
Future Generation Computer Systems 157 (2024) 275–287

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Exploiting microservices and serverless for Digital Twins in the cloud-to-edge
continuum
Paolo Bellavista a, Nicola Bicocchi b, Mattia Fogli c, Carlo Giannelli c,∗, Marco Mamei b,
Marco Picone b

a University of Bologna, Italy
b University of Modena and Reggio Emilia, Italy
c University of Ferrara, Italy

A R T I C L E I N F O

Keywords:
Industry 4.0
Digital Twins
Cloud-to-edge continuum
Microservices
Serverless computing

A B S T R A C T

In the Industry 4.0 era, Digital Twins (DTs) serve as virtual representations of physical objects and intermedi-
aries between the physical world and the digital realm. DTs require proper modeling, design, and development
to ensure their seamless integration along the cloud-to-edge continuum. In particular, this work introduces a
microservices-based and serverless-ready model for DTs, laying the foundation for cost-effective DT deployment
and orchestration. The joint adoption of microservices and serverless computing offers significant potential
to address various challenges, including accommodating variable application requirements, managing load
imbalances, and mitigating network faults. The proposed DT model has been implemented in different flavors:
two serverless implementations—one that relies on a serverless framework of a cloud provider and one running
at the edge on-premises—and a microservices one. These implementations have been experimentally evaluated
with particular emphasis on the quality of cyber–physical entanglement. This work not only discusses the
advantages and drawbacks of different implementations from a qualitative perspective but also quantitatively
evaluates them with the in-the-field collection of experimental performance results. Notably, we report that a
serverless implementation typically performs an order of magnitude worse than a microservices one in terms
of entanglement, i.e., hundreds vs. tens of milliseconds.
1. Introduction

DTs have recently emerged as active software components acting as
intermediaries between physical objects and applications [1]. Among
other functionalities, they provide standard Application Programming
Interfaces (APIs) to interact with Physical Twins (PTs), decoupling them
from applications and, if needed, augmenting their capabilities. Big
tech companies have recently started to provide platforms for creating
and operating DTs, e.g., Microsoft Azure, Amazon Web Services (AWS),
and Eclipse Ditto. However, despite being feature-rich, production-
grade platforms [2], they model DTs as passive entities based on
JavaScript Object Notation (JSON) files, receiving and storing data
coming from the environment.

Differently from them, and inspired by recent literature in the
field [3,4], we explore the implications of adopting microservices and
serverless computing for the development of cyber–physical software
along the cloud-to-edge continuum. The rationale is to take advantage
of the cloud-to-edge continuum, by deploying DTs according to the
time-varying nature of cyber–physical applications. Well-established

∗ Corresponding author.
E-mail address: carlo.giannelli@unife.it (C. Giannelli).

techniques in the field of microservices (e.g., migration, replication,
composition, software update, and reconfiguration) can be adopted to
address time-varying application requirements (e.g., one application
requiring more timely or precise data and thus a more complex DT
model), load imbalances, and network faults, among others.

Firstly, we envision a multi-layer environment ranging from edge
on-premises scenarios, e.g., with DTs deployed close to PTs supporting
safety-critical time-sensitive services, to continent-wide cloud-based
solutions, e.g., with DTs deployed on remote powerful datacenters
running CPU-intensive algorithms. In the middle there are a set of
additional layers, e.g., Multi-access Edge Computing (MEC) provided
by telco operators enabling user-driven computation within cellular
networks and urban outposts providing small-size cloud-like computing
services not far from physical objects. Since the inherent cyber–physical
nature of DTs [5], we propose to drive the lifecycle of a DT ecosystem
on a property introduced in [6] as cyber–physical entanglement (referring
to the ideally instantaneous exchange of information between DTs and
vailable online 1 April 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.03.052
Received 3 August 2023; Received in revised form 24 March 2024; Accepted 31 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:carlo.giannelli@unife.it
https://doi.org/10.1016/j.future.2024.03.052
https://doi.org/10.1016/j.future.2024.03.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.03.052&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.

i
t
m
i
D
t
s
S

2

b
d
h

r
t
T
(
t
a
t
a
w
t
m
p
r
a
o
c
p
i

m
e

PTs), which we have recently made available in practical terms as
Overall Digital Twin Entanglement (ODTE) [7].

Secondly, we envision the adoption of the serverless approach,
enabling the rapid injection and activation of new actions across a
broad array of hosting nodes that can be activated on-demand (usually
hosted in cloud locations). Not only does this approach extend the
boundaries of traditional horizontal autoscaling (which is supported
by design in serverless approaches), but it can also leverage software
components that are already available, by updating and triggering them
as needed. In particular, we claim that the dynamic management of DTs
along the cloud-to-edge continuum requires novel approaches following
these solution guidelines:

• DTs should be containerized and dynamically orchestrated. As
Section 6 points out, although preliminary attempts to adopt mi-
croservices for DT modeling have been proposed, the current lit-
erature is still striving towards mature solutions for their design,
deployment, and orchestration in the cloud-to-edge continuum;

• DTs modeled as microservices should integrate serverless func-
tions. Indeed, developing portions of a DT (or even the whole
DT) with serverless functions might lead to significant bene-
fits in terms of software engineering, management, and energy
consumption;

• Orchestration should be driven by specific metrics rooted in
cyber–physical contexts. In particular, the activation, deactiva-
tion, mobility, and the scalability of either containers or serverless
functions should take into careful account the accuracy of the DT
representation.

The remainder of this paper is organized as follows: we explore the
mplications of adopting microservices and serverless computing for
he development of DTs (see Section 3); we propose an event-driven
odel for DTs that is suitable for either microservices or serverless

mplementations, laying the foundations for scalable and cost-effective
T deployments (see Section 4); we demonstrate the feasibility of

he proposal providing an experimental evaluation set in a real-world
cenario (see Section 5); and we discuss related works in the field (see
ection 6). Section 7 concludes the paper and draws finals remarks.

. Digital Twins in the Industry 4.0 cloud-to-edge continuum

To facilitate a full understanding and grounding of our proposal
ased on microservices and serverless computing, this section intro-
uces the primary characteristics of modern industrial deployments and
ow the adoption of DTs can make their management easier.

The spread of the Internet of Things (IoT) within industrial envi-
onments have recently enabled easier monitor and control of indus-
rial equipment from remote locations, e.g., via Representational State
ransfer (REST) or Open Platform Communications United Architecture
OPC UA), representing a platform independent service-oriented archi-
ecture largely adopted in industrial environments, thus fostering the
dvent of the 4th industrial revolution. Initial attempts of implementing
he Industry 4.0 paradigm relied on unstructured ad-hoc approaches,
llowing technicians and industrial applications to directly interact
ith machines through their APIs. This trend fostered the integra-

ion of Operation Technology (OT), i.e., the part related to industrial
achines and automation, and Information Technology (IT), i.e., the
art related to data management and processing. However, this has
aised several issues related to, among others, machine heterogeneity
nd proper management. First, machines expose different APIs to each
ther, thus requiring users to know machine-specific details. Second,
ommands and information are sent and gathered directly, with the
otential drawback of concurrently sending contradictory, if not even
nconsistent, commands and querying machines too frequently.

These issues become more evident when the actual organization of
odern industrial environments (comprising the shop floor, plant, and
276

nterprise levels) is taken into account and properly modeled. The shop
floor level is mainly focused on industrial automation. The primary
components of the shop floor are industrial machines, Programmable
Logic Controllers (PLCs), Human–Machine Interfaces (HMIs), and In-
dustrial Internet of Things (IIoT) devices. The plant level regards the
management of manufacturing processes. The critical component is
the Manufacturing Execution System (MES). In particular, the MES
receives instructions on how industrial machines should behave from
operators, and then it transmits such instructions downwards, i.e., to-
wards the shop floor. The enterprise level is about making decisions on
how to run business operations. Frequently, the Enterprise Resource
Planning (ERP) collects information from the underlying business as-
sets, e.g., supply chains, cash flows, customer orders, and production
processes, to provide decision makers with an enterprise-wide picture.

Recently, industrial network implementations have evolved towards
multi-domain infrastructures with some of the software components
deployed outside the factory environment in the so-called cloud-to-edge
continuum (see Fig. 1). For instance, MEC nodes could run data ana-
lytics algorithms in the cellular operator domain not too far from PTs,
thus allowing on-demand cloud-like computing (even if with limited
maximum capabilities) while ensuring latency similar to on-premises
environments. In addition, cloud providers enriched their traditional
offers composed of very powerful datacenters scattered in a few lo-
cations in each country/continent with cloud outposts—small-scale
modular datacenters deployed within major cities. Delay-tolerant mon-
itoring software could be remotely hosted on a public cloud infras-
tructure, in huge data centers, as well as on cloud outposts. Thus,
nowadays the enterprise level embraces multiple heterogeneous do-
mains, from on-premises plant network to telco operator and cloud
provider networks.

This more open scenario increased the issues related to the proper
management of a plethora of heterogeneous machines deployed on a
wide set of environments with very different capabilities and charac-
teristics. Moreover, it increased the number of technicians and appli-
cations concurrently interacting with the same machine. To address
these issues, in the last years, DTs emerged as a suitable solution
that acts as a proxy, decoupling machines and users/applications.
For instance, the adoption of the DT approach makes the separation
between the OT and IT parts of the plant clearer. This separation
greatly simplifies the development and deployment of remote machine
monitoring and control solutions, thus accelerating the spread of In-
dustry 4.0. By mimicking the behavior of their physical counterparts,
DTs offer numerous benefits, such as improved interoperability, oper-
ational efficiency, support for predictive maintenance, and enhanced
decision-making capabilities [8–10].

Traditionally, DTs have been modeled as passive entities, primarily
focusing on data synchronization and visualization. However, there has
been a recent shift towards envisioning DTs also as active software
components responsible for the digitalization of one or more physical
objects. This new approach considers DTs as autonomous entities capa-
ble of processing and analyzing data, making decisions, and interacting
with their PTs. By incorporating intelligence and autonomy, DTs can
adapt and respond dynamically to changing conditions, leading to more
efficient and effective operations [1]. In particular, by adopting the
microservice approach to design and manage DTs, it becomes feasible
to dynamically orchestrate them. For instance, they can be migrated
closer to PTs when there is a requirement for strong entanglement, or
they can be moved to cloud nodes when CPU-intensive algorithms need
to be executed.

However, let us note that migrating or creating a new DT can be
a resource-expensive and time-consuming procedure, not suitable in
the case where there is the need to meet fast-growing workloads. In
this regard, serverless computing has recently emerged as a powerful
paradigm for software design, particularly in cloud environments. It
abstracts away the infrastructure management, allowing developers to
focus solely on writing code and executing functions. The main benefit

of serverless computing is its ability to handle dynamic computational



Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
Fig. 1. An orchestrated ecosystem of DTs running along the cloud-to-edge continuum.
load, thus automatically scaling up or down on demand. This pay-
per-use model provides cost efficiency and flexibility, since resources
are allocated precisely when needed. The application of serverless
computing techniques to model, implement, and experiment with DTs
offers the potential to leverage the scalability, flexibility, and cost-
effectiveness of serverless architectures [11] while empowering DTs
with advanced capabilities. In fact, the serverless approach natively
addresses several scalability aspects and, more in general, simplifies
the dynamic scaling of the currently employed resources by design.
For example, on the one hand, in the case the request traffic sharply
increases, augmenting the set of functions is much easier in comparison
to container-based or Virtual Machine (VM)-based solutions. On the
other hand, in the case there are no requests, it is possible to easily
scale-to-zero. Given this existing (at least partial) support to resource
scalability, the remainder of the paper specifically focuses on the most
open and novel aspects of the proposed solution.

3. Digital Twins for the cloud-to-edge continuum

In this section, we propose a set of requirements which are missing
or at an early stage of development in available DT platforms. Specif-
ically, we envision DTs conceived as an ecosystem of software entities
(both microservices and serverless functions) capable of managing their
level of entanglement, sharing it with an orchestration software, and
consequently enabling mobility and replication along the cloud-to-edge
continuum. While part of these features are already enabled by software
infrastructures/tools such as Kubernetes, Ansible, and Terraform, the
explicit support for the quality of the DT representation as a key driver
for orchestration, originally proposed by this paper, is still missing in
the state-of-the-art DT platforms.

3.1. Entanglement awareness

An entanglement-aware DT ecosystem exposes the quality of its cyber–
physical entanglement and can perform management actions to safeguard
the targeted constraints.

In practical applications, engineering a DT that exactly reflects
its PT is hard for a number of motivations, such as: (i) the state of
the DT is normally obtained by synchronizing with the PT, which
often happens periodically at discrete time instants; and (ii) the state
of the DT requires processing, by imposing additional delays. Fig. 2
schematically depicts the synchronization flow required to keep aligned
the DT and PT states (denoted as 𝑆𝑃𝑇

𝑖 and 𝑆𝐷𝑇
𝑖 ) when the PT detects a

state change. At the beginning 𝑆𝑃𝑇 and 𝑆𝐷𝑇 are aligned (𝑡0). When
a new physical event (e.g., a change in the environment) occurs, it
triggers a variation of the physical state (changed to 𝑆𝑃𝑇

2 ) and generates
a state update towards the DT. At this point, there is a temporary
misalignment between the two counterparts since the physical variation
has not yet been reflected on the DT (𝑡1). Only when the DT receives
the state update and computes its new state 𝑆𝐷𝑇

2 the two counterparts
277

are properly synchronized (𝑡2).
Current DT platforms neglect these fine details of the synchroniza-
tion process and encourage the development of applications assuming
that PTs and DTs always behave as expected. To cope with this limita-
tion, recent works [7,12] have proposed metrics capable of capturing
in a concise yet expressive way the quality of cyber–physical en-
tanglement. These metrics can synthesize whether the state changes
occurring in both the DT and the PT are effectively communicated
to the counterpart, by allowing anyone (or anything) to monitor the
communication process without any application-specific knowledge.
Furthermore, given the ability of these metrics of capturing the effects
of both communication and computation latency, cyber–physical en-
tanglement can be used to take advantage of an adaptive approach on
both sides. For example, a DT reporting an insufficient entanglement
because of communication issues could be migrated closer to the PT
(see Section 3.3) while a DT reporting an insufficient entanglement
because of limited computational resources could be partially offloaded
with external serverless functions (see Section 3.4).

3.2. Life cycle awareness

A DT ecosystem has to be fully aware of the cyber–physical nature of
its DTs (if compared to general purpose containerized software) and has to
support their complete life cycle: deployment, cyber–physical entanglement
and re-configuration.

Conceiving DTs as orchestrated components acting as a medium
for cyber–physical applications implies several changes w.r.t. plain mi-
croservices. It is worth noting that Kubernetes, the de facto standard for
container orchestration, does not provide built-in resources to handle
cyber–physical applications. For example, a DT deployed as a pod in
a Kubernetes cluster might run fine according to Kubernetes (e.g., in
a ready state, no failures, under the resource quota, etc.), but may
become disentangled (e.g., it does not receive the status updates it
should from its physical counterpart). This behavior would perfectly fit
with the general-purpose nature of Kubernetes, but it is not structured
enough for the context of DTs. On the one hand, the orchestration
middleware has to be aware of the communication interfaces provided
by DTs and use them to collect contextual data, analyze them w.r.t.
application constraints, and take actions accordingly. On the other
hand, containerized DTs have to adopt modular designs for: (i) com-
municating with the physical domain, (ii) communicating with the
digital domain, and (iii) monitoring its entanglement and exchanging
commands, logs, and metrics with the orchestration middleware.

Following this principles, we extend the concept of DT life cycle
proposed in [13] by modeling the behavior over time of a DT-PT duality
(see Fig. 3). At its start, the DT is Unbound and ready to bind with
the PT. Once the binding is completed (a network channel with the PT
is established and the DT is ready to initiate the digitization process),
the DT moves to the Bound state and the cyber–physical entanglement
starts to be measured. If binding errors occur, the state reverts back
to Unbound and the DT tries to recover the channel. Networking or

computational resource issues involving the DT-PT synchronization and



Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
Fig. 2. Unidirectional and bidirectional entanglement synchronization process between a DT and associated PT.
Fig. 3. Entanglement-aware Digital Twin life cycle.
degrading the level of entanglement below a target threshold bring the
DT into the Disentangled state. In this state, the DT becomes unable
to provide its intended functionality. From the Disentangled state, the
DT can transition to either the Unbound or Done state in case of an
error during the binding procedure or if it is explicitly stopped by the
middleware. Upon successful error recovery, the DT reverts back to the
Entangled state. In the Done state the DT remains accessible to external
applications as a software component detached from the PT, retaining
its memory and exposing collected historical data, events, and metrics
together with the last DT state until it is dismissed, by transitioning to
the Stop state.

3.3. Cloud-to-edge mobility

A mobility-capable DT ecosystem supports mobility along the cloud-to-
edge continuum and allows individual containerized DTs to be transpar-
ently migrated to the hosting domains that best fit the current application
requirements.

Computing and communication resources can be owned by different
providers and located in different domains, such as: edge on-premises
(e.g., digital factories), MEC (e.g., telco networks), or in the cloud
(e.g., big tech companies). Each solution has benefits and drawbacks:
public clouds offer lower costs but less predictable performance if
compared with edge-based solutions. On the contrary, edge solutions
provide tenants with full control and likely the highest performance in
exchange for higher costs [14–17].

Containerization is one of the key factors enabling mobility. Once
containerized, DTs can be in fact readily deployed on any hosting
platform (thus supporting mobility). Containerization is also likely to
facilitate the adoption of the technology, promoting automation and
standardization [18–21].

The orchestrator has to migrate DT containers, to optimize the use
of resources, and to replicate containers under excessive load, while
maintaining containers monitored and healthy. More specifically, it
must support: (i) DT mobility—if required, a DT must be offloaded
from the current location and moved to a new location; (ii) DT service
continuity—if a DT moves to another location, the application associ-
ated with that DT must continue to run properly; (iii) mobility of PT
state—historical data regarding the PT state must support mobility and
possibly be migrated along with the DT. Relocation procedures should
minimize total migration time [22–24]. Despite current orchestration
platforms enable mobility out of the box, they do not support yet
either transparent mobility along the full cloud-to-edge continuum or
278

entanglement as a native driver for container migration.
3.4. Load resilience

A DT ecosystem resilient to variable loads supports DT horizontal repli-
cation, computation offloading via serverless functions, and admission con-
trol/resource allocation mechanisms for incoming tasks.

An orchestrated network of DTs serving applications with a digital
representation of the physical domain is likely to imply peaks in: (i)
the amount of requests to be accomplished, and (ii) the complexity
of those requests. To handle peaks, Almasan et al. [25,26] recently
discussed how a network of DTs could be integrated with admission
control and resource allocation mechanisms. When admission control
is enabled, it sorts requests by priority, giving preference to higher
priority operations. Particularly, one tenant experiencing high load
should not degrade the performance or availability of other tenants
running on the same host. In case of a positive decision from the
admission control, the resource allocation mechanism verifies and (if
needed) adjusts the resources requested depending on availability. For
instance, a deployment domain without a sufficient number of GPUs or
CPUs may negatively impact the responsiveness of a DT model or even
totally prevent it from working.

On the DT side, the use of DTs containerized as microservices
strongly simplifies horizontal replication. Replicas of the same DT, all
associated to the same PT, must behave consistently, i.e., they have to
represent the same status and behavior of the PT. Due to this, replicas
must be organized hierarchically: a primary DT synchronizes with the
PT and is in charge of sending commands, while all DT replicas are used
for offloading the primary one in sending data to applications [6,27].

Serverless infrastructures can also be used to offload DTs. The
groundwork for serverless computing has been laid with the PyWren
[28], Lithops [29], and funcX [30] libraries. They showed that it is
possible to create a data processing system that inherits the elasticity
and simplicity of the serverless model, using stateless functions. They
do not provide the best parallel performance, but offer some significant
advantages if compared with a standalone server node. Furthermore, a
DT capable of updating its internal model making use of an event-based
chain of functions can be easily parallelized, thus enabling shorter
computation delays and, consequently, an improved entanglement. As
a result, a serverless DT is capable of handling an unusually high
number of requests (or unusually complex models) just as well as it
can process a single request from a single application. On the contrary,
a traditionally structured DT with a fixed amount of resources can be
overwhelmed by a sudden increase in the number of requests or in their
complexity.



Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
Fig. 4. Abstract model of a Digital Twin featuring decoupled components and event-based interactions.
3.5. Software engineering

A DT ecosystem, which is built on top of a declarative infrastruc-
ture, of microservices, and of event-driven technologies, reduces design and
operational costs while improving its overall manageability.

The adoption of an event-driven serverless design for DTs implies
benefits from both the engineering and operations perspective. Firstly,
it avoids the need to upload code to servers or to do any backend
configuration to release working code. Since serverless applications
are not monolithic stacks, developers can update them more granu-
larly, one function at a time. Furthermore, since it is not required
to host the whole application in a specific origin server, (part of) its
code can be run from anywhere along the cloud-to-edge continuum,
as long as there is a serverless infrastructure allowing to host code
and run functions. As such, transparently from the perspective of the
DT, it is possible to run DT functions on cloud datacenters, outposts,
MEC, or edge on-premises nodes, depending on dynamic application
requirements and environmental situations [31]. Secondly, designing
DTs as serverless software components enables the reuse of fundamen-
tal building blocks, (e.g., the model describing the PT, augmentation
functions, physical/digital interfaces, etc.) across different domains,
tenants, and applications, thus lowering the technical barriers to adopt
these technologies. Along the same line, [32] discusses the case for
building a shared catalog of reusable DT models. Thirdly, an event-
based transport layer can naturally integrate protection mechanisms
against bursts or sustained rates of excessive requests, thus simplifying
the development of other components in the provisioned ecosystem.

Furthermore, declarative descriptions of DTs provide a concise way
to express the desired state of a system while minimizing mistakes and
configuration drifts. This approach has proven to be highly effective
in tools such as Kubernetes and Terraform, where the preferred way
for defining resources and managing the infrastructure lifecycle is
based on human-readable configuration files. The declarative approach
outperforms the imperative alternative in several ways: (i) Idempotency:
a declarative approach allows us to repeatedly apply the same configu-
ration without causing conflicts or unexpected side effects; (ii) Version
control: infrastructure configurations can be stored in version control
systems, thus enabling reproducible setups; (iii) Scalability: declara-
tive descriptions of the infrastructure may be more easily designed
for scalability, by simplifying the determination of resources across
multiple environments and regions; (iv) Fault tolerance: a declarative
configuration can be statically analyzed to identify configuration drifts,
failures, and conflicts (e.g., two independent DTs configured for send-
ing commands to the same PT). This results in enhanced robustness
and fault-tolerance; (v) Simplified model modification and enhancement:
a declarative approach allows to deploy modified DT components,
even at service provisioning time in a CI/CD fashion. This aspect is
of particular relevance for the DT model component mimicking the PT
behaviors, since this part is typically the one differing more among DTs
and more time-varying.
279
3.6. Sustainability

A sustainable DT ecosystem employs state-of-the-art technologies, such
as the serverless paradigm, to limit the energy consumption of nodes when
dealing with cold starts, idling, and intensive computation.

Cloud and serverless datacenters have a significant impact on the
world’s total energy requirements (about 1 to 2.5% total energy usage),
even though it has been estimated that half of this energy is consumed
by idling servers [33]. Despite this 50% waste could be reclaimed by
the serverless paradigm (involving the execution of short-lived func-
tions), ensuring adequate energy-management policies in such systems
remains a crucial challenge [34].

Various approaches can be used to limit power consumption: power
capping of serverless deployments, scheduling strategies to make more
effective the usage of the physical resources where serverless functions
are hosted, and mechanisms to minimize cold start times that can
have significant power consumption requirements [33]. In addition, the
inherent event-driven nature of function invocation enables easy cou-
pling with dynamic resumption, such as Wake-on-Lan, and fast-booting
technologies, such as Coreboot or Jumpstart [35], in conjunction with
delay-tolerant function invocations.

Regarding DTs, libraries supporting serverless platforms, such as
PyWren or funcX, allow more fine-grained power capping. In fact, such
libraries could target specific subcomponents that might not need to
run at full speed, and better characterize the resource requirements of
its functions, thus enabling improved execution density via adaptive
resource sharing among multi-tenant functions. On the networking side,
low energy footprint protocols might be integrated. For example, the
QUIC protocol [36] employs some of the basic mechanisms of TCP and
TLS while keeping UDP as the transport protocol. It addresses problems
such as connection setup overhead, removing the head-offline block-
ing, supporting connection migration, and eliminating TCP half-open
connections for the sake of reducing its energy footprint.

4. Modeling microservices and serverless Digital Twins

In this section, we present a general reference architecture that
can be adopted as a blueprint for implementing an ecosystem of DTs.
Its objective is to decompose DTs into a set of event-driven modules
interacting with suitable adapters. It has to be intended as an abstract
architecture where each component may be possibly realized with
different technologies (see Section 5.2 for the detailed description of
some implementation options). We start by describing a traditional DT
conceived as a microservice and move on by introducing our original
serverless decomposition.

Fig. 4 extends the abstract model for DTs proposed in [13] and
based on the above principles. Each DT has a State (supposedly reflect-
ing the state of the PT) defined in terms of properties, relationships,
and events. Properties represent the attributes of the PT, Relationships
represent the relationships of the PT with other PTs, and Events repre-
sent relevant observable events that occur at the PT. The interaction



Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
Fig. 5. From PT to DT shadowing.
Fig. 6. From DT to PT actions shadowing.
with the physical and digital layers builds upon the Physical and Digital
interfaces, each composed of independent adapters that can implement
different communication protocols. Physical or digital events ignite
two different processes. The former requires the Core component to
determine which changes of the PT state have to be mapped to the
DT state. The latter requires the Core component to propagate inputs
coming from applications to the PT. It is worth remarking that the
Core is not limited to provide a one-to-one mapping between PT and
DT properties. Instead, the Core component is allowed to enrich the
DT state with properties that are not actually available on the PT side.
This process, called augmentation, finds an ideal application whenever
it is not possible or economically feasible to modify the PT. However,
frequently modifying the Core component for augmentation purposes
might be expensive as well, since for each new feature it is required to
perform a full development, testing, and deployment cycle. To reduce
operational costs, DTs integrate a collection of Augmentation Functions,
running alongside the Core for augmenting the state and functionality
of the PT. One could develop very simple functions for converting the
metric used by the PT (e.g., from Celsius to Fahrenheit degrees) or
more complex ones (e.g., detecting outliers from the raw data collected
from a MQTT-enabled industrial sensor). Provided their independence,
functions have also the advantage of being easily run in parallel either
on the DT itself or on external serverless infrastructures. Finally, DTs
integrate an Entanglement Manager responsible for exposing to exter-
nal services the cyber–physical entanglement indicator (measuring the
quality of representation).

In this work, we have identified and correlated the fundamental
building blocks and their relationships that define the behavior of
function-driven DTs, by considering both the flow of physical changes
originating from the PT and the actions from the digital realm to
the physical one. For each function, we have detailed its primary
responsibilities, along with input(s) and output(s). Fig. 5 details the
shadowing process keeping the state of the DT 𝑆𝐷𝑇 synchronized with
the state of the PT 𝑆𝑃𝑇 . Updates from PTs to DTs and reaching the
physical interface involve a processing pipeline comprising five main
steps represented in Fig. 5:

1. physicalEventHandler(𝑟𝑒𝑣𝑃𝑇 ) ⟶ 𝑒𝑣𝑃𝑇 : any change of the state
of the PT 𝑆𝑃𝑇 is received as a raw physical event (e.g., a MQTT
message) and normalized to a standard event 𝑒𝑣 ;
280

𝑃𝑇
2. shadowingHandler(𝑒𝑣𝑃𝑇 ) ⟶ 𝑆′
𝐷𝑇 : given a physical event 𝑒𝑣𝑃𝑇

and a model 𝑀 , a candidate for the new DT state 𝑆′
𝐷𝑇 is

computed by means of a shadowing function;
3. augmentationFunction(𝑆′

𝐷𝑇 ) ⟶ 𝑆′′
𝐷𝑇 : given a candidate state

𝑆′
𝐷𝑇 , a set of (possibly parallel) augmentation functions is used

to produce a richer DT state candidate 𝑆′′
𝐷𝑇 consisting of more

properties and relationships;
4. twinHandler(𝑆′′

𝐷𝑇 ) ⟶ 𝑒𝑣𝐷𝑇 : given a possibly augmented can-
didate state 𝑆′′

𝐷𝑇 , the new DT state 𝑆𝐷𝑇 is consolidated and a
digital event 𝑒𝑣𝐷𝑇 is computed after the cyber–physical entan-
glement (refer to Section 3.1) and the DT life cycle state (refer to
Section 3.2) are updated. Fig. 5 also shows how the twinHandler
step has been designed as the composition of three smaller steps,
each one managing a single responsibility (additional details in
Section 5.2).

5. digitalEventHandler(𝑒𝑣𝐷𝑇 ): digital event 𝑒𝑣𝐷𝑇 is sent to listeners
(e.g., external applications) via the digital interface.

Fig. 6 details the shadowing process from DTs to PTs, propagating
action requests down to the PT. This case is simpler than the previous
one, typically not involving augmentation, and is based on a sequence
of three main steps:

1. digitalActionHandler(𝑟𝑎𝐷𝑇 ) ⟶ 𝑎𝐷𝑇 : any request from external
services is received as a raw digital action event (e.g., a MQTT
message) and normalized to a standard event 𝑒𝑣𝐷𝑇 ;

2. shadowingActionHandler(𝑎𝐷𝑇 ) ⟶ 𝑝𝑎𝐷𝑇 : a new action request
𝑎𝑃𝑇 for the PT is generated by means of a shadowing function
and propagated towards the PT;

3. physicalActionHandler(𝑝𝑎𝐷𝑇 ) ⟶ 𝑝𝑎: the action request 𝑎𝑃𝑇 is
applied to the PT, determining a change of the PT state 𝑆𝑃𝑇 .

This approach, which is not tied to any specific technology stack,
allows each component to be deployed independently according to
the target scenario and/or runtime context. For example, it may be
implemented at the edge of the network (by making use of tailored
libraries natively supporting events and component isolation), on the
cloud (using commercial platforms translating the aforementioned com-
ponents in serverless functions), or even in hybrid fashions (with the



Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.

(
D
t
f
o
i
w
a
t
I
l
p
r
e
w
r
t
r

5

e

c

Table 1
Experimental evaluation: DT implementations, deployment locations, and adopted platforms.
Acronym Name Deployment location Platform(s)

SCDT Serverless Cloud Digital Twin Cloud Microsoft Azure
SEDT Serverless Edge Digital Twin Edge Kubernetes and Fission
MDT Microservices Digital Twin Edge Kubernetes and WLDT
MDT-f MDT with Resource-Constrained Function Flexibility Edge Kubernetes and Extended WLDT
Table 2
Experimental evaluation: metrics on cyber–physical entanglement and function flexibility.
Acronym Name Description Unit

ODTE Overall Digital Twin Entanglement Measure of cyber–physical entanglement as 𝑇 × 𝑅 × 𝐴 [0,1]
𝑇 Timeliness How fresh the status updates are w.r.t. 𝑇𝑑 [0,1]
𝑅 Reliability The ratio of the received status updates to the expected ones (𝑅𝑒) [0,1]
𝐴 Availability The expected up-time of the PT from the perspective of the DT [0,1]
𝐷𝑇 Deployment Time MDT& MDT-f container deployment time Time
𝑆𝑇 Startup Time MDT& MDT-f container startup time Time
𝑓𝑢𝑝𝑑𝑎𝑡𝑒 WLDT Function Update Time MDT-f function update time Time
𝑓𝑒𝑥𝑒𝑐 WLDT Function Delta Exec. Time MDT-f function delta execution time compared to native Python Time
Table 3
Experimental evaluation: varied parameters in cyber–physical entanglement for DT validation.
Acronym Name Description Unit

𝑂𝑇ℎ ODTE threshold ODTE value under which the DT gets disentangled [0,1]
𝑇𝑑 Desired timeliness Data freshness that the DT expects Time
𝑅𝑒 Expected status update rate Status update rate that the DT expects No. of updates/Time
s
U
w
V
P

DT execution split into functions residing on different nodes along
the cloud-to-edge continuum, as discussed in Section 3.4). Moreover,
the proposed function-driven approach not only paves the way for
leveraging existing functions but also enables designers and developers
to concentrate on the specific behaviors and capabilities of the target
DT, such as shadowing and augmentation. This emphasis on private
functions is enhanced by the opportunity to exploit shared public func-
tionalities, including data management, physical and digital interfaces,
and adapters.

5. Experimental evaluation

This section discusses: (i) the testbed used for the experiments,
ii) the proof-of-concept implementations of the proposed model for
Ts, and (iii) their experimental evaluation. The primary objectives of

his experimental evaluation are, on the one hand, to demonstrate the
easibility of the proposed model for DTs (see Section 4) and, on the
ther hand, to investigate the advantages and drawbacks of different
mplementations of such a model. From a methodological perspective,
e envisioned and structured an experimental evaluation based on
dopting various DT implementations across multiple deployment loca-
ions and computational facilities within the cloud-to-edge continuum.
n this context, Table 1 details the implemented DTs, their deployment
ocations, and the frameworks used for their implementation and de-
loyment. The extensive experimental evaluation that we conducted
elies on a set of metrics (see Table 2), ranging from cyber–physical
ntanglement to function management and execution. The experiments
ere designed considering variations in a set of core parameters, as

eported in Table 3, i.e., the ODTE threshold, the targeted desired
imeliness for DT freshness estimation, and the expected status update
ate from the PT.

.1. Testbed setup

The testbed we set up combined both cloud and edge on-premises
lements.

The cloud elements were deployed on Microsoft Azure, where we
onfigured an IoT Hub, a PostgreSQL database, and a Function App.
281
The IoT Hub is a managed service hosted on the cloud, acting as a
central message hub for bidirectional communication from the edge to
the cloud and vice versa. We used Azure Database for PostgreSQL as a
database, which is a fully-managed database-as-a-service with built-in
capabilities for automatic management, threat detection, and scaling.
Lastly, the Function App is a serverless service providing mechanisms
for running event-triggered code, allowing developers to write specific
functions that can be event-triggered, run on a schedule, or activated
when HTTP requests come in.

At the edge on-premises, we configured a Kubernetes1 cluster con-
isting of five VMs, each equipped with 4 CPUs, 8 GB of RAM, and
buntu 20.04 LTS provisioned by a local OpenStack server. One VM
as dedicated to running the control plane, while the remaining
Ms served as worker nodes. On top of Kubernetes, we deployed
rometheus,2 Chaos Mesh,3 and Fission.4 Prometheus was used to

scrape metrics and store them in a time-series database. Chaos Mesh,
a cloud-native chaos engineering platform, was used to inject faults
into the Kubernetes cluster. Chaos engineering shown to be effective in
assessing the resilience of DTs [37]. Fission, a well-known Kubernetes-
native serverless framework, was deployed on the Kubernetes cluster at
the edge. This setup allowed us to explore the serverless approach in an
environment fully under our control and not managed by an external
cloud provider, such as Azure. This was also intended to minimize the
potential factors affecting our measurements of performance results,
thus serving as a benchmark.

We also developed a software component that emulates the behav-
ior of an IIoT device. This component consistently broadcasts status
updates, including measured temperature and energy values, at a con-
figurable rate as MQTT messages. It acts as the physical counterpart
(i.e., the PT) of our cyber–physical application. Both the IIoT device
and the MQTT broker were deployed as containerized applications on
the Kubernetes cluster. Lastly, we deployed dedicated agents to ensure

1 https://kubernetes.io/.
2 https://prometheus.io/.
3 https://chaos-mesh.org/.
4
 https://fission.io/.

https://kubernetes.io/
https://prometheus.io/
https://chaos-mesh.org/
https://fission.io/


Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.

s
A
r
u
c
o
t
O
c
t
o
t
n

a
t
d
e
a
v
e
a
f
H
e

W
s
b
e
o
u
r
e
t
t
a
a
M
a

0
c
t
s
m
i
t
i
t
o

t
h
a
c
c
b
A
s
o
0
T
e
t
c

that such status updates trigger the appropriate serverless functions.
Specifically, these agents, namely Azure Connector and Fission Connec-
tor, were responsible for delivering status updates to the IoT Hub in the
cloud and to the Fission Router at the edge, respectively. The Fission
Router is the architectural component of Fission that routes incoming
HTTP requests to the designated Fission Functions.

5.2. Implementation insights

We implemented the event-driven model detailed in Section 4 using
both serverless functions and microservices. Specifically, we developed
three operational DTs: two leveraging serverless functions and one
based on microservices. The primary distinction between such server-
less implementations lies in their hosting environments. One is fully
cloud-hosted, developed within the serverless framework of Microsoft
Azure. Instead, the other was implemented using Fission, which enables
serverless functions in Kubernetes. This implementation is hosted in the
Kubernetes cluster at the edge on-premises, where we have complete
visibility and control over the infrastructure and its resources.

The Serverless Cloud Digital Twin (SCDT) was implemented as an
Azure Function App using Python. Such a Function App relies on
Azure Durable Functions, a native Azure extension designed to enable
tateful applications in a serverless compute environment, and the
zure Database for PostgreSQL to store information. Furthermore, to
ealize the designed DT event-driven functions illustrated in Fig. 5, we
sed the function chaining pattern. This pattern refers to the ability to
hain multiple functions together in a sequence, where each function
utput serves as the input to the next function in the chain. According
o Azure best practices, this pattern is achieved by using the Azure
rchestration Function, in charge of defining the sequence of function
alls (known as the function chain). When the orchestrator function is
riggered, it can call multiple functions one after the other, passing the
utput of one function as the input to the next function in the chain. In
his implementation, the orchestrator function is triggered whenever a
ew status update is published to the IoT Hub.

The Serverless Edge Digital Twin (SEDT) was implemented using
lmost the same Python code as the SCDT, with minor modifications
o fulfill Fission requirements. This implementation uses a PostgreSQL
atabase for data storage deployed on the Kubernetes cluster at the
dge on-premises. Given that psycopg2, a highly popular PostgreSQL
dapter for Python, is not available in standard Fission deployment en-
ironments, we built our custom environment for the testbed (a Fission
nvironment includes the essential software for building and executing
function). Then, we packaged the source code of the implemented

unctions, deployed them in our custom environment, and configured
TTP routes accordingly. The sequence of function calls in the SEDT
xactly mirrors that of the SCDT one.

The Microservices Digital Twin (MDT) was implemented with the
hite Label Digital Twin (WLDT) library,5 which is a modular Java

tack built on a multithread engine. This library allows to define the
ehavior of DTs, implements digitalization procedures, interacts with
xternal applications [38], and provides support for the requirements
utlined in Section 4. The MDT has been containerized as a config-
rable Docker image and has been stored in a dedicated container
egistry to simplify the deployment process. Furthermore, we also
xtended the MDT to support function injection in a serverless-like form
hrough a specialized WLDT wrapper able to execute Python functions
riggered by the Java core in the same container, accompanied by

function migration support. This support, utilizing an event-driven
pproach with a dedicated MQTT-based digital adapter, enables the
DT to receive new Python functions from external sources and en-

bles function-driven DT development in constrained environments

5 https://github.com/wldt.
282
where the deployment of more complete and more standard serverless
supports is not feasible.

A repository hosting any relevant software artifacts developed for
this paper is publicly available on GitHub, to foster the reproducibility
and full understanding of our work.6

5.3. Experimental results

We used the ODTE metric to measure entanglement [7]. This metric
quantifies the quality of entanglement as a value normalized between
0 and 1. Specifically, it is the product of three factors: timeliness 𝑇
(i.e., how fresh the received status updates are), reliability 𝑅 (i.e., the
ratio of the received status updates to the expected ones), and avail-
ability 𝐴 (i.e., the expected up-time of the PT from the perspective of
the DT). The ODTE assumes that a DT knows its desired timeliness 𝑇𝑑
and the expected status update rate 𝑅𝑒. For example, 𝑇 (𝑇𝑑 = 1𝑠, 𝑛𝑜𝑤 −
5 𝑚,𝑂) = 0.999 means that, based on the set of observations 𝑂 collected
over the last 5 min, 99.9% of the updates have been received in at
most 1 s. Instead, 𝑅(𝑅𝑒, 𝑛𝑜𝑤 − 5, 𝑂) = 0.5 means that, based on the
set of observations 𝑂 collected over the last 5 min, only 50% of the
status updates have been received. In the experiments we conducted,
𝑇𝑑 was varied, 𝑅𝑒 was set equal to the status update rate configured on
the IIoT device, and the IIoT device was assumed to be always up and
running, thus 𝐴 = 1. The evaluation of the ODTE was performed in a
60-second sliding window, thus each computed value relies on the set
of observations collected in the preceding 60 s.

Fig. 7 illustrates the deployments along the cloud-to-edge contin-
uum that we developed for the experimental evaluation of our DT
implementations (see Section 5.2). Specifically, Figs. 7(a), 7(b), and
7(c) depict the deployments used to evaluate the SCDT, SEDT, and
MDT, respectively. Two different applications characterize each de-
ployment: an edge application that requires strong entanglement and a
third-party application designed to perform batch analytics with more
relaxed entanglement requirements.

The objective of the first deployment (referenced in Fig. 7(a)) was
to determine the entanglement requirements that the SCDT can meet.
The IIoT device was configured to transmit a status update every 5 s.
Fig. 8(a) shows the kernel density estimation of the ODTE for several
values of 𝑇𝑑 . The ODTE mean was 0.44±0.10, 0.64±0.11, 0.68±0.06, and
.99 ± 0.03 for 𝑇𝑑 of 1 s, 2.5 s, 5 s, and 10 s, respectively. These results
onfirm a positive correlation between 𝑇𝑑 and the ODTE and indicate
hat the SCDT was successfully entangled only when 𝑇𝑑 was set to 10
, which is a relatively high value. Although this deployment could
eet the batch analytics requirements of the third-party application,

t fell short for the edge application. However, it is worth noting that
he performance over cloud may fluctuate significantly and may be
nfluenced by a wide variety of factors, such as the type of subscription,
he quality of employed resources, and resource quotas, among the
thers.

The second deployment case (see Fig. 7(b)) focused on assessing
he performance of the SEDT, our alternative serverless implementation
osted at the edge on-premises (and not over a standard cloud dat-
center). This approach minimized potential performance-influencing
loud factors (depending on runtime resource management by the
loud provider), thereby offering a more controllable and transparent
enchmark for DT implementations that rely on serverless functions.
s in the previous case, the IIoT device was configured to transmit a
tatus update every 5 s. Fig. 8(b) shows the kernel density estimation
f the ODTE. The ODTE mean was 0, 0.54 ± 0.07, 0.96 ± 0.04, and
.99 ± 0.02 for 𝑇𝑑 of 25 ms, 50 ms, 100 ms, and 250 ms, respectively.
he SEDT performed significantly better than the SCDT. Assuming an
ntanglement threshold of 0.9 (i.e., any ODTE value above 0.9 makes
he DT entangled), the SEDT was entangled with a 𝑇𝑑 of 100 ms, in
ontrast to the SCDT, which required a 𝑇𝑑 of 10 s.

6 https://github.com/fglmtt/fgcs-2023-artifacts.

https://github.com/wldt
https://github.com/fglmtt/fgcs-2023-artifacts


Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
Fig. 7. SCDT deployment (a), SEDT deployment (b), and MDT deployment (c).
Fig. 8. SCDT (a) vs. SEDT (b) vs. MDT (b): ODTE for different 𝑇𝑑 values.
Although the SEDT is sufficiently effective for a wide range of use
cases, it is possible that some real-time applications may require 𝑇𝑑
values in the order of a very few milliseconds. The purpose of the
third deployment case (referenced in Fig. 7(c)) was to evaluate the
performance of the MDT, i.e., a comparatively simpler implementation
than its serverless counterparts. As demonstrated in Fig. 8(c), the MDT
achieved entanglement at significantly lower 𝑇𝑑 values, approximately
around 10 ms. We also conducted stress tests on the MDT by injecting
network latency and packet loss to observe its behavior under network
slowdown conditions. Specifically, we used Chaos Mesh to introduce
50 ms of latency, 50 ms of jitter, and 25% correlation between consecu-
tive packets. As shown in Fig. 9(a), the MDT successfully dealt with the
injected network effects (the ODTE remained in the range between 0.9
and 1) when 𝑇𝑑 was set to 200 ms and 100 ms. Fig. 9(b) illustrates the
responsiveness of the ODTE with different sliding windows and 𝑇𝑑 fixed
at 25 ms. It is worth noting that the sliding window determines the
time frame (and therefore the number of observations) used to compute
the ODTE. A shorter sliding window makes the ODTE more responsive,
but it is also more sensitive to noise. For example, when the sliding
window was set to 15 ms, it was detected earlier than the MDT became
disentangled, but with more frequent and larger fluctuations.

These experiments have highlighted the advantages and limitations
of various design/implementation choices for our DTs. It is important
to note that the execution of these different implementations could
coexist along the cloud-to-edge continuum, if properly orchestrated.
For example, an application with real-time requirements might interact
with the MDT at the edge, while another application, less demanding
but requiring resource-intensive computation, might interact with the
SCDT, thus conserving the scarce resources available at the edge. Since
all these implementations are based on the same model described in
283
Section 4, there are no functional differences for the applications that
interact with them. Generally, cloud-based implementations offer lower
performance (indicated by worse ODTE measures), but they tend to
be more cost-effective and scalable if compared with edge-oriented
deployments.

5.4. Resource constrained function flexibility

The deployment of serverless platforms and frameworks at the edge
can be challenging due to various factors, such as the availability of
computing, network, and storage resources, together with the skills
required for managing such infrastructure. This experimental section
aims to investigate the feasibility of a function-driven solution on the
edge without the need to strictly adopt a serverless approach, but still
allowing flexible function execution, update, and migration.

We have extended the previously mentioned WLDT library by en-
abling the execution of Python functions within our Java-based DT
framework. A dedicated wrapper was created to execute these Python
functions triggered by the Java core within the same container. Ad-
ditionally, a dynamic function management system was developed: it
relies on an event-driven approach through a dedicated digital adapter
based on the MQTT protocol. Through it, our MDT can receive new
Python functions dynamically from external sources. This approach is
not intended to replace serverless modeling; rather, it aims to explore
a function-driven approach for dynamically adjusting DT behaviors
without the need to rebuild and redeploy the entire instance. This
is particularly relevant in application contexts where serverless ap-
proaches may not be suitable due to resource limitations or design
constraints. In our experimental assessment, Python was chosen as a
reference example for enhancing DTs with streamlined data processing



Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
Fig. 9. MDT: ODTE over time for different 𝑇𝑑 values with a sliding window of 60 s (a) and different sliding windows with 𝑇𝑑 fixed at 25 ms (b) when network slowdown occurs;
and experimental evaluation of function flexibility support in resource-constrained edge environments.
functionalities and potentially intelligent capabilities, such as execut-
ing Machine Learning models. The focus of this evaluation is on the
feasibility of managing dynamic DT capabilities, rather than on in-
depth performance analysis of their execution. The modular design of
the WLDT wrapper approach enables easy extension to other program-
ming languages for future development and experimentation targeting
advanced performance and optimization.

The reported experiments investigate the original ability of our
MDT to dynamically execute either functions that are already avail-
able or functions that can be proactively pushed at runtime. Two
edge deployments were experimentally evaluated: a traditional edge
node equipped with an i7 CPU quad-core at 3 GHz and 32 GB of
RAM and a Raspberry Pi 4 equipped with a Cortex-A72 (ARM v8) at
1.8 GHz and 4 GB of RAM. The objective was to explore the feasibility
of the proposed approach also on resource-constrained nodes while
maintaining the desired function-driven modeling. Fig. 9(c) illustrates
the main phases and associated execution time (in ms) related to: (i)
container deployment on the hypervisor; (ii) startup time needed to
initialize the MDT lifecycle; (iii) Python function update time; and (iv)
function execution time computed as the delta with respect to the same
execution performed directly on the Python interpreter without the
overhead of the introduced Java wrapper.

As expected, the deployment and startup times of our MDT proved
to be the most time-consuming, ranging between 1.5 s and 4.5 s. In
contrast, the time needed to update the MDT capabilities (excluding
the transmission time of the function over MQTT) was negligible, under
1 ms on the Intel-based node and around 1.2 ms on the Raspberry Pi.
The delta execution time was measured to be about 50 ms on the Intel-
based node, and slightly higher on the Raspberry Pi, averaging around
70 ms, which are in both cases largely acceptable for a vast spectrum
of supported DT applications.

6. Related work

The recent adoption of DTs in several scenarios and use-cases has
pushed researchers to investigate how to properly design them, with
the primary goal of making their deployment and dynamic manage-
ment easier. For instance, service-oriented architectures have already
demonstrated their applicability in the industrial sector [39] as well
as in the building one [40]. [41] proposed a definition and character-
ization of DTs in relation to software architectures and their platform
implementations, together with their applicability in different indus-
tries, while [19] proposed catalogs of software patterns for designing
complex systems specifically based on the DT technology.

The role of DTs has also been recently re-analyzed and re-shaped by
both the scientific and industrial communities with the goal of clearly
identifying related definitions and responsibilities [42–45]. In recent
284
scenarios, DTs are increasingly conceived as flexible and adaptive
software entities that can be exploited to build context-aware, au-
tonomous, and adaptive applications across multiple domains [46]. The
possibility to design and build DTs that are aware of their own context
and capable of autonomous decision-making/adaptation starts to be
recognized as a strategic pillar for the next generation of cyber–physical
systems [47,48]. Finally, [1] identified several design patterns that can
be adopted to properly meet new demanding requirements in terms of
adaptiveness, autonomous management, and context-awareness.

By focusing on the microservices approach, it has been proposed
to support the concept of DT only very recently. For instance, [49]
provided general considerations related to the slightly more general
concept of Digital Factory, by pointing out that microservices support
the spread of modular development, thus pushing for flexible, evolving,
and distributed systems. In addition, microservices provide elasticity
to frequently update DTs and their supporting framework even at
run-time. Finally, microservices reduce the software delivery and the
probability of cascading failures.

To support the deployment of DTs within industrial environments,
[50] highlighted the relevance of the adoption of widespread technolo-
gies such as containerization and microservices, and of open-source
support implementations such as Apache Kafka, RabbitMQ, and Elastic-
search, among the others. [51] provided a literature analysis stressing
how such approaches allow to develop the software infrastructure
supporting Industry 4.0, while [52] is the first paper focusing on an
industrial use case that adopted containerized DTs. [53] pursued the
key objective of developing a dynamic management solution by devel-
oping the MES and programmable logic controllers as a composition of
multiple software modules based on microservices. Wang et al. [54]
presented a notable vehicular use case demonstrating the suitability
of DTs and microservices in a challenging mobile environment. [55]
proposed the adoption of the microservices approach to provide DTs
of network nodes, with the objective of supporting the easy interaction
with other DTs and of taking care of the network application installa-
tion and configuration, to some extent in a similar way and with similar
goals as for our proposal.

Finally, [56] recognized how self-contained components allow to
run active parts of DTs in different execution environments. The pro-
posed solution allows to link data about an actual machine, the related
DT, and sensor measurements with a container instance; the container
instance may be run over the cloud, fog, or edge. However, in contrast
to our proposal which emphasizes the dynamic management of DTs
based on entanglement awareness, [56] stated that DTs should be de-
ployed in locations geographically distant from their PTs. In fact, [56]
primarily focused on the availability of DTs and on the capability of
flexibly modify their features.



Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.

r
p

a
o
r
t
e
l
a
e
w
D

b
D
a
t
b
A
i
s
t
t

7

t
c
m
d
h
d
l
m

v
g
a
t
e
S

t
G
M
a
I

D

c
i

D

A

e
K
N
(
p
(

R

In the more general context of platforms for supporting the runtime
execution of DTs, Eclipse Ditto7 and Microsoft Azure8 are two primary
eferences, supported by the Eclipse Foundation and the main cloud
rovider on the market, respectively.

Eclipse Ditto emerged as a robust centralized platform, seamlessly
ggregating DTs within a unified layer that can be manually deployed
n either the cloud or the edge according to the applicable use case
equirements. Its flexible architecture allows for external components
o govern the behavioral aspects of DTs, facilitating efficient data
xchange. However, a notable drawback of Eclipse Ditto lies in the
imited capability to provide an integrated framework for modeling
nd measuring the entanglement. This imposes to delegate to external
ntities and applications the implementation of DT behaviors together
ith their modeling, by providing only a well-structured way to store
T descriptions and value changes over time.

Azure takes a slightly different approach, by allowing to model the
ehavior of DTs through serverless functions together with a dedicated
igital Twin Definition Language (DTDL),9 thus allowing to structure
nd define the desired DT characteristics and capabilities. This means
hat DTs can be instantiated (and their application logic can be shaped)
y using functions that react to external events, primarily from the
zure IoT Hub. However, the lack of a predefined serverless model

ntroduces a risk of fragmentation and poses challenges in maintaining
tandardized development practices. In addition, Azure is limited in
erms of supported structured metrics for monitoring entanglement,
hus impeding the easy evaluation of DT effectiveness and reliability.

. Discussion and conclusions

The cloud-to-edge continuum can play a crucial role in meeting
he demanding requirements of cyber–physical applications. In this
ontext, this study has proposed a microservices-based, serverless-ready
odel for DTs, laying the foundations for scalable and cost-effective
eployments along the cloud-to-edge continuum. The proposed model
as been implemented to demonstrate its feasibility. Specifically, three
istinct implementations of the same model have been presented: two
everaging serverless functions (i.e., SCDT and SEDT) and one based on
icroservices (i.e., MDT).

Experimental results highlighted the advantages and limitations of
arious implementation choices of such a model. In terms of entan-
lement, the MDT outperformed the SEDT by an order of magnitude
nd the SCDT by two orders of magnitude. Assuming an entanglement
hreshold of 0.9 (i.e., any ODTE value above 0.9 qualifies a DT as
ntangled), the MDT achieved entanglement with a 𝑇𝑑 of 10 ms, the
EDT with a 𝑇𝑑 of 100 ms, and the SCDT with a 𝑇𝑑 of 10 s. It is

important to highlight that performance in the cloud can significantly
vary due to a myriad of factors; hence, the SEDT should be regarded as
the benchmark for DT implementations consisting solely of serverless
functions. It is noteworthy that although serverless implementations
inherently introduce overhead (impacting entanglement), this approach
can offer qualitative advantages over microservice-based implemen-
tations, such as cost efficiency (eliminating costs for idle servers),
fine-grained scalability at the function level, and a simplified code
lifecycle.

Moreover, the experiments aimed to explore an alternative method
for dynamically adjusting DT behaviors, particularly in scenarios where
serverless approaches face limitations due to resource constraints or
design considerations. These experiments were conducted by using both
traditional Intel-based edge nodes and constrained nodes like Raspberry
Pis, focusing on two key aspects: (i) DT instance deployment/startup
and (ii) the deployment, update, and execution of Python functions

7 https://www.eclipse.org/ditto/.
8 https://azure.microsoft.com/en-us/services/digital-twins/.
9

285

https://docs.microsoft.com/en-us/azure/digital-twins/concepts-models.
within the WLDT framework. The results demonstrate the feasibility
of the proposed approach, with deployment times within a reasonable
time range, which, considering the entire DT deployment, updates, and
function execution, is below 100 ms. Notably, function updates on
running DT instances showed promising performance results, with exe-
cution time deltas below 10 ms. These findings suggest the potential for
single-instance DTs to dynamically update their behavior at runtime,
reflecting a function-driven design approach.

Given the promising results already achieved, we are working to
further intensify our related research efforts in the field. In particular,
we are putting a special emphasis on the migration of the event-
driven functions that compose our serverless DTs. As such, we envi-
sion DTs supporting the efficient, automated, and dynamic offload-
ing of their Core and Augmentation functions to more capable nodes
along the cloud-to-edge continuum. In this context, we also plan to
investigate the role of libraries such as PyWren, which can enable
massively parallel computations in serverless environments, together
with an extended evaluation work specifically about scalability in
resource-intensive applications.

CRediT authorship contribution statement

Paolo Bellavista: Writing – review & editing, Methodology, Con-
ceptualization. Nicola Bicocchi: Writing – original draft, Methodology,
Conceptualization. Mattia Fogli: Writing – original draft, Visualiza-
ion, Software, Methodology, Investigation, Conceptualization. Carlo
iannelli: Writing – original draft, Methodology, Conceptualization.
arco Mamei: Writing – review & editing, Methodology, Conceptu-

lization. Marco Picone: Writing – original draft, Conceptualization,
nvestigation, Methodology, Software, Visualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgement

This work was partially supported by the European Union - NextGen-
rationEU, DATRUST PRIN 2022 PNRR Project (Project ID: P20225
TR4, CUP: I53D23006060001), by the EU under the Italian NRRP of
extGenerationEU, partnership on ‘‘Telecommunications of the Future’’

PE00000001 - program ‘‘RESTART’’), and by the National PRIN 2022
roject JOint ResoUrce Management in ReconfigurabLE I4.0 Factories
JOULE), ID 2022TMT4WA.

eferences

[1] P. Bellavista, N. Bicocchi, M. Fogli, C. Giannelli, M. Mamei, M. Picone, Require-
ments and design patterns for adaptive, autonomous, and context-aware digital
twins in industry 4.0 digital factories, Comput. Ind. 149 (2023) 103918.

[2] D. Lehner, J. Pfeiffer, E.-F. Tinsel, M.M. Strljic, S. Sint, M. Vierhauser, A.
Wortmann, M. Wimmer, Digital twin platforms: requirements, capabilities, and
future prospects, IEEE Softw. 39 (2) (2021) 53–61.

[3] C. Cicconetti, M. Conti, A. Passarella, D. Sabella, Toward distributed computing
environments with serverless solutions in edge systems, IEEE Commun. Mag. 58
(3) (2020) 40–46.

[4] P. Raith, S. Nastic, S. Dustdar, Serverless edge computing—Where we are and
what Lies ahead, IEEE Internet Comput. 27 (3) (2023) 50–64.

[5] R. Saracco, Digital twins: Bridging physical space and cyberspace, Computer 52
(12) (2019) 58–64, http://dx.doi.org/10.1109/MC.2019.2942803.

[6] R. Minerva, G.M. Lee, N. Crespi, Digital twin in the IoT context: a survey
on technical features, scenarios, and architectural models, Proc. IEEE 108 (10)

(2020) 1785–1824.

https://www.eclipse.org/ditto/
https://azure.microsoft.com/en-us/services/digital-twins/
https://docs.microsoft.com/en-us/azure/digital-twins/concepts-models
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb4
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb4
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb4
http://dx.doi.org/10.1109/MC.2019.2942803
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb6


Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
[7] P. Bellavista, N. Bicocchi, M. Fogli, C. Giannelli, M. Mamei, M. Picone, Measuring
digital twin entanglement in industrial internet of things, in: ICC 2023 - IEEE
International Conference on Communications, 2023, pp. 5897–5903, http://dx.
doi.org/10.1109/ICC45041.2023.10278787.

[8] A. Rasheed, O. San, T. Kvamsdal, Digital twin: Values, challenges and enablers
from a modeling perspective, IEEE Access 8 (2020) 21980–22012, http://dx.doi.
org/10.1109/ACCESS.2020.2970143.

[9] I. Errandonea, S. Beltrán, S. Arrizabalaga, Digital twin for maintenance: A
literature review, Comput. Ind. 123 (2020) 103316, http://dx.doi.org/10.1016/
j.compind.2020.103316.

[10] J. Leng, D. Wang, W. Shen, X. Li, Q. Liu, X. Chen, Digital twins-based smart
manufacturing system design in industry 4.0: A review, J. Manuf. Syst. 60 (2021)
119–137.

[11] H.B. Hassan, S.A. Barakat, Q.I. Sarhan, Survey on serverless computing, J. Cloud
Comput. 10 (1) (2021) 1–29.

[12] M. Vaezi, K. Noroozi, T.D. Todd, D. Zhao, G. Karakostas, H. Wu, X. Shen, Digital
twins from a networking perspective, IEEE Internet Things J. 9 (23) (2022)
23525–23544.

[13] A. Ricci, A. Croatti, S. Mariani, S. Montagna, M. Picone, Web of digital twins,
ACM Trans. Internet Technol. 22 (4) (2022) http://dx.doi.org/10.1145/3507909.

[14] Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Communication-efficient
federated learning and permissioned blockchain for digital twin edge networks,
IEEE Internet Things J. 8 (4) (2020) 2276–2288.

[15] D. Loghin, L. Ramapantulu, Y.M. Teo, Towards analyzing the performance of
hybrid edge-cloud processing, in: 2019 IEEE International Conference on Edge
Computing, EDGE, IEEE, 2019, pp. 87–94.

[16] K.M. Alam, A. El Saddik, C2PS: A digital twin architecture reference model for
the cloud-based cyber-physical systems, IEEE Access 5 (2017) 2050–2062.

[17] M. Picone, S. Mariani, M. Mamei, F. Zambonelli, M. Berlier, WIP: Preliminary
evaluation of digital twins on MEC software architecture, in: 2021 IEEE 22nd In-
ternational Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2021, pp. 256–259, http://dx.doi.org/10.1109/WoWMoM51794.
2021.00047.

[18] R. Al-Sehrawy, B. Kumar, Digital twins in architecture, engineering, construction
and operations. a brief review and analysis, in: International Conference on
Computing in Civil and Building Engineering, Springer, 2020.

[19] B. Tekinerdogan, C. Verdouw, Systems architecture design pattern catalog for
developing digital twins, Sensors 20 (18) (2020) 5103.

[20] M.-H. Hung, Y.-C. Lin, H.-C. Hsiao, C.-C. Chen, K.-C. Lai, Y.-M. Hsieh, H. Tieng,
T.-H. Tsai, H.-C. Huang, H.-C. Yang, et al., A novel implementation framework
of digital twins for intelligent manufacturing based on container technology
and cloud manufacturing services, IEEE Trans. Autom. Sci. Eng. 19 (3) (2022)
1614–1630.

[21] M. Picone, M. Mamei, F. Zambonelli, A flexible and modular architecture for
edge digital twin: Implementation and evaluation, ACM Trans. Internet Things
4 (1) (2023) http://dx.doi.org/10.1145/3573206.

[22] X. Tao, K. Ota, M. Dong, H. Qi, K. Li, Performance guaranteed computation
offloading for mobile-edge cloud computing, IEEE Wirel. Commun. Lett. 6 (6)
(2017) 774–777.

[23] T. Liu, L. Tang, W. Wang, Q. Chen, X. Zeng, Digital-twin-assisted task offloading
based on edge collaboration in the digital twin edge network, IEEE Internet
Things J. 9 (2) (2021) 1427–1444.

[24] T. Do-Duy, D. Van Huynh, O.A. Dobre, B. Canberk, T.Q. Duong, Digital twin-
aided intelligent offloading with edge selection in mobile edge computing, IEEE
Wirel. Commun. Lett. 11 (4) (2022) 806–810.

[25] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino, D. López,
A.A.P. Perales, P. Harvey, L. Ciavaglia, L. Wong, et al., Network digital twin:
Context, enabling technologies, and opportunities, IEEE Commun. Mag. 60 (11)
(2022) 22–27.

[26] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino, D. López,
A.A.P. Perales, P. Harvey, L. Ciavaglia, L. Wong, et al., Digital twin network:
Opportunities and challenges, 2022, arXiv preprint arXiv:2201.01144.

[27] A. Hyre, G. Harris, J. Osho, M. Pantelidakis, K. Mykoniatis, J. Liu, Digital twins:
representation, replication, reality, and relational (4Rs), Manuf. Lett. 31 (2022)
20–23.

[28] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, B. Recht, Occupy the cloud:
Distributed computing for the 99%, in: Proceedings of the 2017 Symposium on
Cloud Computing, 2017, pp. 445–451.

[29] J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, P. Garcia-Lopez, Out-
sourcing data processing jobs with lithops, IEEE Trans. Cloud Comput.
(2021).

[30] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Foster, K.
Chard, Funcx: A federated function serving fabric for science, in: Proceedings of
the 29th International Symposium on High-Performance Parallel and Distributed
Computing, 2020, pp. 65–76.
286
[31] J. Wen, Z. Chen, Y. Liu, Y. Lou, Y. Ma, G. Huang, X. Jin, X. Liu, An empirical
study on challenges of application development in serverless computing, in:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2021,
pp. 416–428.

[32] V. Zambrano, J. Mueller-Roemer, M. Sandberg, P. Talasila, D. Zanin, P.G.
Larsen, E. Loeschner, W. Thronicke, D. Pietraroia, G. Landolfi, et al., Industrial
digitalization in the industry 4.0 era: Classification, reuse and authoring of digital
models on digital twin platforms, Array 14 (2022) 100176.

[33] P. Patros, J. Spillner, A.V. Papadopoulos, B. Varghese, O. Rana, S. Dustdar,
Toward sustainable serverless computing, IEEE Internet Comput. 25 (6) (2021)
42–50.

[34] X. Yang, Y. Xu, A. Razzaq, D. Wu, J. Cao, Q. Ran, Roadmap to achieving
sustainable development: Does digital economy matter in industrial green
transformation? Sustain. Dev. (2023).

[35] A. Golchin, R. West, Jumpstart: Fast critical service resumption for a partitioning
hypervisor in embedded systems, in: 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium, RTAS, IEEE, 2022, pp. 55–67.

[36] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F.
Kouranov, I. Swett, J. Iyengar, et al., The quic transport protocol: Design and
internet-scale deployment, in: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, 2017, pp. 183–196.

[37] M. Fogli, C. Giannelli, F. Poltronieri, C. Stefanelli, M. Tortonesi, Chaos engineer-
ing for resilience assessment of digital twins, IEEE Trans. Ind. Inform. (2023)
1–9, http://dx.doi.org/10.1109/TII.2023.3264101.

[38] M. Picone, M. Mamei, F. Zambonelli, WLDT: A general purpose library to build
IoT digital twins, SoftwareX 13 (2021).

[39] F. Siqueira, J.G. Davis, Service computing for industry 4.0: State of the art,
challenges, and research opportunities, ACM Comput. Surv. 54 (9) (2021) http:
//dx.doi.org/10.1145/3478680.

[40] L. Chamari, E. Petrova, P. Pauwels, An end-to-end implementation of a service-
oriented architecture for data-driven smart buildings, IEEE Access 11 (2023)
117261–117281, http://dx.doi.org/10.1109/ACCESS.2023.3325767.

[41] R. Minerva, N. Crespi, Digital twins: Properties, software frameworks, and
application scenarios, IT Prof. 23 (1) (2021) 51–55, http://dx.doi.org/10.1109/
MITP.2020.2982896.

[42] F. Tao, H. Zhang, A. Liu, A.Y.C. Nee, Digital twin in industry: State-of-the-art,
IEEE Trans. Ind. Inform. 15 (4) (2019) 2405–2415, http://dx.doi.org/10.1109/
TII.2018.2873186.

[43] B.R. Barricelli, E. Casiraghi, D. Fogli, A survey on digital twin: Definitions,
characteristics, applications, and design implications, IEEE Access 7 (2019)
167653–167671, http://dx.doi.org/10.1109/ACCESS.2019.2953499.

[44] S. Malakuti, S. Grüner, Architectural aspects of digital twins in IIoT systems,
in: Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings, ECSA ’18, Association for Computing Machinery, New
York, NY, USA, 2018, http://dx.doi.org/10.1145/3241403.3241417.

[45] V. Souza, R. Cruz, W. Silva, S. Lins, V. Lucena, A digital twin architecture based
on the industrial internet of things technologies, in: 2019 IEEE Int. Conf. on
Consumer Electronics, ICCE, 2019, pp. 1–2.

[46] K. Hribernik, G. Cabri, F. Mandreoli, G. Mentzas, Autonomous, context-aware,
adaptive digital twins—State of the art and roadmap, Comput. Ind. 133 (2021)
103508.

[47] K.T. Park, J. Lee, H.-J. Kim, S.D. Noh, Digital twin-based cyber physical
production system architectural framework for personalized production, Int. J.
Adv. Manuf. Technol. 106 (2020) 1–24, http://dx.doi.org/10.1007/s00170-019-
04653-7.

[48] C. Cronrath, A.R. Aderiani, B. Lennartson, Enhancing digital twins through rein-
forcement learning, in: 2019 IEEE 15th International Conference on Automation
Science and Engineering, CASE, 2019, pp. 293–298, http://dx.doi.org/10.1109/
COASE.2019.8842888.

[49] N. Ouahabi, A. Chebak, M. Zegrari, O. Kamach, M. Berquedich, A distributed
digital twin architecture for shop floor monitoring based on edge-cloud collab-
oration, in: 2021 Third International Conference on Transportation and Smart
Technologies, TST, 2021, pp. 72–78, http://dx.doi.org/10.1109/TST52996.2021.
00019.

[50] V. Damjanovic-Behrendt, W. Behrendt, An open source approach to the design
and implementation of digital twins for smart manufacturing, Int. J. Comput.
Integr. Manuf. 32 (2019) 366–384, http://dx.doi.org/10.1080/0951192X.2019.
1599436.

[51] F. Siqueira, J. Davis, Service computing for industry 4.0: State of the art,
challenges, and research opportunities, ACM Comput. Surv. 54 (2022) http:
//dx.doi.org/10.1145/3478680.

[52] L. Liu, Y. Ding, X. Li, H. Wu, L. Xing, A container-driven service architecture to
minimize the upgrading requirements of user-side smart meters in distribution
grids, IEEE Trans. Ind. Inform. 18 (2022) 719–728, http://dx.doi.org/10.1109/

TII.2021.3088135.

http://dx.doi.org/10.1109/ICC45041.2023.10278787
http://dx.doi.org/10.1109/ICC45041.2023.10278787
http://dx.doi.org/10.1109/ICC45041.2023.10278787
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1016/j.compind.2020.103316
http://dx.doi.org/10.1016/j.compind.2020.103316
http://dx.doi.org/10.1016/j.compind.2020.103316
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb10
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb10
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb10
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb10
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb10
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb11
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb11
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb11
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb12
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb12
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb12
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb12
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb12
http://dx.doi.org/10.1145/3507909
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb14
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb15
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb15
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb15
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb15
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb15
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb16
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb16
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb16
http://dx.doi.org/10.1109/WoWMoM51794.2021.00047
http://dx.doi.org/10.1109/WoWMoM51794.2021.00047
http://dx.doi.org/10.1109/WoWMoM51794.2021.00047
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb18
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb18
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb18
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb18
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb18
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb19
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb19
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb19
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb20
http://dx.doi.org/10.1145/3573206
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb23
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb23
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb23
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb23
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb23
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb24
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb24
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb24
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb24
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb24
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb25
http://arxiv.org/abs/2201.01144
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb27
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb27
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb27
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb27
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb27
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb28
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb28
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb28
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb28
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb28
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb29
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb29
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb29
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb29
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb29
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb30
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb30
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb30
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb30
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb30
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb30
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb30
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb33
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb33
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb33
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb33
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb33
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb34
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb34
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb34
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb34
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb34
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb36
http://dx.doi.org/10.1109/TII.2023.3264101
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb38
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb38
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb38
http://dx.doi.org/10.1145/3478680
http://dx.doi.org/10.1145/3478680
http://dx.doi.org/10.1145/3478680
http://dx.doi.org/10.1109/ACCESS.2023.3325767
http://dx.doi.org/10.1109/MITP.2020.2982896
http://dx.doi.org/10.1109/MITP.2020.2982896
http://dx.doi.org/10.1109/MITP.2020.2982896
http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.1109/ACCESS.2019.2953499
http://dx.doi.org/10.1145/3241403.3241417
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb45
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb45
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb45
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb45
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb45
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb46
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb46
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb46
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb46
http://refhub.elsevier.com/S0167-739X(24)00124-9/sb46
http://dx.doi.org/10.1007/s00170-019-04653-7
http://dx.doi.org/10.1007/s00170-019-04653-7
http://dx.doi.org/10.1007/s00170-019-04653-7
http://dx.doi.org/10.1109/COASE.2019.8842888
http://dx.doi.org/10.1109/COASE.2019.8842888
http://dx.doi.org/10.1109/COASE.2019.8842888
http://dx.doi.org/10.1109/TST52996.2021.00019
http://dx.doi.org/10.1109/TST52996.2021.00019
http://dx.doi.org/10.1109/TST52996.2021.00019
http://dx.doi.org/10.1080/0951192X.2019.1599436
http://dx.doi.org/10.1080/0951192X.2019.1599436
http://dx.doi.org/10.1080/0951192X.2019.1599436
http://dx.doi.org/10.1145/3478680
http://dx.doi.org/10.1145/3478680
http://dx.doi.org/10.1145/3478680
http://dx.doi.org/10.1109/TII.2021.3088135
http://dx.doi.org/10.1109/TII.2021.3088135
http://dx.doi.org/10.1109/TII.2021.3088135


Future Generation Computer Systems 157 (2024) 275–287P. Bellavista et al.
[53] M. Azarmipour, H. Elfaham, C. Gries, T. Kleinert, U. Epple, A service-based
architecture for the interaction of control and mes systems in industry 4.0 envi-
ronment, in: IEEE International Conference on Industrial Informatics (INDIN),
Vol. 2020-July, 2020, pp. 217–222, http://dx.doi.org/10.1109/INDIN45582.
2020.9442083.

[54] Z. Wang, R. Gupta, K. Han, H. Wang, A. Ganlath, N. Ammar, P. Tiwari, Mobility
digital twin: Concept, architecture, case study, and future challenges, IEEE
Internet Things J. (2022) http://dx.doi.org/10.1109/JIOT.2022.3156028.

[55] A. Lombardo, G. Morabito, S. Quattropani, C. Ricci, Design, implementation,
and testing of a microservices-based digital twins framework for network
management and control, in: 2022 IEEE 23rd International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2022, pp.
590–595, http://dx.doi.org/10.1109/WoWMoM54355.2022.00092.

[56] V. Zhidchenko, E. Startcev, J. Kortelainen, A. Zeb, L. Torvikoski, S. Torkabadi, H.
Handroos, A microservices-based architecture for data and software management
of heavy equipment digital twins, in: 2023 IEEE 21st International Conference
on Industrial Informatics, INDIN, 2023, pp. 1–8, http://dx.doi.org/10.1109/
INDIN51400.2023.10218021.

Paolo Bellavista received MSc and PhD degrees in com-
puter science engineering from the University of Bologna,
Italy, where he is now a full professor of distributed and
mobile systems. His research activities span from pervasive
wireless computing to online big data processing under
quality constraints, from edge cloud computing to middle-
ware for Industry 4.0 applications. He serves on several
Editorial Boards, including IEEE COMST (Associate EiC),
ACM CSUR, and Elsevier JNCA and PMC. He is the scientific
coordinator of the H2020 BigData project IoTwins - https:
//www.iotwins.eu/.

Nicola Bicocchi is an Associate Professor with the Uni-
versity of Modena and Reggio Emilia, Italy. His research
activity is focused on Internet of Things and Pervasive
Computing. He mostly investigates new forms of interaction
between humans, personal devices (e.g., smartphones and
wearables), and data in increasingly pervasive environ-
ments. Key areas of interest include Internet of Things,
Mobile Computing, and Pervasive Computing.
287
Mattia Fogli received his Ph.D. degree in Computer En-
gineering from the University of Ferrara, Italy, in 2024.
He served as a Research Intern with the Florida Institute
for Human & Machine Cognition, United States, from 2019
to 2020. He is currently a Postdoctoral Researcher at the
University of Ferrara. His research interests include digital
twins, service orchestration in the compute continuum, and
federated cloud infrastructures for tactical edge networks.

Carlo Giannelli received the Ph.D. degree in computer
engineering from the University of Bologna, Italy, in 2008.
He is currently an Associate Professor in computer sci-
ence with the University of Ferrara, Italy. His primary
research activities focus on Industrial Internet of Things,
Digital Twin management, Software Defined Networking,
Blockchain technologies, and cybersecurity in Industry 4.0.
He serves on Editorial Boards of ACM CSUR, Elsevier
COMCOM, and Springer EURASIP JWCN.

Marco Mamei is full professor in Computer Science at
the University of Modena and Reggio Emilia, since 2019.
He received the PhD in Computer Science from the same
University in 2004. His work focuses on data mining applied
to mobile phone data and Internet of Things applications. In
these areas we published more than 100 papers, 8 patents,
and won several best paper awards.

Marco Picone is Senior Assistant Professor at the University
of Modena and Reggio Emilia working at the Department
of Sciences and Methods for Engineering. He received the
Ph.D. in Information Technology in Computer Engineering
from the University of Parma. His research interests are Dis-
tributed Systems, Internet of Things, Edge/Fog Computing
and Digital Twins.

http://dx.doi.org/10.1109/INDIN45582.2020.9442083
http://dx.doi.org/10.1109/INDIN45582.2020.9442083
http://dx.doi.org/10.1109/INDIN45582.2020.9442083
http://dx.doi.org/10.1109/JIOT.2022.3156028
http://dx.doi.org/10.1109/WoWMoM54355.2022.00092
http://dx.doi.org/10.1109/INDIN51400.2023.10218021
http://dx.doi.org/10.1109/INDIN51400.2023.10218021
http://dx.doi.org/10.1109/INDIN51400.2023.10218021
https://www.iotwins.eu/
https://www.iotwins.eu/

	Exploiting microservices and serverless for Digital Twins in the cloud-to-edge continuum
	Introduction
	Digital Twins in the Industry 4.0 Cloud-to-Edge Continuum
	Digital Twins for the Cloud-to-Edge Continuum
	Entanglement Awareness
	Life Cycle Awareness
	Cloud-to-Edge Mobility
	Load Resilience
	Software Engineering
	Sustainability

	Modeling Microservices and Serverless Digital Twins
	Experimental Evaluation
	Testbed Setup
	Implementation Insights
	Experimental Results
	Resource Constrained Function Flexibility

	Related Work
	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


