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ABSTRACT

Context. The variety and complexity of long duration gamma-ray burst (LGRB) light curves (LCs) encode a wealth of information
about the way LGRB engines release their energy following the collapse of the progenitor massive star. Thus far, attempts to charac-
terise GRB LCs have focused on a number of properties, such as the minimum variability timescale and power density spectra (both
ensemble average and individual), or considering different definitions of variability. In parallel, a characterisation as a stochastic pro-
cess has been pursued by studying the distributions of waiting times, peak flux, and fluence of individual peaks that can be identified
within GRB time profiles. However, an important question remains as to whether the diversity of GRB profiles can be described in
terms of a common stochastic process.
Aims. Here, we address this issue by extracting and modelling, for the first time, the distribution of the number of peaks within a GRB
profile.
Methods. We analysed four different GRB catalogues: CGRO/BATSE, Swift/BAT, BeppoSAX/GRBM, and Insight-HXMT. The sta-
tistically significant peaks were identified by means of well tested and calibrated algorithm mepsa and further selected by applying a
set of thresholds on the signal-to-noise ratio. We then extracted the corresponding distributions of number of peaks per GRB.
Results. Among the different models considered (power-law, simple or stretched exponential), we find that only a mixture of two
exponentials was able to model all the observed distributions. This suggests the existence of two distinct behaviours: (i) an average
number of 2.1±0.1 peaks per GRB (“peak-poor”), accounting for about 80% of the observed population of GRBs; and (ii) an average
number of 8.3 ± 1.0 peaks per GRB (“peak-rich”), accounting for the remaining 20% of the observed population.
Conclusions. We associate the class of peak-rich GRBs with the presence of sub-second variability, which appears to be surprisingly
absent among peak-poor GRBs. The two classes could result from two distinct regimes in which the inner engines of GRBs release
their energy or otherwise dissipate that energy as gamma rays.

Key words. methods: data analysis – methods: statistical – gamma-ray burst: general

1. Introduction

Gamma-ray burst (GRB) prompt emission is observed in at
least two kinds of explosive transients: (i) the merger of a com-
pact object binary system (Eichler et al. 1989; Paczynski 1991;
Narayan et al. 1992; Abbott et al. 2017) and (ii) the core col-
lapse of some kinds of massive stars also known as “collap-
sar” (Woosley 1993; Paczyński 1998; MacFadyen & Woosley
1999; Yoon & Langer 2005). While the prompt emission dura-
tion remains the strongest hint on the nature of the progenitor, in
a few cases it turned out to be deceitful. To avoid confusion, the
two progenitor families (i) and (ii) are often referred to as type-I
and type-II GRBs, respectively (Zhang 2006). In this work, we
focus on the latter class.

Modelling the thousands of GRB prompt emission time-
resolved spectra has indicated that the observed variety is likely
the result of different radiative processes in different GRBs,
given the variety of spectral components that are observed: the

non-thermal Band function, an occasional quasi-thermal com-
ponent, and even a broad-band power-law (see Kumar & Zhang
2015 for a review). These processes are possibly related to dif-
ferent dissipation mechanisms taking place at different distances
from the progenitor and driven by key properties, such as the
ejecta composition of the relativistic jet that is launched by the
GRB inner engine.

In parallel, while numerous studies that focused on the tem-
poral properties of GRB time profiles have contributed to char-
acterise their variability, the broad variety and highly erratic
nature of GRB prompt emission remains mostly unexplained
and apparently disconnected from the properties that are inferred
from the afterglow modelling, apart from the energetics. Despite
being affected by a large scatter, a positive correlation between
peak luminosity and variability was found as soon as the num-
ber of bursts with measured redshift increased to a dozen or
more (Reichart et al. 2001; Fenimore & Ramirez-Ruiz 2000).
Variability was defined as the net (that is, removed of the
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counting statistics noise contribution) variance of the light curve
(LC) with respect to a smoothed version of the same. The cor-
relation was later confirmed over larger data sets, along with its
large scatter (Guidorzi et al. 2005, 2006; Guidorzi 2005), with a
forthcoming analysis of Swift and Fermi GRBs (Guidorzi et al.
in prep.). Peak luminosity was also found to be correlated with
the so-called minimum variability timescale (MVT), defined as
the shortest timescale over which an uncorrelated flux change
is observed significantly in excess of statistical fluctuations (see
Camisasca et al. 2023 and references therein). A possible inter-
pretation explains more variable GRBs as the result of narrower
jets with higher Lorentz factors and shorter spreading timescales
than wider jets (Kobayashi et al. 2002).

Most GRB LCs can be described as a sequence of peaks
of different shapes, duration, and intensity with no clear rule.
While different techniques have revealed that temporal power
is generally distributed over a broad range of timescales (from
∼10 ms to several 10 s), two distinct components were also iden-
tified in a number of GRBs: slow (&1 s), and fast (down to
few 10 ms; Vetere et al. 2006; Gao et al. 2012; Guidorzi et al.
2016). Since the first catalogues of the Burst And Transient
Source Experiment (BATSE; Paciesas et al. 1999) that flew
aboard the Compton Gamma-Ray Observatory (CGRO; 1991–
2000), distributions of properties of the peaks (seen as build-
ing blocks of the prompt emission) were studied in detail
(e.g. see Ramirez-Ruiz & Merloni 2001; Quilligan et al. 2002;
Nakar & Piran 2002). However, despite the enormous progress
in the knowledge of GRB progenitors and their environments, a
precise characterisation of the stochastic process(es) that drive(s)
GRB engines in releasing their energy as a function of time is
missing. Hence, the degree of complexity exhibited by a given
GRB LC, especially if it is seen as a point process given by
the sequence of peaks with different intensities and durations,
can hardly be translated into clues on the nature of its inner
engine or on the nature of the powering mechanism that rules its
evolution.

In this respect, while the distribution of the number of peaks
per GRB was obtained in past investigations (e.g. Quilligan et al.
2002; Guidorzi et al. 2016), to our knowledge, no attempt to
model and interpret it has been done to date. Following previ-
ous analogous definitions (Li & Fenimore 1996; Nakar & Piran
2002), a “peak” is defined as a statistically significant increase
of the count rate with respect to the neighbouring time bins,
using the terminology introduced by Li & Fenimore (1996). In
this work we addressed this by applying a well tested peak
identification code, mepsa (Guidorzi 2015), to four indepen-
dent catalogues among the different past and present missions
aimed at GRB studies (Tsvetkova et al. 2022): CGRO/BATSE,
Swift/BAT, BeppoSAX/GRBM, and Insight-HXMT. A forth-
coming paper reports on the ongoing analysis of Fermi/GBM
GRBs, although some preliminary results are mentioned in the
following. We note that our aim deliberately neglects the tem-
poral structures of peaks, which might differ significantly from
one another, or how much they overlap in time, provided that
they can be identified as distinct peaks. Section 2 reports the
data sets used, the LC extraction along with the peak identifica-
tion. Section 3 reports the results of the analysis, which are then
discussed in Sect. 4.

2. Data sets

We obtained the background-subtracted LC of GRBs with a bin-
time of 64 ms (except for BeppoSAX/GRBM for which we made
use of both 1-s and 62.5-ms bin times) and extracted a list of

peaks detected withmepsa, a code specifically devised and opti-
mised to identify peaks in uniformly sampled and background-
subtracted GRB LCs (Guidorzi 2015), discarding candidates
with a signal-to-noise ratio of S/N < 5.

From the BATSE 4B catalogue (Paciesas et al. 1999) we took
the 64-ms time profiles of LGRBs (T90 > 2 s) made available
by the BATSE team1. Taken with the eight BATSE Large Area
Detectors (LADs), these time profiles resulted from the concate-
nation of three standard BATSE types, DISCLA, PREB, and
DISCSC. They are available in four energy channels, 25−55,
55−110, 110−320, and >320 keV: we used the summed counts
over the four channels. The background was interpolated with
polynomials of up to fourth degree as prescribed by the BATSE
team. These background-subtracted profiles were then processed
with mepsa and we selected the GRBs with at least one signif-
icant peak. We ended up with a sample of 1457 GRBs, which
hereafter are referred to as the BATSE sample.

We started from all the GRBs detected by Swift/BAT in burst
mode from January 2005 to July 2023 and rejected those with
T90 ≤ 2 s, as well as the long-lasting type-I candidates, since
they had been classified by the Swift team; these include all
the so-called short extended-emission GRBs (Norris & Bonnell
2006), in addition to peculiar events like 060614, 211211A
(Gehrels et al. 2006; Yang et al. 2022). The information on the
T90 duration and on the LC characterisation was taken either
from the BAT3 catalogue (Lien et al. 2016), when available, or
from the Swift/BAT team circulars. For each burst we extracted
the mask-weighted, 64-ms bin time profile in the 15−150 keV
passband following the standard procedure recommended by the
BAT team2 and applied mepsa. Imposing the above-mentioned
S/N > 5 threshold on the peak candidates, we selected all the
type-II GRB candidates with at least one peak and ended up with
1277 bursts. Hereafter, this is referred to as the BAT sample.

The LCs available in the 40−700 keV passband for the GRBs
from the BeppoSAX/GRBM catalogue (Frontera et al. 2009)
come after two fashions: for the 2/3 that triggered the on-board
logic, a 7.8125-ms profile covering the first 106 s for each of the
four independent units is available. For the remaining 1/3, only
1-s LCs are available. For the former we obtained 62.5-ms pro-
files. The GRBs observed before November 1996 were ignored
due to the presence of extra-Poissonian noise in the background
rate of the GRBM, which was removed after raising the LLT
energy threshold (Frontera et al. 2009). We then discarded short
GRBs (T90 < 2 s, as reported by Frontera et al. 2009) and ran
mepsa on the LC of the most illuminated detector (or on the
sum of the two most illuminated ones, depending on which LC
had the higher S/N) independently on both 62.5-ms and 1-s pro-
files and merged the results, making sure to count once the peaks
that triggered both timescales. The reason of this strategy is not
to lose peaks that occurred after the first 106 s acquired with high
temporal resolution. We applied the same S/N > 5 threshold as
for the other catalogues and ended up with 820 GRBs with at
least one significant peak, which hereafter are referred to as the
BeppoSAX sample.

From the first Insight-HXMT/HE GRB catalogue (Song
et al. 2022) we discarded all the GRBs with T90 < 2 s, as
well as those belonging to the iron sample, for which the elec-
tronics saturated due to excessively high count rates. For the
remaining GRBs we extracted the 64-ms, dead-time corrected

1 https://heasarc.gsfc.nasa.gov/FTP/compton/data/
batse/ascii_data/64ms/
2 https://swift.gsfc.nasa.gov/analysis/threads/bat_
threads.html
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LCs obtained by summing the counts of all the 18 HE detec-
tor units, selecting only the CsI events (for which the HE works
as an open-sky monitor) following the procedure described
in Song et al. (2022). The total energy passband depends on
the HE operation mode: either 80−800 or 200−3000 keV for
the normal and GRB (or low-gain) mode, respectively. The
background interpolation and subtraction was carried out as in
Camisasca et al. (2023), to which the reader is referred. We
finally ran mepsa and after applying the same S/N > 5 selec-
tion we ended up with 202 GRBs hosting at least one significant
peak. Hereafter, these GRBs are referred to as the Insight-HXMT
sample.

3. Results

For each data set, we obtained the distribution of the number of
peaks per GRB, expressed as number of GRBs having n peaks, as
a function of n for all integer values (n ≥ 1). This is clearly a dis-
crete distribution. For each of the models considered below, we
first determined the best fit parameters by maximising the cor-
responding likelihood function. We then estimated the parame-
ters’ marginalised distributions by sampling the posterior distri-
bution using Markov chain Monte Carlo (MCMC) sampling with
emcee (Foreman-Mackey et al. 2013): starting from the maxi-
mum likelihood solution, we ran 32 walkers for 5000 steps and
discard the first 100 steps as burn-in. We tested the goodness of
the best solution by grouping the expected number of GRBs so
as to have at least five per class and carried out a χ2 test.

We first tried to model the distributions with a discrete sim-
ple exponential, which is mostly determined by the majority of
GRBs, which have 1 or 2 peaks. However, all data sets showed
an excess of GRBs with many (&10) peaks. Motivated by the
possible presence of a hard tail, we then considered a simple
power-law model, but the result was poor. A broken power-law
did not provide satisfactory fits for all data sets either.

As a further attempt, we considered a stretched exponen-
tial (also known as the empirical Kohlrausch–Williams–Watts,
or KWW, function), which is often encountered in several con-
texts in physics for modelling relaxation processes of systems
that dissipate energy and are initially out of equilibrium (e.g. see
Lukichev 2019, and references therein). It can also result from
the combination of numerous (ideally continuous) exponentially
distributed processes (Johnston 2006). Moreover, a stretched
exponential was found to describe the average temporal decay
of peak-aligned and peak-normalised profiles of BATSE GRBs
(Stern & Svensson 1996). As a result, only the distribution of
the BATSE sample, which is the most numerous one, could not
be modelled satisfactorily with a stretched exponential (χ2 test
p-value of 10−6).

Finally, we considered the mixture of two simple exponen-
tials with the relative weight treated as a free parameter. Specifi-
cally, the fraction f (n) of GRBs hosting n peaks is described by
via

f (n) = k (e−n/n1 + ξ e−n/n2 ), (1)

where k is a normalisation constant, such that
∑+∞

n=1 f (n) = 1, ni
(i = 1, 2) is the characteristic number of peaks per GRB of the ith
component (n1 ≤ n2 by convention) and ξ is a relative normal-
isation parameter, thereby amounting to three free parameters.
Due to the discrete nature of the distribution, the corresponding
expected number of peaks per GRB of the ith exponential com-
ponent, 〈n(i)〉, is not simply ni (as in the case of a continuous

distribution) but instead:

〈n(i)〉 =

∑+∞
n=1 ne−n/ni∑+∞
n=1 e−n/ni

=
1

1 − e−1/ni
· (2)

Hereafter, Eq. (1) is referred to as the mixture model of two
exponentials (M2E).

The resulting distributions along with the best fit M2Es are
shown in Fig. 1, while Table 1 reports the best fit values of the
model parameters and the corresponding p-value of the χ2 test.
All of the four data sets can be satisfactorily modelled and, what
is more, the parameters values are similar to each other, despite
the different effective areas and energy passbands. We also per-
formed a joint fit of all the four distributions with a common set
of parameters in two ways: (i) by merging all GRBs and treating
it as a single data set, thus dominated by the richest data sets;
and (ii) by keeping the four distributions separate and assigning
equal weights in the total likelihood. It was only for (i) that we
obtained a marginally acceptable solution (p-value of 3%, see
Table 1).

We also calculated the fraction of GRBs w̄2 contributed by
the second exponential component, according to each best fit
solution. This is calculated simply as:

w̄2 = k ξ
+∞∑
n=1

e−n/n2 . (3)

Interestingly, all data sets have compatible values, with a
weighted average of 0.19 ± 0.03 (90% confidence). Analogous
results are found for the expected numbers of peaks of either
component: while the first component presents a range of values
for 〈n(1)〉 only marginally compatible with each other (weighted
average of 2.1± 0.1, p-value of 6× 10−6), the expected value for
the second component, 〈n(2)〉, is compatible among all data sets,
with a weighted average of 8.3 ± 1.0 (p-value of 0.06). Here-
after, the first (i = 1) and the second (i = 2) components are
referred to as the peak-poor and the peak-rich ones, respectively.
Similar results were obtained on a preliminary sample of 393
Fermi Gamma-ray Burst Monitor (GBM; Meegan et al. 2009)
GRBs, 361 of which are shared with the BAT sample (Maccary
et al., in prep.); in particular, we found a peak-rich fraction
w̄2 = 0.19+0.13

−0.09, which is in line with the other four samples.
We investigated the relation between number of peaks per

GRB n and burst duration as expressed in terms of T90, whose
values were taken from the official corresponding catalogue
papers. Figure 2 shows the results for all catalogues. We stud-
ied how the median and the logarithmic mean of T90 of all cat-
alogues merged together vary as a function of n. To avoid low-
count fluctuations in the median and mean estimates, we grouped
bins of n so as to have at least 9 GRBs per class. The two quan-
tities clearly track each other very closely (Fig. 2). Interestingly,
the dependence of T90 on n becomes shallower for n & n2;
when modelling the median value of T90, T̃90, with a power-law,
T̃90/s ' κ na, we found a = 0.58 (κ = 18.8) for n < n2, while
a = 0.39 (κ = 23.0) for n > n2 (dash-dotted magenta line in
Fig. 2). The fact that a significantly differs from 1 suggests that
the abundance of peaks within a GRB is not compatible with
a common probability per unit time of emitting a peak, which
would predict a ∼ 1. Moreover, the dynamic range of T̃90 (19 s
for n = 1, 57 s for 50 < n < 85) is significantly narrower than the
scatter of T90 for any n: this indicates that T90 is not a main driver
of n. In addition, the fact that the dependence of T̃90 becomes
even shallower for large values n, where most GRBs are con-
tributed by the peak-rich component of Eq. (1), further supports
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Fig. 1. Distributions of number of GRBs per number of peaks for different catalogues: CGRO/BATSE (top left), Swift/BAT (top right),
BeppoSAX/GRBM (bottom left), and Insight-HXMT (bottom right). Observed data and expected counts are shown in orange and blue, respec-
tively. All histograms have been grouped so as to ensure a minimum number of counts per bin. Dashed lines show the best mixture model of two
exponentials that fit each distribution. Grey models are the result of a random sampling of the posterior distribution of the parameters as determined
via MCMC.

the possible existence of two families of GRBs or (at least) two
different behaviours for the GRB engines.

3.1. Instrumental selection effects

The number of peaks clearly depends on the detector sensitivity
and on the threshold on the S/N values. Secondly, it also depends
on the energy passband, given that harder channels exhibit nar-
rower and spikier temporal structures than softer channels. This
is clearly shown by the higher number of peaks in the BATSE
sample compared with the other samples and is due to the better
sensitivity of the former instrument.

We investigated the impact of S/N by repeating the anal-
ysis assuming two additional threshold values: S/N > 7 and
S/N > 9. The total number of identified peaks decreased to a
fraction between 70 and 85% for the different catalogues, when
moving from S/N > 5 to S/N > 9. Only the average number of
peaks per GRB of the BATSE sample decreased from 5.6 to 4.9,
whereas for all the other samples the same quantity remained
in the range 2.8−3.0 peaks per GRB. The reason is that for the
other three samples the number of GRBs featuring at least one
significant peak decreased proportionally, due to a lower sen-

sitivity with respect to BATSE. Because of this, the weighted
average number of peaks per GRB of both peak-poor and peak-
rich components did not change significantly: 〈n(1)〉 passed from
2.1 ± 0.1 (S/N > 5) to 2.0 ± 0.1 (S/N > 9). 〈n(2)〉 changed from
8.3 ± 1.0 (S/N > 5) to 8.1 ± 1.0 (S/N > 9). Finally, the frac-
tion of peak-rich GRBs moved from 0.19 ± 0.03 (S/N > 5) to
0.22 ± 0.03 (S/N > 9). Overall, while the number of peaks per
GRB is inevitably expected to decrease by keeping raising the
S/N threshold (although in a limited way, as we found passing
from 5 to 9), the fractions of peak-poor and peak-rich GRBs do
not seem to depend sensitively on the S/N threshold.

We identified 160 GRBs in common between the BATSE and
the BeppoSAX samples. For each of these GRBs we calculated
the difference between the number of peaks detected from the
two profiles, ∆n = n(BATSE) − n(SAX). We divided this common
sample into two subsamples: the GRBs for which there are high-
resolution (HR; 62.5-ms) data, and the GRBs with only 1-s data
from BeppoSAX. Figure 3 shows the distributions of ∆n for dif-
ferent S/N thresholds. First, the distributions do not depend sig-
nificantly on the S/N threshold. Secondly, on average, the pres-
ence of HR data from BeppoSAX does not appreciably impact
the number of detected peaks. Thirdly, the median values in all
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Table 1. Best-fit values and 90% confidence intervals of the parameters of the mixture model of two exponentials (Eq. (1)) applied to the different
data sets.

Catalog N (a) Np
(b) k n1 〈n(1)〉 (c) n2 〈n(2)〉 (c) ξ w̄2

(d) χ2 test
p-value

BATSE 1457 8112 0.33+0.02
−0.03 2.89+0.29

−0.26 3.42+0.29
−0.26 13.4+3.0

−2.1 13.9+3.0
−2.1 0.049+0.027

−0.018 0.21+0.06
−0.05 0.164

BAT 1277 3817 0.78 ± 0.08 1.47 ± 0.17 2.03 ± 0.17 6.4+1.5
−1.2 6.9+1.5

−1.2 0.043+0.029
−0.017 0.20+0.08

−0.06 0.845

BeppoSAX 820 2151 1.02+0.13
−0.12 1.29+0.15

−0.14 1.85+0.15
−0.13 7.6+3.4

−1.9 8.1+3.4
−1.9 0.019+0.015

−0.011 0.13+0.06
−0.05 0.440

HXMT 202 616 0.99+0.71
−0.46 0.85+1.02

−0.23 1.45+0.96
−0.20 4.3+3.8

−1.2 4.8+3.8
−1.2 0.107+0.219

−0.076 0.43+0.23
−0.26 0.600

All (e) 3756 14 696 0.59 ± 0.03 1.81+0.11
−0.10 2.36 ± 0.10 9.6+1.2

−0.9 10.1+1.2
−0.9 0.037+0.010

−0.008 0.20 ± 0.03 0.033

W. aver. ( f ) – – – – 2.1 ± 0.1 – 8.3 ± 0.1 – 0.19 ± 0.03 –

Notes. (a)Number of GRBs. (b)Total number of peaks. (c)Expected number of peaks per GRB of the corresponding exponential component, calcu-
lated as in Eq. (2). (d)Defined in Eq. (3), it is the total fraction of GRBs contributed by the second exponential, characterised by a higher average
number of peaks per GRB. (e)All data sets have been merged together and treated as one sample. ( f )Weighted average value using the different
estimates of the four catalogues.

100 101 102

Number of peaks per GRB

101

102

103

T 9
0 (

s)

BATSE
BAT
BeppoSAX
HXMT
median
gmean

Fig. 2. T90 vs. number of peaks per GRBs for the different data sets.
Also shown: the T90 median (black) and the geometric mean (olive) as
a function of number of peaks, grouped with at least nine GRBs each.
The dashed-dotted line (magenta) shows a broken power-law fit of the
median behaviour.

cases is +2, which reflects the better sensitivity of BATSE. In
addition, ∼60% (∼70%) of all common GRBs have |∆n| ≤ 2
(|∆n| ≤ 3). A discrepancy of ∼2−3 in estimating n is small
compared with 〈n(2)〉 − 〈n(1)〉 ' 6.2 ± 1.0. We derived the anal-
ogous distribution for the preliminary common sample of 361
GRBs shared by BAT and Fermi/GBM, confirming that for the
majority of bursts the difference in the number of peaks is small:
86% and 92% GRBs with |∆n| ≤ 2 and |∆n| ≤ 3, respectively
(Maccary et al., in prep.). Consequently, for most GRBs, the
probability of belonging to either the peak-poor or the peak-rich
family does not crucially depend on the detector used, at least as
long as these catalogues are concerned. A more thorough charac-
terisation through mapping with other GRB observed properties
goes beyond the scope of the present analysis and merits a sepa-
rate investigation.

3.2. Number of peaks versus peak luminosity

According to the variability-luminosity relation, more lumi-
nous GRBs are (on average) more variable. We therefore stud-
ied the relation between number of peaks and peak luminos-
ity. To this aim, we selected 17 GRBs from the BeppoSAX
and 131 from the BAT samples with spectroscopically mea-
sured redshift and for which the isotropic-equivalent peak
luminosity, Lp,iso, in the comoving-frame 1−104 keV pass-
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Fig. 3. Distributions of ∆n, defined as the difference between the num-
ber of peaks detected with BATSE and the one detected with BeppoSAX
for a common sample of 160 GRBs, for three different thresholds on
S/N. Blue and orange show the subsamples of GRBs with/without
BeppoSAX high-resolution data, respectively.

band had been estimated with broadband experiments, such as
BeppoSAX and Konus/WIND. These values were taken from
Ghirlanda et al. (2005), Amati et al. (2008), Yonetoku et al.
(2010), Dichiara et al. (2016), Tsvetkova et al. (2017, 2021).
Figure 4 shows the result. Non-parametric Spearman’s and
Kendall’s correlation tests over the joint sample of 148 GRBs
yielded a null hypothesis probability of no correlation as small
as 1.1 × 10−7 and 2.0 × 10−7, respectively. Hence, even though
it is highly dispersed, the correlation is statistically significant,
with peak-rich GRBs being, on average, more luminous.

As a further check, we also split the sample based on the
median number of peaks of n = 3 of the joint sample, ending up
with 79 (69) GRBs with n ≤ 3 (n > 3) peaks. The two groups
can be roughly considered as peak-poor and peak-rich samples.
Median peak luminosities are 1.5 × 1052 and 6.8 × 1052 erg s−1

for the peak-poor and peak-rich samples, respectively. The prob-
ability of a common parent population for the two distributions
of Lp,iso is 9 × 10−5 and <10−3 according to the Kolmogorov–
Smirnov and Anderson–Darling tests3, respectively. In

3 These tests were done using scipy.stats.ks_2samp and
scipy.stats.anderson_ksamp, respectively.
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Fig. 4. Number of peaks vs. isotropic-equivalent peak luminosity
Lp,iso for a sample of 131 (17) GRBs with known z from the BAT
(BeppoSAX) samples. The dashed line marks the median number of
peaks of the whole sample.

conclusion, robust evidence is found that peak-rich GRBs
are, on average, more luminous than peak-poor ones, although
the two peak luminosity distributions are strongly overlapped.

4. Discussion and conclusions

The analysis of a former Swift/BAT sample of GRB LCs
showed that the power density spectra of peak-rich GRBs tend
to be preferentially described by a shallow PL, which is the
result of the superposition of peaks covering a broad range of
timescales, such that no dominant timescale emerges (see Fig. 7
of Guidorzi et al. 2016). In particular, peak-rich GRBs tend to
have relatively more temporal power on shorter (.1 s) timescales
than peak-poor GRBs due to the presence of a number of narrow
peaks which are mostly absent in peak-poor GRBs. An illustra-
tive example of this difference is shown in Fig. 5: two bursts
from the BeppoSAX/GRBM catalogue having comparable flu-
ence and peak flux, one with just two peaks and a long smooth
decaying tail (T90 ∼ 140 s), while the other featuring 24 peaks
within a T90 = 60 s, most of which have subsecond durations.

In light of the results here reported on the possible existence
of two distinct dynamics, as revealed by the distribution of num-
ber of peaks per GRB, the emerging picture is suggestive of two
kinds of regimes through which type-II GRB engines release
their energy: (i) one emitting a few (∼2.1 on average) typically
broad peaks (&1 s), making up ∼80% of the observed popula-
tion of GRBs of past and present catalogues; and (ii) the other
one emitting several peaks (∼8.3 on average), covering a broader
range of timescales, including subsecond ones, which makes up
the remaining 20% of the observed population. The coexistence
of two kinds of timescales in some GRBs (i.e. the so-called slow
and fast variability components) has already been suggested in
the literature (Vetere et al. 2006; Margutti 2009; Gao et al. 2012;
Guidorzi et al. 2016). Our results suggest a further characterisa-
tion, which points to the existence of two distinct ways GRB
engines may work.

We may look at the class of peak-rich GRBs as being charac-
terised by the presence of a fast component that manifests itself
through a number of narrow peaks, which are instead mostly
missing in the other class of peak-poor GRBs. Peak richness is
also preferentially accompanied (on average) by shorter MVT
and higher peak luminosity, although the latter alone cannot be
used to discriminate between the two classes, given the strong
overlap shown in Fig. 4. The origin of the fast component in the

literature has been investigated within the context of different
progenitor models and can be summarised in two main groups,
depending on whether the fast component (a) reflects the inner
engine activity or (b) is mainly driven by other factors. Within
the context of the internal shock (IS) model (Kobayashi et al.
1997; Daigne & Mochkovitch 1998; Maxham & Zhang 2009),
the number of peaks and the sequence of time intervals sim-
ply reflect the emission time history of the inner engine. Unlike
the slow one, the fast component imprinted by the inner engine
would not be quenched, as a purely hydrodynamic jet propa-
gates through the stellar envelope (Morsony et al. 2010). When
the possibility of a magnetised outflow is considered, a weakly
magnetised and intermittent jet, which is less subject to mixing
with the surrounding progenitor gas than a pure hydrodynamic
jet, appears more promising to explain the observed variabil-
ity, since the predicted GRB emission would be less inhibited
(Gottlieb et al. 2020b, 2021).

Within the (a) scenario, our results suggest that either inner
engines of peak-poor GRBs are quieter, especially at short
timescales, or their progenitor structure is able to suppress the
subsecond variability. This could be due to the different degree
of magnetisation of the jet, which can affect the mixing and
consequently the jet baryon load (Gottlieb et al. 2020a). There
are a number of interpretations of how a GRB engine, such
as an accreting black hole (BH), could explain the fast com-
ponent; for example, this can be caused by the fluctuations
of the viscosity parameter and how they consequently propa-
gate through the disk in a similar way to what is believed in
the case of BH binaries and active galactic nuclei (Lin et al.
2016). Alternatively, they could be caused by the fastest modes
of magneto-rotational instabilities that drive and launch a mag-
netised jet through the Blandford-Znajek process (Janiuk et al.
2021). Within these contexts, peak-poor GRBs could be indica-
tive of a regime in which either viscosity fluctuations or fast
instabilities are strongly inhibited.

In the alternative (b) scenario, the fast component that
characterises peak-rich GRBs originates at further distance
from the inner engine, up to the GRB emission site. In the
Internal-Collision induced MAgnetic Reconnection and Turbu-
lence (ICMART) model (Zhang & Yan 2011), a wind of mod-
erately magnetised shells (with magnetisation 1 . σ . 100 at
the GRB site) collide and produce several runaway cascades of
magnetic reconnection events. The fast component would be the
result of turbulent, Doppler-boosted emission of mini-jets within
the comoving frame of the colliding shells, caused by parti-
cles accelerated by magnetic reconnections. Simulations carried
out by Zhang & Zhang (2014) show that spikier GRB LCs with
many distinguishable peaks are, in particular, favoured by the
following factors: (1) large emission site (R & 1015 cm) from the
progenitor giving a longer curvature decay tail, which thus does
not wash out the rapid variability due to the mini-jets; and (2)
a more magnetised outflow, which corresponds to a higher con-
trast between the Lorentz factors of the mini-jets and that of the
corresponding shell. Our results could suggest that the turbulent
magnetic reconnection regime either sets in efficiently (peak-rich
GRB) or it does not (peak-poor GRB).

Ultimately, the possibility remains that the two classes reflect
two different kinds of inner engines, such as ms-magnetars and
accreting BHs, for which other potentially discriminating signa-
tures in the prompt emission are yet to be identified.

A final note concerns the long-lasting GRBs that are
type-I candidates, such as 060614, 211211A, and 230307A
(Gehrels et al. 2006; Yang et al. 2022; Troja et al. 2022;
Gompertz et al. 2023; Dichiara et al. 2023; Levan et al. 2024),
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Fig. 5. Examples of two GRBs having only 2 (left, 981203A) and 24 peaks (right, 010412), respectively, as observed in the 40−700 keV passband
by BeppoSAX/GRBM. The red points show the identified peaks, while dashed lines show the interpolated background. The fluence and peak flux
of the two GRBs are very similar (Frontera et al. 2009).

which were ignored in the present analysis; we note that all
their LCs exhibit numerous peaks (several dozens). While
peak-richness alone cannot be a distinctive feature of this kind
of merger candidates – given that there are several type-II GRBs
with an associated SN that are also peak-rich (e.g. 080319B,
Racusin et al. 2008) – nevertheless it could be interpreted as a
clue to understanding the nature of the inner engine powering
these mergers.
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Paczyński, B. 1998, ApJ, 494, L45
Quilligan, F., McBreen, B., Hanlon, L., et al. 2002, A&A, 385, 377
Racusin, J. L., Karpov, S. V., Sokolowski, M., et al. 2008, Nature, 455, 183
Ramirez-Ruiz, E., & Merloni, A. 2001, MNRAS, 320, L25
Reichart, D. E., Lamb, D. Q., Fenimore, E. E., et al. 2001, ApJ, 552, 57
Song, X.-Y., Xiong, S.-L., Zhang, S.-N., et al. 2022, ApJS, 259, 46
Stern, B. E., & Svensson, R. 1996, ApJ, 469, L109
Troja, E., Fryer, C. L., O’Connor, B., et al. 2022, Nature, 612, 228
Tsvetkova, A., Frederiks, D., Golenetskii, S., et al. 2017, ApJ, 850, 161
Tsvetkova, A., Frederiks, D., Svinkin, D., et al. 2021, ApJ, 908, 83
Tsvetkova, A., Svinkin, D., Karpov, S., & Frederiks, D. 2022, Universe, 8,

373
Vetere, L., Massaro, E., Costa, E., Soffitta, P., & Ventura, G. 2006, A&A, 447,

499
Woosley, S. E. 1993, ApJ, 405, 273
Yang, J., Ai, S., Zhang, B. B., et al. 2022, Nature, 612, 232
Yonetoku, D., Murakami, T., Tsutsui, R., et al. 2010, PASJ, 62, 1495
Yoon, S. C., & Langer, N. 2005, A&A, 443, 643
Zhang, B. 2006, Nature, 444, 1010
Zhang, B., & Yan, H. 2011, ApJ, 726, 90
Zhang, B., & Zhang, B. 2014, ApJ, 782, 92

A34, page 7 of 7

http://linker.aanda.org/10.1051/0004-6361/202449200/1
http://linker.aanda.org/10.1051/0004-6361/202449200/2
http://linker.aanda.org/10.1051/0004-6361/202449200/3
http://linker.aanda.org/10.1051/0004-6361/202449200/4
http://linker.aanda.org/10.1051/0004-6361/202449200/5
http://linker.aanda.org/10.1051/0004-6361/202449200/5
http://linker.aanda.org/10.1051/0004-6361/202449200/6
http://linker.aanda.org/10.1051/0004-6361/202449200/7
https://arxiv.org/abs/astro-ph/0004176
http://linker.aanda.org/10.1051/0004-6361/202449200/9
http://linker.aanda.org/10.1051/0004-6361/202449200/9
http://linker.aanda.org/10.1051/0004-6361/202449200/10
http://linker.aanda.org/10.1051/0004-6361/202449200/11
http://linker.aanda.org/10.1051/0004-6361/202449200/12
http://linker.aanda.org/10.1051/0004-6361/202449200/13
http://linker.aanda.org/10.1051/0004-6361/202449200/14
http://linker.aanda.org/10.1051/0004-6361/202449200/15
http://linker.aanda.org/10.1051/0004-6361/202449200/15
http://linker.aanda.org/10.1051/0004-6361/202449200/16
http://linker.aanda.org/10.1051/0004-6361/202449200/17
http://linker.aanda.org/10.1051/0004-6361/202449200/18
http://linker.aanda.org/10.1051/0004-6361/202449200/19
http://linker.aanda.org/10.1051/0004-6361/202449200/20
http://linker.aanda.org/10.1051/0004-6361/202449200/21
http://linker.aanda.org/10.1051/0004-6361/202449200/22
http://linker.aanda.org/10.1051/0004-6361/202449200/23
http://linker.aanda.org/10.1051/0004-6361/202449200/24
http://linker.aanda.org/10.1051/0004-6361/202449200/25
http://linker.aanda.org/10.1051/0004-6361/202449200/26
http://linker.aanda.org/10.1051/0004-6361/202449200/27
http://linker.aanda.org/10.1051/0004-6361/202449200/28
http://linker.aanda.org/10.1051/0004-6361/202449200/29
http://linker.aanda.org/10.1051/0004-6361/202449200/30
http://linker.aanda.org/10.1051/0004-6361/202449200/31
http://linker.aanda.org/10.1051/0004-6361/202449200/32
http://linker.aanda.org/10.1051/0004-6361/202449200/33
http://linker.aanda.org/10.1051/0004-6361/202449200/34
http://linker.aanda.org/10.1051/0004-6361/202449200/34
http://linker.aanda.org/10.1051/0004-6361/202449200/35
http://linker.aanda.org/10.1051/0004-6361/202449200/36
http://linker.aanda.org/10.1051/0004-6361/202449200/37
http://linker.aanda.org/10.1051/0004-6361/202449200/38
http://linker.aanda.org/10.1051/0004-6361/202449200/39
http://linker.aanda.org/10.1051/0004-6361/202449200/40
http://linker.aanda.org/10.1051/0004-6361/202449200/41
http://linker.aanda.org/10.1051/0004-6361/202449200/42
http://linker.aanda.org/10.1051/0004-6361/202449200/43
http://linker.aanda.org/10.1051/0004-6361/202449200/44
http://linker.aanda.org/10.1051/0004-6361/202449200/45
http://linker.aanda.org/10.1051/0004-6361/202449200/46
http://linker.aanda.org/10.1051/0004-6361/202449200/47
http://linker.aanda.org/10.1051/0004-6361/202449200/48
http://linker.aanda.org/10.1051/0004-6361/202449200/49
http://linker.aanda.org/10.1051/0004-6361/202449200/50
http://linker.aanda.org/10.1051/0004-6361/202449200/51
http://linker.aanda.org/10.1051/0004-6361/202449200/52
http://linker.aanda.org/10.1051/0004-6361/202449200/53
http://linker.aanda.org/10.1051/0004-6361/202449200/53
http://linker.aanda.org/10.1051/0004-6361/202449200/54
http://linker.aanda.org/10.1051/0004-6361/202449200/54
http://linker.aanda.org/10.1051/0004-6361/202449200/55
http://linker.aanda.org/10.1051/0004-6361/202449200/56
http://linker.aanda.org/10.1051/0004-6361/202449200/57
http://linker.aanda.org/10.1051/0004-6361/202449200/58
http://linker.aanda.org/10.1051/0004-6361/202449200/59
http://linker.aanda.org/10.1051/0004-6361/202449200/60
http://linker.aanda.org/10.1051/0004-6361/202449200/61

	Introduction
	Data sets
	Results
	Instrumental selection effects
	Number of peaks versus peak luminosity

	Discussion and conclusions
	References

