrix factorization) was successfully 
employed to draw the distinct characteristics of the two diag-
noses, with an 82.6% accuracy. The inferior parietal lobule, 
middle cingulate, and cingulate cortex were the most dis-
criminative areas in terms of functional properties: as Zeng 
et al. pointed out, those regions are the ones involved in the 
salience, control, and default network [103]. Qureshi et al. 
focused on functional connectivity as a potential biomarker 
of SCZ, with an accuracy of 0.99 [104]. Moreover, aber-
rant connectivity in temporal and occipital regions resulted 
in a good prediction marker, according to Li et al. [105]. 
Anticorrelated networks between sub-cortical and cortical 
areas were found to be a strong marker of schizophrenia 
(accuracy = 0.69) [106].

Sensorimotor circuits also might play a relevant role in 
the pathogenesis or clinical presentation of SCZ, as dem-
onstrated by the high accuracy (0.95) of the ML algorithm 
(SVM) applied by Guo et al. [107]. Linear SVM and nonlin-
ear (decision tree) ML algorithms can be helpful to predict 

the outcomes of at 1 year, specifically by looking at the 
dynamics of resting state functional connectivity with the 
default mode network with an accuracy ranging between 
75 and 90% [108]. Finally, an ML algorithm could possi-
bly inform about the risk of developing psychosis in non-
affected siblings of patients with schizophrenia, as hypoth-
esized by Morgan et al. based on the results of their study 
on functional connectivity patterns [109].

Given that MRI scans are easily administered, they should  
be included in the routine baseline assessment of individuals  
at their first episode of psychosis, or under evaluation for 
psychosis risk. The advantages are considerable: first, MRI  
can pick up rare organic causes of psychosis (e.g., tumors), 
but they can also  track the progression of psychosis  
in the brain (e.g., measures of cortical thickness). However, 
despite being MRI a very promising tool, it has not been 
fully implemented in clinical practice because of several 
translational challenges: first, MRI are quite expensive and 
given the resources constraints in many healthcare services 
it might be not easy to charge for this “unnecessary cost”, 
second, neuroimaging sessions take time to be performed  
(at least 30–40 minutes per session) and again it might not be 
suitable for working patients (who might have limited time 
available), or for individuals who struggle with claustropho-
bia or other forms of anxiety.

Electronic Health Records

In order to offer a precision medicine approach, it might be 
necessary to create more population-based data reflecting 
the real incidence of mental disorders and to use electronic 
health records (EHRs) [110]. In that regard, EHRs have a lot 
of potential for speeding up clinical research and for helping 
clinicians to predict the outcome for each patient [111]. For 
example, Holderness et al. used two types of artificial neural 
networks (ANN), multiple multilayer perceptron (MMP) and 
RBF, to predict whether sentences in a patient’s EHR are 
linked to one or more of the identified risk factor domains 
for readmission [112]. Overall agreement was good when 
compared to annotators, with a mean accuracy of 80.5%. 
Senior et al. [113] developed a natural language processing 
technique in order to extract variables from clinical notes to 
predict risk factors for suicide in 57 patients with SCZ and 
BD. In comparison to the manual evaluation, the overall 
accuracy was good (the overall micro precision was 0.77, 
recall was 0.90, and F1 was 0.83.).

ML to Predict Treatment Outcome

Multiple attempts have been made to predict the course of 
psychosis in research using ML [114, 115] with inconsistent 
accuracy (up to 70%). Researchers tried to identify some 
markers to forecast that, for example, depressive symptoms, 
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poorer educational attainment, functional problems, unem-
ployment, and unsatisfied psychosocial demands and 
antipsychotic medication were some of the strongest ones. 
Lower education, functional deficits, unemployment, and 
unmet psychosocial needs discovering a marker to foretell 
the response to antipsychotic is a promising way to apply 
the ML technique: resting-state functional MRI combined 
with LASSO was used to evaluate the clozapine response 
in 3 months.

One of the first studies that used ML to predict outcomes 
in an FEP sample was conducted by Koutsouleris et al.: 
lower education, functional deficits, unemployment, and 
unmet psychosocial needs were identified as the most accu-
rate predictors of 4- and 52-week outcomes (with an accu-
racy of 73.8–75%) [38, 87]. A similar study was conducted 
a few years later on a sample of 523 subjects diagnosed 
with schizophrenic disorders, by applying a linear SVM and 
recursive feature elimination within a nested cross-validation 
design to recognize patterns in a wide range of genetic, clini-
cal, and environmental variables. The accuracy in predicting 
symptomatic outcome was 62.2 to 64.7%. The most impor-
tant predictors were global assessment of functioning areas, 
psychotic and depressive symptoms, broad quality-of-life 
indicators and overall functioning, and antipsychotics use; 
psychosocial needs were also confirmed as a strong predic-
tor [116].

Antipsychotics represent the core component of any 
comprehensive psycho-social treatment for psychosis [117]. 
However, two features have characterized psychosis treat-
ment so far: no biomarker or clinical characteristic has been 
identified as an indicator of antipsychotic response [118]; 
second, treatment-resistant psychosis emerges in up to a 
third of patients [119, 120] and there are no reliable tools to 
predict the lack of response to a certain antipsychotic. Thus, 
ML holds the promise to help clinicians in moving towards a 
more personalized pharmacotherapy to increase the accuracy 
and relevance of predictions for pharmacological treatment 
outcomes [121]. Sarpal et al., using resting-state functional 
MRI, found that 91 regions that have functional connec-
tions with the striatum were an accurate prognostic tool for 
treatment response to antipsychotic in acutely psychotic 
patients [122]; however, the accuracy was 78%. A LASSO 
algorithm was also used to predict clozapine response at 
3 months [123].

A brain source localization (BSL) procedure using the 
linearly constrained minimum variance (LCMV) beam-
forming approach was also explored: response to clozapine 
treatment can be predicted by the symbolic transfer entropy 
features with an accuracy of 95.83% [124].

Given the high incidence of treatment-resistant schizo-
phrenia, a growing number of studies are delving into the 
pharmacogenomics of antipsychotics, but despite the efforts 
that have been made so far, no reliable predictive markers 

have been identified that might be employed in clinical man-
agement and that could enhance the quality of life of these 
patients. However, recent studies implemented ML methods 
to investigate the genetics of treatment-resistant schizophre-
nia, reporting promising findings that could pave the way for 
the application of pharmacogenomics in the clinical practice 
[125].

Discussion

This review summarizes the findings of the most current 
literature on the application of ML techniques for the identi-
fication, diagnosis, and treatment of non-affective psychosis.

Most of the studies focused on neuroimaging data, espe-
cially MRI, with a specific focus on cortical area reductions 
in superior temporal, inferior frontal, and inferior parietal 
areas that could help identifying the progression to psycho-
sis in UHR individuals. The disrupted thalamus functional 
asymmetry in fMRI matched with SVM and deep neuronal 
model showed to be a useful marker to distinguish SCZ from 
healthy volunteers as well as the decreased density in the 
insula, frontal and superior temporal lobe, or the reduced 
white matter in the cingulum and hippocampus, or connec-
tivity alterations (tested with a computing attentional control 
task in fMRI). ML techniques can also be a helpful tool to 
predict treatment outcome: for example, 91 regions that have 
functional connections with the striatum have been studied 
with the LASSO algorithm. The linearly constrained mini-
mum variance (LCMV) was also utilized to predict clozap-
ine response after 3 months.

When dealing with socio-demographic data, the best ML 
method was found to be the random forest that was able 
to identify the age at onset, premorbid QI, and poor social 
activities as the most frequent predictor of psychosis. A lot 
of studies focused on resting state EEG: SVM seems to be 
one of the most accurate methods to discriminate healthy 
controls from patients with SCZ or depression. Moreover, 
the supervised ML technique matched with auditory EEG 
revealed to be a useful tool to predict the response to clozap-
ine and ECT treatments.

Supervised ML techniques such as SVM and gradient 
boosting were used to test language features to distinguish 
psychotic from healthy people. Low semantic density, higher 
prevalence of speech aberrance, and increased predisposition 
to talk about voices and sounds seem to be strictly associated 
with SCZ patients. Furthermore, random forest and SVM 
were shown to predict psychosis and relapse by monitoring 
Google searches and social media posts.

Proteomic and inflammation alterations (such as neuro-
trophins, IL-10, and glutathione peroxidase) combined with 
ML technologies were able to distinguish healthy controls 
from patients with bipolar disorders or schizophrenia. Even 
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genetic features could be some interesting options to explore 
because it is known that neuronally expressed genes are 
involved in the etiology of SCZ by causing synaptic disrup-
tion. Both SVM and other ML were tested but it was clear 
that these information about gene loci and DNA methylation 
need to be combined with cognitive or neuroimaging data 
to be more accurate.

Such findings are very promising, especially when ML 
is employed to decipher possible predictors of psychosis 
by using neuroimaging data; however, it has not been fully 
implemented in clinical practice because of several transla-
tional challenges (cost, resources restraints, claustrophobia). 
Moreover, almost none of the study provided results strati-
fied by biological sex: given that psychosis has a different 
epidemiology, clinical presentation, and pathophysiology in 
the two sexes [126–128], there is the necessity to develop 
adequate data analytic strategies to account for this impor-
tant biological characteristic.

From a strictly technical standpoint, almost all the studies 
considered in this review applied supervised ML techniques, 
which is quite common in the context of both classifications 
(binary and multiple) and regression. On the other hand, 
studies incorporating unsupervised ML techniques to pre-
process the data, for example operating a dimensionality 
reduction or identifying the most relevant variables without 
the need for human intervention, obtained better perfor-
mance measures. Most of the studies used SVMs, super-
vised classifiers operating by finding the optimal decision 
boundary to distinguish two classes in a dataset, which can 
be either linear or non-linear. The successful use of SVM is 
likely driven by the great confidence gained by the field in 
using this technique as well as the wide availability of fully 
automatic computer tools for its use. However, it is interest-
ing to note that overall performance (in the case of binary 
classification) varied from 0.49, which is to be considered 
very low (i.e., noise), to over 0.90. These results are fully 
justified by different factors, some of which may be attribut-
able to the preprocessing of the data, the wide variety of the 
data, and the a-priori setting of hyperparameters (parameters 
not learned during the training phase of the methodology but 
set by the architect of the software https://​doi.​org/​10.​3934/​
mine.​20230​12).

Conclusions

As a discipline, psychiatry suffers from some main chal-
lenges: first, there is a lack of biological markers of disease 
and prognosis, second, there is a large heterogeneity in clini-
cal presentation, treatment response, and progression, and 
third, most of research studies, with a very selected and neat 
population, do not always translate into real-world practice. 
Thus, even ML shows a limited accuracy despite having a 

great potential. While DL techniques would not be able to 
provide any insights into the psychopathology of psycho-
sis, they might unveil a pattern, by using large and vari-
ous sources of data (biological, clinical, passive data from 
wearable electronic devices on patients, EHRs) not based on 
epistemological assumptions. This will allow a better under-
standing of the disease and provide useful tools to personal-
ize both identification and treatment.
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