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1. Introduction

Dimension reduction problems consist in studying the asymptotic behavior of the solutions of a
partial differential equation (or a minimization problem) stated on a domain where one of the
dimensions is much smaller than the others. For instance, in 3D-2D dimensional reduction, the
goal is to understand the asymptotics, as ε → 0, of such solutions defined on thin domains of the
form Ωε := ω × (−ε, ε), where ω ⊂ R2 is usually a bounded open set, and 0 < ε << 1.
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These kind of problems have been widely studied in the framework of integral functionals by
means of Γ-convergence analysis. Indeed Γ-convergence, which has been introduced in [31] (see
also [28, 17, 18] for detailed discussions on that subject), turns out to be well adapted for studying
the asymptotic behavior of variational problems depending on a parameter because it gives good
informations on the asymptotics of minimizers and of the minimal value.

Definition 1.1. Let X be a metric space, and Fn : X → (−∞,+∞] be a sequence of functions.
We denote by

F ′(x) := inf
{
lim inf
n→∞

Fn(xn) : xn → x in X
}

the Γ-lower limit, or more shortly the Γ-liminf of the sequence (Fn). Similarly, we denote by

F ′′(x) := inf

{
lim sup
n→∞

Fn(xn) : xn → x in X

}

the Γ-upper limit, or more shortly the Γ-limsup of the sequence (Fn). When F ′ = F ′′ = F , we say
that F is the Γ-limit of the sequence (Fn), and it is characterized by the following properties:

(i) for every x ∈ X and for every sequence (xn) converging to x in X, then

F (x) ≤ lim inf
n→∞

Fn(xn);

(ii) for every x ∈ X there exists a sequence (xn) (called a recovering sequence) converging to
x in X such that

F (x) = lim
n→∞

Fn(xn).

The motivation for dealing with this variational convergence is explained by the next theorem.
Under the assumption of equicoercivity for the sequence (Fn), there holds the fundamental property
of convergence of the minimum values and infimizers (see Theorem 7.8 and Corollary 7.17 in [28]).

Theorem 1.2. Suppose that the sequence (Fn) is equi-coercive in X, i.e., for every t ∈ R there
exists a fixed compact subset Kt of X such that {Fn ≤ t} ⊂ Kt for every n ∈ N. If (Fn) Γ-converges
to F in X, then

min
X

F = lim
n→∞

inf
X
Fn.

Moreover if xn is such that Fn(xn) ≤ infX Fn + εn, for some sequence εn → 0, and xnk
→ x for

some subsequence (xnk
)k of (xn)n, then F (x) = minX F .

The integral case has been widely studied in the literature starting from the seminal paper [1].
In [34] the authors derived the Γ-limit (for a suitable topology) of integral functionals of the form

1

ε

∫

Ωε

W (Du) dx,

where W : R3×3 → R is a continuous integrand satisfying standard p-growth and p-coercivity
conditions (with 1 < p <∞), and u : Ωε → R3 belongs to the Sobolev space W 1,p(Ωε;R

3). They
actually proved that the Γ-limit is finite if and only if the limit fields u are independent of the
last variable x3, and that on its domain, W 1,p(ω;R3), it still has an integral form with an explicit
density ∫

ω

QW0(Dαu(xα)) dxα.

In the previous formula, we have denoted by xα := (x1, x2) ∈ ω the in-plane variable (Dα is the
derivative with respect to xα), W0(ξ) := infc∈R3 W (ξ|c), and QW0 is the quasiconvex envelope of
W0.

Later on, a general integral representation result has been proved in [20] in the spirit of [23] (see
also [24]). Indeed, the authors showed that integral functionals of the form

W 1,p(Ωε;R
3) ∋ u 7→

1

ε

∫

Ωε

Wε(x,Du) dx

always admit a Γ-convergent subsequence, and that the Γ-limit remains of integral type, i.e.,

W 1,p(ω;R3) ∋ u 7→

∫

ω

W ∗(xα, Dαu(xα)) dxα,



DIMENSIONAL REDUCTION FOR SUPREMAL FUNCTIONALS 3

for some universal function W ∗. Then a series of papers have been devoted to the identification
of the abstract density W ∗ in some particular cases (see e.g. [8, 9, 10]). Several works have been
performed in the case of the critical exponent p = 1 (see [19, 11]) where the analysis takes place
in BV spaces instead of Sobolev spaces.

In this paper we are interested in studying some dimension reduction problems within the
framework of the so-called L∞ (or supremal) functionals, i.e. functionals which are represented as

F (u) = ess sup
x∈Ω

f(x, u(x), Du(x)) (1.1)

where Ω is a bounded open set of RN and u ∈ W 1,∞(Ω). We refer to the function f , which
represents F , as an admissible supremand. The study of this class of functionals was originally
motivated by the problem of finding the best Lipschitz extension in Ω of a function ϕ defined on
∂Ω (see [7]). The introduction of such functionals becomes useful and essential in order to give
a mathematical model for many physical problems as, for example, the problem of modelling the
dielectric breakdown for a composite conductor (see [33]). In [14] it is possible to find a list of
other applications. A lot of recent papers have been devoted to study the properties of this class
of functionals (see [2, 3, 4, 5, 6, 7, 13, 14, 15]). When f is globally continuous, it has been proved
in ([16]) that (1.1) is sequential weakly* lower semicontinuous in W 1,∞(Ω) if and only if f is level
convex in its last variable, i.e., for every λ ∈ (0, 1), ξ1 and ξ2 ∈ RN ,

f(x, λξ1 + (1− λ)ξ2) ≤ f(x, ξ1) ∨ f(x, ξ2),

for all x ∈ Ω. Without having a continuity property on f(·, ξ), one cannot expect that any
admissible supremand of a weakly* lower semicontinuous supremal functional is a level convex
function (see Remark 3.1 in [32]). However, in [36] it is shown that when F is weakly* lower
semicontinuous, then it can be represented through a level convex function. The relaxation of
supremal functionals is quite well understood in the case N = 1 (see [16] and [2]) and in the case
N > 1 when f is a globally continuous function (see [36]). In these cases the relaxed functional is
still supremal and represented through the level convex envelope of f . Unfortunately, the theory
is much less understood when u is vector valued.

In order to study a 3D-2D dimension reduction problem for supremal functionals the first ques-
tion to be solved is if this class of functionals is stable under Γ-convergence in L∞. Unfortunately,
this is not the case as shows the one-dimensional Example 4.1. Among the contributions given
to this problem, we recall [21] in which the authors study the problem of representing the Γ-limit
of sequences of supremal functionals in the case N = 1; later in [22] the authors study the case
of periodic homogenization by showing that the homogenized problem is still supremal. Moreover
they prove that the energy density of the homogenized functional can be represented by means
of a cell-problem formula. The particular case of the 1-homogeneous supremal functionals is con-
sidered in [32] where the authors show that the closure of the class of 1-homogeneous supremal
functionals with respect to Γ-convergence is a larger class of functionals (given by the so called
difference quotients associated to geodesic distances). By analogy with the integral representation
result in [23], in [25] the authors characterize the class of the functionals which can represented in
a supremal form, but this result does not easily apply in practice. One reason is that the notion
of Γ-convergence is not so well suited for supremal functionals since it may not always be possible
to use an argument as the fundamental estimate in the integral case.

To overcome this difficulty it has been convenient to use a generalized notion called Γ∗-convergence
(see [28]), which is, roughly speaking, the Γ-convergence on a suitable ‘rich’ family of open sets.
Thanks to this observation it has been proved in the unpublished work [26] how a Γ∗-limit can be
represented in a supremal form (see Theorem 4.2).

Having in hand all this theory on Γ∗-convergence of supremal functionals, we propose to apply it
to 3D-2D dimension reduction problems by first giving an abstract supremal representation result
for the Γ∗-limit (an analogous result to that of [20] in the integral case), and then to identify the
Γ∗-limit in some particular cases, as in the case where dimension reduction is coupled to periodic
homogenization.
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The paper is organized as follows: Section 2 is devoted to introduce notations and it gives
basic results concerning supremal functionals. In section 3, we provide some definitions and results
necessary to introduce the notion of Γ∗-convergence. In section 4 we state and prove the supremal
representation result for Γ∗-limits which has been obtained in [26]. We stress that since this result
has nowhere been published, we decided to include the proof for the reader’s convenience, and
with the agreement of both authors. In section 5, we apply all these concepts to 3D-2D dimension
reduction: we first prove an abstract Γ∗-convergence result, and then we precise the specific form
of the Γ∗-limit when dimension reduction is coupled to periodic homogenization. The particular
case of homogeneous supremand is treated in section 6, where an alternative proof is given without
appealing to the general representation result. Finally, in section 7, we state a parametrized
homogenization result by Γ∗-convergence for supremal functionals.

2. Preliminaries on supremal functionals

Throughout the paper, we assume that Ω is an open bounded domain of RN . We denote by A
the family of all open subsets of Ω, and by BN the Borel σ-algebra of RN (when N = 1, we
simply write B). Moreover we denote by ‖ · ‖ the euclidean norm on RN , by Br(x) the open ball
{y ∈ RN : ‖x − y‖ < r}, and by LN the Lebesgue measure in RN . By supremal (localized)
functional on W 1,∞(Ω) we mean a functional of the form

F (u,A) = ess sup
x∈A

f(x, u(x), Du(x)), (2.1)

where u ∈ W 1,∞(Ω) and A ∈ A. The function f which represents the functional is called supre-

mand. We now give the following precise definitions.

Definition 2.1. A function f : Ω×R×RN → (−∞,+∞] is said to be

(a) a supremand if f is BN ⊗ B ⊗ BN -measurable;
(b) a normal supremand if f is a supremand, and there exists a LN -negligible set Z ⊂ Ω such

that f(x, ·, ·) is lower semicontinuous on R×RN for every x ∈ Ω \ Z;
(c) a Carathéodory supremand if:

(i) for every (z, ξ) ∈ R×RN , the function x 7→ f(x, z, ξ) is measurable in Ω;
(ii) for a.e. x ∈ Ω, the function (z, ξ) 7→ f(x, z, ξ) is continuous in R×RN .

A sufficient condition for the lower semicontinuity of a supremal functional with respect to the
weak∗ topology of W 1,∞(Ω) has been shown in [16]. It requires that f(x, z, ·) is level convex, that
is for every t ∈ R the level set

{
ξ ∈ RN : f(x, z, ξ) ≤ t

}
is convex for a.e. x ∈ Ω and for every

z ∈ R. It can be equivalently stated as follows: for each λ ∈ (0, 1), ξ1 and ξ2 ∈ RN ,

f(x, z, λξ1 + (1− λ)ξ2) ≤ f(x, z, ξ2) ∨ f(x, z, ξ2)

for a.e. x ∈ Ω and all z ∈ R. Moreover, they showed that if f is uniformly continuous in all
variables, this condition is also necessary (see [14, Theorem 2.7]).

In the sequel we will make use of the following Jensen’s inequality for level convex functions.

Theorem 2.2. Let f : RN → (−∞,+∞] be a lower semicontinuous and level convex function,
and let µ be a probability measure on RN . Then for every function u ∈ L1

µ(R
N ), we have

f

(∫

RN

u(x)dµ(x)

)
≤ µ- ess sup

x∈RN

(f ◦ u)(x). (2.2)

We recall the following relaxation theorem shown in [36, Theorem 2.6]. If the functional (2.1)
is represented by a continuous and coercive function f , then

F (u) := sup
{
G(u) : G : W 1,∞(Ω) → (−∞,+∞] weakly* lower semicontinuous, G ≤ F

}

is a supremal functional represented by the level convex envelope f lc of f defined by

f lc(x, z, ·) := sup{h : RN → (−∞,+∞] l.s.c., level convex and h(·) ≤ f(x, z, ·)} (2.3)

for every x ∈ Ω and z ∈ R.
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Theorem 2.3. Let f : Ω×R ×RN → R be a continuous function. Assume that there exists an
increasing continuous function Ψ : [0,+∞) → [0,+∞) such that Ψ(t) → +∞ as t → +∞, and
f(x, z, ·) ≥ Ψ(‖ · ‖) for every x ∈ Ω and every z ∈ R. Let F : W 1,∞(Ω) → R be the functional
defined by (2.1), then

F (u) = ess sup
x∈Ω

f lc(x, u(x), Du(x))

for every u ∈W 1,∞(Ω).

In the sequel we will make use of the following result proved in [27, Theorem 3.1]. It states that
under a coercivity condition, a supremal functional can be approximated by a sequence of power
law integral functionals.

Theorem 2.4. Let f : Ω×RN → [0,+∞) be a Carathéodory supremand satisfying

(i) f(x, ·) is level convex for a.e. x ∈ Ω;
(ii) there exists a constant C > 0 such that

f(x, ξ) ≥ C‖ξ‖

for every ξ ∈ RN and a.e. x ∈ Ω.

For any p ≥ 1, let Fp : L∞(Ω) → [0,+∞] be defined by

Fp(u) :=





(∫

Ω

fp(x,Du(x)) dx

)1/p

if u ∈ W 1,p(Ω),

+∞ otherwise,

and let F : L∞(Ω) → [0,+∞] be given by

F(u) :=

{
ess sup
x∈Ω

f(x,Du(x)) if u ∈W 1,∞(Ω),

+∞ otherwise.

Then, the family (Fp)p≥1 Γ-converges to F as p→ +∞ with respect to the topology of the uniform
convergence.

3. Inner regular envelope and Γ∗-convergence.

The aim of this section is to recall the notion of Γ∗-convergence. Indeed as already observed in the
introduction, the notion of Γ-convergence is not well adapted to supremal functionals.

In particular, we show below (see Example 4.1) that the class of supremal functionals is not
necessarily closed with respect to Γ-convergence. To overcome this difficulty, we have to use a
generalized notion called Γ∗-convergence. To this purpose, we now recall the concept of inner
regular envelope of an increasing functional introduced in [37] (see also [30] for further properties
and [32] for an application in the supremal case).

Definition 3.1. Let F : C(Ω)×A → (−∞,+∞] be a functional. We say that

(i) F is a local functional if F (u,A) = F (v,B) for every A, B ∈ A with LN (A△B) = 0, and
every u, v ∈ C(Ω) such that u(x) = v(x) for a.e. x ∈ A ∪B;

(ii) F is an increasing functional if F (u,A) ≤ F (u,B) for every u ∈ C(Ω) and for every A,
B ∈ A such that A ⊂ B;

(iii) F is a inner regular functional if F is local and F (u,A) = sup{F (u,B) : B ∈ A, B ⊂⊂ A};
(iv) F is a regular functional if F is lower semicontinuous and inner regular.

The inner regular envelope of an increasing functional F is defined by

F−(u,A) := sup{F (u,B) : B ∈ A, B ⊂⊂ A}.

The next result has been proved in [30, Proposition 1.6].

Proposition 3.2. Let F : C(Ω) × A → (−∞,+∞] be an increasing local functional. Then the
functional F− is the greatest regular, increasing local functional less than or equal to F .

The introduction of F− is justified by the following property: if F is lower semicontinuous then
it coincides with F− ”for almost” every open set, and thus a representation formula of F− gives a
representation formula of F on a wide class of open sets. We now make precise this expression.
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Definition 3.3. Let R be a subfamily of A. We say that R is rich in A if for every family
{At}t∈R ⊂ A with At ⊂⊂ As whenever t < s, the set {t : At /∈ R} is at most countable.

In particular if R is rich in A, then for every A, B ∈ A such that A ⊂⊂ B ⊂⊂ Ω there exists
C ∈ R such that A ⊂⊂ C ⊂⊂ B.

The following proposition establishes a precise relation between F and F−. Note that the proof
of this result relies on the fact that C(Ω) is separable with respect to the uniform convergence (see
Proposition 16.4 in [29]).

Proposition 3.4. Let F : C(Ω)×A → (−∞,+∞] be a lower semicontinuous, increasing and local
functional. Then the family {A ∈ A : F−(u,A) = F (u,A) ∀u ∈ C(Ω)} is rich in A.

Following [30], we define the Γ∗-convergence for a sequence of local, increasing functionals as
the Γ-convergence on a suitable rich family of open sets.

Definition 3.5. Let Fn : C(Ω)×A → (−∞,+∞] be a sequence of increasing functionals, define

F ′(u,A) := inf
(un)

{lim inf
n→∞

Fn(un, A) : un → u uniformly on Ω}

and

F ′′(u,A) := inf
(un)

{lim sup
n→∞

Fn(un, A) : un → u uniformly on Ω}.

We say that (Fn) Γ∗-converges to F if F coincides with the inner regular envelopes of both func-
tionals F ′ and F ′′.

Note that the functionals F ′ and F ′′ are increasing and lower semicontinuous but in general they
are not inner regular. However, if (Fn) Γ

∗-converges to F then F is increasing, lower semicontinuous
and inner regular.

The next proposition easily follows from Proposition 3.4.

Proposition 3.6. Let F : C(Ω)×A → (−∞,+∞] be an increasing, lower semicontinuous, inner
regular functional. Then (Fn) Γ

∗-converges to F if and only if the family

{A ∈ A : F (u,A) = F ′(u,A) = F ′′(u,A) ∀u ∈ C(Ω)}

is rich in A.

Thanks to Proposition 3.6, it follows that the Γ∗-limit of a sequence of functionals is equal to
its Γ-limit in a rich class of open sets. Thus, even if this notion is weaker than Γ-convergence, it
still gives good informations in the study of the asympotic behavior of the infimum value.

Finally we have the following compactness result (see [30] and also [28, Theorem 16.9]).

Theorem 3.7. Then every sequence (Fn) of increasing functionals from C(Ω) ×A to (−∞,+∞]
has a Γ∗-convergent subsequence.

4. A Γ∗-stability result for supremal functionals

The aim of this section is to prove that, under suitable assumptions, the class of supremal func-
tionals is stable under Γ∗-convergence with respect to the uniform convergence. It turns out that
the class of supremal functionals on W 1,∞(Ω) is not closed with respect to Γ-convergence. Indeed,
it is easy to see that a supremal functional satisfies the following properties:

(i) (locality) F (u,A) = F (v,B) for every A, B ∈ A with LN (A△B) = 0, and for every u,
v ∈W 1,∞(Ω) such that u(x) = v(x) for a.e. x ∈ A ∪B;

(ii) (countable supremality) for every Ai ∈ A and u ∈ W 1,∞(Ω)

F

(
u,

∞⋃

i=1

Ai

)
=

∞∨

i=1

F (u,Ai).

In general the Γ-limit of a sequence of supremal functionals satisfies the locality property, but it
does not satisfy the countable supremality, and thus it cannot be represented in the supremal form
(2.1) for every open set A ⊂ Ω. In fact, we can produce the following counterexample (see [35]).



DIMENSIONAL REDUCTION FOR SUPREMAL FUNCTIONALS 7

Example 4.1. Let Ω := (0, 1). Let us define fn(x, z) := xn + |z|. Setting

Fn(u,A) := ess sup
x∈A

fn(x, u
′(x))

for every open set A ⊂ (0, 1) and for every u ∈ W 1,∞(0, 1), it is easy to prove that the Γ-limit of
the sequence (Fn) (with respect to the uniform convergence) is given by

F (u, (a, b)) =





ess sup
x∈(a,b)

|u′(x)| if b < 1,

ess sup
x∈(a,b)

|u′(x)| ∨ 1 if b = 1,

which is not a supremal functional.

We now state a stability result for supremal functionals with respect to Γ∗-convergence under
some suitable assumptions. This result has been obtained by Cardialaguet and Prinari in [26] in
an unpublished work. With the agreement of both authors, we reproduce here the proof for the
convenience of the reader.

Theorem 4.2. Let Ω ⊂ RN be a bounded open set, and fn : Ω ×R×RN → R be a sequence of
normal supremands. Assume that

(a) for every M > 0 there exists a modulus of continuity ωM : [0,+∞) → [0,+∞) such that

|fn(x, z1, ξ1)− fn(x, z2, ξ2)| ≤ ωM (|z1 − z2|+ ‖ξ1 − ξ2‖)

for every n ∈ N, for a.e. x ∈ Ω and for every ξ1, ξ2 ∈ RN and z1, z2 ∈ R with
‖ξ1‖, ‖ξ2‖, |z1|, |z2| ≤M ;

(b) there exists an increasing continuous function Ψ : [0,+∞) → [0,+∞) such that Ψ(t) →
+∞ as t → +∞ and fn(x, z, ·) ≥ Ψ(‖ · ‖) for every n ∈ N, for a.e. x ∈ Ω and for every
z ∈ R;

(c) fn(x, z, ·) is level convex for every n ∈ N, for a.e. x ∈ Ω and for every z ∈ R.

Let us suppose that the sequence of supremal functionals Fn :W 1,∞(Ω)×A → R defined by

Fn(u,A) := ess sup
x∈A

fn(x, u(x), Du(x))

Γ∗-converges (with respect to the uniform convergence) to some functional F : W 1,∞(Ω)×A → R.
For any (x, z, ξ) ∈ Ω×R×RN , we define

f(x, z, ξ) := inf
{
F (u,Br(x)) : r > 0, u ∈W 1,∞(Ω) s.t. x ∈ û, with u(x) = z, Du(x) = ξ

}
(4.1)

where

û := {x ∈ Ω : x is a differentiability point of u and a Lebesgue point of Du} .

If f(·, z, ξ) is continuous for every (z, ξ) ∈ R×RN , then

F (u,A) = ess sup
x∈A

f(x, u(x), Du(x)) (4.2)

for any u ∈ W 1,∞(Ω) and any A ∈ A. Moreover, f is level convex with respect to the last variable.

Remark 4.3. Note that if the functions fn are continuous on Ω × R × RN , we can remove
assumption (c). Indeed, according to Theorem 2.3, we can compute the Γ∗-limit of the sequence
(Fn) by computing the Γ∗-limit of the sequence of the relaxed functionals

Fn(u,A) := ess sup
x∈A

f lc
n (x, u(x), Du(x))

(see also [28, Proposition 16.7]). Moreover, if the functions fn are equicontinous with respect to
x, then f is continuous.
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As the next example shows, the representation result may fail if we drop the continuity in x of
the function f defined by (4.1). In fact, under the assumptions (a), (b) of Theorem 4.2 we will
show that the Γ∗-limit satisfies the countable supremality property, but in general it will satisfy a
locality property only with respect to the variable u, i.e.,

F (u,A) = F (v,A) for every u, v ∈W 1,∞(Ω) such that u(x) = v(x) for a.e. x ∈ A,

losing consequently the property of neglecting sets of zero measure.

Example 4.4. We shall give an example of a sequence (Fn) where the function f defined by
(4.1) is not continuous in x, and the Γ∗-limit F does not admit any supremal representation. We
consider Ω = (0, 2) and

fn(x, z) :=

{
x2n + |z| if x ≤ 1,
(x − 2)2n + |z| if x > 1.

Setting

Fn(u,A) := ess sup
x∈A

fn(x, u
′(x))

for every open set A ⊂ (0, 2) and for every u ∈ W 1,∞(0, 2), it is easy to prove that the Γ-limit of
(Fn) with respect to the uniform convergence is given by

G(u, (a, b)) =





ess sup
x∈(a,b)

|u′(x)| if b < 1 or a > 1,

ess sup
x∈(a,b)

|u′(x)| ∨ 1 if b = 1 or a = 1,

ess sup
x∈(a,b)

|u′(x)| ∨ 1 if a < 1 < b,

and thus the Γ∗-limit of (Fn) is given by

F (u, (a, b)) =





ess sup
x∈(a,b)

|u′(x)| if b ≤ 1 or a ≥ 1,

ess sup
x∈(a,b)

|u′(x)| ∨ 1 if a < 1 < b.

Note that

(i) even if all functions fn are continuous, f is not continuous in x = 1 since

f(x, ξ) =

{
|ξ| if x < 1 or x > 1
|ξ| ∨ 1 if x = 1.

(ii) F does not satisfy the property of set-locality: indeed, F (0, (12 ,
3
2 )) = 1 and F (0, (12 , 1) ∪

(1, 32 )) = 0 whereas L1
(
(12 ,

3
2 ) \ (

1
2 , 1) ∪ (1, 32 )

)
= 0.

The proof of Theorem 4.2 is quite intricated and shall be achieved through several intermediate
steps. We will give the proof of Theorem 4.2 when Ψ(t) = t, since it is always possible to reduce
the problem to this case.

We need some preliminary results. The following lemma gives some properties of the functional
F and of the function f .

Lemma 4.5. Under assumptions (a) and (b) of Theorem 4.2, the functional F satisfies the fol-
lowing properties:

(i) (countable supremality) for every Ai ∈ A and u ∈ W 1,∞(Ω)

F

(
u,

∞⋃

i=1

Ai

)
=

∞∨

i=1

F (u,Ai); (4.3)

(ii) (strong continuity) for every M > 0, there is a modulus of continuity ω̃M such that, for
every A ∈ A, and every u, v ∈ W 1,∞(Ω) such that ‖u‖W 1,∞(Ω) ≤M and ‖v‖W 1,∞(Ω) ≤M ,
then

|F (u,A)− F (v,A)| ≤ ω̃M (‖u− v‖W 1,∞(A));

(iii) (coercivity): for every A ∈ A, F (·, A) ≥ Ψ(‖ · ‖W 1,∞(A));
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(iv) for every A ∈ A and every u, v ∈ W 1,∞(Ω), we have

F (u ∨ v,A) ≤ F (u,A) ∨ F (v,A). (4.4)

Proof. Step 1. In order to prove that F satisfies the countable supremality property (4.3), we
will first show that for every u ∈ W 1,∞(Ω), the set function F (u, ·) is finitely sub-supremal which
means that for every A, B ∈ A

F (u,A ∪B) ≤ F (u,A) ∨ F (u,B) . (4.5)

Let u ∈ W 1,∞(Ω), A, B ∈ A, and consider A′ ⊂⊂ A and B′ ⊂⊂ B. Let ϕ ∈ C∞
c (RN ; [0, 1]) be a

cut-off function such that ϕ = 1 in A′ and ϕ = 0 in RN\A. Let us define the set A′′ = {ϕ > 1
3}

so that A′ ⊂⊂ A′′ ⊂⊂ A. Let (un) and (vn) ⊂ W 1,∞(Ω) be two recovering sequences converging
uniformly to u in Ω, and

lim sup
n→∞

Fn(un, A
′′) = F ′′(u,A′′), lim sup

n→∞

Fn(vn, B
′) = F ′′(u,B′).

Note that thanks to the coercivity property (b), the sequences (un) and (vn) are bounded by some
constant M in W 1,∞(A′′) and W 1,∞(B′) respectively.

For any δ ∈ (0, 1) we consider

wδ
n := inf{un + σn + δ(1− ϕ), vn + δϕ},

where σn ∈ (0, 1/n) is any real number such that LN ({un + σn + δ(1− ϕ) = vn + δϕ}) = 0. Such
a number exists since the family of sets {Λσ}0<σ<1/n, with Λσ := {un + σ + δ(1− ϕ) = vn + δϕ},

is made of pairwise disjoint sets whose union has finite Lebesgue measure. Observe that (wδ
n)

uniformly converges to wδ := u + δ inf{1 − ϕ, ϕ} in Ω. Moreover wδ
n = un + σn + δ(1 − ϕ) and

Dwδ
n = D(un+σn+δ(1−ϕ)) a.e. in (A′∪B′)∩{un+σn+δ(1−ϕ) < vn+δϕ} while wδ

n = vn+δϕ
and Dwδ

n = D(vn + δϕ) a.e. in (A′ ∪ B′) ∩ {un + σn + δ(1 − ϕ) > vn + δϕ}. Since the set
{un + σn + δ(1− ϕ) = vn + δϕ} has zero measure from the choice of σn, and since the functionals
Fn are supremal, we have

Fn(w
δ
n, A

′ ∪B′) = Fn(un + σn + δ(1− ϕ), (A′ ∪B′) ∩ {un + σn + δ(1 − ϕ) < vn + δϕ})

∨Fn(vn + δϕ, (A′ ∪B′) ∩ {un + σn + δ(1− ϕ) > vn + δϕ}).

Since the sequences (un) and (vn) are uniformly converging to u in Ω, then {un + σn + δ(1−ϕ) <
vn + δϕ} ⊂ {ϕ > 1/3} = A′′ and {un + σn + δ(1 − ϕ) > vn + δϕ} ⊂ {ϕ < 2/3} ⊂ (RN\A′), for
any n large enough (depending on δ). Therefore, for such n’s, we have

Fn(w
δ
n, A

′ ∪B′) = Fn(un + σn + δ(1− ϕ), A′′ ) ∨ Fn(vn + δϕ,B′ ),

and letting n→ +∞, we get

F ′′(wδ, A
′ ∪B′) ≤ lim sup

n→∞

Fn(w
δ
n, A

′ ∪B′)

≤ lim sup
n→∞

Fn(un + σn + δ(1− ϕ), A′′ ) ∨ Fn(vn + δϕ,B′ )

≤ lim sup
n→∞

{Fn(un, A
′′ ) ∨ Fn(vn, B

′ ) + ωM+1(σn + δ)}

≤ F ′′(u,A′′) ∨ F ′′(u,B′) + ωM+1(δ),

where we used the continuity property (a) of fn together with the fact that ‖un‖W 1,∞(A′′) ≤ M

and ‖vn‖W 1,∞(B′) ≤ M . Finally, letting δ → 0+ and using the lower semicontinuity of F ′′ we get
that

F ′′(u,A′ ∪B′) ≤ F ′′(u,A′′) ∨ F ′′(u,B′) ≤ F (u,A) ∨ F (u,B).

Now let C ∈ A be such that C ⊂⊂ A ∪ B. Then by [28, Lemma 14.20], there exist A′, B′ ∈ A
such that C ⊂ A′ ∪B′, A′ ⊂⊂ A and B′ ⊂⊂ B. Hence since F ′′(u, ·) is an increasing set function,
we infer that

F ′′(u,C) ≤ F ′′(u,A′ ∪B′) ≤ F (u,A) ∨ F (u,B),

and taking the supremum over all such C, since F (u,A ∪B) = sup{F ′′(u,C) : C ⊂⊂ A ∪ B}, we
get (4.5).
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We now prove that F actually satisfies (4.3). Indeed, if A :=
⋃∞

i=1Ai, by the inner regularity

of F, there exists Vε ⊂⊂ A such that F (u,A) ≤ F
′′

(u, Vε) + ε. Then there exists a finite subset
J ⊂ N such that Vε ⊂⊂

⋃
j∈J Aj . Therefore F (u,A) ≤

∨
j∈J F (u,Aj) + ε ≤

∨∞

i=1 F (u,Ai) + ε,
which concludes the proof of this step since ε is arbitrary, and the other inequality is obvious.

Step 2. To show that F is continuous with some modulus of continuity ω̃M , we first prove that
F ′′ is locally bounded. Namely,

∀ M > 0, ∃ KM > 0 such that ∀u ∈W 1,∞(Ω) with ‖u‖W 1,∞(Ω) ≤M, then F ′′(u,Ω) ≤ KM .
(4.6)

Indeed, let un → 0 uniformly in Ω be such that

lim sup
n→∞

Fn(un,Ω) = F ′′(0,Ω).

Let us set C = F ′′(0,Ω)+1. From the coercivity assumption (b) and the fact that ‖un‖L∞(Ω) → 0,

lim sup
n→∞

‖un‖W 1,∞(Ω) = lim sup
n→∞

‖Dun‖L∞(Ω;RN ) ≤ lim sup
n→∞

Fn(un,Ω) = F ′′(0,Ω) .

Therefore, for n large enough, we have ‖un‖W 1,∞(Ω) ≤ C. Now if u ∈ W 1,∞(Ω) is such that
‖u‖W 1,∞(Ω) ≤M , then by the continuity property (a) and the fact that ‖un+u‖W 1,∞(Ω) ≤M+C,
we get that

F ′′(u,Ω) ≤ lim sup
n→∞

Fn(u + un,Ω) ≤ lim sup
n→∞

(
Fn(un,Ω) + ωM+C(‖u‖W 1,∞(Ω))

)
≤ C + ωM+C(M) .

So we have proved that (4.6) holds with KM = C + ωM+C(M).
We next show that F is locally uniformly continuous. Let M > 0, A ∈ A, and u, v such that

‖u‖W 1,∞(Ω) ≤M and ‖v‖W 1,∞(Ω) ≤M . Consider A′ ⊂⊂ A, and let (un) be a recovering sequence

for u such that un → u uniformly in Ω, and

lim sup
n→∞

Fn(un, A
′) = F ′′(u,A′).

By (4.6) and the coercivity property (b), we have that ‖Dun‖L∞(A′;RN ) ≤ KM + 1 for n large
enough, and thus we deduce that ‖un‖W 1,∞(A′) ≤ max{KM +1,M +1} for n large enough. Then,
defining M ′ =M ′(M) = max{KM + 1,M + 1}+M, we have that

F ′′(v,A′) ≤ lim sup
n→∞

Fn(v + un − u,A′)

≤ lim sup
n→∞

(
Fn(un, A

′) + ωM ′(‖v − u‖W 1,∞(A′)

)

≤ F (u,A) + ωM ′(‖v − u‖W 1,∞(A′)) .

Finally, A′ ⊂⊂ A being arbitrary, we can conclude that

F (v,A) ≤ F (u,A) + ω̃M (‖v − u‖W 1,∞(A))

where we have set ω̃M = ωM ′(M).

Step 3. We now prove the coercivity of F . Let A ∈ A, u ∈ W 1,∞(Ω) and A′ ⊂⊂ A. Consider
a recovering sequence (un) such that un → u uniformly in Ω, and

lim sup
n→∞

Fn(un, A
′) = F ′′(u,A′).

Then, from the coercivity property (b) of Fn, the sequence (un) actually converges weakly* to u
in W 1,∞(A′), and thus

‖Du‖L∞(A′;RN ) ≤ lim inf
n→∞

‖Dun‖L∞(A′;RN ) ≤ lim sup
n→∞

Fn(un, A
′) = F ′′(u,A′) ≤ F (u,A) .

Letting A′ → A gives the desired result.

Step 4. To show (4.4) let B ⊂⊂ A be an open set such that F (u ∨ v,A) ≤ F ′′(u ∨ v,B) + ε.
Let (un) and (vn) be such that un and vn uniformly converge in Ω to u and v respectively, and
such that

F ′′(u,B) = lim sup
n→∞

Fn(un, B), F ′′(v,B) = lim sup
n→∞

Fn(vn, B).
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Then

F (u ∨ v,A) ≤ F ′′(u ∨ v,B) + ε ≤ lim sup
n→∞

Fn(un ∨ vn, B) + ε

≤ lim sup
n→∞

Fn(un, B) ∨ lim sup
n→∞

Fn(vn, B) + ε

= F ′′(u,B) ∨ F ′′(v,B) ≤ F (u,A) ∨ F (v,A) + ε,

and the proof of the lemma is complete. �

The next lemma summarizes the properties of the function f given by (4.1) (see Lemmas 3.2,
3.3 and 3.4 in [25]).

Lemma 4.6. Under assumptions (a) and (b) of Theorem 4.2, the function f defined by (4.1) is a
Carathéodory supremand satisfying

(a) for everyM > 0 there exists a constant K = K(M) such that, for any (x, z, ξ) ∈ Ω×R×RN

with |z|+ ‖ξ‖ ≤M , for any r > 0 with Br(x) ⊂ Ω, and any v ∈ W 1,∞(Ω),

[ x ∈ v̂, v(x) = z, Dv(x) = ξ and F (v,Br(x)) ≤ f(x, z, ξ) + 1 ] ⇒ ‖v‖W 1,∞(Br(x)) ≤ K .

(b) f(x, ·, ·) is bounded on bounded sets of R×RN , uniformly with respect to x.

Finally, we will need the following result (see [25, Lemma 3.1]).

Lemma 4.7. Let u, v ∈ W 1,∞(Ω), let x ∈ Ω be a point of differentiability of u and v, and
suppose that u(x) = v(x) and Du(x) = Dv(x). Then, for any ε > 0 and any r > 0, there is
some r′ ∈ (0, r), some open set A ∈ A, with Br′/2(x) ⊂ A ⊂ Br′(x) and LN (∂A) = 0, and some
α ∈ (0, ε), β ∈ (0, ε) such that

u(y) = v(y) + α− β|y − x| ∀y ∈ ∂A and u(y) < v(y) + α− β|y − x| ∀y ∈ A .

We are now in position to prove Theorem 4.2.

Proof of Theorem 4.2. Step 1. First of all we note that for every u ∈ W 1,∞(Ω) and for all A ∈ A

F (u,A) ≥ ess sup
x∈A

f(x, u(x), Du(x)). (4.7)

Indeed, let us denote by L(u) the set of points which are at the same time points of differentiability
of u and Lebesgue points of f(x, u(x), Du(x)). Then for any A ∈ A, any x ∈ L(u) ∩ A, and any
r > 0 with Br(x) ⊂ A, we have that f(x, u(x), Du(x)) ≤ F (u,Br(x)) ≤ F (u,A), from which we
deduce (4.7).

Step 2. In order to prove the converse inequality, we first consider the case of C1 functions. Let
u ∈ C1(Ω)∩W 1,∞(Ω), and defineM := ‖u‖W 1,∞(Ω). Let us now fix ε ∈ (0, 1), from the definition of

f , for any x ∈ A there is some rx ∈ (0, ε) with Brx(x) ⊂ A, some vx ∈ W 1,∞(Ω) with vx(x) = u(x),
Dvx(x) = Du(x) and

f(x, u(x), Du(x)) ≥ F (vx, Brx(x)) − ε . (4.8)

By Lemma 4.6 there exists a constant K = K(M) such that

‖vx‖W 1,∞(Brx (x)) ≤ K. (4.9)

According to Lemma 4.7 we can find some r′x ∈ (0, rx), some open set Ax with Br′x/2
(x) ⊂ Ax ⊂

Br′x(x) and LN (∂Ax) = 0, and some constants αx ∈ (0, ε), βx ∈ (0, ε) with

u(y) = vx(y) + αx − βx|y − x| on ∂Ax and u(y) < vx(y) + αx − βx|y − x| in Ax .

Let us set ṽx(y) = vx(y) + αx − βx|y − x| for all y ∈ Ax. For simplicity, we extend ṽx to Ω by
setting ṽx = u in Ω \Ax. According to Lindelöf’s Theorem, we can find a sequence (xn) such that
the family (Axn

) is a locally finite covering of A.
Let us set

wε(x) = sup{ṽxn
(x) : n ∈ N such that x ∈ Axn

} .

Note that, since the family (Axn
) is a locally finite covering of A, then above supremum can actually

be replaced by a maximum since the set of indexes n such that x ∈ Axn
is finite. Moreover, we have
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that wε > u on A. We claim that wε belongs to W 1,∞(Ω), with a Lipschitz constant independent
of ε, that wε converges uniformly to u in Ω, and that

ess sup
x∈A

f(x, u(x), Du(x)) ≥ F (wε, A)− ωM (2ε)− ε. (4.10)

Note that this statement completes the proof of the representation formula (4.2) on C1(Ω) ∩
W 1,∞(Ω) because, from the lower semicontinuity of F , letting ε→ 0+ in (4.10) gives

ess sup
x∈A

f(x, u(x), Du(x)) ≥ lim inf
ε→0+

F (wε, A) ≥ F (u,A) .

Let us now show that wε ∈ W 1,∞(Ω). For this we note that wε is the pointwise limit of the
Lipschitz maps vn defined inductively by v0 = u, and

vn+1(x) = vn(x) ∨ ṽxn+1
(x) if x belongs to Axn+1

and vn+1(x) = vn(x) otherwise.

The maps vn are Lipschitz continuous, with a Lipschitz constant independent of ε, because ṽxn

are equilipschitz continuous on Axn
from (4.9) and because αxn

∈ (0, ε) and βxn
∈ (0, ε). Hence

wε belongs to W 1,∞(Ω) with a norm which does not depend on ε.
In order to show that (wε) uniformly converges to u in Ω as ε→ 0+, let us consider x ∈ A. Since

(Axn
) is a locally finite covering of A, there exists Axn

such that x ∈ Axn
and wε(x) = ṽxn

(x) for
some n ∈ N. If y ∈ ∂Axn

, then |x − y| ≤ 2rxn
≤ 2ε because Axn

⊂ Brxn
(xn) and rxn

≤ ε. Hence
by (4.9) and the definition of M ,

|wε(x) − u(x)| ≤ |ṽxn
(x)− ṽxn

(y)|+ |ṽxn
(y)− u(y)|+ |u(y)− u(x)| ≤ 2Kε+ 0 + 2Mε

since ṽxn
(y) = u(y). Consequently, |wε(x) − u(x)| ≤ 2(M +K)ε for any x ∈ A and also for any

x ∈ Ω because wε = u in Ω\A. So we have proved that wε uniformly converges to u in Ω.
For proving (4.10), we first show that

F (wε, A) ≤
∨

n

F (ṽxn
, Axn

). (4.11)

For this, let us set, for any x ∈ A, I(x) = {n ∈ N : x ∈ Axn
}. Note that I(x) is finite (because

the covering is locally finite), and that wε(x) = supn∈I(x) ṽxn
(x). We claim that for any fixed

x ∈ A, there exists some ̺x > 0 such that ṽxp
(z) < wε(z) for any p /∈ I(x) and z ∈ B̺x

(x).
Indeed, fix x ∈ A and let U be a neighborhood of x. Since the covering is locally finite, then
F := {q ∈ N : U ∩ Axq

6= ∅} is finite. If q ∈ F \ I(x) then x /∈ Axq
and, by definition,

ṽxq
(x) = u(x) < wε(x). Since the functions ṽxq

and wε are continuous and F is finite, there exists
some B̺x

(x) ⊂ U such that ṽxq
(z) < wε(z) for every z ∈ B̺x

(x) and for every q ∈ F \ I(x). On
the other hand, if p /∈ I(x) and p /∈ F , then U ∩ Axp

= ∅. Thus for any z ∈ B̺x
(x), we have that

z /∈ Axp
which implies, by definition, that ṽxp

(z) = u(z) < wε(z).
Now, for any x ∈ A define Bx :=

⋂
n∈I(x)Axn

∩ B̺x
(x) and let us now fix a new locally finite

covering (Byi
) of A. Let us point out that wε(z) =

∨
n∈I(yi)

ṽxn
(z) on Byi

, from the very definition

of Byi
. Hence, using property (4.4), we have that

F (wε, Byi
) = F

(
∨

n∈I(yi)

ṽxn
, Byi

)
≤

∨

n∈I(yi)

F (ṽxn
, Byi

) ≤
∨

n∈N

F (ṽxn
, Axn

)

since Byi
⊂ Axn

for any n ∈ I(yi). Next we use the supremality of F to get

F (wε, A) = F

(
wε,

⋃

i

Byi

)
=
∨

i

F (wε, Byi
) ≤

∨

n∈N

F (ṽxn
, Axn

),

which completes the proof of (4.11).
Using (4.8) and the continuity property for F (Lemma 4.5 (ii)), we get that

f(xn, u(xn), Du(xn)) ≥ F (vxn
, Axn

)− ε ≥ F (ṽxn
, Axn

)− ωM ′(‖αxn
− βxn

| · −xn| ‖W 1,∞(Axn ))− ε

where M ′ = K + 2ε. Since αxn
∈ (0, ε), βxn

∈ (0, ε) and Axn
⊂ Bε(xn), we have

f(xn, u(xn), Du(xn)) ≥ F (ṽxn
, Axn

)− ωM ′(2ε)− ε .
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Therefore, by using the continuity of f(·, u(·), Du(·)) together with (4.11) we have

ess sup
x∈A

f(x, u(x), Du(x)) = sup
x∈A

f(x, u(x), Du(x)) ≥ sup
n∈N

f(xn, u(xn), Du(xn))

≥ sup
n∈N

F (ṽxn
, Axn

)− ωM ′(2ε)− ε ≥ F (wε, A)− ωM ′(2ε)− ε,

and it yields inequality (4.10).

Step 3. In order to extend the representation result on W 1,∞(Ω), we first show that f is level
convex with respect to the last variable. Fix (x0, z) ∈ Ω × R, ξ1, ξ2 ∈ RN and λ ∈ (0, 1). By
definition there exist a ball Br(x0), and functions u and v ∈ W 1,∞(Ω), differentiable at x0 such
that u(x0) = v(x0) = z, Du(x0) = ξ1, Dv(x0) = ξ2 and f(x0, z, ξ1) ≥ F (u,Br(x0)) − ε and
f(x0, z, ξ2) ≥ F (v,Br(x0)) − ε. Fix 0 < s < r, and let (un) and (vn) ⊂ W 1,∞(Bs(x0)) such that
un and vn uniformly converge in Ω to u and v respectively, and

F ′′(u,Bs(x0)) = lim sup
n→∞

ess sup
x∈Bs(x0)

fn(x, un(x), Dun(x))

and
F ′′(v,Bs(x0)) = lim sup

n→∞

ess sup
x∈Bs(x0)

fn(x, vn(x), Dvn(x)).

Then, by using the level convexity of fn, we have

f(x0, z, λξ1 + (1− λ)ξ2) ≤ F (λu + (1− λ)v,Bs(x0)) ≤ F ′′(λu + (1− λ)v,Bs(x0))

≤ lim sup
n→∞

Fn(λun + (1− λ)vn, Bs(x0))

≤ lim sup
n→∞

Fn(un, Bs(x0)) ∨ Fn(vn, Bs(x0))

= F ′′(u,Bs(x0)) ∨ F
′′(v,Bs(x0)) ≤ F (u,Br(x0)) ∨ F (v,Br(x0))

≤ (f(x0, z, ξ1)− ε) ∨ (f(x0, z, ξ2)− ε).

By letting ε→ 0 we get the thesis.

Step 4. Finally we prove that

F (u,A) = ess sup
x∈A

f(x, u(x), Du(x))

for all (u,A) ∈ W 1,∞(Ω)×A. Since F is inner regular, for any ε > 0, we can find A′ ⊂⊂ A such
that

F (u,A) ≤ F (u,A′) + ε .

Set Aρ := {x ∈ A : dist(x, ∂A) > ρ}. Then there exists ρ0 > 0 such that A′ ⊂⊂ Aρ for every
ρ ≤ ρ0. Let φρ be a standard mollifier and define uρ := u ∗ φρ. Since uρ is regular, we have that

ess sup
x∈A′

f(x, uρ(x), Duρ(x)) = F (uρ, A
′) .

Now, since uρ → u uniformly and f is uniformly continuous on A′, there exists 0 < ρ1 = ρ1(ε) < ρ0
such that

|f(x, uρ(x), ξ) − f(y, uρ(y), ξ)| ≤ ε (4.12)

for every x ∈ A′, every y ∈ Bρ(x) (with ρ < ρ1), and every ξ ∈ RN . Since f is level convex, by
using Jensen inequality (see Theorem 2.2 with µ = φρ LN ), we have that for every x ∈ A′

f(x, uρ(x), Duρ(x)) ≤ ess sup
y∈Bρ(x)

f(x, uρ(x), Du(y)) ,

and thus, by (4.12) it follows that

ess sup
x∈A′

f(x, uρ(x), Duρ(x)) ≤ ess sup
y∈A

f(y, uρ(y), Du(y)) + ε .

Therefore
F (u,A′) ≤ lim inf

ρ→0+
F (uρ, A

′) ≤ ess sup
x∈A

f(x, u(x), Du(x)) + ε ,

which implies
F (u,A) ≤ ess sup

x∈A
f(x, u(x), Du(x)) + 2ε,
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and it completes the proof of the theorem since ε > 0 is arbitrary. �

5. Application to dimension reduction

5.1. Abstract representation result. Let ω be a bounded open subset of R2. We are interested
in studying the asymptotic behavior of a family of supremal functionals in thin domains Ωε :=
ω × (−ε, ε), of the form

ess sup
y∈Ωε

fε(y,Dv(y)),

where fε : Ωε × R3 → [0,+∞) is a supremand whose precise properties will be stated later. As
usual in dimensional reduction, we rescale the problem in order to work on a fixed domain Ω := Ω1.
To do that, we perform the change of variables (x1, x2, x3) = (y1, y2, y3/ε) and u(x) = v(y) for
x = (x1, x2, x3) ∈ Ω. Then

fε(y,Dv(y)) =Wε

(
x,Dαu(x)

∣∣∣1
ε
D3u(x)

)
,

where we have denoted Wε(x, ξ) := fε(xα, εx3, ξ). In the sequel the variable xα will stand for the
in-plane variable (x1, x2), and Dα (resp. D3) will denote the derivative with respect to xα (resp.
x3).

Let A be the family of all open subsets of ω. We define the supremal functional Fε : C(Ω)×A →
[0,+∞] by

Fε(u,A) :=





ess sup
x∈A×I

Wε

(
x,Dαu(x)

∣∣∣1
ε
D3u(x)

)
if u ∈ W 1,∞(A× I),

+∞ otherwise,

where I := (−1, 1). We next assume that Wε : Ω ×R3 → [0,+∞) is a Carathéodory supremand
satisfying

(H1) for each M > 0, there exists a modulus of continuity ωM : [0,+∞) → [0,+∞) such that

|Wε(x, ξ) −Wε(x, ξ
′)| ≤ ωM (‖ξ − ξ′‖),

for any ε > 0, for a.e. x ∈ Ω, and for every ξ, ξ′ ∈ R3 such that ‖ξ‖ ≤M , ‖ξ′‖ ≤M ;
(H2) the functions Wε(x, ·) are level convex for any ε > 0 and for a.e. x ∈ Ω;
(H3) there exists a continuous and increasing function Ψ : [0,+∞) → [0,+∞) such that Ψ(t) →

+∞ as t→ +∞, with the property that Wε(x, ξ) ≥ Ψ(‖ξ‖) for any ε > 0, for every ξ ∈ R3

and a.e. x ∈ Ω.

Theorem 5.1. Under assumptions (H1)-(H3), there exists a subsequence (εn) ց 0+ such that
(Fεn) Γ

∗-converges to some functional F : C(Ω)×A → [0,+∞]. Moreover, let W be defined by

W (x0, ξ) := inf
{
F (u,Br(x0)) : r > 0, u ∈ W 1,∞(ω), x0 ∈ û, Dαu(x0) = ξ

}
, (5.1)

for all (x0, ξ) ∈ ω ×R2, where

û := {xα ∈ ω : xα is a differentiability point of u and a Lebesgue point of Dαu} .

If W (·, ξ) is continuous for all ξ ∈ R2, then

F (u,A) =

{
ess sup
xα∈A

W (xα, Dαu(xα)) if u ∈W 1,∞(A),

+∞ otherwise.

Proof. According to Theorem 3.7, we get the existence of a subsequence (εn) ց 0+ such that (Fεn)
Γ∗-converges to some functional F : C(Ω)×A → [0,+∞]. Moreover, if F (u,A) < +∞, then taken
A′ ⊂⊂ A, we can consider a recovering sequence (un) which converges uniformly to u in Ω, and
such that

lim sup
n→∞

Fεn(un, A
′) = F ′′(u,A′) ≤ F (u,A).

As a consequence, un ∈W 1,∞(A′ × I) for n large enough, and by the coercivity assumption (H3),
we infer that ∥∥∥∥

(
Dαun

∣∣∣ 1
εn
D3un

)∥∥∥∥
L∞(A′×I;R3)

≤M,
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for some constant M > 0 independent of n. Thus un weakly* converges to u in W 1,∞(A′ × I),
and ‖D3un‖L∞(A′×I) ≤Mεn → 0. Hence D3u = 0 in D′(A′ × I), and since this property holds for

any A′ ⊂⊂ A, we deduce that D3u = 0 in D′(A × I) so that u ∈ W 1,∞(A). Moreover, thanks to
the continuity property (H1), one can show that (4.6) holds, and consequently, the domain of the
Γ∗-limit is W 1,∞(A). It remains to identify F on W 1,∞(A).

The rest of the proof follows that of Theorem 4.2. The main difference relies in proving the
countable supremality property of F as in Lemma 4.5 (i). Indeed, as usual in dimension reduction
problems (see [20, 10, 8]) one must take a cut-off function ϕ which only depends on the in-plane
variable xα. �

5.2. Homogenization of thin structures. Let W : Ω×R2 ×R3 → [0,+∞) be a function such
that

(A1) the function W (x, yα, ·) is level convex for a.e. (x, yα) ∈ Ω×R2;
(A2) for each M > 0, there exists a modulus of continuity ωM : [0,+∞) → [0,+∞) satisfying

|W (xα, x3, yα, ξ)−W (x′α, x3, yα, ξ
′)| ≤ ωM (‖xα − x′α‖+ ‖ξ − ξ′‖),

for a.e. (x3, yα) ∈ I×R2, and for every xα, x
′
α ∈ ω and ξ, ξ′ ∈ R3 such that ‖ξ‖, ‖ξ′‖ ≤M ;

(A3) the function (x3, yα) 7→W (xα, x3, yα, ξ) is measurable for all xα ∈ ω and all ξ ∈ R3;
(A4) the function W (x, ·, ξ) is 1-periodic for a.e. x ∈ Ω and all ξ ∈ R3;
(A5) there exists a continuous and increasing function Ψ : [0,+∞) → [0,+∞) such that Ψ(t) →

+∞ as t → +∞, with the property that W (x, yα, ξ) ≥ Ψ(‖ξ‖) for every ξ ∈ R3, and for
a.e. (x, yα) ∈ Ω×R2;

(A6) there exists a locally bounded function β : [0,+∞) → [0,+∞) such that W (x, yα, ξ) ≤
β(‖ξ‖) for every ξ ∈ R3, for a.e. (x, yα) ∈ Ω×R2.

Let us define Fε : C(Ω)×A → [0,+∞] by

Fε(u,A) :=





ess sup
x∈A×I

W

(
x,
xα
ε
,Dαu(x)

∣∣∣1
ε
D3u(x)

)
if u ∈W 1,∞(A× I),

+∞ otherwise.

The main result of this section is the following representation theorem.

Theorem 5.2. Under assumptions (A1)-(A6), then the family (Fε)ε>0 Γ∗-converges to the func-
tional

Fhom(u,A) =

{
ess sup
xα∈A

Whom(xα, Dαu(xα)) if u ∈W 1,∞(A),

+∞ otherwise,
(5.2)

where Whom is given by

Whom(x0, ξ) := inf
ϕ∈W 1,∞(Q′×I)

{
ess sup
y∈Q′×I

W (x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) :

ϕ(·, y3) is 1-periodic for all y3 ∈ I

}
, (5.3)

for every (x0, ξ) ∈ ω ×R2, where Q′ stands for the unit square (0, 1)2 of R2.

Clearly if W satisfies (A1)-(A6), then the function Wε(x, ξ) =W (x, xα/ε, ξ) fulfills assumptions
(H1)-(H3). Hence Theorem 5.1 shows the existence of a subsequence (εn) such that Fεn Γ∗-
converges to some functional F : C(Ω) × A → [0,+∞]. Moreover, in order to ensure that F is
representable by the function W defined by (5.1) (with Wε(x, ξ) = W (x, xα/ε, ξ)) one needs to
ensure that W is continuous in its first variable. This the object of the next lemma.

Lemma 5.3. Assume that W satisfies (A1)-(A5), and let W be defined by (5.1) with Wε(x, ξ) :=
W (x, xα/ε, ξ). Then W (·, ξ) is continuous for every ξ ∈ R2.
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Proof. Let x0, y0 ∈ ω and ξ ∈ R2, define M := ‖ξ‖. By definition (5.1) of W , for any η ∈ (0, 1),
there exist r > 0, u ∈ W 1,∞(ω) such that x0 is a point of differentiability of u and a Lebesgue

point of Dαu, Dαu(x0) = ξ, and

F (u,Br(x0)) ≤W (x0, ξ) + η. (5.4)

By applying Lemma 4.6 and thanks to (A2) and (A5), we can find a constant K = K(M) (in-
dependent of x0) such that ‖u‖W 1,∞(Br(x0)) ≤ K. Let r′′ < r′ < r, and consider a recovering

sequence (un) uniformly converging to u in Ω, and satisfying

lim sup
n→∞

Fεn(un, Br′(x0)) = F ′′(u,Br′(x0)). (5.5)

Without loss of generality, one can assume that un ∈ C(RN ) and that un → u uniformly in RN .
Indeed, if it is not the case, using a cut-off function χ ∈ C∞

c (RN ; [0, 1]) such that χ = 1 in Br′(x0)
and χ = 0 outside Ω, it follows that the sequence ũn = χun + (1 − χ)u ∈ C(RN) is such that
ũn = un in Br′(x0), ũn = u outside Ω and ũn → u uniformly in RN .

Thanks again to (A2) and (4.6), there exists a constant C = C(M) (independent of x0) such
that F ′′(u,Br(x0)) ≤ C. By using also the coercivity property (A5), we can find a constant
M ′ =M ′(M) (independent of x0) such that

∥∥∥∥
(
Dαun

∣∣∣ 1
εn
D3un

)∥∥∥∥
L∞(Br′ (x0)×I;R3)

≤M ′. (5.6)

Let mn ∈ Z2 and θn ∈ [0, 1)2 be such that

x0 − y0
εn

= mn + θn,

and define sn := εnθn → 0. Let n large enough so that ‖sn‖ < r′ − r′′, then we set vn(yα, y3) :=
un(yα − y0 + x0 − sn, y3) and v(yα, y3) := u(yα − y0 + x0, y3) for all y ∈ Br′′(y0) × I. Clearly,
vn → v uniformly in Ω, and thus

F ′′(v,Br′′(y0)) ≤ lim sup
n→∞

ess sup
x∈Br′′ (y0)×I

W

(
xα, x3,

xα
εn
, Dαvn(x)

∣∣∣ 1
εn
D3vn(x)

)

= lim sup
n→∞

ess sup
y∈Br′′ (x0−sn)×I

W

(
yα + y0 − x0 + sn, y3,

yα + y0 − x0 + sn
εn

, Dαun(y)
∣∣∣ 1
εn
D3un(y)

)

≤ lim sup
n→∞

ess sup
y∈Br′(x0)×I

W

(
yα + y0 − x0 + sn, y3,

yα
εn
, Dαun(y)

∣∣∣ 1
εn
D3un(y)

)
,

where we used the periodicity property (A4) of W and the fact that mn ∈ Z2. Thus according to
(5.6), (A2), (5.5) and (5.4) we deduce that

F ′′(v,Br′(y0)) ≤ lim sup
n→∞

ess sup
y∈Br′ (x0)×I

W

(
yα, y3,

yα
εn
, Dαun(y)

∣∣∣ 1
εn
D3un(y)

)
+ ωM ′(‖y0 − x0‖)

≤ F ′′(u,Br′(x0)) + ωM ′(‖y0 − x0‖) ≤W (x0, ξ) + η + ωM ′(‖y0 − x0‖).

Finally, since v is admissible for W (y0, ξ), we conclude, after letting η → 0, that

W (y0, ξ) ≤W (x0, ξ) + ωM ′(‖y0 − x0‖).

By exchanging the roles of x0 and y0 we get the desired continuity property. �

In the next lemma, under the same set of assumptions we provide an upper bound for W ,
namely we show that W ≤Whom.

Lemma 5.4. Let W satisfying (A1)-(A5). For every x0 ∈ ω and every ξ ∈ R2, we have
Whom(x0, ξ) ≥W (x0, ξ).

Proof. By definition (5.3) of Whom, for any η > 0 there exists ϕ ∈W 1,∞(R2× I) such that ϕ(·, y3)
is 1-periodic for all y3 ∈ I, and

ess sup
y∈Q′×I

W (x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) ≤Whom(x0, ξ) + η.
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Now define u(x) := ξxα and un(x) := ξxα + εnϕ(xα/εn, x3). Then clearly un → u uniformly in Ω
and thus

F ′′(u,Br(x0)) ≤ lim sup
n→∞

ess sup
x∈Br(x0)×I

W

(
xα, x3,

xα
εn
, Dαun(x)

∣∣∣ 1
εn
D3un(x)

)

= lim sup
n→∞

ess sup
x∈Br(x0)×I

W

(
xα, x3,

xα
εn
, ξ +Dαϕ

(
xα
εn
, x3

) ∣∣∣D3ϕ

(
xα
εn
, x3

))

≤ ess sup
xα∈Br(x0)

ess sup
y∈Q′×I

W
(
xα, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)

)
.

We next use the uniform continuity assumption (A2) with M := ‖(ξ +Dαϕ|D3ϕ)‖L∞(Q′×I;R3) to
get that

F ′′(u,Br(x0)) ≤ ess sup
y∈Q′×I

W (x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) + ωM (r)

≤ Whom(x0, ξ) + η + ωM (r).

By Proposition 3.4, we can choose a radius r > 0 such that F (u,Br(x0)) = F ′′(u,Br(x0)). By
applying the representation formula provided by Lemma 5.3 and the fact that W is continuous in
its first variable, we get that

W (x0, ξ) ≤ ess sup
xα∈Br(x0)

W (xα, ξ) ≤Whom(x0, ξ) + η + ωM (r).

Letting r → 0+ and η → 0+, we get that W (x0, ξ) ≤Whom(x0, ξ). �

Now our aim is to prove that, under the further assumption (A6), the supremand W , which
represents the Γ∗-limit of a suitable subsequence Fεn , actually coincides with the function Whom

defined by (5.3).
To this end we need to recall the analogous results in the integral setting (see [20, 8, 9]) that

will be exploited in the sequel. We introduce, for every p > 1, the family of integral functionals
F p
ε : L∞(Ω)×A → [0,+∞] defined by

F p
ε (u,A) :=





(∫

A

W p

(
x,
xα
ε
,Dαu(x)

∣∣∣1
ε
D3u(x)

)
dx

)1/p

if u ∈W 1,p(A× I),

+∞ otherwise.

Following [8], we have the following Γ-convergence result:

Theorem 5.5. Assume that (A2)-(A6) hold with Ψ(t) = C1t and β(t) = C2(t+1) for some positive
constants C1 and C2. Then for each p > 1, the family (F p

ε )ε>0 Γ-converges, with respect to the
strong Lp(Ω)-convergence, to the functional F p

hom : Lp(Ω)×A → [0,+∞], defined by

F p
hom(u,A) =





(∫

A

W p
hom(xα, Dαu(xα)) dxα

)1/p

if u ∈ W 1,p(A),

+∞ otherwise,

(5.7)

where the density W p
hom : ω ×R2 → [0,+∞) is defined by

W p
hom(x0, ξ) := lim

T→∞
inf
{ 1

2T 2

∫

(0,T )2×I

W p(x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) dy :

ϕ ∈ W 1,p((0, T )2 × I), ϕ = 0 on ∂(0, T )2 × I
}
. (5.8)

Note that in [8], the regularity assumptions on W were different to ours. Indeed, in that paper,
it is assumed that W (·, yα, ξ) is measurable for all (yα, ξ) ∈ R2 ×R3, and W (x, ·, ·) is continuous
for a.e. x ∈ Ω. However, the Γ-convergence result still holds true with our new set of hypotheses.

We will observe in the next Lemma that formula (5.8) can be specialized into a single cell
formula as in (5.9). This is due to the fact that in constrast to [8] where vector valued functions
are considered, we are here dealing with scalar valued functions, and thus the Γ-limit remains
unchanged if we replace W p by its convex envelope. This is a well known fact that in the convex
case, the homogenization formula reduces to a single cell formula (see [18, Section 14.3]).
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Lemma 5.6. Under assumptions (A2)-(A6) with Ψ(t) = C1t and β(t) = C2(t+1) for some positive
constants C1 and C2, then for every (x0, ξ) ∈ ω ×R2 we have

W p
hom(x0, ξ) = inf

{1
2

∫

Q′×I

W p(x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) dy :

ϕ ∈W 1,p(Q′ × I), ϕ(·, y3) is 1-periodic for a.e. y3 ∈ I
}
. (5.9)

Proof. Let us define for every (x0, ξ) ∈ ω ×R2,

W ∗(x0, ξ) = inf
{1
2

∫

Q′×I

W p(x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) dy :

ϕ ∈ W 1,p(Q′ × I), ϕ(·, y3) is 1-periodic for a.e. y3 ∈ I
}
.

According to [20, Remark 4.1] (see also [9, Lemma 2.2]), the limit as T → ∞ in formula (5.8) can
also be replaced by an infimum, and consequently W p

hom(x0, ξ) ≤W ∗(x0, ξ).
In order to prove the opposite inequality we argue as in [18, Theorem 14.7]. Let k ∈ N and

ϕ ∈ W 1,p((0, k)2 × I) such that ϕ = 0 on ∂(0, k)2 × I, let i = (i1, i2) ∈ {0, 1, . . . , k − 1}2. Define
for every y = (yα, y3) ∈ Q′ × I

ψ(yα, y3) :=
1

k2

∑

i

ϕ(yα + i, y3).

Clearly ψ ∈ W 1,p(Q′ × I) and ψ(·, x3) is 1-periodic for a.e. x3 ∈ I. On the other hand, since
the minimization defining the function W ∗ is stated over scalar valued functions, a well known
relaxation result of integral functionals in the scalar case guarantees that

W ∗(x0, ξ) = inf
{1
2

∫

Q′×I

C(W p)(x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) dy :

ϕ ∈ W 1,p(Q′ × I), ϕ(·, y3) is 1-periodic for a.e. y3 ∈ I
}
,

where C(W p) stands for the convex envelope of W p. Consequently, by virtue of the periodicity of
ψ and C(W p), it results

W ∗(x0, ξ) ≤

∫

Q′×I

C(W p)(x0, y3, yα, ξ +Dαψ(y)|D3ψ(y)) dy

=
1

k2

∫

(0,k)2×I

C(W p)(x0, y3, yα, ξ +Dαψ(y)|D3ψ(y)) dy

=
1

k2

∫

(0,k)2×I

C(W p)

(
x0, y3, yα,

1

k2

∑

i

(
ξ +Dαϕ(yα + i, y3)|D3ϕ(yα + i, y3)

))
dy.

Using the convexity of C(W p) and changing variable yields

W ∗(x0, ξ) ≤
1

k4

∑

i

∫

(0,k)2×I

C(W p)(x0, y3, yα, ξ +Dαϕ(yα + i, y3)|D3ϕ(yα + i, y3)) dy

=
1

k2

∫

(0,k)2×I

C(W p)(x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) dy

≤
1

k2

∫

(0,k)2×I

W p(x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) dy.

Since the previous inequality holds for any arbitrary function ϕ, taking the infimum with respect
to ϕ and the limit as k → ∞ leads to W p

hom(x0, ξ) ≥W ∗(x0, ξ). �

We next introduce the power law approximation of the supremal functional (5.2) by (5.7). We
omit the proof of the following result since it is sufficient to repeat that of [22, Lemma 3.2] with
some suitable changes.

Lemma 5.7. LetW : Ω×R2×R3 → [0,+∞) be a supremand satisfying (A1)-(A6) with Ψ(t) = C1t
and β(t) = C2(t+ 1) for some positive constants C1 and C2. Then
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(i) for every (x0, ξ) ∈ ω ×R2

lim
p→+∞

(W p
hom(x0, ξ))

1/p =Whom(x0, ξ);

(ii) for all A ∈ A and u ∈ W 1,∞(A),

lim
p→+∞

(∫

A

W p
hom(xα, Dαu(xα)) dxα

)1/p

= ess sup
xα∈A

Whom(xα, Dαu(xα)).

We are now in position to prove the lower bound. The argument employed in the following
result is very close to that of [22], and uses a power law approximation together with the analogous
integral result (see [8]).

Lemma 5.8. For every x0 ∈ ω and every ξ ∈ R2, we have Whom(x0, ξ) ≤W (x0, ξ).

Proof. We report only the sketch of the proof of this lemma since it is analogous to [22, Proposition
4.2].

Step 1. We first assume that f satisfies standard coercivity and growth conditions (A5) and
(A6), namely that there exist two positive constants C1 and C2 such that

C1‖ξ‖ ≤W (xα, y3, yα, ξ) ≤ C2(‖ξ‖+ 1)

for every (xα, ξ) ∈ ω ×R2 and for a.e. (yα, y3) ∈ R2 × I. Let u(xα) := ξ · xα and r > 0 be such
that F (u,Br(x0)) = F ′′(u,Br(x0)). Consider a recovering sequence (un), converging uniformly to
u in Ω, and such that Fεn(un, Br(x0)) → F (u,Br(x0)). By applying Theorem 5.5, we have the
following chain of inequalities:

(∫

Br(x0)

W p
hom(xα, ξ) dxα

)1/p

≤ lim inf
n→∞

(∫

Br(x0)×I

W p

(
xα, x3,

xα
εn
, Dαun(x)

∣∣∣ 1
εn
D3un(x)

)
dx

)1/p

≤ (2πr2)1/p lim inf
n→∞

ess sup
x∈Br(x0)×I

W

(
xα, x3,

xα
εn
, Dαun(x)

∣∣∣1
ε
D3un(x)

)

for each p > 1. Invoking Lemma 5.7 and Theorem 5.1 and passing to the limit as p → +∞ we
obtain

Whom(x0, ξ) ≤ ess sup
xα∈Br(x0)

Whom(xα, ξ) = lim
p→+∞

(∫

Br(x0)

W p
hom(xα, ξ) dxα

)1/p

≤ ess sup
xα∈Br(x0)

W (xα, ξ).

Finally, since by Lemma 5.3, W is continuous in the first variable, we deduce by letting r → 0 that
Whom(x0, ξ) ≤W (x0, ξ).

Step 2. Assume that W (xα, y3, yα, ·) satisfies (A5) with Ψ(t) = t and (A6) in its general form.
for every M > 0 one can define

WM (xα, y3, yα, ξ) =W (xα, y3, yα, ξ) ∧

[
M ∨

1

2
(1 + ‖ξ‖)

]
.

The functionWM clearly fulfills all the assumptions of Step 1, and thus sinceWM ≤W , we deduce
that

(WM )hom(x0, ξ) ≤W (x0, ξ),
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where

(WM )hom(x0, ξ) := inf

{
ess sup
y∈Q′×I

WM (x0, y3, yα, ξ +Dαϕ(y)|D3ϕ(y)) :

ϕ ∈ W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}
.

The proof of this case can be easily completed by showing that for M large enough,

(WM )hom(x0, ξ) =Whom(x0, ξ).

Step 3. The general case follows by applying the previous step to the function Ψ−1(W ). �

Proof of Theorem 5.2. By Theorem 5.1 and Lemmas 5.3, 5.4 and 5.8, we infer that F = Fhom.
Moreover since the Γ∗-limit is independent of the extracted subsequence (εn), there is actually no
need to extract a subsequence thanks to [28, Proposition 16.8]. �

Remark 5.9. As a consequence of the above results we obtain that the homogenization and the
power-law approximation commute as summarized by the following diagram:

-

Γ(L∞)
F p
ε Fε

p −→ ∞

?

Γ(Lp)

ε
−
→

0

?

Γ∗(L∞)

ε
−
→

0

F p
hom

Γ(L∞)
-

p −→ ∞
Fhom

Indeed, the left vertical arrow has been shown in Theorem 5.5, the above horizontal arrow has
been proved in Theorem 2.4, the right vertical arrow follows from Theorem 5.2, while the down
arrow is established in the following Theorem 5.10.

Theorem 5.10. Let W : Ω × R2 × R3 → [0,+∞) be a supremand satisfying (A1)-(A6) with
Ψ(t) = C1t and β(t) = C2(t+1) for some positive constants C1 and C2. Then the family (F p

hom)p>1

defined in (5.7) Γ-converges, as p→ +∞, with respect to the uniform convergence to Fhom defined
by (5.2).

Proof. By virtue of Theorem 5.5, the functional F p
hom is a Γ-limit, with respect to the Lp(Ω)-

topology. Consequently it is lower semicontinuous on W 1,p(ω) with respect to the Lp(ω)-topology,
and so, in particular, it is lower semicontinuous on W 1,∞(ω) with respect to the L∞(ω) topology.
Moreover the family (F p

hom)p>1 is increasing in p and, by virtue of Lemma 5.7, it pointwise converges
to Fhom, as p → +∞. As a consequence, thanks to Proposition 5.4 and Remark 5.5 in [28],
(F p

hom)p>1 Γ-converges, as p→ +∞, with respect to the uniform convergence to Fhom. �

6. The homogeneous case

In this section we treat the particular case where Wε(x, ξ) = W (ξ). Without assuming that the
function W is level convex, and without appealing to the general representation result Theorem
5.1, we will provide a representation theorem analogous to that shown in the integral case (see [34,
Theorem 2 ]). On the other hand, for technical reasons, we will replace coercivity condition (A5)
by a linear standard coerciviness as in (6.1).

Theorem 6.1. Let W : R3 → [0,+∞) be a continuous function, and assume that

W (ξ) ≥ C‖ξ‖ for every ξ ∈ R3. (6.1)
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For each ε > 0, define Fε : C(Ω)×A → [0,+∞] by

Fε(u,A) :=





ess sup
x∈A×I

W

(
Dαu(x)

∣∣∣1
ε
D3u(x)

)
if u ∈ W 1,∞(A× I),

+∞ otherwise.
(6.2)

Then the family (Fε)ε>0 Γ∗-converges to the functional F0 : C(Ω)×A → [0,+∞] given by

F0(u,A) :=

{
ess sup
xα∈A

(W0)
lc (Dαu(xα)) if u ∈W 1,∞(A),

+∞ otherwise,
(6.3)

where for every ξ ∈ R2,

W0(ξ) = inf
c∈R

W (ξ|c), (6.4)

and (W0)
lc is the level convex envelope of W0, (see (2.3)). Moreover for any bounded open set

Ω ⊂ RN satisfying one of the following properties

(C2) Ω is of class C2;
(S) Ω is strongly star-shaped;

the family (Fε(·,Ω))ε>0 Γ-converges to F0(·,Ω).

For the proof we will follow an approach closer to that of [34] for the lower bound, and to that
of [22] for the upper bound, which do not rest on an abstract Γ-convergence result.

Before going into the proof of Theorem 6.1, we state technical results which precise again formula
(6.3) when W is level convex. Indeed, we first observe that if W is already level convex, the same
property is inherited by W0.

Proposition 6.2. Let W : R3 → [0,+∞) be a continuous and level convex function. Then W0

defined in (6.4) is level convex as well.

Proof. Let ξ1, ξ2 ∈ R2, λ ∈ [0, 1] and η > 0. There exist c1, c2 ∈ R such that W0(ξ1) + η ≥
W (ξ1|c1) and W0(ξ2) + η ≥ W (ξ2|c2). Then by definition of W0 and since W is level convex, we
have that

W0(λξ1 + (1− λ)ξ2) ≤ W (λξ1 + (1 − λ)ξ2|λc1 + (1− λ)c2)

≤ W (ξ1|c1) ∨W (ξ2|c2)

≤ (W0(ξ1) + η) ∨ (W0(ξ2) + η).

The arbitrariness of η allows us to conclude the proof. �

In the following proposition we will show that the level convex envelope and the minimum with
respect to the third variable commute.

Proposition 6.3. Let W : R3 → [0,+∞) be a continuous function, then (W0)
lc(ξ) = (W lc)0(ξ)

for every ξ ∈ R2.

Proof. It is easily observed that for every ξ ∈ R2 and every c ∈ R,

(W0)
lc(ξ) ≤W0(ξ) ≤W (ξ|c).

Thus, since (W0)
lc is level convex, we have that

(W0)
lc(ξ) ≤W lc(ξ|c),

and taking the infimum with respect to c ∈ R on the right hand side we obtain

(W0)
lc(ξ) ≤ (W lc)0(ξ).

In order to prove the opposite inequality, we clearly have for every ξ ∈ R2 and every c ∈ R,

(W lc)0(ξ) ≤W lc(ξ|c) ≤W (ξ|c).

Taking the infimum with respect to c ∈ R in the right hand side of the previous inequality, yields

(W lc)0(ξ) ≤W0(ξ).
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By virtue of Proposition 6.2, the function (W lc)0 is level convex and thus we obtain

(W lc)0(ξ) ≤ (W0)
lc(ξ),

which completes the proof of the proposition. �

We now show that when W =W (ξ) the function (W0)
lc coincides with the function defined by

(5.3).

Lemma 6.4. Under assumption (6.1) (W0)
lc(ξ) =Whom(ξ), namely for every ξ ∈ R2,

(W0)
lc(ξ) = inf

{
ess sup
y∈Q′×I

W (ξ +Dαϕ(y)|D3ϕ(y)) :

ϕ ∈ W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}
.

Proof. Assume that W is a level convex function so that W0 is level convex as well by Proposition
6.2. According to definition formula (5.3), we denote

Whom(ξ) := inf

{
ess sup
y∈Q′×I

W (ξ +Dαϕ(y)|D3ϕ(y)) :

ϕ ∈W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}

for every ξ ∈ R2. Then, by definition of W0 and by applying Jensen’s inequality (2.2) to the level
convex function W0, we have that

Whom(ξ) ≥ inf

{
ess sup
y∈Q′×I

W0(ξ +Dαϕ(y)) :

ϕ ∈W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}

≥ inf

{
ess sup
y3∈I

W0

(∫

Q′

(ξ +Dαϕ(yα, y3)) dyα

)
:

ϕ ∈W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}

= W0(ξ).

In order to prove the opposite inequality, for every p > 1, let us define Gp : W 1,∞(Q′ × I) →
[0,+∞) by

Gp(ϕ) :=

(∫

Q′×I

W p(ξ +Dαϕ(y)|D3ϕ(y)) dy

)1/p

.

Thanks to Theorem 2.4 (see [27, Theorem 3.1]), the family (Fp)p>1 Γ-converges, with respect to
the uniform convergence to

G(ϕ) := ess sup
y∈Q′×I

W (ξ +Dαϕ(y)|D3ϕ(y)),

as p → +∞. Consequently, by the convergence of minimizers and by using [20, Remark 3.3], we
have that

Whom(ξ) = lim
p→+∞

inf

{(∫

Q′×I

W p(ξ +Dαϕ(y)|D3ϕ(y)) dy

)1/p

:

ϕ ∈W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}

= lim
p→∞

[C((W p)0)(ξ)]
1/p,
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where we have denoted by C((W p)0) the convex envelope of (W
p)0, and (W p)0(ξ) := infc∈RW

p(ξ|c).
Finally, since [C(W p)0(ξ)]

1/p ≤W0(ξ), we obtain Whom(ξ) ≤W0(ξ).
If W is not level convex, by applying the first part of this proof to the level convex function W lc

we obtain that

(W lc)0(ξ) = inf

{
ess sup
y∈Q′×I

W lc(ξ +Dαϕ(y)|D3ϕ(y)) :

ϕ ∈W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}
.

Therefore, by applying Proposition 6.3 and the relaxation theorem 2.3, we can conclude

(W0)
lc(ξ) = (W lc)0(ξ) = inf

{
ess sup
y∈Q′×I

W (ξ +Dαϕ(y)|D3ϕ(y)) :

ϕ ∈W 1,∞(Q′ × I), ϕ(·, y3) is 1-periodic for all y3 ∈ I

}
.

�

We now are in position to prove Theorem 6.1.
Proof of Theorem 6.1. First of all we prove that for every (u,A) ∈ C(Ω) × A and every sequence
(uε) ⊂ C(Ω) uniformly converging to u in Ω, one has

F0(u,A) ≤ lim inf
ε→0

Fε(uε, A).

In fact, if F0(u,A) = +∞, there is nothing to prove. Otherwise, if F0(u,A) < +∞, then we can
consider a subsequence (εn) ց 0+ such that

lim inf
ε→0

Fε(uε, A) = lim
n→∞

Fεn(uεn , A),

and thanks to (6.2), the sequence (uεn) ⊂ W 1,∞(A × I). According to the coercivity condition
(6.1), we have ∥∥∥∥

(
Dαuεn

∣∣∣ 1
εn
D3uεn

)∥∥∥∥
L∞(A×I;R3)

≤M,

for some constant M > 0 independent of n. Hence the sequence (uεn) weakly* converges to u in
W 1,∞(A× I) and u ∈W 1,∞(A). By definition of (W0)

lc, we have

ess sup
x∈A×I

W

(
Dαuεn(x)

∣∣∣ 1
εn
D3uεn(x)

)
≥ ess sup

x∈A×I
(W0)

lc(Dαuεn(x)).

But since (W0)
lc is level convex, the supremal functional

v 7→ ess sup
x∈A×I

(W0)
lc(Dαv(x))

is sequentially weakly* lower semicontinuous in W 1,∞(A× I), hence

lim
n→∞

ess sup
x∈A×I

W

(
Dαuεn(x)

∣∣∣ 1
εn
D3uεn(x)

)
≥ lim inf

n→∞
ess sup
x∈A×I

(W0)
lc(Dαuεn(x))

≥ ess sup
xα∈A

(W0)
lc(Dαu(xα)),

since u is independent of x3. Finally, we have that

lim inf
ε→0

Fε(uε, A) ≥ F0(u,A).

For the Γ∗-limsup, the proof develops as in [22, Theorem 5.2]. Thus we present here just the
main steps. First, using Lemma 6.4, and arguing as in the proof of Lemma 5.4, we get the limsup
inequality on affine functions. The second step consists in a fundamental estimate, and it is proved
exactly as [22, Step 2 in Theorem 5.2], with the only difference that the domain A is now a subset
of ω and the polyhedral partition is of the type A1 an A2, with cut-off function ϕδ which just
depends on the planar variables xα. In this way it is created a partition of the set A × I. The
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other steps are also similar, i.e., next one can provide the upper bound on C1 functions and on
regular open sets. Finally the Γ-lim sup is obtained on W 1,∞ functions, giving the representation
on C2 and star-shaped domains. Finally one may proceed obtaining the sub-supremality of the
inner regular envelope, obtaining the Γ-lim sup inequality on a rich family of open sets and for
every u ∈W 1,∞(Ω). �

7. Application to parametrized homogenization

We conclude this paper with a further application to Theorem 4.2 to the case of parametrized
homogenization. Let Ω ⊂ RN be a bounded open set, and Wε(x, ξ) := W

(
x, xε , ξ

)
. We are

interested in the homogenization (by Γ-convergence with respect to the uniform convergence ) of
the following supremal functionals Gε : C(Ω)×A → [0,+∞] defined by

Gε(u,A) :=





ess sup
x∈A

W
(
x,
x

ε
,Du(x)

)
if u ∈ W 1,∞(A),

+∞ otherwise,
(7.1)

where W : Ω×RN ×RN → [0,+∞) is a function such that

(B1) the function W (x, y, ·) is level convex for all x ∈ Ω and a.e. y ∈ RN ;
(B2) for each M > 0 there exists a modulus of continuity ωM : [0,+∞) → [0,+∞) satisying

|W (x, y, ξ)−W (x′, y, ξ′)| ≤ ωM (‖x− x′‖+ ‖ξ − ξ′‖)

for a.e. y ∈ RN and for every x, x′ ∈ Ω, ξ, ξ′ ∈ RN with ‖ξ‖, ‖ξ′‖ ≤M ;
(B3) the function y 7→W (x, y, ξ) is measurable for all x ∈ Ω and all ξ ∈ RN ;
(B4) the function W (x, ·, ξ) is 1-periodic for all x ∈ Ω and ξ ∈ RN ;
(B5) there exists a continuous increasing function Ψ : [0,+∞) → [0,+∞) such that Ψ(t) → +∞

as t → +∞, with the property that W (x, y, ξ) ≥ Ψ(‖ξ‖) for every ξ ∈ RN , all x ∈ Ω, and
a.e. y ∈ RN ;

(B6) there exists a locally bounded function β : [0,+∞) → [0,+∞) such that W (x, y, ξ) ≤
β(‖ξ‖) for every ξ ∈ RN , all x ∈ Ω and a.e. y ∈ RN .

Theorem 7.1. Under assumptions (B1)-(B6), the familly (Gε)ε>0 defined by (7.1) Γ∗-converges
to the functional Ghom : C(Ω)×A → [0,+∞] defined by

Ghom(u,A) =

{
ess sup
x∈A

Whom(x,Du(x)) if u ∈W 1,∞(A),

+∞ otherwise,

where Whom is the continuous function given by

Whom(x0, ξ) := inf
ϕ∈W 1,∞(Q)

{
ess sup
y∈Q

W (x0, y, ξ +Dϕ(y)) : ϕ is Q-periodic

}
,

for all (x0, ξ) ∈ Ω×RN , and Q is the unit square (0, 1)N .

We do not report the proof whose scheme follows the lines of Theorem 5.2 with some suitable
changes:

(1) by applying Theorem 3.7, we get the existence of a subsequence (εn) ց 0+ such that Gεn

Γ∗-converges to some functional G : C(Ω)×A → [0,+∞]. Thanks to Theorem 4.2, in order
to represent G in a supremal form, one checks that the function W is continuous as done
in Lemma 5.3;

(2) by proceeding as in Lemma 5.4 one shows that Whom ≥W ;
(3) by applying an approximation argument by integral functionals (as in Lemma 5.8) one

shows that Whom ≤ W . We only remark that, in this last step, instead of applying
Theorem 5.5, it is necessary to refer to [12] (see also [18, Proposition 2.23] and [9]).

We also observe that a commutative diagram such as presented in Remark 5.9 may be reproduced
in the framework of parametrized homogenization when dealing with the integral counterpart of
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functionals Gε in (7.1), namely when considering the Γ-limit as ε→ 0+ and p→ +∞ of

u 7→

(∫

Ω

W p
(
x,
x

ε
,Du

)
dx

)1/p

.

Remark 7.2. We observe that Theorem 7.1 could be obtained as a particular case of dimensional
reduction, having in mind that the result proven in Theorem 5.2 hold true also for the passage
(N +1)D−ND (for any N ≥ 1). For the readers’ convenience, the subsequent considerations will
be made in the case N = 2.

To deduce Theorem 7.1 from Theorem 5.2 it suffices to assume that the energy densityWε(x, ξ) =

W (xα,
xα

ε , ξ) has no dependence on the transverse variable x3 and on the last variable of the gra-
dient. Indeed, the proof of the lower bound is straightforward since – with the notations of section
5 – we clearly have for every (u,A) ∈W 1,∞(ω)×A, and every A′ ⊂⊂ A,

G′(u,A′) := inf
(uε)⊂W 1,∞(ω)

{
lim inf
ε→0

ess sup
xα∈A′

W
(
xα,

xα
ε
,Dαuε(xα)

)
: uε → u uniformly in ω

}

≥ inf
(uε)⊂W 1,∞(Ω)

{
lim inf
ε→0

ess sup
(xα,x3)∈A′×I

W
(
xα,

xα
ε
,Dαuε(xα, x3)

)
: uε → u uniformly in Ω

}
.

Hence taking the supremum with respect to all A′ ⊂⊂ A yields

G′
−(u,A) ≥ ess sup

xα∈A
Whom(xα, Dαu(xα)),

where according to Theorem 5.2,

Whom(x0, ξ) := inf
ϕ∈W 1,∞(Q′×I)

{
ess sup
y∈Q′×I

W (x0, yα, ξ +Dαϕ(y)) :

ϕ(·, y3) is 1-periodic for all y3 ∈ I

}

= inf
ϕ∈W 1,∞

per (Q′)

{
ess sup
y∈Q′

W (x0, yα, ξ +Dαϕ(yα))

}
for all (x0, ξ) ∈ ω ×R2.

For what concerns the upper bound, thanks again to Theorem 5.2, we infer the existence of a
sequence (uε) ⊂W 1,∞(Ω) uniformly converging to u in Ω, and such that

lim sup
ε→0

ess sup
(xα,x3)∈A′×I

W
(
xα,

xα
ε
,Dαuε(xα, x3)

)

= inf
(wε)⊂W 1,∞(Ω)

{
lim sup

ε→0
ess sup

(xα,x3)∈A′×I

W
(
xα,

xα
ε
,Dαwε(xα, x3)

)
: wε → u uniformly in Ω

}
.

Hence for a.e. s ∈ I, vε := uε(·, s) ∈ W 1,∞(ω), vε → u uniformly in ω and

lim sup
ε→0

ess sup
xα∈A′

W
(
xα,

xα
ε
,Dαvε(xα)

)

≤ inf
(wε)⊂W 1,∞(Ω)

{
lim sup

ε→0
ess sup

(xα,x3)∈A′×I

W
(
xα,

xα
ε
,Dαwε(xα, x3)

)
: wε → u uniformly in Ω

}
.

so that

G′′(u,A′) := inf
(vε)⊂W 1,∞(ω)

{
lim sup

ε→0
ess sup
xα∈A′

W
(
xα,

xα
ε
,Dαvε(xα)

)
: vε → u uniformly in ω

}
.

≤ inf
(wε)⊂W 1,∞(Ω)

{
lim sup

ε→0
ess sup

(xα,x3)∈A′×I

W
(
xα,

xα
ε
,Dαwε(xα, x3)

)
: wε → u uniformly in Ω

}
.

Finally, taking the supremum with respect to all A′ ⊂⊂ A yields

G′′
−(u,A) ≤ ess sup

xα∈A
Whom(xα, Dαu(xα)).
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