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Abstract

Objective: COVID-19 data released by public health authorities is subject to inherent time delays. Such delays

have many causes, including delays in data reporting and the natural incubation period of the disease. We

develop and introduce a numerical procedure to recover the distribution of these delays from data.

Methods: We extend a previously-introduced compartmental model with a nonlinear, distributed-delay term

with a general distribution, obtaining an integrodifferential equation.We show this model can be approximated

by aweighted-sumof constant time-delay terms, yielding a linear problem for the distributionweights. Standard

optimization can then be used to recover the weights, approximating the distribution of the time delays. We

demonstrate the viability of the approach against data from Italy and Austria.

Results: We find that the delay-distributions for both Italy and Austria follow a Gaussian-like profile, with a

mean of around 11 to 14 days. However,we note that the delay does not appear constant across all data types, with

infection, recovery, andmortality data showing slightly different trends, suggesting the presence of independent

delays in each of these processes. We also found that the recovered delay-distribution is not sensitive to the

discretization resolution.

Conclusions: These results establish the validity of the introducedprocedure for the identification of time-delays

in COVID-19 data. Ourmethods are not limited to COVID-19, andmay be applied to other types of epidemiological

data, or indeed any dynamical system with time-delay effects.

Keywords: compartmental models; COVID-19; delay differential equations; epidemiology.

Introduction

The outbreak of COVID-19 in 2020 and into 2021 has led to a surge in interest in the mathematical modeling of

the COVID-19 epidemic, as well as the mathematical modeling of epidemics generally. These models have taken

many types. A full review of the relevant literature is beyond the current work. However, some general classes of

models include data-driven andmachine learning approaches (Barros et al. 2022; Bhouri et al. 2021; Jha, Cao, and

Oden 2020; Linka et al. 2020; Viguerie et al. 2022a;Wang et al. 2020), models based on partial differential equation

(PDE) systems (Albi et al. 2022; Bertaglia and Pareschi 2021a,b; Bertrand and Pirch 2021; Grave et al. 2021; Grave

and Coutinho 2021; Viguerie et al. 2020, 2021), agent-based models (Zohdi 2020), and models based on ordinary

differential equation (ODE) systems. This last category is by far the most common, with such articles numbering

in the thousands. Some works of this type include e.g. (Calafiore, Novara, and Possieri 2020; Choi and Ki 2020;

Ferguson et al. 2020; Gatto et al. 2020; Ivorra et al. 2020; Parolini et al. 2021; Piccolomini and Zama 2020; Remuzzi

and Remuzzi 2020). We note that the categories listed above are not necessarily strict delimiters; indeed, many

of the above cited works, as well myriad others, have characteristics of multiple of different model classes. One

commonality that nearly all the presented models share is that they are, in some way, compartmental models in
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the SIR family owing to the seminal work of Kermack and Mackendrick (Ogilvy Kermack and McKendrick 1927)

(see also: Breda et al. 2012; Murray 2007; Iannelli and Pugliese 2015).

One of the most important aspects of COVID-19 modeling, and epidemiological modeling in general deals

with the presence of time delays in the data. Timedelays certainlymanifest themselves via the natural incubation

period of the disease; this is reflected in the employedmodels commonly incorporating an exposed compartment,

to model the period after exposure to the virus but before symptomatic infection (Bhouri et al. 2021; Gatto et al.

2020; Linka et al. 2020; Viguerie et al. 2020) also shown in Figure 1.

Such an approach is a reasonable one, though, there are several potential problems. First of all, the exposed

compartment is not necessarily easily known from data, and hence must be estimated. This may be done,

for example, through rule-of-thumb estimates based on the infected population, which result in high uncer-

tainty (Albi et al. 2022; Grave and Coutinho 2021; Grave et al. 2021). Compounding this problem further are the

well-known presence of asymptomatic patients, who may spread the disease while never showing appreciable

symptoms, and, at least in the earlier stages of the pandemic, were almost certainly under-counted (Albi et al.

2022; Viguerie et al. 2020).

Another major problem with the exposed compartment in most SEIR-type formulations come from esti-

mating the sojourn time of incubation period, or the length of time spent in the compartment. Under most

common compartmental approaches, the sojourn time of the exposed period is implicitly assumed to follow an

exponential distribution. In practice, this may not always be a realistic (Iannelli and Pugliese 2015) assumption.

In (Guglielmi, Iacomini, and Viguerie 2022; Viguerie et al. 2022a), the authors employed a delay-differential

equation (DDE) model, in which the incubation period was modeled with a time-delay term, rather than as a

separate exposed compartment. Such a modeling approach eliminated the need to estimate the exposed com-

partment, as well as the assumption of an exponentially-distributed sojourn time for the incubation period,

instead assuming a Dirac-delta (constant) distribution. Other works incorporating DDE models into the anal-

ysis of COVID-19 include (Dell’Anna 2020; Devipriya, Dhamodharavadhani, and Selvi 2021; Kumar and Erturk

2020), while references formore general epidemiological models of this typemay be found in (Brauer and Castil-

lo-Chavez 2012; Buonomo, d’Onofrio, and Lacitignola 2008; Forde 2005; Iannelli and Pugliese 2015; Murray 2007;

Takeuchi, Ma, and Beretta 2000).

Figure 1: Flow chart describing the evolution of the various compartments in a classical SEIRD model.
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Aside from the presence of incubation periods, delays in datamay result fromother sources: additional time

from initial onset of symptoms to when a person decides to be tested, the availability of testing, the speed of test

result processing, testing center capacity, and other factors may have a large influence on when a given case is

properly identified in the data (Sarnaglia et al. 2021). The presence of such lags is important, particularly when

attempting to model measured data, as such processes are intrinsic to the data (Bastos et al. 2019). Hence, when

attempting to properly evaluate different intervention strategies, for instance, such delays must be considered

in the modeling process. A model designed to fit measured parameters, while not taking into account the delays

in measurement, may fail provide a wholly accurate description of the dynamics. In this sense, we may view

such delays as no longer time from exposure to infection, but rather time from exposure to identification.

Quantifying both the magnitude and distribution of such time delays, considering the effects of both identi-

fication lag-time as well as the natural incubation period, is thus important for evaluating intervention efficacy

and allocation of resources, and is the focus of the present work. In order to accomplish this task, we first intro-

duce, as a forward problem, an SIRD (susceptible-infected-recovered-deceased) model, in which the time from

infection to identification is not assumed to follow any particular distribution. At the continuous level, this is

accomplished via a convolution with an unknown probability distribution function. We then approximate the

continuous probability distribute function with a discrete approximation, reducing the convolution term to

a weighted sum of constant time-delays. In this way, we obtain a linear problem in terms of the distribution

weights, enabling us to employ an optimization procedure against measured data to identify the weights, thus

approximating the distribution of the time delays present in the data.We note that the introducedmethod, while

applied in the current work to COVID-19, is general in nature and such a techniquemay be employed in any situ-

ation in which a dynamical system and its associated measurements may exhibit time-delayed dynamics whose

distribution is not known.

The article is outlined as follows. We first introduce the employed delay-differential equation model and

discuss some of its characteristics at the continuous level. We then introduce its discrete analogue and describe

the optimization process for the identification of the time delay distribution. We then validate the proposed

technique on an interval of data for the COVID-19 outbreaks in Italy and Austria demonstrating its effectiveness

for different cases under different modeling assumptions. Finally, we conclude with a summary of our main

findings and possible directions for future research in this area.

Delay differential equation model

The delay differential model introduced in (Guglielmi, Iacomini, and Viguerie 2022) reads as follows:

𝜕ts(t) = 𝛼n(t)−
(
1− A

n(t)

)
𝛽es(t)i(t)−

(
1− A

n(t)

)
𝛽is(t)i(t − 𝜎)− 𝜇s(t)+∇ ⋅

(
n(t) 𝜈s∇s(t)

)
(1)

𝜕ti(t) =
(
1− A

n(t)

)
𝛽es(t)i(t)+

(
1− A

n(t)

)
𝛽is(t)i(t − 𝜎)− 𝜙di(t − 𝜎)− 𝜙ri(t − 𝜎)

− 𝜇i(t)+∇ ⋅
(
n(t)𝜈i∇i(t)

)
(2)

𝜕tr(t) = 𝜙ri(t − 𝜎)− 𝜇r(t)+∇ ⋅
(
n(t) 𝜈r∇r(t)

)
(3)

𝜕td(t) = 𝜙di(t − 𝜎). (4)

Here, s(t), i(t), r(t), d(t) represent respectively the susceptible, infected, recovered and deceased compartments

at time t. The parameter 𝜎 represents the time delay termwhich models the incubation period of the disease, as

well as potential reporting delays. For a comprehensive description of the parameters andvariables of themodel,

with the units of measure, we refer to Table 1. Moreover the living population is given by n = s+ i+ r + d.
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Table 1: Relevant parameters and variables, with symbols and unit of measure. Note that s, i, r, d are the variables of the system, while

the others are parameters.

Parameter/variable Name Units

s Susceptible individuals Persons

i Infected individuals Persons

r Recovered individuals Persons

d Deceased individuals Persons

𝛽 Contact rate Persons−1 ⋅ Days−1

𝜙r Recovery rate Days−1

𝜙d Mortality rate Days−1

𝜎 j , j = 1: k Time-delay j Days

𝑤 j , j = 1: k Time-delay weight j Dimensionless

We assume the following:

1. That the time scales considered are sufficiently short such that we do not need to consider new births or

non-COVID-19 deaths;

2. That the population is sufficiently well-mixed in space, such that spatial dynamics (including the Allee effect

on the transmission terms, see Viguerie et al. 2021) can be ignored;

3. That the time scales considered are sufficiently short such thatwedonot need to considerwaning immunity;

4. That recovery and mortality rates follow an exponential distribution;

5. That the model depends on time-delays, arising from both natural (incubation period) and non-natural

(measurement and reporting delays, and similar) causes, whose distribution is unknown.

We acknowledge that some of these assumptions are simplifications; however, for the scope of the current work,

we feel they are nonetheless reasonable. Under these assumptions, our model reads:

ṡ(t) = −𝛽s(t)
𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 (5)

i̇(t) = 𝛽s(t)

𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 − 𝜙d

𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 − 𝜙r

𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 (6)

ṙ(t) = 𝜙r

𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 (7)

ḋ(t) = 𝜙d

𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎. (8)

where 𝜎min and 𝜎max denote the extrema of the time delays. Note that the presence of the convolution term:

𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 (9)

where 𝑤(𝜎) ≥ 0 is a probability density function describing the distribution of the time-delay dependence

present in the model. By definition,
𝜎max

∫
𝜎min

𝑤(𝜎)d𝜎 = 1. (10)
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Under the assumption (with 𝛿(⋅) a Dirac-𝛿 distribution):

𝑤(𝜎) = 𝛿(𝜎 − 𝜎̂) (11)

for a certain constant 𝜎̂ ∈
[
𝜎min, 𝜎max

]
, one obtains the model introduced in (Guglielmi, Iacomini, and Viguerie

2022). In this sense, (5)–(8) can be considered a generalization of the model introduced in (Guglielmi, Iacomini,

and Viguerie 2022).

The function 𝑤 is unknown in general, and its identification in terms of the available measured data

is the focus of the present work. To render the problem numerically tractable, we replace 𝑤(𝜎) in (5)–(8)

with a piecewise-constant approximation, letting {𝜎 j} denote a partition of the interval, assumed uniform for

simplicity:
[
𝜎min, 𝜎max

]
andΔ = 𝜎 j − 𝜎 j−1:

𝑤(𝜎) ≈
k∑
j=1

𝑤̃ j𝜒 j(𝜎), (12)

where the 𝜒 j are simple functions, defined such that:

𝜒 j =
{
1 if 𝜎 ∈ [𝜎 j−1, 𝜎 j)

0 else.
(13)

From the mean value theorem, for each [𝜎 j−1, 𝜎 j), there exists a 𝜎j ∈ [𝜎 j, 𝜎 j−1) such that:

𝑤(𝜎j) =
1

Δ

𝜎 j

∫
𝜎 j−1

𝑤(𝜎)d𝜎. (14)

We then define the 𝑤̃ j in (12) such that:

𝑤̃ j = 𝑤(𝜎j). (15)

We then have:

𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 ≈
𝜎max

∫
𝜎min

i(t − 𝜎)

(
k∑
j=1

𝑤̃ j𝜒 j(𝜎)

)
d𝜎

=
k∑
j=1

𝑤̃ j

𝜎max

∫
𝜎min

i(t − 𝜎)𝜒 j(𝜎)d𝜎

=
k∑
j=1

𝑤̃ j

𝜎 j

∫
𝜎 j−1

i(t − 𝜎)d𝜎 (16)

=
k∑
j=1

(
𝑤̃ jΔ

) 1
Δ

𝜎 j

∫
𝜎 j−1

i(t − 𝜎)d𝜎

≈
k∑
j=1

(
𝑤̃ jΔ

)
i(t − 𝜎 j),

where the final line follows from the simple approximation:

1

Δ

𝜎 j

∫
𝜎 j−1

i(t − 𝜎)d𝜎 ≈ i(t − 𝜎 j). (17)
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Hence, by defining

𝑤 j = Δ ⋅ 𝑤̃ j, (18)

we obtain the approximation:
𝜎max

∫
𝜎min

i(t − 𝜎)𝑤(𝜎)d𝜎 ≈
k∑
j=1

𝑤 ji(t − 𝜎 j). (19)

Note that:
k∑
j=1

𝑤 j = 1. (20)

To see this, observe from (14), (18):

k∑
j=1

𝑤 j =
k∑
j=1

Δ ⋅ 𝑤̃ j =
k∑
j=1

Δ ⋅

⎛⎜⎜⎜⎝
1

Δ

𝜎 j

∫
𝜎 j−1

𝑤(𝜎)d𝜎

⎞⎟⎟⎟⎠
=

k∑
j=1

𝜎 j

∫
𝜎 j−1

𝑤(𝜎)d𝜎 =
𝜎max

∫
𝜎min

𝑤(𝜎)d𝜎 = 1. (21)

From the preceding arguments, (16), replacing 𝑤(𝜎) in (5)–(8) with its piecewise approximation (12) gives

the following system of ordinary delayed-differential equations:

ṡ(t) = −𝛽s(t)
k∑
j=1

𝑤 ji(t − 𝜎 j), (22)

i̇(t) = 𝛽s(t)

k∑
j=1

𝑤 ji(t − 𝜎 j)−
(
𝜙d + 𝜙r

) k∑
j=1

𝑤 ji(t − 𝜎 j), (23)

ṙ(t) = 𝜙r

k∑
j=1

𝑤 ji(t − 𝜎 j), (24)

ḋ(t) = 𝜙d

k∑
j=1

𝑤 ji(t − 𝜎 j). (25)

It was shown in (Guglielmi, Iacomini, and Viguerie 2022) that, for k = 1 (and thus only one time-delay 𝜎̂), the

model (22)–(25), exhibits stable behavior provided that:

𝜙d + 𝜙r <
𝜋

2𝜎
, (26)

which, for the more general case, easily extends to:

𝜙d + 𝜙r <
𝜋

2𝜎 j

, (27)

for each j.

The significance of replacing (5)–(8) with the above approximation (22)–(25) is that we now have a problem

which is linear in 𝑤 j. This allows us to make use of an optimization procedure to identify the 𝑤 j, allowing us

to estimate 𝑤(𝜎). Therefore, we are able to numerically estimate the dependence of the data on general time-

delays, assuming only that 𝑤(𝜎) is sufficiently smooth over the relevant interval. In contrast, many common

modeling approaches assume, for example, that such delays are exponentially distributed (as in most standard

compartment models), or that the delays are constant (as in most basic delay-differential equation models). We

remarkwhilewe consider only distributions𝜔 assumed to not vary in time in the presentwork, the above frame-

work can nonetheless accommodate time-dependent 𝜔, provided that such time-dependence is sufficiently

smooth.
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Optimization procedure and methods

Denote the measured susceptible, infected, recovered, and deceased (from COVID-19) populations as s̃, ĩ, r̃, d̃,

respectively. We then define the following optimization problem: For a given 𝛽 , 𝜙r, 𝜙d, 𝜎 j, j = 1: k and 𝒘 =
[𝑤1, 𝑤2, … , 𝑤k]

T :

argmin
𝒘

(i− ĩ)2 + (d − d̃)2 (28a)

subject to
k∑
j=1

𝑤 j = 1 (28b)

0 ≤ 𝑤 j ≤ 1 ∀ j, s, i, r, d solve (22)− (25). (28c)

The novelty of the proposed method above lies in the approximation (12) of 𝑤(𝜎), allowing us to consider

the nonlinear convolution term (9) as a weighted sum of constant-delay terms. Through this approximation,

it is possible to obtain an optimization problem for the time delay that is linear in 𝑤 j. This is important, as

attempting to optimize for𝑤(𝜎) directly on (5)–(8) gives a highly nonlinear optimization problem that is likely

untractable. Thismethod of identifying a general distribution by approximating it as aweighted sum of constant

time delays, then solving an optimization problem for the weights is, to the authors’ knowledge, novel. We note

that this approach is highly general and is not restricted to models of COVID-19 or epidemiological models in

general. Indeed, onemayuse an analogous approach to identify general sojourn times in compartmentalmodels.

Moreover, the accuracy and the detailed description of the delay depend on how k is chosen. This allows this

method to be very applicable for other models as well.

We note that the model (22)–(25) depends heavily not only on the approximate delay-distribution 𝑤 j, but

also on the contact rate 𝛽 , recovery rate 𝜙r, and mortality rate 𝜙d. These parameters are also, in general, not

known. In order to obtain more robust estimates for the𝑤 j through the optimization procedure defined above,

we resort to a Monte Carlo method. The idea of this class of algorithms is to repeat random sample from the

distribution function of the random variable, and perform several runs of the simulation, one for each sample.

The solution will be given by the mean of all the obtained result. For a detailed description of Monte-Carlo

methods we refer to (Pareschi and Toscani 2013).

Here, the Monte Carlo method consists of considering the 𝛽 , 𝜙r, 𝜙d as independent random variables

sampled from a Gaussian distributions. The mean of the respective distributions is obtained via an empiri-

cal parameter fitting, with the standard deviation of each distribution taken to be 5 % the value of the mean.

This value was chosen based on sensitivity analyses. We then run the optimization procedure (28a)–(28c) a total

of 1,000 times, corresponding to 1,000 different parameter samplings. We then identify frequency with which

different𝑤 j appear in the optimization, as well as the mean value of each𝑤 j over the sampled trial.

We note that the result optimization procedure (16a)–(16d) depends on the choice of input data. In general,

we consider the infection and deceased data to be the most reliable such data and is emphasized in our calcu-

lations. As the easiest quantity to measure, the deceased compartment is assumed the most accurate. Further,

the as the rate of new infections is the driving point behind policy measures, it is considered the second most

accurate measure for our purposes. However, one maymodify (16a) to include other compartments, or different

subsets of the compartment set.

In terms of implementation, there are several important points to note. We define the optimization proce-

dure using the MATLAB routine fmincon. In order to solve the delay differential equation system (22)–(25), we

use the MATLAB function dde23. We note that dde23 uses adaptive grid points, and hence the temporal points
of the solution obtained using dde23 do not correspond to those in our dataset in general. To circumvent this,
we use deval to evaluate the dde23 solution at the desired temporal points.
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Results

For our measured data, we consider the second wave of COVID-19 outbreak in Italy and Austria, as reported by

the newspaper Il Sole 24 ORE (Coronavirus 2021) and AGES1 respectively. The choice of these two Countries is

mainly due to the availability of data as current number of positive cases and daily updates on recovered people,

which was the most difficult data to find.

We consider the dates ranging from September 11, 2020 to February 7, 2021. This date range was chosen

to represent a 150-day span, in which different governmental policies were enacted, widespread testing was

available, and before large-scale population vaccination. This choice was intentional, as we wish to avoid as

many confounding factors as possible.

Italy

We consider the following distributions for the parameters

𝛽 ∼ N
(
.1131∕n0, .05(.1131∕n0)

)
(29)

𝜙d ∼ N
(
1∕940, .05(1∕940)

)
(30)

𝜙r ∼ N(1∕24, .05(1∕24)), (31)

whereN(𝜇, 𝜍) denotes a normal distribution with mean 𝜇 and standard distribution 𝜍 and n0 denotes the initial

living population. For t > 73,2 where t0 = 0, we replace 𝛽 by 𝛽∕3 to model the introduced government restric-
tions, designed to curb the virus spread. The values of 𝜙d and 𝜙r remain unchanged throughout the considered

interval. Themean values of these parameterswere obtained via a preliminary parameter tuning. For the delays,

we considered 12 possible values, from 𝜎 = 2 days to 𝜎 = 35 days, with 3 days of spacing between the different

days. We also performed some experiments (not shown) using different discretizations over the same range (for

instance, 10 possible values) to show the robustness of the optimization procedure, which did not appreciably

change the conclusions drawn.

To examine the possible differences in delays among the different compartments, we perform the optimiza-

tion four times: once considering the i and d compartments together in the objective function, and for the i, r

and d compartments, considering each compartment individually. For each ensemble, we report the minimum,

maximum, and mean L2 error over the simulation ensemble when compared to the measured data, as well as

the mean value and frequency of the different weights𝑤 j corresponding to the delays 𝜎 j.

The aggregated results of the simulations in terms of the infected, recovered, and deceased compartments,

when optimizing over the i and d compartments are shown in Figure 2. We see good qualitative agreement with

the measured and simulated data across the three compartments of interest, with the major relevant trends

being captured. In Table 2, we report the mean, minimum, and maximum of each error value computed over

the simulation ensemble. We see particularly strong agreement in the susceptible and deceased compartments,

reasonable agreement in the infected compartment (especially considering its rapid-changing trajectory), and

somewhat worse performance in the recovered compartment. Given that the r compartment was not included

in the optimization, this is unsurprising.

Turning our attention to the influence of time delays, we report the mean and frequency of the different

weights 𝑤 j in Figure 3. We see a heavy concentration of weights values, for both frequency and mean, in the

range of 𝜎 = 8 to 𝜎 = 17 days. This is consistent withwhat has been reported in general media, as the incubation

1 https://covid19-dashboard.ages.at/.

2 t = 73 coincides with the effective introduction of the curfewmeasures and limitations for bars, shops and restaurants and sports

facilities and events.

https://covid19-dashboard.ages.at/
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Figure 2: Italy: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the i and d compartments. We see good agreement across all compartments with the measured data, and particularly

strong agreement (less than 10 % in L2 norm) in the deceased compartment.

Table 2: Table of relative errors in L2 norm against measured data for the different compartments over 1,000 simulations. The

compartment towards which the optimization procedure is ran is shown in the columns.

Optim. wrt i, d Optim. wrt i Optim. wrt r Optim. wrt d

‖s− s̃‖L2∕‖̃s‖L2 Mean 0.0051 0.0051 0.0025 0.0035

Min 0.0022 0.0022 0.0016 0.0009

Max 0.0104 0.0108 0.0041 0.0079

‖i − ĩ‖L2∕‖̃i‖L2 Mean 0.1101 0.1116 0.2347 0.1464

Min 0.0798 0.0807 0.1580 0.0826

Max 0.2757 0.2681 0.4672 0.4992

‖r − r̃‖L2∕‖̃r‖L2 Mean 0.2602 0.2561 0.0586 0.1903

Min 0.071 0.0650 0.0394 0.0440

Max 0.5913 0.6054 0.1091 0.4769

‖d − d̃‖L2∕‖d̃‖L2 Mean 0.0695 0.0684 0.0926 0.0430

Min 0.0249 0.0266 0.0362 0.0170

Max 0.2063 0.1659 0.1672 0.0864

2 5 8 11 14 17 20 23 26 29 32 35
Delay

0

50

100

150

200

250

300

350

400

450

500

F
re

qu
en

cy
 o

f w
ei

gh
ts

weights>0.1
weights>0.5
weights>0.8

2 5 8 11 14 17 20 23 26 29 32 35
Delay

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ea

n 
of

 w
ei

gh
ts

Figure 3: Italy: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over i and d. We see a strong

concentration of weights in the range of 𝜎 = 8 to 𝜎 = 17 days. Right: the mean values of the weights over the simulation ensemble.

These results mirror those of the frequency plot, showing a concentration between 8 and 17 days. For both frequency and mean, 𝜎 = 11

appears as the most represented delay.
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Figure 4: Italy: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the i compartment. We see good agreement across all compartments with the measured data, and particularly strong

agreement (less than 10 % in L2 norm) in the deceased compartment.

period of COVID is believed to have an average of 3–11 days (Byrne et al. 2020; Lauer et al. 2020; McAloon et al.

2020). When combined with natural delays coming from the testing and data reporting, a total time lag in the

range of 8–17 days would appear consistent with this information.

We then repeat this experiment three more times: once each for the i, r, and d compartments considered

individually in the optimization process. The error tables for the i, r and d compartments can be found in Table 2.

The corresponding simulation outputs for each case are plotted in Figures 4, 6, and 8. The behavior is consistent

with what one may intuitively expect; in each instance, the error behavior is minimized for the considered

compartment, with the simulation variance greatly reduced for the isolated compartment. We note that one can

observe from the relevant tables and figures that there is a much higher degree similarity between the i and d

error behavior when compared to the r compartment, which appears to act more independently.

This is confirmedwhen looking at the frequency andmean distribution of theweights𝑤 j in Figures 5, 7, and

9 for the i, r, and d compartments respectively. In the case of the i compartment, we see concentration between

𝜎 = 8 and 𝜎 = 17 days, similar to when i and d are considered jointly; however, for i alone, 𝜎 = 14 appears as

themost dominant lag term, rather than 𝜎 = 11. The behavior appears similar but evenmore pronounced when

considering d alone. In this instance 𝜎 = 14 is again the dominant delay term; however, the grouping is tightly

clustered between 𝜎 = 11 and 𝜎 = 17, with terms outside this range showing very little influence.
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Figure 5: Italy: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over i. We see a strong concentration of

weights in the range of 𝜎 = 8 to 𝜎 = 17 days. Right: the mean values of the weights over the simulation ensemble. These results mirror

those of the frequency plot, showing a concentration between 8 and 17 days. For both frequency and mean, 𝜎 = 14 appears as the most

represented delay.
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Figure 6: Italy: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the r compartment. We see good agreement in the r compartment; the agreement with the d compartment remains

acceptable, though somewhat lesser than other optimization choices. The error in the infected compartment is notably higher. This

different error behavior is reflected in the optimization results; when optimizing over r, the optimal time delays are different than when

optimizing over i and d.
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Figure 7: Italy: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over r. We see a strong concentration of

weights in the range of 𝜎 = 14 to 𝜎 = 20 days. Right: the mean values of the weights over the simulation ensemble. These results mirror

those of the frequency plot, showing a concentration between 14 and 20 days. For both frequency and mean, 𝜎 = 17 appears as the most

represented delay. These results are less similar to those obtained when one optimizes over i and d, and suggests different time-delays

present in the r compartment as compared to other compartments.

In contrast, when examining the case of isolated r in 7, we see a different distribution of delay terms. Indeed,

in this instance, the dominant delay terms range from 𝜎 = 14 to 𝜎 = 20, and are very tightly concentrated

within this range. This suggests a distinct and longer time scale when compared to the i and d, and may explain

why the error behavior for the r compartment shows a distinctly different behavior in the plots and tables

shown.

Austria

We consider the following distributions for the parameters

𝛽 ∼ N
(
.6∕n0, .05(.6∕n0)

)
(32)

𝜙d ∼ N
(
1∕550, .05(1∕550)

)
(33)

𝜙r ∼ N(1∕14, .05(1∕14)), (34)



12 — Guglielmi et al.: Identification of time delays in COVID-19 data

Figure 8: Italy: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the d compartment. We see good agreement in the d and r compartments, with somewhat less close agreement with the

i compartment.
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Figure 9: Italy: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over d. We see a tight concentration of 𝜎

in the range of 11–17 days. Right: the mean values of the weights over the simulation ensemble. These results mirror those of the

frequency plot, showing a concentration between 11 and 16 days. For both frequency and mean, 𝜎 = 14 appears as the most represented

delay.

whereN(𝜇, 𝜍) denotes a normal distribution with mean 𝜇 and standard distribution 𝜍 and n0 denotes the initial

living population. Note that the parameters of the random variables are different from the ones related to Italy.

For t > 66, where t0 = 0 we replace 𝛽 by 𝛽∕4 to model the introduced government restrictions, namely the
second hard lockdown in Austria.

As in the case of Italy, the optimization is performed four times: once considering the i and d compartments

together in the objective function, and for the i, r and d compartments, considering each compartment indi-

vidually. For each ensemble, we show, as before, the aggregate results of the infected, recovered and deceased

compartments, the mean and the frequency of the weights𝑤 j of the delay.

Optimizing with respect to i and d, Figure 10, leads to a good agreement across all compartments with the

measured data with a particular strong agreement in the deceased compartment, as in Figure 2.

Concerning theweights, shown in Figure 11, both the frequency and themeanof𝜎 are concentrated between

8 and 20 days, similar to Figure 3.

For the optimization with respect to the infected (Figures 12 and 13) and recovered (Figures 14, 15) compart-

ments considered individually, we see a good agreement with the results obtained in the case of Italy, Figure 4,

5 and Figure 6, 7 respectively.
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Figure 10: Austria: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the i and d compartment. We see good agreement across all compartments with the measured data, and particularly

strong agreement in the deceased compartment.
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Figure 11: Austria: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over i and d. We see a concentration

of 𝜎 in the range of 8–20 days. Right: the mean values of the weights over the simulation ensemble. These results mirror those of the

frequency plot, showing a concentration between 11 and 20 days. For both frequency and mean, 𝜎 = 14 appears as the most represented

delay.

Figure 12: Austria: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the i compartment. We see good agreement across all compartments with the measured data, and particularly strong

agreement in the deceased compartment.
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Figure 13: Austria: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over i. We see more 𝜎 values in the

range of 11–23 days. Right: the mean values of the weights over the simulation ensemble. These results mirror those of the frequency

plot, showing a concentration between 11 and 20 days. For both frequency and mean, 𝜎 = 14 appears as the most represented delay.

Figure 14: Austria: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the r compartment. We see good agreement in the r compartment; the agreement with the d compartment remains

acceptable, though somewhat lower r than other optimization choices. The different error behavior is reflected in the optimization

results; when optimizing over r, the optimal time delays are different than when optimizing over i and d.
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Figure 15: Austria: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over r. We see a tight concentration

of 𝜎 in the range of 11–20 days. Right: the mean values of the weights over the simulation ensemble. These results mirror those of the

frequency plot, showing a concentration between 11 and 16 days. For both frequency and mean, 𝜎 = 14 appears as the most represented

delay These results are less similar to those obtained when one optimizes over i and d, and suggests different time-delays present in the r

compartment as compared to other compartments.

However, this can not be said in the case of the deceased compartments (Figures 16 and 17). Here the two

cases are quite different, see Figures 9 and 17. This is possibly explained by differences in how the various data

are reported in the different countries causing delay distributions to differ; however, we are not sure as to the

exact cause.
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Figure 16: Austria: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the d compartment. We see good agreement in the d compartment, with somewhat less close agreement with the r and i

compartments.
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Figure 17: Austria: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over d. We see a concentration of

higher weights for 𝜎 in the range of 14–23 days. Right: the mean values of the weights over the simulation ensemble. These results

mirror those of the frequency plot, showing a concentration between 14 and 23 days, even though the presence of sigma values also in

the first and the last time-bars is notable. According to the mean value, 𝜎 = 20 appears as the most represented delay.

Sensitivity of delay distribution to discretization

In order to ensure the validity of our method, it is important to ensure that the results are insensitive to the dis-

cretization of [𝜎min, 𝜎max). We perform a brief sensitivity analysis, considering the data from Austria described

in the previous subsection. We consider two additional simulations, optimized over the i and d compartments

(corresponding to Figures 10 and 11 above). The setup is identical to the previous simulations, except we vary

the resolution of the delay discretization:

1. Coarse-resolution case: we discretize the interval [2, 35) withΔ = 5 days.

2. Fine-resolution case: we discretize the interval [2, 35) withΔ = 1 day.

We remind the reader that in the results previously shown, Δ = 3 days. We show the results for the coarse-

resolution case in Figures 18 and 19 and the fine-resolution case in Figures 20 and 21.

In both cases, we find that the solution of the system is similar to the one obtained in the preceding section.

Similarly, the delay-distributions are also similar, both qualitatively andquantitatively, compared to the previous

results. From our analysis, it appears that the resolution of the delay discretization does not result in significant

changes to the qualitative or quantitative profile or the identified delay distribution.

We note that increasing the resolution of the delay discretization significantly increases the computational

time necessary to complete the Monte Carlo analysis. On a MacBook Pro with Processor 2 GHz, Quad-Core, Intel

Core i5, with Δ = 5 (and hence 7 wt), each individual simulation required an average of 1.178 s; the average

simulation instead required 3.435 s for Δ = 3 (12 wt) and 48.994 s for Δ = 1 (34 wt). Based on this evidence, it

appears that one should increase the resolution of the delay term only if absolutely necessary to understand the

underlying distribution, as the necessary computational cost appears to scale quadratically with the number of
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Figure 18: Austria: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the i and d compartment using a coarser discretization of the delay term. The results are similar, qualitatively and

quantitatively, to those obtained with a finer discretization.
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Figure 19: Austria: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over i and d when using a coarser

discretization of the delay term. Right: average value of each weight over the simulation ensemble. The results are similar, qualitatively

and quantitatively, to those obtained with a finer discretization.

Figure 20: Austria: Aggregated results of the infected, recovered, and deceased compartments over the range of simulations when

optimizing over the i and d compartment using a fine discretization of the delay term. The results are similar, qualitatively and

quantitatively, to those obtained with a coarser discretization.
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Figure 21: Austria: Left: the different values of the𝑤 j by frequency of occurrence when optimizing over i and d when using a fine

discretization of the delay term. Right: average value of each weight over the simulation ensemble. The results are similar, qualitatively

and quantitatively, to those obtained with a coarser discretization.

weights. If a coarser resolution will suffice (as appears to be the case in the present example), the significantly

shorter computational time make this a more attractive choice. The authors acknowledge, however, that the

optimization algorithm employed in the present work are not necessarily the most efficient choice, and that a

more carefully chosen optimization algorithm may provide better scaling behavior for increasing numbers of

weights.

Key-points

In all, we can conclude three key takeaway points from these results:

1. The time delays present in COVID-19 data range from 𝜎 = 8 to 𝜎 = 20 days, with the most likely value for 𝜎 j

the i and d compartments in the range of 𝜎 = 11 to 𝜎 = 14 days, and appear to follow a normal or log-normal

distribution.

2. The scale of the time delays across the compartments is not uniform. It is similar for new infections and

for deceased persons, but occurs over a somewhat longer time scale for recovered individuals. This is not

surprising due to the different recovery rate and the inherent difficulty of measuring this compartment,

given delays in testing and in the reporting of results. This also suggests that the multiple delays present in

the data are somewhat independent, and likely follow different distributions.

3. The time scales revealed by the optimization procedure shown here are longer than most estimates of the

incubation period, suggesting that other delays are potentially present in the data, and a period of 14–17

days should be considered when analyzing the effects of interventions.

4. The results remain quantitatively and qualitatively similar when using both finer and coarser discretiza-

tions of the delay term, suggesting that the results obtained are not sensitive to this quantity.

Conclusions and future directions

In the present work, we have attempted to identify time delays present in COVID-19 data by means of newly-

introduced method. This method consists of discretizing k possible time delays 𝜎 j, j = 1: k and expressing these

terms as a weighted sum
∑k

j=1𝑤 ji(t − 𝜎 j). This formulation then yields an optimization problemwhich is linear

in the weights𝑤 j. After a preliminary parameter fitting, we then solve an ensemble of optimization problems,

finding the weights 𝑤 j which minimize the difference between simulated and measured data over different

samplings of parameter values. We recover a distribution of delay terms for the different variables, allowing us

to recover the inherent time-delays within the measured data.

We tested this approach on COVID-19 data in both Italy and Austria, and found that the time-delays differ

among different data points, but generally speaking range between 8 and 17 days for i and d, with themost likely

value between 11 and 14 days, and over a somewhat longer time scale (14–20 days) for the recovered compart-

ment. This is consistent with our expectations given the incubation period of the disease and the natural time

delays one may expect from the testing and data collection process. Our results confirm that proper evaluation
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of a given intervention for COVID-19 should allow for a sufficiently long time window to pass before conclusions

are made. All of the identified distributions followed a bell-like distribution resembling a normal or lognormal

distribution, and a sensitivity analysis suggests that this profile is independent of the discretization of the delay

term.

There are several important directions for future work. Given the increased importance of waning vaccine

efficacy over time, a similar analysis given vaccine data and data on breakthrough infections could be helpful

in identifying similar such time-delay trends for waning immunity. While we have elected to avoid vaccines

in the current work, preferring to establish a proof of concept on a more simplified problem, the approach

offered is extremely general and may be applied to these important problems. Outside of COVID-19, time delays

are an important part of other types of epidemiological modeling; similar methods could be used, for example,

to improve back-calculation methods for estimating HIV incidence, in which incidence is estimated by recon-

structing the distribution of the time-delays between infection and diagnosis (Hall et al. 2017; Song et al. 2017;

Viguerie et al. 2022b; Xia et al. 2020). Further, given the generality of the proposed optimization procedure, it may

havewide applications outside of epidemiology, andmay be applied to anymodelwhere time delays are present,

including applications in trafficmodeling, pedestrian flow, remote sensing, and other fields. From the theoretical

andmethodological standpoint, an extension of the framework shown here for problems inwhich the delays are

state-dependent is also an important direction of future research. Finally, we note that the general idea shown, in

which general sojourn time-distributions are approximated by a weighted sum of delay-differential equations,

may be applied to approximate systems featuring more complex delay-distributions.
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