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Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.
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1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to

Actuator Fault Reconstruction via
Dynamic Neural Networks for an

Autonomous Underwater Vehicle Model

Silvio Simani ∗,1 Saverio Farsoni ∗ Paolo Castaldi ∗∗

Massimiliano Menghini ∗∗

∗ Department of Engineering, University of Ferrara, Ferrara, Italy
(e-mail: {silvio.simani,saverio.farsoni}@unife.it).

∗∗ Department of Electrical, Electronic, and Information Engineering
(DEI) ’Guglielmo Marconi’, University of Bologna, Bologna, Italy

(e-mail: {paolo.castaldi, massimilian.menghin3}@unibo.it)

Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.

Keywords: Fault diagnosis, fault estimation, neural network, actuator faults, robustness,
autonomous underwater vehicle.

1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to

Actuator Fault Reconstruction via
Dynamic Neural Networks for an

Autonomous Underwater Vehicle Model

Silvio Simani ∗,1 Saverio Farsoni ∗ Paolo Castaldi ∗∗

Massimiliano Menghini ∗∗

∗ Department of Engineering, University of Ferrara, Ferrara, Italy
(e-mail: {silvio.simani,saverio.farsoni}@unife.it).

∗∗ Department of Electrical, Electronic, and Information Engineering
(DEI) ’Guglielmo Marconi’, University of Bologna, Bologna, Italy

(e-mail: {paolo.castaldi, massimilian.menghin3}@unibo.it)

Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.

Keywords: Fault diagnosis, fault estimation, neural network, actuator faults, robustness,
autonomous underwater vehicle.

1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to

Actuator Fault Reconstruction via
Dynamic Neural Networks for an

Autonomous Underwater Vehicle Model

Silvio Simani ∗,1 Saverio Farsoni ∗ Paolo Castaldi ∗∗

Massimiliano Menghini ∗∗

∗ Department of Engineering, University of Ferrara, Ferrara, Italy
(e-mail: {silvio.simani,saverio.farsoni}@unife.it).

∗∗ Department of Electrical, Electronic, and Information Engineering
(DEI) ’Guglielmo Marconi’, University of Bologna, Bologna, Italy

(e-mail: {paolo.castaldi, massimilian.menghin3}@unibo.it)

Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.

Keywords: Fault diagnosis, fault estimation, neural network, actuator faults, robustness,
autonomous underwater vehicle.

1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to

Actuator Fault Reconstruction via
Dynamic Neural Networks for an

Autonomous Underwater Vehicle Model

Silvio Simani ∗,1 Saverio Farsoni ∗ Paolo Castaldi ∗∗

Massimiliano Menghini ∗∗

∗ Department of Engineering, University of Ferrara, Ferrara, Italy
(e-mail: {silvio.simani,saverio.farsoni}@unife.it).

∗∗ Department of Electrical, Electronic, and Information Engineering
(DEI) ’Guglielmo Marconi’, University of Bologna, Bologna, Italy

(e-mail: {paolo.castaldi, massimilian.menghin3}@unibo.it)

Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.

Keywords: Fault diagnosis, fault estimation, neural network, actuator faults, robustness,
autonomous underwater vehicle.

1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to

Actuator Fault Reconstruction via
Dynamic Neural Networks for an

Autonomous Underwater Vehicle Model

Silvio Simani ∗,1 Saverio Farsoni ∗ Paolo Castaldi ∗∗

Massimiliano Menghini ∗∗

∗ Department of Engineering, University of Ferrara, Ferrara, Italy
(e-mail: {silvio.simani,saverio.farsoni}@unife.it).

∗∗ Department of Electrical, Electronic, and Information Engineering
(DEI) ’Guglielmo Marconi’, University of Bologna, Bologna, Italy

(e-mail: {paolo.castaldi, massimilian.menghin3}@unibo.it)

Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.

Keywords: Fault diagnosis, fault estimation, neural network, actuator faults, robustness,
autonomous underwater vehicle.

1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to

Actuator Fault Reconstruction via
Dynamic Neural Networks for an

Autonomous Underwater Vehicle Model

Silvio Simani ∗,1 Saverio Farsoni ∗ Paolo Castaldi ∗∗

Massimiliano Menghini ∗∗

∗ Department of Engineering, University of Ferrara, Ferrara, Italy
(e-mail: {silvio.simani,saverio.farsoni}@unife.it).

∗∗ Department of Electrical, Electronic, and Information Engineering
(DEI) ’Guglielmo Marconi’, University of Bologna, Bologna, Italy

(e-mail: {paolo.castaldi, massimilian.menghin3}@unibo.it)

Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.

Keywords: Fault diagnosis, fault estimation, neural network, actuator faults, robustness,
autonomous underwater vehicle.

1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to

Actuator Fault Reconstruction via
Dynamic Neural Networks for an

Autonomous Underwater Vehicle Model

Silvio Simani ∗,1 Saverio Farsoni ∗ Paolo Castaldi ∗∗

Massimiliano Menghini ∗∗

∗ Department of Engineering, University of Ferrara, Ferrara, Italy
(e-mail: {silvio.simani,saverio.farsoni}@unife.it).

∗∗ Department of Electrical, Electronic, and Information Engineering
(DEI) ’Guglielmo Marconi’, University of Bologna, Bologna, Italy

(e-mail: {paolo.castaldi, massimilian.menghin3}@unibo.it)

Abstract: This paper proposes the development of a scheme for the fault diagnosis of the
actuators of a simulated model accurately representing the behaviour of an autonomous
underwater vehicle. The Fossen model usually adopted to describe the dynamics of the
underwater vehicle has been generalised in this paper to take into account time–varying sea
currents. The proposed fault detection and isolation strategy uses a data–driven approach relying
on multi–layer perceptron neural networks that include auto–regressive exogenous prototypes
that provide the fault reconstruction. These tools are thus exploited to design a bank of dynamic
neural networks for residual generation that are trained on the basis of the input and output
measurements acquired from the simulator. In this work, the residuals are designed to represent
the reconstruction of the fault signals themselves. Moreover, the neural network bank is also
able to perform the isolation task, in case of simultaneous and concurrent faults affecting
the actuators. The paper firstly describes the steps performed for deriving the proposed fault
diagnosis solution. Secondly, the effectiveness of the scheme is demonstrated by means of high–
fidelity simulations of a realistic autonomous underwater vehicle, in the presence of faults and
marine current.

Keywords: Fault diagnosis, fault estimation, neural network, actuator faults, robustness,
autonomous underwater vehicle.

1. INTRODUCTION

Unmanned vehicles, and in particular Autonomous Under-
water Vehicles (AUVs), have been widely used in many
areas, such as photographing, monitoring traffic incidents,
patrolling, and delivering etc. Since the tasks assigned to
the UAVs are getting more and more complicated, the
demand and requirement for the motion control of the
UAV is also increasing. The common example of UAVs
is multirotors which are mechanically simpler, and easier
to control. We are seeing the increased utilization of multi-
rotors for commercial applications. Since multirotors have
many components such as motor, propeller, IMU sensors
and some mechanical parts, the risk of performance losses
caused by actuator or sensor faults is fast becoming a
reality. The solution is to develop Fault Detection and
Identification (FDI) and well as Fault Tolerant Control
(FTC) solutions to to detect and accommodate these faults
to maintain a certain level of performance for safety rea-
son. The concept of FTC is not new. It can be defined
as a controller that is able to tolerate faults and keep the
control performance in an acceptable range in the presence
of faults.

1 Corresponding author.

It is worth noting that this work is motivated by the
Interreg Italy–Croatia SUSHI DROP project (Menghini
et al. (2020)), where the authors are involved. In fact, the
project is oriented to the design, the development and the
validation of an AUV underwater biological and habitat
researches.

FDI and PTC research activities applied to AUV FDI were
based, for example, on the analysis of nonlinear dynamic
structures exploited for residual generation and statistical
change detection analysis (Falkenberg et al. (2014)). Other
solutions used e.g. observer–based approaches (Antonelli
(2018)), graph–theory–based analysis of the system struc-
ture (Blanke (2005)), fault estimators relying on extended
Kalman filters (Alessandri et al. (1999)). Moreover, an
exhaustive overview of FDI algorithms, specifically devel-
oped for AUVs, is addressed in (Antonelli (2003)).

This paper presents the results achieved via a data–
driven methodology exploited for the design of a FDI
scheme applied to the AUV actuators. The proposed
approach was already exploited for the reconstruction of
the fault affecting a wind turbine process, as described
e.g. in (Simani and Farsoni (2018)). On the other hand, a
different FDI strategy based on differential geometry tools
was addressed in (Menghini et al. (2020)) and applied to
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the same AUV simulator. The same solutions were also
presented in (Castaldi et al. (2021)).

In this paper, it is presented an intelligent FDI scheme to
deal with both actuator and sensor faults, where quadrotor
is considered. The AI-based neural network learning is
used for approximating unknown nonlinearities and faulty
components in the AUV. The functionalities developed in
this paper are:

• Fault diagnosis scheme able to handle both actuator
and sensor faults

• Neural network for estimating the fault size for actu-
ators

• Neural network trained to isolate actuator faults

The paper is organized as follows. After this short in-
troduction, the representative model of the AUV is re-
called. The neural network scheme and the fault estimation
method are presented. The simulation studies are given to
illustrate the proposed solutions. Concluding remarks end
the paper.

2. MODEL SIMULATOR

The mathematical model implemented in the ODIN AUV
simulator is based on the Fossen model. The AUV model is
described as a rigid body with 6 DOF, whose dynamic re-
lations are the standard ones comprising the translational
motion of the Centre of Gravity (CoG) and the rotation
around the CoG itself, i.e. the centre of the Body Frame
(BF). The model consists of the above described dynamics
and the related kinematics.

The main modules of the high fidelity ODIN AUV simula-
tor implemented in the Matlab and Simulink environments
are sketched in Figure 1.

AUV
model

Measurement
sensors

Actuators

Faults

Attitude &
stabilization

control
Guidance

Trajectory

FDI
scheme

Residual
signals

Errors

u y

Fig. 1. The ODIN AUV simulator scheme.

The AUV simulator includes the effects of multiple
and simultaneous faults affecting the actuator inputs,
uthi

, with i = 1, . . . , 6, by using additive step func-
tion. They start at different times, from 0s. to 600s.,
with sizes from 5N to 50N , which represents the max-
imum thrust value on the single actuator. In the fol-
lowing, the vector u(k) represents the control inputs ac-
quired from the ODIN AUV simulator, and in particu-

lar u(k) = [u1(k), u2(k), u3(k), u4(k), u5(k), u6(k)]
T

=

[uth1
(k), uth2

(k), uth3
(k), uth4

(k), uth5
(k), uth6

(k)]
T
.

Furthermore, the monitored output vector y(k) is defined

as y(k) = [y1(k), y2(k), y3(k), y4(k), y5(k), y6(k)]
T

=

[u, v, ω, p, q, r]
T
. These signals will be exploited for FDI

purpose, as described in Sections 3 and 4.

3. DATA–DRIVEN FAULT DIAGNOSIS

This section addresses the derivation of the fault diagno-
sis strategy, by recalling the basic features of the NNs.
Moreover, when these static tools include ARX structures,
they can be used as residual generators for solving the
problem of the fault diagnosis, according to the analytical
redundancy principle (Chen and Patton (1999)).

This work assumes that the process under diagnosis is
affected by actuator faults and errors on the input and out-
put measurements, as remarked in Section 2. These errors
represent the effects of noise and uncertainty terms affect-
ing the considered process under monitoring. Moreover,
this work proposes to exploit NN structures to provide

an on–line reconstruction f̂(k) of the actual faults f(k)
affecting the ODIN UAV actuators. Hence, the diagnos-
tic residuals represent the estimation of the fault signals

themselves, f̂(k), as highlighted by Eq. (1):

r(k) = f̂(k) (1)

As it will be remarked in the following, the residual vector
r(k) will be generated by a bank of dynamic NNs, which is
designed to be selectively sensitive to the faults fi affecting
the process actuators.

Therefore, this solution allows both the fault detection and
the fault isolation, as the bank of dynamic NNs is used to
generate a set of dedicated residuals ri(k) representing the

estimation of the faults fi, i.e. f̂i. By a proper selection
of the input and the output signals feeding the NNs, each
residual signal ri(k) is designed to be selectively sensitive
to a single actuator fault fi. This residual generation
strategy is depicted in Fig. 2.

According to the structure sketched in Figure 2, in order
to uniquely isolate one of the actuator faults, a bank of
Multi–Input Single–Output (MISO) residual generators is
designed. In general, the number of these estimators is
equal to the number of faults that have to be isolated,
and in this case it coincides with the number of actuators
p. Therefore, the i–th residual generator ri(k) = f̂i(k) in
Figure 2 is properly driven by the components of the input
and output signals u(k) and y(k), i.e. a set of measure-
ments uj(k) and yl(k). These components are selected such
that the i–th residual generator is the reconstruction of the
specific fault fi(k).

For each fault case, the fault modes and their resulting
effects on the measurements are analysed, and in particular
the most sensitive input uj(k) and output yl(k) measure-
ments to that specific fault situation are selected to feed
the i–th dynamic NN. In this way, by means of the pro-
posed NN tool, it will be possible to estimate the dynamic
relations between the input–output measurements, uj(k)

and yl(k), and the diagnostic residuals ri(k) = f̂i(k), as
depicted in Figure 2. Moreover, using this strategy, also
multiple and simultaneous faults occurring at the same or
different times time can be correctly isolated.

Finally, as already remarked, the sensitivity analysis con-
ducted before designing the residual generators, suggests
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the same AUV simulator. The same solutions were also
presented in (Castaldi et al. (2021)).

In this paper, it is presented an intelligent FDI scheme to
deal with both actuator and sensor faults, where quadrotor
is considered. The AI-based neural network learning is
used for approximating unknown nonlinearities and faulty
components in the AUV. The functionalities developed in
this paper are:

• Fault diagnosis scheme able to handle both actuator
and sensor faults

• Neural network for estimating the fault size for actu-
ators

• Neural network trained to isolate actuator faults

The paper is organized as follows. After this short in-
troduction, the representative model of the AUV is re-
called. The neural network scheme and the fault estimation
method are presented. The simulation studies are given to
illustrate the proposed solutions. Concluding remarks end
the paper.

2. MODEL SIMULATOR

The mathematical model implemented in the ODIN AUV
simulator is based on the Fossen model. The AUV model is
described as a rigid body with 6 DOF, whose dynamic re-
lations are the standard ones comprising the translational
motion of the Centre of Gravity (CoG) and the rotation
around the CoG itself, i.e. the centre of the Body Frame
(BF). The model consists of the above described dynamics
and the related kinematics.

The main modules of the high fidelity ODIN AUV simula-
tor implemented in the Matlab and Simulink environments
are sketched in Figure 1.
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The AUV simulator includes the effects of multiple
and simultaneous faults affecting the actuator inputs,
uthi

, with i = 1, . . . , 6, by using additive step func-
tion. They start at different times, from 0s. to 600s.,
with sizes from 5N to 50N , which represents the max-
imum thrust value on the single actuator. In the fol-
lowing, the vector u(k) represents the control inputs ac-
quired from the ODIN AUV simulator, and in particu-

lar u(k) = [u1(k), u2(k), u3(k), u4(k), u5(k), u6(k)]
T

=

[uth1
(k), uth2

(k), uth3
(k), uth4

(k), uth5
(k), uth6

(k)]
T
.

Furthermore, the monitored output vector y(k) is defined

as y(k) = [y1(k), y2(k), y3(k), y4(k), y5(k), y6(k)]
T

=

[u, v, ω, p, q, r]
T
. These signals will be exploited for FDI

purpose, as described in Sections 3 and 4.

3. DATA–DRIVEN FAULT DIAGNOSIS

This section addresses the derivation of the fault diagno-
sis strategy, by recalling the basic features of the NNs.
Moreover, when these static tools include ARX structures,
they can be used as residual generators for solving the
problem of the fault diagnosis, according to the analytical
redundancy principle (Chen and Patton (1999)).

This work assumes that the process under diagnosis is
affected by actuator faults and errors on the input and out-
put measurements, as remarked in Section 2. These errors
represent the effects of noise and uncertainty terms affect-
ing the considered process under monitoring. Moreover,
this work proposes to exploit NN structures to provide

an on–line reconstruction f̂(k) of the actual faults f(k)
affecting the ODIN UAV actuators. Hence, the diagnos-
tic residuals represent the estimation of the fault signals

themselves, f̂(k), as highlighted by Eq. (1):

r(k) = f̂(k) (1)

As it will be remarked in the following, the residual vector
r(k) will be generated by a bank of dynamic NNs, which is
designed to be selectively sensitive to the faults fi affecting
the process actuators.

Therefore, this solution allows both the fault detection and
the fault isolation, as the bank of dynamic NNs is used to
generate a set of dedicated residuals ri(k) representing the

estimation of the faults fi, i.e. f̂i. By a proper selection
of the input and the output signals feeding the NNs, each
residual signal ri(k) is designed to be selectively sensitive
to a single actuator fault fi. This residual generation
strategy is depicted in Fig. 2.

According to the structure sketched in Figure 2, in order
to uniquely isolate one of the actuator faults, a bank of
Multi–Input Single–Output (MISO) residual generators is
designed. In general, the number of these estimators is
equal to the number of faults that have to be isolated,
and in this case it coincides with the number of actuators
p. Therefore, the i–th residual generator ri(k) = f̂i(k) in
Figure 2 is properly driven by the components of the input
and output signals u(k) and y(k), i.e. a set of measure-
ments uj(k) and yl(k). These components are selected such
that the i–th residual generator is the reconstruction of the
specific fault fi(k).

For each fault case, the fault modes and their resulting
effects on the measurements are analysed, and in particular
the most sensitive input uj(k) and output yl(k) measure-
ments to that specific fault situation are selected to feed
the i–th dynamic NN. In this way, by means of the pro-
posed NN tool, it will be possible to estimate the dynamic
relations between the input–output measurements, uj(k)

and yl(k), and the diagnostic residuals ri(k) = f̂i(k), as
depicted in Figure 2. Moreover, using this strategy, also
multiple and simultaneous faults occurring at the same or
different times time can be correctly isolated.

Finally, as already remarked, the sensitivity analysis con-
ducted before designing the residual generators, suggests
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Fig. 2. Residual generator bank for fault reconstruction.

how to select the input–output signals feeding the dynamic
NNs. After this selection, the training of the dynamic NN
structures can be performed.

4. SIMULATION RESULTS

This sections illustrates the application of the FDI strategy
summarised in the paper that is applied to the ODIN
AUV simulator recalled in Section 2. In particular, on the
basis of the results of the fault sensitivity analysis, which
has led to the design of the bank of residual generators
for FDI, Section 4.1 summarises the capabilities of the
proposed fault diagnosis scheme, when different fault cases
are simulated by means of the ODIN AUV simulator.

4.1 Fault Estimation Assessment

The proposed FDI scheme has been validated by using
several simulations of the fault–free and faulty cases of the
ODIN AUV simulator. The simulations included realistic
measurement errors and the disturbance effect due to the
Adriatic Sea marine current. The considered maximum sea
current is equal to 1 kts. The direction of this current is
along the x–y coordinate reference frame, i.e. the North–
East direction, while the component along the z coordinate
is not considered, as a sufficient depth is assumed for the
AUV to neglect it.

As described in Section 3, the FDI scheme consists of
a bank of 6 residual generators. The first simulations
considered the case of single fault on the 1st actuator
that has been injected by adding a step function to the
considered input uth1 . Therefore, the fault commences at
t = 150s. with a size of 5N , when the maximum thrust
generated by the single actuators is 50N .

In particular, the 6 NARX residual generators have been
implemented as MLP NNs with 3 layers: the input layer
consisted of 3 neurons, the hidden one used 10 neurons,
whilst one neuron for the output layer. A number of du =
dy = 3 delays has been used in the neural network design;
moreover, sigmoidal activation functions were used in both
the input and the hidden layers, and a linear function
for the output layer. These parameters were selected via
a trial and error procedure in order to achieve the best
performances.

Figure 3 depicts the behaviour of the residual signals

ri(k) = f̂i(k) in case of single actuator fault. It is worth
noting that the signal corresponding to the first residual
r1(k) reconstructs the fault f1(k), whilst the remaining
residuals rj(k) with j �= 1 are not affected by this fault,
according to the design procedure addressed in Section 3
and with the signal selection.
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Fig. 3. Residuals for the case of the actuator fault f1(k).

It is worth noting that the designed FDI scheme seems
to be robust with respect to the sea current, with an
adequate minimum detectable fault size, which allows also
the fault isolation, as highlighted in Figure 3. Furthermore,
the limited detection delay time makes the designed FDI
scheme suitable to the early diagnosis of single faults
acting on the UAV.

As further example, the case of constant step fault of 5N
on the 4th actuator, i.e. uth4

, is injected into the simulator
at t = 150s. Figure 4 reports the residual signals, thus
highlighting that only the residual r4(k) represents the
estimation of the actuator fault f4(k), whilst the remaining
residual signals rj(k) with j �= 4 are almost zero.

In order to validate the proposed FDI scheme in the
presence of simultaneous faults, two concurrent faults are
injected into the system actuators, and in particular:

• the step fault f3 affecting uth3
at t = 150s;

• the step fault f5 affecting uth5
at t = 300s.

Figure 5 shows the effectiveness of the residual generator
bank designed according to the procedure exploited in
the work. In fact, only the residual signals r3(k) and
r5(k) correspond to the reconstruction of the faults f3(k)
and f5(k), respectively. Therefore, the concurrent faults
affecting the actuator signals uth3 and uth5 can be also
isolated.
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Fig. 4. Residuals for the case of the actuator fault f4(k).
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Finally, the capabilities of the FDI scheme are summarised
in Table 1 by reporting the size of the minimal detectable
faults fi that are injected into the actuator signals uthi

of the ODIN AUV simulator. The accuracy in the recon-
struction of the fault signals is also reported, computed as
percent normalised root mean squared error in the form of
(2):

100×

√∑N
k=1

(
fi(k)− f̂i(k)

)2

√∑N
j=1 f

2
i (k)

(2)

with reference to the i–th fault and computed over N
samples.

Table 1. Minimal detectable faults on the ac-
tuator signals uthi

and their reconstruction
errors.

Fault Case Minimum Fault Size Reconstruction Error

f1 5N 1.97%
f2 2N 2.05%
f3 3N 2.16%
f4 4N 1.89%
f5 5N 2.08%
f6 3N 1.99%

The results reported in Table 1 highlight that the per-
formances of the designed FDI scheme are quite accurate

despite of the disturbance and the uncertainty included in
the ODIN UAV simulator, and thus motivate the applica-
tion of the developed fault diagnosis strategy to real UAV
systems. Further investigations will focus on the evaluation
of the detection delays and the use of the estimated fault
signals for fault tolerant applications of the considered
data–driven methodologies. Moreover, other fault scenar-
ios and different uncertainty and disturbance conditions
will be also considered in order to verify and validate the
proposed fault diagnosis strategy.

5. CONCLUSION

This paper addressed the development of a data–driven
fault diagnosis scheme relying on multi–layer perceptron
neural networks that include auto–regressive exogenous
structures. The fault diagnosis scheme was applied to a
high–fidelity simulator of the omni–directional intelligent
navigator autonomous underwater vehicle based on a Fos-
sen model. The developed fault diagnosis strategy led to
a bank of dynamic neural networks that were able to
estimate single and simultaneous faults affecting the model
actuators. The simulations performed by using the high–
fidelity simulator served to verify the performance of the
developed fault diagnosis approach. The dynamic neural
networks of the bank that provided a dedicated residual
set were trained offline by using the input and output mea-
surements acquired from the simulator. On the other hand,
the designed tool was obtained in a straightforward way,
and it did not require complex analytical computations. It
is also suitable for real–time implementations and it can
be especially oriented to safety–critical systems requiring a
high level of reliability and availability. Further works will
verify the features of the proposed data–driven schemes
for real autonomous underwater vehicles, and applied also
for fault tolerant control strategies. Other fault scenarios
and different uncertainty and disturbance conditions will
be also considered in order to further verify and validate
the proposed fault diagnosis strategy.
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Finally, the capabilities of the FDI scheme are summarised
in Table 1 by reporting the size of the minimal detectable
faults fi that are injected into the actuator signals uthi

of the ODIN AUV simulator. The accuracy in the recon-
struction of the fault signals is also reported, computed as
percent normalised root mean squared error in the form of
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despite of the disturbance and the uncertainty included in
the ODIN UAV simulator, and thus motivate the applica-
tion of the developed fault diagnosis strategy to real UAV
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of the detection delays and the use of the estimated fault
signals for fault tolerant applications of the considered
data–driven methodologies. Moreover, other fault scenar-
ios and different uncertainty and disturbance conditions
will be also considered in order to verify and validate the
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structures. The fault diagnosis scheme was applied to a
high–fidelity simulator of the omni–directional intelligent
navigator autonomous underwater vehicle based on a Fos-
sen model. The developed fault diagnosis strategy led to
a bank of dynamic neural networks that were able to
estimate single and simultaneous faults affecting the model
actuators. The simulations performed by using the high–
fidelity simulator served to verify the performance of the
developed fault diagnosis approach. The dynamic neural
networks of the bank that provided a dedicated residual
set were trained offline by using the input and output mea-
surements acquired from the simulator. On the other hand,
the designed tool was obtained in a straightforward way,
and it did not require complex analytical computations. It
is also suitable for real–time implementations and it can
be especially oriented to safety–critical systems requiring a
high level of reliability and availability. Further works will
verify the features of the proposed data–driven schemes
for real autonomous underwater vehicles, and applied also
for fault tolerant control strategies. Other fault scenarios
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