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Abstract

Probabilistic Answer Set Programming under the Credal Semantics is a recently introduced formalism to express uncertainty with answer set programming where the
probability of a query is described by a range. We propose to extend it to encode decision theory problems.

Encoding

Probabilistic Answer Set Programming under the Credal Semantics [5] extends answer set programming [3] with ProbLog [6] probabilistic facts of the form ,
where  is a floating point value (between 0 and 1) representing the probability of  of being true. A selection of a truth value for every probabilistic fact identifies a
world whose probability is the product of the probabilities of the probabilistic facts true times the product of one minus the probability of every probability fact false. In
formula:

In Probabilistic Logic Programming [6] (PLP), a world is a Prolog program, so it has exactly one model. In Probabilistic Answer Set Programming under the credal
semantics (PASP), every world is an answer set program [8], so it has zero or more (stable) models. Every world is required to have at least one stable model. In PASP,
the probability of a query (i.e., a conjunction of ground atoms) is represented with a probability range, composed of a lower and upper bound. A world contributes to
both the lower and upper bounds if the query is true in every answer set while it contributes only to the upper bound if it is true in some of the answer sets. That is,

 where

The probability bounds can be computed with, for example, the tool described in [1]. The DTProbLog framework [4] allows to express decision theory problems with a
ProbLog [6] program. It introduces a set  of utility atoms of the form  where  is the reward obtained to satisfy  (i.e., when  is true) and a set of
decision atoms . Every subset of decision atoms defines a strategy  (a ProbLog program) and its utility is computed as

where  is the probability of  computed in the ProbLog program identified by fixing the decision atoms in  to true. The goal is to find the strategy  that
maximizes the utility, i.e., .

We apply this framework to PASP, where every world has one or more stable models. Thus, the utility is described by a lower and an upper bound:

We have now to select whether to optimize the lower or upper utility, and so there are two possible goals:

or

depending on the considered target probability. Note that with this representation the lower utility can be greater than the upper utility, when, for example, there are
both positive and negative rewards. We consider here only the strategies where the lower utility is less or equal than the upper utility. To clarify, consider this simple
program:
0.7::pa. 0.2::pb.
decision da. decision db.
utility(r0,3). utility(r1,-11).
r0:- pa, da.
r0;r1:- pb, db.

 and  are two probabilistic facts and  and  two decision atoms. The rewards we get to satisfy  and  are respectively 3 and -11. There are 4 possible
strategies (no decision atoms selected, only one decision atom selected, and both decision atoms selected). Each of these have 4 worlds (no probabilistic facts true, only
one probabilistic fact true, and both probabilistic facts true). If we consider the strategy , we have  and  (only the first
rule is considered), and . If we repeat this process for all the strategies and we consider the upper
utility as target, we get that  is the one that maximizes the upper utility.

A naive algorithm consists in enumerating all the possible strategies and then computing the lower and upper probability for every decision atom [1]. However, this
clearly cannot scale, since the number of possible strategies is . Moreover, the algorithm of [1] adopts enumeration of stable models and projection on probabilistic
facts [7], that also requires the generation of an exponential number of answer sets. Thus, a practical solution should adopt both approximate methods for the generation
of the possible strategies and for inference. For the former, greedy algorithms such as genetic algorithms [9] can be a possible solution. For inference, approximate
methods based on sampling, such as the one proposed in [2] can be of interest.
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The ICARUS-System for Interactive Coherence Establishment in Logic
Programs
Andre Thevapalan (TU Dortmund, Germany)
Jesse Heyninck (Open Universiteit, the Netherlands)

When modelling expert knowledge as logic programs, default negation is very useful, but might lead to there being no stable models. Detecting the exact causes of the
incoherence in the logic program manually can become quite cumbersome, especially in larger programs. Moreover, establishing coherence requires expertise regarding
the modelled knowledge as well as technical knowledge about the program and its rules. In this demo, we present the implementation of a workflow that enables
knowledge experts to obtain a coherent logic program by modifying it in interaction with a system that explains the causes of the incoherence and provides possible
solutions to choose from.

Introduction

Due to its declarative nature, and with the availability of both strong and default negation, answer set programming offers valuable features for the usage in real-world
applications. But often knowledge bases are subject to change. Adding rules to a logic program is not as straightforward as it might seem. Due to its declarative nature,
adding new information can easily lead to contradictory knowledge. Such contradictions can result from rules whose conclusions are contradictory while both their
premises can potentially hold simultaneously. However, by using default negation, another form of inconsistency can appear which is called incoherence. Incoherent
answer set programs do not possess answer sets. In many cases, though, the cause of the incoherence generally comprises only one or a couple of rules. Several
approaches show how these causes can be found and which part of the programs are affected and thus have to be revised in order to restore the coherence of a program
([4][5][10]).  These approaches do not describe, however, how to establish coherence.  In recent work ([11]), we have defined a method that  offers  strategies for
computing suitable solutions without the need for additional information from the user and which in turn can be used to enable implementations where coherence can
be interactively established in collaboration with an expert. This method is based on results on coherence in argumentation graphs ([10]) for normal logic programs
which in turn enables us to locate those parts of the program that are responsible for the incoherence.

Figure 1: Amendment Workflow

The ICARUS-System

We implemented the framework from ([11]) in a prototype system1. In this section, we describe and illustrate this implementation.
Figure 1 shows the general workflow that is implemented in this prototype for establishing the coherence in a given incoherent program .
In the following, we will describe the general workflow for this application, and how it helps the knowledge expert to gradually restore coherence. For this consider

the following program  inspired by the medical domain will be used as a running example2:
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