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We study how obsessive-compulsive disorder (OCD) a�ects the complexity

and time-reversal symmetry-breaking (irreversibility) of the brain resting-state

activity as measured by magnetoencephalography (MEG). Comparing MEG

recordings from OCD patients and age/sex matched control subjects, we find

that irreversibility is more concentrated at faster time scales and more uniformly

distributed across di�erent channels of the same hemisphere in OCD patients

than in control subjects. Furthermore, the interhemispheric asymmetry between

homologous areas of OCD patients and controls is also markedly di�erent.

Some of these di�erences were reduced by 1-year of Kundalini Yoga meditation

treatment. Taken together, these results suggest that OCD alters the dynamic

attractor of the brain’s resting state and hint at a possible novel neurophysiological

characterization of this psychiatric disorder and how this therapy can possibly

modulate brain function.

KEYWORDS
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1. Introduction

Several important problems in neuroscience boil down to identifying the time scales of

neurophysiological associated to cognitive phenomena (1–7). The most obvious example

is the determination of a given phenomenon’s duration or subdivision into meaningful

segments. When the phenomenon at hand has no characteristic duration, as it is the case for

spontaneous brain activity or cognitive functions such as thinking or reasoning, identifying

time scales involves determining subtler temporal characteristics (8).

There are two main facets to the experimental identification of time scales. The first

involves choosing technical apparatus, experimental procedures, and methods of data

analysis. Appropriate experiments must ensure that the experimental apparatus can access

scales much smaller than the phenomenon’s duration time, which, in turn, should be shorter

than the observation time. The range of accessible time scales ultimately coincides with

that permitted by the methods of data quantification (5). The second part of time scale

identification is the choice of variables used to characterize a given system or phenomenon.

In neuroimaging or electrophysiological experiments the chosen variable is typically some
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function of the signal amplitude recorded at a given location. The

key point is that each of these aspects comes with its own set of

characteristic scales.

Spontaneous brain activity is characterized by nonrandom

structure (9, 10), in which patterns are reedited in a nonrandom

way across the cortical space (11–14). At various spatial

scales, spontaneous brain activity fluctuations display non-trivial

statistical and dynamical long-time properties, including scale-

freeness (15–19), non-Gaussianity (20), weak-ergodicity breaking

(21), and intermittency (19, 22). Hence, spontaneous brain activity

has a structure in a wide range of time scales, so that there is not just

one but a plurality of time scales, and possibly some relationship

among them. These properties, which are mirrored by behavioral

fluctuations (23), are altered in various brain pathologies (24, 25),

and are modulated by the execution of cognitive tasks (26–31) or

by pharmacological manipulations (32). Insofar as these properties

appear to be generic, they can be used to characterize both healthy

and pathological spontaneous brain activity. Likewise, the effects of

experimental variables, including cognitive tasks, neurological or

psychiatric pathologies and interventions of various kinds can be

quantified in terms of modulations of such properties (8, 33).

Physiological disorders may correspond to changes in the

system parameters that lead to bifurcations in the dynamics,

which, in turn, correspond to qualitative changes in the observed

neural activity or in behavior (34–38). Because brain activity can

be understood as the output of underlying nonlinear dynamical

processes, nonlinear methods (39–42) are needed to characterize

both healthy and pathological brain activity (43–46). One of these

methods is the quantification of the temporal irreversibility of the

brain activity.

Living systems operate far from equilibrium (47), and this is

reflected by the breakdown of time-reversal symmetry. From a

statistical viewpoint, time-reversal symmetry quantifies the extent

to which it is possible to discern a preferred time direction in the

realization of some stationary stochastic process (48). Observed

phenomena are thought of as realizations of a stochastic dynamical

process, and the goal is to try to extract information on the

statistical properties of these processes from the time-reversal

symmetry and its breakdown (49–51). For instance, linear Gaussian

random processes and static non-linear transformations of such

processes are time-reversible, so that time irreversibility implies

ruling out Gaussian linear models and their static nonlinear

transformations as possible generative models.

Irreversibility can be associated with a characteristic scale,

i.e., the scale over which the process manifests time-reversal

symmetry breaking (52). In inherently multiscale systems such

as living systems, irreversibility may present complex scale-

dependence, the breaking of time-reversal symmetry possibly

manifesting in different ways at different spatial and temporal

scales, thereby inducing a multiplicity of characteristic scales (53,

54). Consistent with the role of nonlinearity and its inherently

out-of-equilibrium nature, spontaneous brain activity has long

been associated with marked time reversal symmetry breaking

(55). The magnitude of irreversibility is characterized by temporal

fluctuations and is modulated in a task-specific way (56, 57), with

greater values for task-related relative to resting brain activity (57),

and wakefulness relative to in deep anesthesia (58). Irreversibility

of resting brain activity has also been shown to be altered in various

neurological and psychiatric pathologies, including epilepsy (56,

59, 60), attention deficit hyperactivity disorder (57), Alzheimer’s

disease (56), Parkinson’s disease (56), bipolar disorder (57), and

schizophrenia (56, 57). These alterations have been shown to be

both pathology and frequency-specific (56).

Obsessive-compulsive disorder (OCD) is a psychiatric disorder

characterized by anxiogenic, undesired, and recurrent thoughts,

experienced as intrusive, distressing, and inappropriate, and by

repetitive and time-consuming behaviors or mental acts that the

patient is compelled to engage in, often in order to neutralize

obsession-induced anxiety (61).

Various strategies for the treatment of patients with OCD have

been proposed (62, 63). These include pharmacological (64–67),

behavioral (64, 68, 69), and neurostimulation therapies (70, 71).

While serotonin re-uptake inhibitors (SRIs) are the only FDA

approved drugs, 50% of patients can be considered non-responders

when using a 25% to 35% improvement criterion with the Yale-

Brown Obsessive-Compulsive Scale (Y-BOCS), and 30% are non-

responders to combined first-line therapies (SRIs; exposure and

response prevention). Kundalini Yoga meditation was shown to

lead to significant improvement in symptoms using the Y-BOCS

in patients unresponsive to first line therapies and previously

untreated patients (72–77).

Neuroimaging studies have consistently associated OCD’s

pathophysiology with abnormalities of orbitofronto-striatal

structures (78–82), corroborating frontal lobe dysfunction

hypothesis (83). However, OCD’s electrophysiological

characterization appears less univocal (84, 85). Several studies

reported abnormalities in event-related brain activity at various

latencies (86–88). The power spectrum of spontaneous brain

activity in OCD was also found to significantly differ from the

one associated with healthy brain activity (89–98), the general

finding being an increase in delta and theta band power (2–6

Hz) and a decrease in the alpha band (8–10 Hz) (99). Results

on power in the beta range were mixed with both region-

specific increases (94) and decreases at rest (100) and during

hyperventilation (90) in OCD patients with respect to healthy

controls. Reports of frequency characteristics in anterior areas

have been inconsistent at all frequency bands. For instance, for

frontal alpha band (8–10 Hz), some studies reported increases

(101, 102), and other ones decreases in power (91, 92). Likewise,

both trait-related right-hemisphere resting frontal hypoactivity,

corresponding to higher power in the alpha range (100, 103), and

no clear hemispheric differences (91, 92) between the OCD and

healthy control participants were reported. These inconsistencies

may stem from factors including the heterogeneity of patient

population comorbidity for depression or the different frequency

band definition in several studies (92). More generally, the power

spectrum itself constitutes a pure discriminator of several disorders

(autism, addiction, PTSD) and is not a reliable individual outcome

predictor (85).

OCD was shown to be associated with decreased global

field synchronization of multichannel frontal EEG (104, 105),

reduced inter-hemispheric coherence (94, 95), particularly in the

alpha band, and altered non-linear interhemispheric coherence at

various frequency bands (97). Furthermore, multi-frequency band
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resting-state functional connectivity analyses highlighted reduced

resting long-range functional alpha band connectivity in posterior

areas, and condition-dependent increased beta band connectivity

(106). Graph-theoretical analysis also showed altered topological

structure during rest, in the alpha and beta bands (106, 107), with

hypo-clustering in the low-alpha band and hypo/hyper-clustering

in low-alpha and high-beta bands, respectively (107).

In an effort to propose more specific quantifiers of resting brain

activity in OCD, EEG-based nonlinear complexity quantifiers have

also been proposed to constitute a biomarker of OCD, and have

been used to discriminate obsessive compulsive disorder (108–

112) and to predict treatment resistance (113). Specifically, it was

reported that OCD patients were characterized by lower EEG

complexity at both prefrontal and right fronto-temporal locations

with respect to matched healthy control subjects (110).

Though some information can be deduced from the existing

electrophysiological literature, none of the studies explicitly

addressed the irreversibility of the brain activity and its timescales

in OCD. Here, we quantify the irreversibility of spontaneous

magnetoencephalographic brain activity in OCD and its possible

modulation by an OCD-specific yogic breathing pattern (72, 73,

75–77). Irreversibility can be quantified in various ways [see (114),

for a review]. In this study, we use a quantifier of irreversibility

based on ordinal patterns (56, 60, 115–117). Since the typical use

of ordinal patterns is the estimation of the so-called permutation

entropy (118), which is a well-established measure of time-

series complexity, we also test to what extent the permutation

entropy can discriminate the two conditions. The main focus of

the present study, however, is the irreversibility estimated from

the ordinal pattern distribution. In particular, we expected that

OCD would significantly affect the characteristic time scales at

which irreversibility appears, and that these time scales would

be distributed differently in space in OCD patients compared

to control subjects. We also conjectured that, if time scales are

significantly altered by pathology, an effective therapy should shift

their properties toward values observed in the healthy population.

We note here that only patients who had chosen not to receive

medication participated to this MEG study, thus eliminating one

possible confound source. The breathing and meditation therapy

was the only treatment received by the patients included into the

present analysis (74–76).

2. Methods

2.1. Participants and the OCD-specific
protocol

We analyzed MEG recordings from 10 OCD patients at

baseline (4 men aged 23–36; 6 women aged 25–55) and 9

controls (4 men aged 25–38; 5 women aged 39–64). Controls

were matched by sex and roughly by age, except for the two

youngest female patients. The MEG recording device allowed

performing bilateral measurements on reclining participants.

During recording, participants were reclined on their right side as

schematically depicted in Figure 1, left.

In a follow-up session 1 year later, all control subjects, otherwise

termed healthy controls (HC) were recorded a second time. OCD

patients followed a Kundalini-yoga-based breathing therapy over

a period of 1 year. The breathing therapy was based on eight

primary techniques to be used on a daily basis, and three additional

techniques to be used at personal discretion. All techniques are

described in detail in (73, 75–77). Three patients did not take

the follow-up MEG scan after 1 year. Hence, results for the post

therapy condition are based on the remaining 7 patients. After

describing the meditation study and the possible adverse effects

(i.e., temporary muscle soreness), we obtained written informed

consent from all participants, who decided in complete freedomnot

to receivemedication. The study was conducted in compliance with

the Code of Ethics of the World Medical Association, Declaration

of Helsinki. The analysis of the MEG data continues to receive

approval and coverage by the University of California San Diego

Human Subjects Internal Review Board.

2.2. Data recording and pre-processing

The MEG data were recorded from a dual 37-channel

superconducting quantum interference device (Biomagnetic

Technology Inc., San Diego, CA) at the Scripps Research Institute

(La Jolla, CA). Each channel received the signal from a single

detection coil within the biomagnetometer. Detection coils were

20mm in diameter, and were arranged in concentric circles over a

spherically concave surface, which was placed above the auditory

cortex and spanned a circular area with a diameter of 144mm. A

scheme of the channels’ arrangement is seen in Figure 1. Due to

data corruption, two channels from the right hemisphere were not

available for analysis.

For each subject, a total recording time of T = 1,800 s at a

sampling rate of fs = 231.5Hz was available. Time series were low-

pass filtered by using a forward-backward 8th order Butterworth

digital filter with a critical frequency of 45Hz to ensure that 60Hz

power line artifacts were removed.

2.3. Data analysis

2.3.1. Second-order (spectral) statistics
The time series were recorded during a long period of resting-

state activity, for which it seems adequate to assume stationarity.

We define the autocorrelation function as

Cxx(t) = 〈x(t′)x(t′ + t)〉 − 〈x〉2 (1)

where angular brackets indicate averaging and the stationarity

assumption implies that the reference time t′ is arbitrary and that

the second term does not depend on time. The power spectrum

Sxx(f ) is defined as the Fourier transform of Cxx(t)

Sxx(f ) =

∫
dt e2π iftCxx(t). (2)

Some representative power spectra are shown in Figure 2.

Although the magnitude and position of spectral peaks varies from

patient to patient, the rough shape of the spectra is similar. In
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FIGURE 1

Schematics of the recording equipment (left), and channel arrangement within the (left, right) measuring probes. The channels marked in red were

not available for the analysis.

FIGURE 2

Examples of power spectra from two channels of the left

hemisphere. Each line corresponds to one of the 10 OCD patients

(baseline condition). Spectra are computed using Welch’s method

with the same time window used for the estimation of ordinal

pattern distributions (see Section 2.3.2).

particular, there is no sign of divergence of the spectrum in the low-

frequency limit f → 0. This observation gives some support to the

assumption of stationarity (42).

2.3.2. Ordinal patterns
Let xi(t) be the time series obtained from channel i, where

t = 1 . . .N is the time step (N = T/1t = T · fs). The time-

delay embedding yields a d dimensional vectorXi(t) = {xi(t), xi(t−

τ̄ ), . . . xi(t−(d−1)τ̄ )}, where τ is the embedding delay measured in

time steps and d is the embedding dimension (42). In seconds, the

embedding delay will be indicated as τ = 1tτ̄ . The ordinal pattern

π(Xi(t)) associated to each embedding vector is the permutation of

its elements which brings them into ascending order. Since statistics

were considered for each channel separately, the channel index

will be dropped in the following to reduce notation clutter. The

probability of each pattern was estimated as the relative frequency

of the pattern within nw nonoverlapping segments of the total

available recording time for each patient. As amatter of fact, Results

were qualitatively consistent for values ranging from nw = 2 to

nw = 10. The standard value of nw = 6 is used for all figures.

2.3.3. Permutation entropy
Let pk be the probability of the kth permutation pattern. The

permutation entropy (PE) is defined as the Shannon entropy of the

distribution of ordinal patterns (118)

PEd = −

n∑
k=1

pk log2 pk, (3)

where n = d! is the number of possible ordinal patterns. The PE

is a measure of complexity that has found wide application in the

analysis of nonlinear time series (119–121).

2.3.4. Time-symmetry breaking from permutation
patterns

Let pk indicate the probability of the kth permutation pattern, as

above. We indicate by p̂k the ordinal pattern distribution measured

from the time-reversed time series, i.e., the probability of observing

the kth pattern in the time series x̂(t) = x(N − t). Studying

the time-reversal symmetry breaking has a long tradition and is a

hallmark of systems out of equilibrium. It was recently proposed

to exploit statistical differences in the ordinal patterns to quantify

the irreversibility of time series (60, 116, 122). Here, the measure of

time-reversal symmetry breaking is defined as

σd(τ ) =
D(pk||p̂k)

τ (d − 1)
=

1

τ (d − 1)

n∑
k=1

pk log2
pk

p̂k
, (4)

where D(pk||p̂k) is the Kullback-Leibler (KL) divergence between

the ordinal pattern distribution extracted from the original time

series and that obtained from the time reversed time-series. Clearly,

if the time series is (statistically) symmetric under time-reversal,

pk = p̂k and σ = 0. Any difference in the probability of a pattern
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and its time-reversed leads to σ > 0. Note that although the KL

divergence is, in general, not symmetric, in this case the roles of

the forward and backward time series can be reversed, which can

be seen explicitly as follows. Let p̌k be the pattern corresponding

to the time-reversal of pk. To this end, the pattern labeling can be

chosen such that p̌k = pk+n/2 when k ≤ n/2 and p̌k = pk−n/2

when k > n/2. Assuming that both pk and p̂k represent the actual

probabilities (i.e., that the underlying distribution are perfectly well

sampled) implies that p̌k = p̂k. Then, reversing the roles of pk and

p̂k in the definition Equation 4 leads to

D(p̂k||pk) =
n∑

k=1

p̂k log2
p̂k

pk

=

n/2∑
k=1

pk+n/2 log2
pk+n/2

pk
+

n∑
k=n/2+1

pk−n/2log2
pk−n/2

pk

=

n∑
k′=n/2+1

pk′ log2
pk′

pk′−n/2
+

n/2∑
k′=1

pk′ log2
pk′

pk′+n/2
=

=

n∑
k′=n/2+1

pk′ log2
pk′

p̂k′
+

n/2∑
k′=1

pk′ log2
pk′

p̂k′

=

n∑
k′=1

pk′ log2
pk′

p̂k′
= D(pk||p̂k), (5)

which shows that the definition of the IR is symmetric with respect

to the choice of forward and backward time series. We will refer

to σd as to irreversibility per unit time or, in short, irreversibility

rate (IR).

2.3.5. Synthetic data (statistical significance of
data)

Because of finite-size effects, it can be p̌k 6= p̂k - and thus

σ > 0 - although the underlying system is actually time-reversible.

To assess the magnitude of finite-size effects in our data, we

generated an ensemble of Gaussian reversible synthetic time-series

with the same power-spectrum Sxx as the actual series as described

elsewhere (123). Briefly, the series are generated in the frequency

domain by drawing two Gaussian random numbers zero mean and

variance Sxx(f )T/2 (here T = N1t); these two numbers are the

real and imaginary part of the Fourier transformed time series,

i.e., ℜ[x̃(f )] and ℑ[x̃(f )], respectively. The synthetic time series is

then generated via inverse Fourier transform

xs(t) =

∫
df e−2π ift x̃(f ). (6)

It can be easily seen that the ordinal pattern statistics of these

time series are time-reversible:

x̂s(t) = xs(T − t) =

∫
df e−2π if (N−t)x̃(f )

=

∫
df e−2π ift x̃∗(f )e2π iTf . (7)

The last equation shows that the time-reversal is equivalent

to applying a phase shift to each Fourier component of the

original series. Hence, x̂s(t) is a Gaussian stationary series with the

same power spectrum as xs(t) and it is statistically equivalent to

it. Consequently, by applying Equation 4 to the Gaussian noise

ensemble, we obtained an empirical distribution of the baseline

σ (τ ). The significance level was taken as the the 99th percentile of

such empirical null distribution.

Another popular, and more refined way, of generating

surrogate data is the Iterative Amplitude Adjusted Fourier

Transform (124), which attempts to approximately match both

the power spectrum and the stationary distribution of the original

time series. However, this is an iterative procedure which does

not converge to the exact power spectrum and that can possibly

introduce unwanted nonlinear structure into the surrogate data.

In the present case, we preferred the simpler approach of a

Gaussian stationary ensemble with matched power spectrum since

it is guaranteed to be time-reversible and that the stationary

distribution of the data is not too far from a Gaussian distribution.

2.3.6. Forbidden patterns
A further practical issue is represented by the case when the

data yield pk = 0 for some k. In this case, Equation 4 would diverge.

To deal with this case, we proceeded as follows. Suppose one pattern

is not observed in the dataset at hand.Without loss of generality, we

can label patterns such that the unobserved pattern is p1, i.e., p1 =

0. We now assume that the actual probability is p1,true = ǫ ≪ N−1,

where N is the total number of samples. In other words, we assume

that the missing pattern has a very small non-zero probability, and

it is therefore not observed in the data as a result of insufficient

statistics. Furthermore, we assume that p̂1 ≫N−1, i.e., the reversed

pattern is well estimated by the available data (and, hence, p̂ ≫ ǫ).

Consider the quantity x log2(x/p̂
′
1) + p̂′1 log2(p̂

′
1/x); its derivative

with respect to x, log2(x/p̂
′
1)+1− p̂′1/x is always negative if x < p̂′1,

i.e., it is a decreasing function of x. In the same range, it is an

increasing function of p′1. Hence, if we set p′1 = N−1 and rescale all

other probabilities as p′
k
= pkN/(N+ 1) to preserve normalization,

we obtain an irreversibility estimate σ ′
d
which is, under the above

assumptions, a lower bound on the actual irreversibility:

σ ′(τ )(d−1)τ = p′1 log2
p′1
p̂′1

+ p̂′1 log2
p̂′1
p′1

+

n∑
k=2

k6=1+n/2

p′k log2
p′
k

p̂′
k

/ p′1 log2
p′1
p̂′1

+ p̂′1 log2
p̂′1
p′1

+
∑
k=2

k6=1+n/2

pk log2
pk

p̂k
(8)

= N−1 log2
N−1

p̂′1
+ p̂′1 log2

p̂′1
N−1

+

n∑
k=2

k6=1+n/2

pk log2
pk

p̂k

< ǫ log2
ǫ

p̂1
+p̂1 log2

p̂1

ǫ
+

n∑
k=2

k6=1+n/2

pk log2
pk

p̂k

= σ (τ )(d − 1)τ .

Clearly, the above bound is meaningful only if the forbidden

patterns are few and the corresponding time-reversed patterns are

sufficiently sampled. In the following, we consider d = 3, 4, which

ensured that both conditions were met. On a final technical note,

the usual empirical prescription for the number of samples to be
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larger than (d + 1)! to obtain a good estimate of the PE seems

insufficient for a good estimate of the KL divergence, since the

ratio of probabilities makes this measure much more sensitive to

finite-size errors than the PE.

2.3.7. Statistical tests
For some quantities, a linear mixed model (LMM) was used to

asses whether the observed differences are statistically significant.

This approach permits to deal with multiple measurements from

the same subjects. The model included the subject as a random

effect. There were three predictors: (i) belonging to either group,

(ii) the 1-year interval (only for the control group), (iii) the 1-year

treatment period (only for OCD patients).

3. Results

This section is organized as follows. We begin by reporting

the PE as a function of the embedding delay in the different

experimental conditions. We then measure the IR in the single

recording channels. Motivated by the behavior of the IR as a

function of the embedding delay, we then define a IR relative to

“fast” and “slow” timescales and study how the IR is distributed

across channels. Finally, we investigate the interhemispheric

symmetry of the IR, i.e., between homologous areas of the

two hemispheres.

3.1. PE is weakly modulated by OCD

We begin by considering the PE as a function of the embedding

delay τ , averaged across subjects in a specific group and condition.

For brevity, we focus on the case d = 4 (results for d =

3 are qualitatively similar). Figure 3 shows results for several

representative channels. The PE in channel 1 of the left hemisphere

(Figure 3A) increased on average more rapidly (as a function of

the embedding delay) in the control subjects (black solid line)

than in OCD patients (orange solid line). This difference persisted

in the second recording for both groups (gray dashed-dotted

line: control; yellow dashed-dotted line: patients), the results of

which are consistent with the first recording. The likely reason

for this different behavior of the PE in the two groups is the

different time-course of the autocorrelation function of the two

groups (Figure 3A, inset). The first minimum of the autocorrelation

function occurred at shorter time lags for control subjects than

for OCD patients. The time lag corresponding to the minimum

roughly corresponds to the τ at which the PE reaches saturation,

which is in line with what is expected from the theory of time-delay

embedding (39). The faster increase of the PE as a function of τ in

the control group was consistently observed in nearly all channels

(not shown).

A further difference between the two groups was observed in

several channels of the right hemisphere, shown in the four panels

in the right side of Figure 3 (color and line coding as in Figure 3A).

The PE in channel 2R (Figure 3B) displays a difference in the

two groups: the PE of control subjects is lower than that of OCD

patients over a wide range of embedding delays (from about 0.2 s

to ∼ 3 s). This difference is not explainable in terms of the (linear)

autocorrelation in a straightforward manner. The PE as a function

of τ was rather consistent in the two recording sessions for the

control group. It is noteworthy that the shape of the PE curve of

OCD patients was hardly affected by treatment, as shown by the

strong similarity of orange solid line and yellow dashed-dotted lines

in Figure 3B. Figure 3C shows the same qualitative behavior of the

PE as a function of the embedding delay τ in channel 8R, which is

next to channel 2R. Here, the difference between the two groups is

more pronounced than in channel 2R. A second group of channels

on the upper front side of the right hemisphere displays the same

qualitative picture, as it can be seen in Figure 3D (channel 11R) and

Figure 3E (results from channel 12R). Similar observations can be

made in channel 25R, which is next to channel 11R (not shown).

3.2. Di�erent modulation of IR at fast and
slow time scales

Next, we turn to the behavior of the irreversibility rate

(IR) σd(τ ) as a function of the embedding delay τ , again

focusing on the case d = 4. The qualitative behavior of σ4(τ )

observed in most channels of the control group recordings can

be roughly categorized in two cases, which are illustrated by the

two representative channels shown in Figure 4. In some cases,

represented by channel 29L, a significant IR is observed for

embedding delays up to ≈ 60ms (Figure 4A, black solid line),

where it sharply drops to levels just close to the threshold for

statistical significance (black dotted lines). Some mild IR can still

be measured in the range 0.1 s to 0.3 s, above which no significant

difference from the null level can be observed. The qualitative shape

of σ4 as a function of τ in the follow-up recording session 1 year

later (gray dashed-dotted line) is consistent with the first session,

although the overall magnitude is roughly halved. In other cases, as

for channel 10R (Figure 4B), σ4 measured in control subjects (black

solid line) displays a pronounced peak in the range 30ms to 60ms,

above which the same sharp drop is seen as in the other channel.

In this case, the results of the second recording session 1 year later

(gray dashed-dotted line) are both qualitatively and quantitatively

consistent with the first session.

In OCD patients, the shape of the IR curve is markedly

different. At baseline, it attains a pronounced peak between 10

and 20ms, above which it strongly declines to the significance

threshold. Above τ ≈ 70ms no significant IR is observed. This

behavior is seen rather consistently in both channels displayed in

Figure 4.

Remarkably, the qualitative shape of σ4(τ ) in patients after 1-

year treatment (Figure 4, yellow dashed-dotted line) is in-between

that of patients and controls at baseline: Similar to baseline

condition, a peak around 15ms is observed. However, σ4 decreases

more slowly on increasing τ compared to the untreated case. A

small secondary peak is seen for τ ≈ 30ms, i.e., where σ4(τ ) is

maximum for control subjects. This shape of the curve is similar in

both considered channels.

Overall, the results of Figure 4 suggest that the timescales of the

IR estimated from permutation patterns differ in the two groups.

To investigate whether these results can be easily explained in terms
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FIGURE 3

Average permutation entropy (PE) of several representative channels as a function of the embedding delay τ for the di�erent groups and conditions:

HC (solid black line: baseline, dashed-dotted gray line: second session 1 year later), OCD patients (orange solid line: baseline, yellow dashed-dotted

line: after 1 year of treatment). The embedding dimension is d = 4. Panel (A) shows the PE measured in the channel 1L. The inset represents the

autocorrelation function of the same channel (same color and line coding). Nearly all channels displayed the same qualitative behavior at short τ and

the di�erence between the two groups. Panels (B–E): PE measured in channels 2, 8, 11, and 12 of the right disc as indicated above each panel,

respectively (same color and line style coding). Results from channel 25R are also qualitatively similar to channels 2, 8, 11 and 12 (not shown). Shaded

areas represent one-SD confidence intervals for the mean over subjects and time windows.

FIGURE 4

Average irreversibility rate (IR) of two representative channels [29L in panel (A) and 10R in panel (B)] as a function of the embedding delay τ for the

di�erent groups and conditions: controls (HC: solid black line: baseline, dashed-dotted gray line: second session 1 year later), patients (OCD: orange

solid line: baseline, yellow dashed-dotted line: after 1 year of treatment). Insets show the average power spectrum of the respective channels in

baseline condition. In OCD patients the IR mostly peaks at faster time scales (τ ∼ 15ms), whereas in HC the IR can peak at slower time scales

(τ ∼ 50ms).

of differences in the power spectra, the insets in Figure 4 show the

average power spectra of respective channels. More specifically, the

inset in Figure 4A shows the average power spectrum of channel

29L in baseline conditions for HC (black line) and OCD patients

(orange line). The two spectra are quite similar in shape and

magnitude over the entire frequency axis. The most prominent

oscillation is seen around 9Hz. The power spectra measured

from channel 10R, shown in the inset of Figure 4B are similar

to the previous case, except that the peak around 9Hz is less

marked for both groups, and that in the range 10Hz to 20Hz

OCD patients have slightly less power. Although there is no

straightforward link between the peaks in the power spectrum

and the time scales of the IR, there seem to be no clear-cut

discrepancy in the power spectra of the two groups that could

clearly explain the different timescales emerging from the data of

Figure 4.
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A

B

FIGURE 5

Time scales of the IR are qualitatively di�erent in the various

conditions and for the two embedding dimensions d = 4 (A) and

d = 3 (B). Normalized IR rate σ (τ )/σ̄ averaged over all channels of

the left disc as a function of the embedding delay τ . Color and line

coding: healthy controls (HC; black solid: baseline; gray dashed

dotted: follow-up 1y later), OCD patients (orange solid line:

baseline, yellow dashed-dotted: follow-up 1y later).

Going back to Figure 4B, the behavior of σ4(τ ) suggests the

definition of two ranges of time scales, the edges of which are

marked by vertical dotted lines in Figure 4B: the “fast” time range

1τf which goes from τ1 = 8ms to τ2 = 30ms and the “slow” time

range 1τs which spans from τ2 = 30ms to τ3 = 70ms. Looking at

the results of Figure 4, the largest share of the IR in OCD patients

is concentrated in the “fast” range (τ1, τ2), whereas in the control

HC group the IR is either stronger in the “slow” range (τ2, τ3), as in

channel 10R or more evenly distributed, as in channel 29L.

A difference in “fast” and “slow” IR persists also if all channels

are considered altogether. Figure 5A shows σ4(τ )/σ̄4, the IR

averaged over all channels in the left hemisphere, normalized to the

maximum of each curve σ̄4. The color coding is as in the previous

figures. It can be seen that σ4(τ )/σ̄4 stays close to its maximum

value in the entire range 10ms to 70ms, which spans both “fast”

and “slow” ranges as defined above, when control subjects are

considered (black solid line). This finding is confirmed by the

second recording session, in which σ4(τ )/σ̄4 is above 80% of its

maximum value over the same range (gray dashed-dotted line).

In contrast, σ4(τ )/σ̄4 peaks around ≈ 15ms for OCD patients

and then drops faster to zero (orange solid line). One year after

treatment the decrease is slower, although the peak is still clearly

visible at the same time scale as at baseline.

A relevant issue is whether the picture changes if a different

embedding dimension d is used. In principle, increasing d would

allow for a finer probe of the state space. However, for d = 5,

the number of unobserved patterns is too large to obtain a reliable

estimate of σ5. Hence, we will compare the results discussed so

far to the case d = 3. For brevity, we will focus on the averaged

normalized IR σ3/σ̄3, which is shown in Figure 5B (color and

line coding as in Figure 5A). The general picture bears several

resemblances with the case d = 4: in control subjects, the IR is

large in the middle of both “fast” and “slow” ranges large with

two peaks at ≈20ms and ≈60ms, respectively. Above this value

of τ , σ3/σ̄3 rapidly drops. Furthermore, σ3/σ̄3 measured in OCD

patients peaks around 20ms, above which it rapidly drops. There

is, however, also the following difference to the case d = 4: In

both groups, σ3/σ̄3 shows a dip around τ2, which was not evident

in σ4. This dip is more pronounced in control subjects. Despite

this difference, Figure 5 shows an overall picture that is roughly

consistent for the two embedding dimensions d = 3, 4: If all

channels are lumped together, the IR is more concentrated in the

“fast” range in OCD patients, whereas it is more evenly distributed

when the control group is considered.

3.3. Contrasting spatial distribution of fast
and slow IR

In the following, we will investigate whether the difference

between the two groups observed in Figures 4, 5 is spatially

structured over the two hemispheres in some way. To this end,

we define the average IR in the “fast” and “slow” ranges for each

channel as

ωf (i) =
1

τ2 − τ1

∫ τ2

τ1

dτ σ4,i(τ ), ωs(i) =
1

τ3 − τ2

∫ τ3

τ2

dτ σ4,i(τ ),

(9)

respectively. In Equation 9, σ4,i(τ ) is the IR rate estimated for

channel i from ordinal patterns with embedding dimension d = 4,

as defined in Equation 4, and the two integration ranges are defined

above and indicated in Figures 4, 5.

Figure 6 shows how the average IR rate in the “slow” range

ωs(i) is distributed over the two hemispheres at baseline. In the

HC group (top row) the spatial distribution of ωs(i) exhibits a clear

asymmetry with respect to the top-bottom axis, which is roughly

aligned with the intersection of a coronal plane with the center of

the recording probe (green dashed line in Figures 6, 7): In both

hemispheres, ωs(i) is larger in the back side, especially toward the

back edge. In OCD patients (Figure 6, bottom row) the picture

is markedly different. The magnitude of ωs(i) is generally lower;

the most striking difference, however, is its rather uniform spatial

distribution in both hemispheres.

In the follow-up recording taken 1 year later, the absolute

values of ωs(i) measured in the HC group are generally somewhat

smaller in magnitude (Figure 7, top line). However, the asymmetric

distribution of ωs(i) is consistently observed, with a higher

concentration of “slow” IR in the back side of both hemispheres.

Results for OCD patients (Figure 7, bottom row) show that ωs(i)

is generally larger in magnitude than at baseline. The spatial

distribution is still rather uniform in the left hemisphere. In the

right hemisphere (Figure 7, bottom right), some mild asymmetry

with respect to the top-bottom axis is present, with channels located

at the back side of the probe measuring a slightly higher ωs than

those on the other side. In this sense, there has been a change in

OCD patients that makes the spatial distribution of ωs more similar
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FIGURE 6

Topological representation of irreversibility rate at slower time scales (ωs) in all channels at baseline. (Top row): Controls (HC); (bottom row): OCD

patients. Note that ωs is asymmetrically distributed in HC and more uniform in OCD patients.

FIGURE 7

Topological representation of average irreversibility rate at slow time scales (ωs) in all channels in follow-up recording 1 year after the first recording.

(Top row): Controls (HC); (bottom row): OCD patients. Compared to baseline, the overall values ωs are smaller in HC than at baseline, but the

asymmetrical distribution persists. In OCD patients, ωs is generally larger than at baseline. It is still rather uniformly distributed, although in the right

hemisphere there seem to be a mild increase in the asymmetry with respect to the top-bottom axis.
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FIGURE 8

Topological representation of IR at faster time scales (ωf ) in all channels at baseline. (Top row): Controls (HC); (bottom row): OCD patients. There is a

strong asymmetry in how (ωf ) is spatially distributed when control subjects (HC) are considered, with the larger part of the fast IR concentrated

toward the back area. In OCD patients, (ωf ) is more homogeneously distributed.

to that of control subjects, although the magnitude of this change

is moderate.

Turning to the “fast” IR ωf (i), Figure 8 shows that in the

HC group (top row) a clear asymmetry in the distribution exists,

which looks similar to that observed for the “slow” IR: a larger ωf

is measured from channels located toward the back. The overall

magnitude of ωf measured in OCD patients (Figure 8, bottom row)

is similar to that of HC. However, the spatial distribution is rather

uniform, in both hemispheres.

In the follow-up recording, the magnitude ωf in the HC group

(Figure 9, top row) is generally somewhat smaller than in the

first recording, but the asymmetric spatial arrangement is clearly

conserved. In OCD patients, there are no major changes in the

overall magnitude of ωf . The spatial distribution is still rather

uniform, although some mild asymmetry can be observed in the

opposite direction, i.e., toward the front side.

The overall picture emerging from Figures 6–9 suggests that

the asymmetric distribution of ωf and ωs with respect is a

trait that is consistently characterizing the control group with

respect to OCD patients, rather than the overall magnitude of

the same quantities. To make this observation quantitative, we

define a intrahemispheric asymmetry index for the two quantities

as follows:

βslow =

∑
i ωslow(i)ρ(i)∑
i ωslow(i)|ρ(i)|

; βfast =

∑
i ωfast(i)ρ(i)∑
i ωfast(i)|ρ(i)|

, (10)

where ρ(i) is the signed distance of channel i to the symmetry axis,

where the axis is indicated as a green dashed line in Figures 6, 7

and as a purple dashed line in Figures 8, 9. The positive direction is

toward the back side, as indicated by the arrows in Figures 6–9. To

ensure that βs and βf are equal to zero if the distribution is uniform,

the two channels that are located at symmetric positions of the

two unavailable channels in the right hemisphere are discarded

from the calculation of βs and βf . These two channels are circled

in red in Figures 6–9. Furthermore, both asymmetry indexes are

defined such that −1 < βs < 1 and −1 < βf < 1, where a

positive βf (βs) indicates that ωf (ωs) is more concentrated toward

the back, whereas a negative value of the asymmetry indicates that

the spatial distribution has more weight toward the front side.

Figure 10A reports the asymmetry index of the “slow” IR ωs in

the left hemisphere. Here, the asymmetry is significantly larger for

the control subjects than for OCD patients both at baseline and

follow-up conditions, which yield similar values of βs. Indeed, the

LMM regression yields the group as the only statistically significant

predictor (p = 0.007). In the right hemisphere (Figure 10B), the

average asymmetry index toward the back side is significantly large

than zero in HC (p = 0.04, t-test) whereas it very close to zero for

OCD patients (p = 0.97, t-test). However, the difference between

the two groups is not large enough to be a significant predictor.

After 1y, the HC group displays similar average values of βs; the

asymmetry index of OCD grows slightly, but not enough to be

considered significantly different from zero. The asymmetry index

of “fast” IR in the left hemisphere is reported in Figure 10C. The

mean βf is larger than zero for HC in both recording sessions by

more than one standard deviation while in OCD patients, the mean

βf is close to zero. However, the difference between the two groups

is not large enough to be considered statistically significant with

the data at hand, and the LMM does not yield any statistically

significant predictor (the strongest effect is the group, for which

p = 0.09). Finally, βf in the right hemisphere at baseline is
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FIGURE 9

Topological representation of IR at faster time scales (ωf ) in all channels in the follow up session. (Top row): Controls (HC); (bottom row): OCD

patients. The overall IR is reduced, but the spatial distribution of ωf is still rather asymmetrically concentrated toward the back in HC and more

uniform in OCD patients.

similar to that measured in the left hemisphere in both groups,

with HC displaying some modest asymmetry and OCD patients

no coronal-plane asymmetry. In the follow-up recording, the mean

βf is unchanged in both groups, and the LMM analysis yields no

statistically significant predictor for this case.

Overall, the intrahemispheric asymmetry of the “slow” IR in

the left hemisphere is the strongest difference as far as the spatial

distributions are concerned, in that this asymmetry is essentially

absent in OCD patients, whereas it is consistently observed in

control subjects. In the other hemisphere and for the “fast” IR, the

same tendency can be observed, but more data are needed to give

stronger support to this observation.

3.4. OCD modulates the interhemispheric
asymmetry of IR

Finally, we investigate how different homologous brain regions
are with respect to the IR, i.e., the interhemispheric (a) symmetry
of the IR. To this end, we can compare the log-ratio of ωs and
ωf for corresponding channels in the two hemispheres. More
precisely, we consider the ratio log10[ωs(i)/ωs(α(i))] where i is

the ith channel of the right side, and α(i) is the corresponding

channel of the left side with respect to the left/right symmetry axis.
This interhemispheric asymmetry log-ratio is shown in Figure 11
with a diverging color code (see the color bar), so that dark red

circles indicates strong asymmetry toward the right side, dark blue

circles mark strong asymmetry toward the left hemisphere, and

FIGURE 10

Coronal-plane intrahemispheric asymmetry of IR at slow (A, B) and

fast time scales (C, D) in the left and right hemispheres. Asymmetry

indexes are defined in Equation 10. Black bars: controls; orange

bars: OCD patients. Results from the LMM regression indicate that

the only statistically significant predictor is belonging to either

groups (p = 0.007), when βslow in the left hemisphere is considered,

which is marked by asterisks.
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FIGURE 11

Topological representation of IR (right, left) asymmetry for slow IR.

white circles depict channels for which the average ωs is symmetric

in the two hemispheres. At baseline (Figure 13, top left), control

subjects show a clear asymmetry toward the right side in most

channels. In the follow-up session (Figure 13, top right), the average

ratio log10[ωs(i)/ωs(α(i))] is positive in the majority of channels,

although there is a larger number of channels in which the ratio

is close to zero or mildly negative. In OCD patients (Figure 11,

bottom left), there are many channels for which the asymmetry log

ratio is very close to zero, and an equally number of moderately

positive (mostly in the back side) and negative values (mostly in the

front side). In the follow-up session (Figure 11, bottom right), there

are no major changes with respect to the first recording.

Figure 12, right, left asymmetry ratio of the “fast” IR,

log10[ωf (i)/ωf (α(i))]. Results for control subjects during the first

session (Figure 12, top right) indicate that the “fast” IR is stronger

in the right side for channels located at the back, and stronger

in the left side for channels located toward the top and front

areas. In the follow-up recording, the spatial distribution is roughly

similar, although there are several more channels in which the

log ratio is very close to zero, which indicates equally strong fast

IR in the two homologous areas. In OCD patients the picture is

markedly different: in Figure 12, bottom left, most channels are

marked in blue, which indicates that the “fast” IR is larger in the

left hemisphere. In the follow-up recording (Figure 12, bottom left),

the ratio is weaker and close to zero in several channels, but in most

cases ωf is stronger in the left side.

Finally, we can consider a global asymmetry ratio as the sum

over all channels of the log-ratio considered so far. Figure 13A

shows the global asymmetry of the slow IR, which is clearly positive

(i.e., stronger in the right side) in control subjects, and zero in

OCD patients. The LMM regression yields a statistically significant

effect for the group fixed effect (p = 0.008), and no significant

effect for the other two predictors. The fast IR behaves differently

(Figure 13B): it is very close to being symmetric in control subjects,

and it is negative (i.e., predominant in the left) in OCD patients.

The LMM analysis yields again the group as the only statistically

significant effect (p = 0.038).

4. Discussion

In the present study, we sought signatures of OCD in

multichannel MEG recordings obtained at resting state over an

extended period of time. The general framework of our analysis

was that of the symbolic dynamics defined by ordinal patterns.

Typically, ordinal patterns are used to compute the PE (119), which

is a measure of complexity. How OCD affects the complexity of

brain activity patterns was the topic of previous studies (108–

112). Here the main tool to characterize brain activity and its time

scales was instead a measure of time-symmetry breaking, which we

called irreversibility rate (IR). The IR was defined as the Kullback-

Leibler (KL) divergence between the ordinal pattern distribution

observed in the original time series and that measured from the

time-reversed counterparts, normalized by the time length of the

embedding vector. We hypothesized that the IR regarded as a

function of the embedding time delay (which is proportional to the

length of the embedding vector) would be a good proxy to probe

the dynamical system’s time scales.

Although quantifying the complexity of activity patterns

was not the goal of this study, we did measure PE, which

is also based on the distribution of ordinal patterns. Our

analysis suggests that OCD has a rather limited influence on
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FIGURE 12

Topological representation of IR (right, left) asymmetry for fast IR.

the PE. Specifically, two small effects were observed (Figure 3):

in two areas of the right hemisphere PE was somewhat larger

in OCD patients than in controls over an interval of time

scales that ranged from about one up to a few seconds. The

other difference, which was observed in almost all channels,
was found at short embedding times. Here, the PE saturated
slower (i.e., at larger times) in OCD patients than in controls.

This difference could be explained by the slower decay of
the autocorrelation function. Overall, the PE does not seem a
promising candidate as a discriminator of the two conditions.
Since our aim was to investigate the extent to which the
discriminatory power of the permutation-based irreversibility

measure is redundant with respect to the IR, a comparison
with other complexity measures goes beyond the scope of the
present study.

The main part of our analysis was related to the behavior
of the IR as a function of the embedding time delay τ , which
made it possible to uncover significant differences in the brain

activity of patients and controls. In this respect, we found that

OCD does not seem to considerably alter the range in which

the IR was significantly larger than the noise floor. This range

corresponds to embedding delays in the interval 8ms to 100ms.

Within this range, however, a clear difference was observed

between OCD patients and the controls. In OCD patients, the

IR was consistently concentrated in the “faster” (shorter time

scales) part of the time-delay axis, whereas in HC the IR was

larger at larger time delays or spread over the entire range,

depending on the considered channel. To describe these two

ranges of “fast” and “slow” time scales concisely, we introduced

two intervals on the time-delay axis (see Figure 4). Notably, the

IR in the “slow” range measured in OCD patients was larger

than at baseline, so that the difference between patients and

FIGURE 13

Total right-left asymmetry for slow (A) and fast (B) IR. The LMM

regression indicates only belonging to one group as statistically

significant predictor (p = 0.008 for the slow IR, and p = 0.038 for the

fast IR). The asterisk marks a statistically significant di�erence

between groups.

controls was milder in the second recording session following

yogic therapy.

This major difference between the two groups was also evident

when the average over all channels was considered (see Figure 5A),

and when the embedding dimension was changed to d = 3

(see Figure 5B). Although the relative importance of fast and slow

time scales persisted for d = 3, the IR measured at this smaller

embedding dimension was generally lower (not shown). This fact

gives a possible interpretation of why the IR rapidly drops to

negligible values for all groups when the delay is increased beyond

τ3. It is possible that this rapid decrease of the IR is due to an

excessive coarse-graining, i.e., an insufficiently small embedding
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dimension cannot resolve higher IR over longer timewindows. This

methodological limitation is consistent with what was observed in

other empirical estimates of irreversibility in living systems (54).

In principle, using a higher embedding dimension could make it

possible to resolve the IR for slower time scales. However, enlarging

the embedding dimensions makes the size of the required data set

increase exponentially. In spite of these practical limitations of the

method, a clear distinction between the two groups was observed in

the practically accessible range of time scales, and the mild increase

of the IR in the slow range following therapy was observed also in

the average over all channels.

To ascertain whether the difference in the fast and slow

IR had a spatial structure, we defined the average IR within

the two intervals: ωf was defined as the fast IR, i.e., averaged

within (τ1, τ2), and ωs was defined as the slow IR, averaged

within (τ2, τ3). The exact definition was given in Equation 9.

The spatial distribution of both ωs and ωf revealed a clear

difference between the two groups: in the HC group both fast

and slow IR were larger in the channels located toward the

back of both hemispheres, whereas ωs and ωf were rather

uniform in OCD patients. In other words, the spatial distribution

in control subjects was clearly non-uniform and asymmetric

with respect to an axis roughly given by the intersection of

the coronal plane with the two probes, as opposed to the

essentially uniform and more symmetrical distribution seen in

OCD patients (Figures 6–9). This asymmetry was quantified by

the intrahemispheric asymmetry index β , defined in Equation 10.

This asymmetry index was found to be clearly positive in HC in

both hemispheres, but close to zero for OCD patients. Indeed,

the spatial distribution of ωf and ωs was close to uniform in

all cases. The difference between the two groups was particularly

marked in the left hemisphere, for which the statistical model

gave a statistically significant difference between the two groups,

despite the rather limited number of subjects available for the

analysis (see Figure 10). The yogic therapy did not seem to

alter the asymmetry index appreciably. Although the average

intrahemispheric asymmmetry of the slow IR increased, this effect

was too small to be statistically significant given the limited number

of available subjects.

Finally, we investigated whether OCD influenced the inter-

hemispheric asymmetry. To this end, we computed the log-

ratio between the fast or slow IR measured from homologous

channels of the two hemispheres (Figures 11, 12). This part of our

analysis suggested that OCD modulates this kind of asymmetry

(Figure 13). In particular, the slow IR ωs was, on the global level,

predominant in the right hemisphere when control subjects were

considered, whereas OCD patients displayed no clear hemispheric

dominance in the slow part of the observed IR. The fast IR

behaved differently: on the global level, it was rather balanced

in HCs, whereas it was prevalent in the left hemisphere in

OCD patients.

Concerning the interpretation of the IR, it could be tempting

to invoke the fundamental result of stochastic thermodynamics

that links the irreversibility of trajectories to a lower bound on

the thermodynamic entropy production and, hence, to energy

dissipation (125–129). However, this connection holds only

when the transitions that make up the system’s trajectories

are energetically constrained, which is clearly not the case at

hand. Even the interpretation as information entropy production

must be cautiously applied here due to the peculiar nature

of the coarse-graining induced by the conversion of the

original time series into the ordinal pattern series. Even in

very simple systems, different coarse-graining procedures can

influence the information loss on the original system in

different ways and lead to very different estimates on the

entropy production (128, 130, 131). Despite these caveats,

the quantification of irreversibility remains a useful way of

characterizing the system’s dynamical properties and the empirical

evidence that time-reversal symmetry breaking is modulated

by pathologies and even behavioral states corroborates this

view (56–60).

These considerations substantiate the a priori expectation that

many contingent variables could influence the IR, so that a change

would not necessarily be an indication of pathology. Hence, the

neurophysiological interpretation of the IR is not straightforward

both for the theoretical reasons explained above and for the

diversity of factors that can influence its magnitude. Indeed, in

comparing the two recording sessions of the control group, a

substantial difference in the absolute values of the IR was observed

in most recording channels. Considering that the two recordings

were taken 1 year apart, it is conceivable that many variables

outside experimental control could cause this variability, which

should hence not be regarded as surprising. Undoubtedly, the fact

that recordings were performed only at two different time-points

separated by a long period is a limitation of the study design,

beside the moderate number of participants. These limitations

notwithstanding, how the IR was distributed across time scales as

well as the intra- and inter-hemispheric asymmetry in the spatial

distributions were mostly consistent between the two recording

sessions of control subjects, but in marked contrast to what was

seen in OCD patients. Therefore, these asymmetries (or rather lack

thereof) as well as the relative importance of slow and fast time

scales quantified by the IR seem promising candidates to back up

traditional analyses in the endeavor of pinpointing the elusive traces

of obsessive compulsive disorder in neuroimaging data.
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