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Abstract

We are interested in ensemble methods to solve multi-objective optimization problems.

An ensemble Kalman method is proposed to solve a formulation of the nonlinear problem

using a weighted function approach. An analysis of the mean field limit of the ensemble

method yields an explicit update formula for the weights. Numerical examples show the

improved performance of the proposed method.

1 Introduction

In many applications, it is often required to determine the model parameters that approximate

observable and noisy data. In this work we are concerned with those inverse problems in a

finite dimensional setting, i.e.,

y = G(u) + η (1)

where G is the (possible nonlinear) forward operator between the finite dimensional spaces

X = Rd and Y = Rk with d, k ∈ N, u ∈ X is the unknown parameter, y ∈ Y is the observation

and η ∼ N (0,Γ) is the observational noise where Γ is a known covariance matrix. Given the

noisy measurements, the observation and the mathematical model G, we are interested in

finding the corresponding control u. Certainly, those problems have been widely studied

and different approaches have been proposed in the literature in order to overcome possible

ill–posedness of the problem, see e.g. [12] for a survey.

In this work, we will focus on a particular numerical method for solving (1), namely the

Ensemble Kalman Filter (EnKF). This method was introduced in the last decade [13], but

has gained recent attention due to novel developments and insights, see e.g. [15, 16, 24] and

references therein. The EnKF aims to solve a least–square formulation of the inverse problem

and produces u∗ such that
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u∗ = argminu∈X
1

2

∥∥∥Γ−
1
2 (y − G(u))

∥∥∥2 . (2)

The EnKF is an iterative filtering method which sequentially updates each member of an

ensemble k = 1, . . . ,K of elements uk in the space X by means of the Kalman update formula,

using the knowledge of the model G and given observational data y. The method is gradient

free and even for small number of ensembles K satisfactory results have been reported [20].

Several contributions have been made regarding the application and analysis of this method,

see e.g. [1, 2, 3, 8, 17, 18, 24, 25] and extensions to the constraint case [7].

Here, we are interested in a possible extension of the method towards a multi–objective

minimization formulation. Those are also known as coupled inverse problems where for given

data, a choice of parameters for competing models has to be determined. Examples of such

problems stem from applications in geophysics [19] to oil and water reservoir problems [26]. We

propose a formulation for general multi-objective optimization problems in the forthcoming

section using a classical weighted function approach. By extending prior work [15] we will

focus on suitable update strategies for the weights based on a mean field description of the

method. Numerical results will be performed to highlight the properties of the proposed

method.

2 On the Ensemble Kalman Filter (EnKF) for Coupled In-

verse Problems

We consider l coupled inverse problems for a set of parameters u ∈ X and consider the

simultaneous minimization of G1, . . . ,Gl models, given observations y1, . . . , yl ∈ Y :

min
u∈X

(
‖Γ−

1
2 (y1 − G1(u)) ‖, . . . , ‖Γ−

1
2 (yl − Gl(u)) ‖

)
. (3)

The observational noise on the data yi is ηi ∼ N (0,Γ) with fixed covariance matrix Γ. Finding

u that simultaneously solves (3) is called multi–objective or multi criteria optimization, see

e.g. [11, 21, 22]. In the following we use the concept of Pareto optimality [22] that defines a

notion of minimum for the vector–valued optimization problem (3):

Definition 2.1. A point u∗ ∈ Rd is called Pareto optimal if and only if there exists no point

u ∈ Rd such that Gi(u) ≤ Gi(u∗) for all i = 1, 2, . . . , l and Gj(u) ≤ Gj(u∗) for at least one

j ∈ {1, 2, . . . , l}.

The set SU of all u∗ fulfilling Definition (2.1) is called Pareto set, while its representation

in the space of objectives SG := {(yi − Gi(u))li=1 : u ∈ S} is called Pareto front. An approach

based on a weighted function approach [21] is followed to compute SG : Given a vector λ ∈ Λ

where
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Λ := {λ ∈ Rl+ : λ · 1 = 1} (4)

and 1 = (1, . . . , 1)T , we define the weighted objective function

G(u, λ) :=
∑̀
i=1

λiGi(u) : X × Λ→ Y. (5)

The convex combination of the observations is given by y =
∑̀
i=1

λiyi. An approximation to

the Pareto front SU is then obtained by

P := {u∗(λ) : λ ∈ Λ}, (6)

where

u∗(λ) = argminu∈XΦ(u, λ), Φ(u, y, λ) =
1

2

∥∥∥∥∥Γ−
1
2

l∑
i=1

λi (yi − Gi(u))

∥∥∥∥∥
2

. (7)

In case of a convex problem, SU = P , see [21, Theorem 3.1.4]. Note that Λ is also called

the probability simplex [4].

2.1 EnKF and Mean Field Description of Parameterized Problem (7)

For the efficient computation of the Pareto front (6) we propose an ensemble based method

following recent work [15, 16, 24]. For a fixed value of λ ∈ Λ, the EnKF method samples

J > 0 initial values uj,0 ∈ X and iterate according to equation (9) for some ∆t > 0. Under

suitable assumptions on G it has been shown in [24], that

lim
J→∞

1

J

J∑
j=1

uj,n(λ) = u∗(λ), (8)

where u∗(λ) solves equation (7), [10, Theorem 1]. For further results on stability we refer to

[15, 24]. For y and G defined by (5) each member j of the ensemble is propagated according

to

uj,n+1 = uj,n + C(Un)

(
D(Un) +

1

∆t
Γ−1

)−1
[y − G(un, λ)] , (9)

where C(Un) and D(Un) are the covariance matrices depending on the set of ensembles Un(λ)

at the iteration n and on G(Un):
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Un(λ) = {uj,n(λ)}Jj=1, (10)

Ūn :=
1

J

J∑
k=1

uj,n(λ), Ḡ :=
1

J

J∑
k=1

l∑
i=1

λiGi(uj,n(λ), λ)), (11)

C(Un(λ)) =
1

J

J∑
k=1

(uk,n(λ)− Ūn)⊗ (G(uk,n(λ), λ)− Ḡ), (12)

D(Un(λ)) =
1

J

J∑
k=1

[
G(un(λ), λ))− Ḡ

]
⊗
[
G(un(λ), λ)− Ḡ

]
. (13)

Several extensions have been studied and we refer to the references above for more details.

Also, the limiting equation for ∆t → 0 under the scaling Γ−1 = ∆tΓ−1 of the previous

dynamics has been studied and analyzed, e.g. [24, 15]. In the case ∆t → 0 and J → ∞
a mean field limit is obtained. Rigorous results can be found e.g. in [15] and in [23, 6] for

general mean field results on interacting particle systems. Since there is no dynamics in λ the

following result is a simple consequence of the existing results for the convergence for J →∞
given e.g. in [5, 10, 14, 15, 16, 24], in particular [24, Theorem 3].

Proposition 2.2. Assume Gi(u) = Giu for i = 1, . . . , l and let Φ be given by equation (7).

Let P(X) be the space of probability measures on X equipped with the 1-Wasserstein distance.

Let J > 0 and assume uj,0 ∈ X for j = 1, . . . , J given and denote by fU0 (v) = 1
J

∑J
j=1 δ

(
uj,0 − v

)
the empirical measure associated to the initial data. The empirical measure

fU (v, λ, t) =
1

J

J∑
j=1

δ
(
uj(t, λ)− v

)
∈ P(X × Λ× R+) (14)

where uj(t, λ) fulfills for all j = 1, . . . , J

d

dt
uj(t, λ) = −C(U(t, λ))∇Φ(uj(t, λ), y, λ), uj(t, λ) = uj,0, (15)

C(U) =
1

J

J∑
j=1

(uj − Ū)⊗ (uj − Ū), Ū =
1

J

J∑
j=1

uj , (16)

is a solution in the distributional sense to the mean field equation

∂tf(v, λ, t)−∇v · (C(t, λ)∇vΦ(u, y, λ)f(v, λ, t)) = 0, f(v, λ, 0) = f0(v), (17)

subject to initial data f0(v, λ) ∈ P(X,Λ) and where the nonlocal operator C(t, λ) = C[f ](t, λ)
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is given by

(C[f ](λ, t))k,i =

∫
X
vkvif(v, λ, t) dv −

∫
X
vkf(v, λ, t) dv

∫
X
vif(v, λ, t) dv, (k, i) = 1, . . . , d.

(18)

Furthermore, if for J →∞ we have W1(f
U
0 , f0)→ 0 for some f0 ∈ P(X), then for any t ≥ 0

we have W1(f
U (·, t), f(·, t))→ 0, where f is a solution in the distributional sense to (17).

Denote by P (t) an approximation to P expressed in terms of the probability density f(·, t)
by

P (t) =

{∫
X
u df(u, λ, t) : λ ∈ Λ

}
. (19)

Due to the convergence of the particles to u∗(λ), we expect that for t → ∞, the set P (t)

approaches the set P given by (6), see [16] for the corresponding result in the case independent

of λ.

The mean field equation is independent of the ensemble size J and therefore possibly

attractive for numerical methods. For an efficient computation of P (t) the solution to equation

(17) for any λ ∈ Λ is required. In numerical discretization of equation (17) a suitable grid

in λ is hence necessary. In the following aim to provide a method to develop a strategy for

choosing those quadrature points in Λ. This is obtained by considering the sensitivity of f

with respect to λ.

2.2 Sensitivity of Mean Field and Moment Equations

The sensitivity of f with respect to λ can be studied e.g. by formally differentiating the

meanfield equation (17) leading to the set of equations i = 1, . . . , l

0 = ∂t∂λif(v, λ, t)−∇v∂λi
(
C ∇vΦ(v, y, λ)f(v, λ, t)

)
(20)

= ∂t∂λif(v, λ, t)−∇v
(
∂λiC∇vΦ(v, y, λ)f(v, λ, t)+ (21)

C ∂λi(∇vΦ(v, y, λ))f(v, λ, t) + C ∇vΦ(v, y, λ)∂λif(v, λ, t)
)

(22)

=: ∂t∂λif(v, λ, t)−∇v
(
T1 + CT2f(v, λ, t) + C ∇vΦ(v, y, λ)∂λif(v, λ, t)

)
. (23)

where C = C[f ](λ, t) is given by equation (18). Since the initial data in (17) is assumed to

be independent of λ we obtain for i = 1, . . . , l
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∂λif(v, λ, 0) = 0. (24)

Under the assumption of Proposition 2.2, namely,

Gi(u) = Giu, i = 1, . . . , l, (25)

some terms of equation (20) can be further simplified to

T1 :=∂λiC ∇vΦ(v, y, λ)f = (Eλi − 2mλi ⊗m) ∇vΦ(v, y, λ)f, (26)

T2 :=
∂(∇vΦ)

∂λi
= ∂λi

(
(G)TΓ−1(y − Gv)

)
(27)

= (
l∑

i=1

Gi)TΓ−1
(
y − Gv

)
+ (G)T Γ−1

( l∑
i=1

yi − Giv
)
. (28)

Computationally solving system (2.1) to obtain sensitivity information on λ is prohibitive.

However, P (t) given by equation (19) only depends on the first moment of f and not on the

full solution. Hence, we consider only sensitivity of the moments of the solution, i.e., define

the first and second moments of f as

m(λ, t) =

∫
X
vdf(v, λ, t) ∈ Rd, E(λ, t) =

∫
X
v ⊗ vdf(v, λ, t) ∈ Rd×d. (29)

Then, for i = 1, . . . , l, the sensitivity of (m,E) is given by

∂m

∂λi
=

∫
vd
∂f

∂λi
(v, λ, t),

∂E

∂λi
=

∫
v ⊗ vd ∂f

∂λi
(v, λ, t) (30)

and they fulfill a closed coupled system of equations of ordinary differential equations obtained

by integration of equation (20) given by the system (31).

Lemma 2.3. Assume (25) and let Φ be given by equation (7). If f = f(v, λ, t) ∈ P(X ×Λ×
R+) with finite second moment and ∇λf be differentiable solution to (17) with initial data

f(v, λ, 0) = f0(v) ∈ P(X) and to equation (20) with initial data (24).

Then, the moments (m,E) and their derivatives fulfill the following system of ordinary

differential equations for i = 1, . . . , l
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

d
dtm = −CGTΓ−1 (y −G m)

d
dtmλi = −(∂λiC)GTΓ−1(y −G m)− C(∂λiG)TΓ−1(y −Gm)

−CGTΓ−1 (∂λiy − (∂λiG)m) + CGTΓ−1Gmλi

d
dtE = −CGTΓ−1(y ⊗m−GE)− [CGTΓ−1(y ⊗m−GE)]T

d
dtEλi = −CGTΓ−1 (y ⊗mλi −GEλi)− C̄iGTΓ−1 (y ⊗m−GE)

−C∂λiGTΓ−1(y ⊗m−GE)− CGTΓ−1(∂λiym− ∂λiGE)

−[CGTΓ−1 (y ⊗mλi −GEλi)]T − [C̄iG
TΓ−1 (y ⊗m−GE)]T

−[C∂λiG
TΓ−1(y ⊗m−GE)]T − [CGTΓ−1(∂λiym− ∂λiGE)]T

C = E −m⊗m,

C̄i = Eλi − 2mλi ⊗m.

(31)

and initial data independent of λ

m(0) =

∫
X
vdf0(v), E(0) =

∫
X
v ⊗ vdf0(v), mλi(0) = 0, Eλi(0) = 0. (32)

For any time T > 0, there exists a unique solution (m,E, ∂λ1m, ∂λ1E, . . . , , ∂λlm, ∂λlE, ) ∈
C1(0, T ; R(l+1)·(d+d×d)) to the system (31).

Proof. The right hand side of (31) is Lipschitz with respect to (m,mλi , E,Eλi) which yields

the existence and uniqueness of the moments. The derivation of the moment system is given

by integration based on the formal equation (20). For simplicity, we assume in the following

proof that f is absolutely continuous with respect to the Lebesgue measure. We denote the

induced density also by f.

First, note that since ∂λif is a conservative equation with initial data (24) and therefore

∫
X
∂λif(v, λ, t)dv = 0. (33)

Second, the first and the third equation of system (31) follow immediately by integration of

the mean field equation (17). Indeed for the third equation we obtain

∂t

∫
X
vivjf dv −

d∑
k=1

∫
vivj∂k(C∇vΦ(v, y, λ)f)k dv = 0, i, j = 1, . . . , d, (34)

and, integrating by parts
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∂tEi,j +
d∑

k=1

∫
∂k(vivj)(C∇vΦ(v, y, λ)f)k dv = 0. (35)

Thus

∂tEi,j +

∫
[(C∇vΦ(v, y, λ))ivjf + (C∇vΦ(v, y, λ))jvif ] dv = 0, (36)

∂tEi,j +

d∑
l=1

(CGTΓ−1)i,lylmj −
d∑
l=1

(CGTΓ−1G)i,lEl,j (37)

+

d∑
l=1

(CGTΓ−1)j,lylmi −
d∑
l=1

(CGTΓ−1G)j,lEl,i = 0. (38)

Hence, we obtain equation (31)

∂tE + CGTΓ−1(y ⊗m−GE) +
[
CGTΓ−1(y ⊗m−GE)

]T
= 0. (39)

Since the operator C is linear in f we obtain

∂C

∂λi
= Eλi − 2mλi ⊗m, (40)

and similar to term T2 :

∂(∇vΦ)

∂λi
= (

l∑
i=1

Gi)
TΓ−1

(
y −Gv

)
+ (G)T Γ−1

( l∑
i=1

yi −Giv
)
. (41)

Hence, integration of (20) yields

∂tmλi +
(
Eλi − 2mλi ⊗m

)∫
X
∇vΦ(v, y, λ)f dv+ (42)

C

∫
X

(
(

l∑
i=1

Gi)
TΓ−1

(
y −Gv

)
+ (G)T Γ−1

( l∑
i=1

(yi −Giv)
)
f dv (43)

+C

∫
X
∇vΦ(v, y, λ)∂λif dv = 0. (44)

Due to assumption (25) the integrals involving ∇vΦ are computed explicitly
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∫
X
∇vΦ(v, y, λ)f dv =

∫
Rd
GTΓ−1(y −Gv)f dv = GTΓ−1 (y −G m) , (45)∫

X
∇vΦ(v, y, λ)∂λif dv = GTΓ−1

(
y

∫
Rd
∂λifdv −G

∫
Rd
v∂λifdv

)
= +GTΓ−1G mλi . (46)

Furthermore, we obtain

C

∫
X

(
(
l∑

i=1

Gi)
TΓ−1

(
y −Gv

)
+ (G)T Γ−1

( l∑
i=1

(yi −Giv)
)
f dv (47)

=C(
l∑

i=1

Gi)
TΓ−1(y −Gm) + C (G)T Γ−1

(
l∑

i=1

(yi − Gim)

)
, (48)

leading to the equation for mλi . The equations for d
dtEλi are obtained using a similar compu-

tation.

Some remarks are in order.

• Note that the approximation to the Pareto front P (t) on the mean field level is given

by

P (t) = {m(λ, t) : λ ∈ Λ}. (49)

Hence, solving a coupled system of ordinary differential equations of dimension (l +

1)× (d+ d2) leads to information on ∇λm(t). This allows to obtain information for an

adaptive strategy for the choice of λ as follows: Assume for a fixed λ, the optimal state

is given by m(λ, T ) for some T fixed and sufficiently large. Then, we may use a Taylor

expansion of m to obtain

m(λ+ ∆λ, T ) = m(λ, T ) + ∆λ · ∇m(λ, T ) + h.o.t., (50)

where ∇m(λ, t) = (mλi)
l
i=1. The previous expansion can be used in two ways: For a

given update ∆λ ∈ Rl such that λ + ∆λ ∈ Λ, equation (50) yields an approximation

on the new optimal value of the Pareto front P (t). Second, we observe that the system

(31) can be solved independently of the dynamics of f = f(v, λ, t) leading to a family

of solutions for λ ∈ Λ and t ≥ 0

9



(m(λ, t), ∇m(λ, t)) , (51)

that can be computed a priori. We are interested in obtaining a discrete choice of λk ∈ Λ

for k = 1, . . . ,K such that the Pareto set SU = { u∗(λ) : λ ∈ Λ} is approximated without

clustering. Since for T large we have m(λ, T ) ≈ u∗(λ) we may utilize equation (50) to

determine at least the norm of the update ∆λ = λk+1 − λk such that the distance on

SU is bounded by a given tolerance δ > 0 by requiring

‖∆λ‖‖∇m(λk)‖ ≤ δ. (52)

This choice leads to numerical results shown later that also approximates the Pareto

front SG very well with only a few discretization points k = 1, . . . ,K in Λ.

• The convergence results on the EnKF require usually n or t, respectively to tend to

infinity. In the particular situation where the system of ordinary differential equations

allows for steady–state solutions (m,E,∇m,∇E), this value is therefore expected to

be also a solution to the Pareto problem. The following equations characterize the

steady–state solutions to (31) for i = 1, . . . , l only in the case d=1:

Gm = y, mλi = c1,i, G2E = y2, Eλi = c2,i, (53)

m = c1, mλi = c1,i, E = m2, Eλi = 2m mλi . (54)

where, c1,i and c2,i are arbitrary constants. Note that if (m,E) is a set of moments of

an underlying distribution function f∞(u, λ), then by definition we obtain that E ≥ m2

imposing restrictions on the set of admissible constants ck,i for k = 1, 2 and i = 1, . . . , l,.

• The case d = 1 also allows for an explicit computations of the Pareto front are possible,

provided that the operator G =
l∑

i=1
λiGiu : X → Y is invertible. In this case, the true

solution is given by

u∗(λ) = G−1y (55)

and on the mean field level, we expect f(v, λ, t) = δ(v − u∗(λ)) to be the stationary

solution. In fact, the following computation verifies that f is a stationary state of

10



the moment system (31). Note that this particular probability measure f defines a

distribution on the set of functions ψ ∈ C∞0 (X) by

f [ψ] :=

∫
X
ψ(u)df(u, λ, t) = ψ(u∗(λ)). (56)

Hence, for ψ(u) = u we obtain Gm(λ, t) = y and for ψ(u) = u2 we have G2E(λ, t) = y2.

Assuming that λ→ u∗(λ) is differentiable with respect to λ, the weak derivative is

fλi [ψ] = ψ′(u∗(λ))u∗λi(λ), (57)

and hence, mλi = u∗λi(λ) and Eλi = 2mm2
λi

. Since Gu∗(λ) = y we obtain that

∂λiG u∗(λ) = −Gu∗λi(λ) + ∂λiy leading to the equality ∂λiG m = −Gmλi + ∂λiy. Hence,

it is a steady state of equation (31).

3 Computational Results

For a numerical solution to the approximation of the Pareto front SU and SG, respectively,

we compare two strategies. In the direct approach we sample on an equidistant grid on Λ

the values of λk. In an adaptive strategy the solution to the mean field moment system

(31) is utilized. Without loss of generality, in the numerical tests we assume l = 2, so that

G(u) = λG1(u)+(1−λ)G2(u) and such that Λ is parameterized by a single parameter λ ∈ [0, 1].

Moreover, we set y = 0, η = 0, Γ = 1 and Tfin = 10 for all computations. To solve (31),

we use a Matlab function ode45 and initial data recovered from the ensemble particles, i.e.,

m0 = 1
J

∑J
j=1 uj , E0 = 1

J

∑J
j=1 u

2
j , mλi,0 = 0, Eλi,0 = 0.

Even so the theory is presented in the linear case only, we present numerical results on

nonlinear objective functions Gi in the numerical tests. Note that the existing literature on

convergence and stability of the EnKF do not cover the nonlinear case, even in the case of only

finitely many particles. Numerically, we propose two possible strategies to adapt method to

the nonlinear case. In the first case and if the derivative of G is computable, we may linearize

(7) up to the first order:

‖y − G(u)‖ ≈
∥∥y − G(u0) + G′(u0)u0 − G′(u0)u

∥∥ =
∥∥ỹ − G′(u0)u∥∥ . (58)

Replacing the nonlinear objective by its linearized version allows to apply the aforementioned

results. However, an advantage of the EnKF is that it also applies to functions where no

derivative information is available. Therefore, we secondly, consider G(m) instead of G m in
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system (31). This simple heuristic modification is not justified by a moment analysis, since,

in fact, the moment system in the nonlinear case is not closed.

3.1 Direct approach

Starting from an initial ensemble u0j for j = 1, . . . , J and a set of fixed vectors λk ∈ Λ for

k = 1, . . . , Nλ, the particles are updated following (9). As in [9] we chose the vectors to be

equispaced. The algorithm is described in detail in Figure 1.

Algorithm 1 Direct approach

1: Given J samples u0j , with j = 1, . . . , J and a vector λ0i , i = 0, . . . , l

2: Set n = 0, t0 = 0 and final time Tfin sufficiently large
3: for k = 1, 2, . . . , Nλ do
4: Solve the EnKF procedure: G = λki · Gi, y = λki · yi
5: while tn ≤ Tfin do

un+1
j = unj + C(un)

(
D(un) +

1

∆t
Γ−1

)−1 [
yj − G(unj )

]
C(un) =

1

J

J∑
j=1

(unj − un)⊗ (G(unj )− G) (EnKF)

D(un) =
1

J

J∑
j=1

[
G(unj )− G

]
⊗
[
G(unj )− G

]
6: end while

7: The mean 1
J

J∑
j=1

u
Tfin
j is an approximation to u∗(λ)

8: end for

3.2 Adaptive strategy

In the adaptive strategy the vector λk is obtained iteratively for k = 1, . . . according to

equation (52). Intuitively, the equation yields a denser set of vectors λk where the slope of

the Pareto set SU measured through ‖∇m(λk)‖ is large. In order to state the update formula

an ordering on Λ is introduced as lexicographic order on the set Λ. The adaptive strategy

using the update given by equation (52) is given below in Figure 2.

3.3 Test 1: Convex Example

As numerical test we consider the minimization of two convex functions G1,G2:

G1 =

(
u− 1

2

)2

G2 =

(
u+

1

2

)2

. (59)
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Algorithm 2 Adaptive approach

1: Given J samples uj,0, with j = 1, . . . , J and the update constant δ > 0
2: set n = 0, t0 = 0, the final time Tfin and λ1 = 0
3: while λk < 1 do
4: ūk ← solving the EnKF procedure (as in Step 5 of the Direct Approach)
5: [m,mλ, E,Eλ]←solve the ODE system (31) with initial conditions (32)
6: ū0k+1 ← sampling from a Gaussian prob. distr. with mean m and variance E

7: λk+1 ← λk + δ
‖mλ‖elo, elo the direction defined by the lexicographic order

8: end while

The initial ensemble is chosen using the uniform distribution U0 ∼ U(−1, 1) and we use

J = 20. A comparison of the direct and the adaptive algorithm with δ = 10−3 and Nλ = 25

is presented. The approximation of the Pareto front SG is shown in Fig. 1.
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Figure 1: Test 1. Numerical approximation of the Pareto front, with the direct approach
(left) and the adaptive approach (right). The red line is the analytical Pareto front. The dots
indicate the mean of the ensemble at final time.

Different behavior of the two procedures is observed, where the solution obtained by the

adaptive approach covers a larger percentage of the Pareto front. Moreover, in Fig. 2, we show

the distribution of λ in the interval [0, 1] for the direct approach (left) and the adaptive one

(right). This reflects the fact, that in the adaptive approach a varying grid on Λ is obtained

according to the update formula (52). This simulation validates the intuitive interpretation

of this equation.

A similar behavior is obtained when the discretization in λ is refined. In Fig. 3 the

updating constant δ is δ = 10−4 and Nλ = 54.

Focusing on the direct approach, Fig. 3 (left), we notice that even for a larger number of

values Nλ the whole Pareto front is not covered.

This graphical interpretation is also compared quantitatively. Given a parametrization
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Figure 2: Test 1. Distribution of the sampled values λ.
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Figure 3: Test 1. Numerical approximation of the Pareto front, with the direct approach
(left) and the adaptive approach (right). The red line is the exact Pareto front.

of the Pareto front and an equispaced grid, we consider the sum of the minimal distance

d between each point of the grid, xi for i = 1, . . . , Ng with Ng > 0, and the mean of the

ensembles at terminal time for different values of Nλ∑Ng
i=1 min d(xi, u

∗(λ))

Ng
(60)

The measure (60) is similar to the notion of performance metric (IGD) described in [27]. The

comparison shows the improved performance of the adaptive approach for increasing number

Nλ as expected, see Fig. 4.
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Figure 4: Test 1. The distance from the Pareto front computed by (60) is shown for different
number of points, for the direct approach (black) and for the adaptive one (blue). The red
line indicates the resolution of the Pareto front given by Ng.

3.4 Test 2: Non-Convex Case

We consider two non convex functions G1 and G2 defined by

G1(u) = 1− e−(u−1)2 G2(u) = 1− e−(u+1)2 . (61)

and an initial ensemble U0 ∼ U(−2, 2) of size J = 50, and δ = 1 · 10−3 leading to Nλ = 64.

The comparison between the two approaches is shown on SG in Fig. 5. The behavior is similar

to the previous case and shows the improvement of the adaptive approach compared with the

direct approach.

3.5 Test 3: Multi-dimensional Parameter Space

We consider G1,G2 two convex functions on R2 and given by

G1(u1, u2) = 5(u1 − 0.1)2 + (u2 − 0.1)2 G2(u1, u2) = (u1 − 0.9)2 + 5(u2 − 0.9)2. (62)

The initial ensemble is chosen uniformly distributed U0 ∼ U([0, 1]2) and we consider J = 30

particles. We set δ = 8 · 10−4 and Nλ = 68. A similar behavior as before is observed in Fig.

6. However, the approximation to SG does not match completely the analytically solution,

especially in the region at x = 2. It is assumed that this is due to the terminal time and

we refer to Fig. 6-7 where Tfin = 50. Furthermore, we show the approximation to the set of

Pareto points SU in Fig. 9. The adaptive choice of sampling Λ leads to a relatively sharp

resolution of the set SU compared with the direct approach. The later produces a cloud of

points compared to the clusters obtained with the adaptive strategy.
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Figure 5: Test 2: Numerical approximation of the Pareto front in the non-convex case, with
the direct approach (left) and the adaptive approach (right). The red line is the exact Pareto
front.
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Figure 6: Test 3. Numerical approximation of the Pareto front, with the direct approach(left)
and the adaptive approach (right) at Tfin = 5. The red line is the analytical Pareto front.

4 Summary

The ensemble Kalman filter method has been extended to solve coupled inverse problems. The

link to a multi–objective optimization problem has been shown and the analytical properties

of the ensemble based method have been investigated. In particular, the mean field equation

and their corresponding moment system have been presented and exploited to develop a new
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Figure 7: Test 3. Numerical approximation of the Pareto front, with the direct approach(left)
and the adaptive approach (right) at Tfin = 50. The red line is the analytical Pareto front.
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Figure 8: Test 3: Numerical approach of the Pareto set for the adaptive approach for Tfin = 5
(left) and Tfin = 50 (right).

adaptive approach for sampling the Pareto front. Numerical results show the improvement

of the adaptive strategy also in the nonlinear case.
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Figure 9: Test 3: Ensemble distribution at Tfin = 50 for different values of λ indicated by
color.
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