
J
H
E
P
1
1
(
2
0
2
3
)
2
2
8

Published for SISSA by Springer

Received: September 11, 2023
Revised: October 30, 2023

Accepted: November 10, 2023
Published: November 30, 2023

Measurement of the cross section of e+e− → Ξ−Ξ̄+ at
center-of-mass energies between 3.510 and 4.843 GeV

The BESIII collaboration

E-mail: besiii-publications@ihep.ac.cn

Abstract: Using e+e− collision data corresponding to a total integrated luminosity of
12.9 fb−1 collected with the BESIII detector at the BEPCII collider, the exclusive Born
cross sections and the effective form factors of the reaction e+e− → Ξ−Ξ̄+ are measured via
the single baryon-tag method at 23 center-of-mass energies between 3.510 and 4.843 GeV.
Evidence for the decay ψ(3770) → Ξ−Ξ̄+ is observed with a significance of 4.5σ by analyzing
the measured cross sections together with earlier BESIII results. For the other charmonium(-
like) states ψ(4040), ψ(4160), Y (4230), Y (4360), ψ(4415), and Y (4660), no significant signal
of their decay to Ξ−Ξ̄+ is found. For these states, upper limits of the products of the
branching fraction and the electronic partial width at the 90% confidence level are provided.

Keywords: e+-e− Experiments, Branching fraction, QCD, Electroweak Interaction

ArXiv ePrint: 2309.04215

Open Access, c⃝ The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2023)228

mailto:besiii-publications@ihep.ac.cn
https://arxiv.org/abs/2309.04215
https://doi.org/10.1007/JHEP11(2023)228


J
H
E
P
1
1
(
2
0
2
3
)
2
2
8

Contents

1 Introduction 1

2 BESIII detector and Monte Carlo simulation 2

3 Event selection 3

4 Born cross section measurement 4
4.1 Extraction of signal yields 4
4.2 Determination of the Born cross section 4

5 Determination of the effective form factor 7

6 Systematic uncertainty 7
6.1 Luminosity 8
6.2 Ξ− reconstruction 8
6.3 Background 9
6.4 Angular distribution 9
6.5 Branching fraction 10
6.6 Input line shape 10
6.7 Total systematic uncertainty 10

7 Fit to the dressed cross section 10

8 Summary 12

The BESIII collaboration 20

1 Introduction

Below the open-charm threshold, the mass spectrum of the conventional charmonium states
is well matched to the predictions from the potential quark model [1]. Above the open-charm
threshold, this model predicts five vector charmonium states between the threshold and
4.9GeV/c2, namely, the 3S, 2D, 4S, 3D, and 5S states. However, an overpopulation of
vector states has been observed in this energy region. Three of them, ψ(4040), ψ(4160),
ψ(4415), are dominated by open-charm final states [2]. Other states, e.g. Y (4230), Y (4260),
Y (4360), Y (4634), Y (4660), are mainly observed in hidden-charm final states, produced via
initial state radiation (ISR) processes at BaBar and Belle [3–11] or via direct production
processes at CLEO [12] and BESIII [13, 14]. These Y states cannot be easily accommodated
in the charmonium spectrum predicted in the quark model, and many hypotheses have been
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proposed to interpret them [15–23], such as hybrids, multiple-quark states, molecules, etc.
However, no solid conclusion can be made at present and puzzles remain for these vector
charmonium(-like) states.

This situation reflects the present insufficient understanding of the strong interaction,
especially in the non-perturbative regime. To improve the situation, additional experimental
measurements are desirable. Among these measurements, the decays of ψ/Y → light baryon-
antibaryon(BB̄) are promising due to the simple topologies of the final states and relatively
well understood mechanisms, dominated by three-gluons or one-photon processes. Moreover,
measurements of electromagnetic form factors and effective form factors of the BB̄ pairs
may provide insight into the internal structure of the charmonium(-like) states. Up to now
the experimental information on BB̄ decays of these charmonium-(like) states is scarce
above the open-charm threshold. Although many experimental studies [7, 24–30] of BB̄
pair production are performed in this energy region by the BESIII and Belle experiments,
no BB̄ decays of the vector charmonium(-like) states have been observed except for the
evidence of ψ(3770) → ΛΛ̄. It could indicate that the production of Ξ−Ξ̄+ mainly proceeds
through the continuum process and not through charmonium resonances, justifying the
assumption of one-photon production. Thus, more precise measurements of exclusive cross
sections of e+e− → BB̄ final states above the open-charm threshold could provide a valuable
information to understand the nature of these vector charmonium(-like) states.

In this article, measurements of the Born cross section and the effective form factor
for the process e+e− → Ξ−Ξ̄+ are presented using data corresponding to a total integrated
luminosity of 12.9 fb−1 collected at center-of-mass (CM) energies

√
s between 3.510 and

4.843GeV with the BESIII detector [31] at the BEPCII collider [32]. In addition, potential
contributions from resonances are studied by fitting the dressed cross section of the e+e− →
Ξ−Ξ̄+ reaction combined with the earlier BESIII results reported in 2020 [26].

2 BESIII detector and Monte Carlo simulation

The BESIII detector [31] records symmetric e+e− collisions provided by the BEPCII
storage ring [32] in the CM energy range from 2.0 to 4.95GeV, with a peak luminosity of
1×1033 cm−2 s−1 achieved at

√
s = 3.77GeV. BESIII has collected large data samples in this

energy region [33–35]. The cylindrical core of the BESIII detector covers 93% of the full solid
angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator
time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are
all enclosed in a superconducting solenoidal magnet providing a 1.0T magnetic field. The
solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon
identification modules interleaved with steel. The charged-particle momentum resolution
at 1GeV/c is 0.5%, and the dE/dx resolution is 6% for electrons from Bhabha scattering.
The EMC measures photon energies with a resolution of 2.5% (5%) at 1GeV in the barrel
(end cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the
end cap region is 110 ps. The end cap TOF system was upgraded in 2015 using multigap
resistive plate chamber technology, providing a time resolution of 60 ps, which benefits 77%
of the data used in this analysis [36–38].
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Simulated data samples produced with a geant4-based [39] Monte Carlo (MC) package,
which includes the geometric description of the BESIII detector [40] and the detector
response, are used to determine the signal detection efficiency. A sample of 200,000
e+e− → Ξ−Ξ̄+ events is simulated with a uniform phase space (PHSP) distribution for
each of the 23 CM energy points in the range from 3.510 to 4.843GeV. The decay chain
of the Ξ− baryon is handled by the evtgen program [41, 42] using a PHSP model. The
production process is simulated by the kkmc generator [43] that includes the beam energy
spread and ISR in the e+e− annihilation.

3 Event selection

The selection of e+e− → Ξ−Ξ̄+ events with a full reconstruction method suffers from low
reconstruction efficiency. Therefore, a partial reconstruction technique is employed, in which
only the Ξ− baryon is reconstructed via its decay Ξ− → Λπ− with the subsequent decay
Λ → pπ−, and the presence of the Ξ̄+ anti-baryon is inferred from the system recoiling
against the reconstructed Ξ−. Unless otherwise noted, the charge conjugated state is
implicitly included throughout this paper.

Tracks of charged particles detected in the MDC are required to be within the optimal
MDC angular coverage, | cos θ| < 0.93, where the polar-angle θ is defined with respect to
the MDC symmetry axis. At least one positively charged and two negatively charged tracks
are required, which are required to be well reconstructed in the MDC with good helix fits.
The particle identification (PID) for charged particles combines measurements of the dE/dx
by the MDC and the time of flight by the TOF to form likelihoods L(h) (h = p,K, π) for
each hadron hypothesis h. Tracks are identified as protons if the proton hypothesis has the
greatest likelihood (L(p) > L(K) and L(p) > L(π)), while charged pions are identified by
requiring that L(π) > L(p) and L(π) > L(K). Only events with at least two negatively
charged pions and one proton are kept for the further analysis.

The reconstruction of Λ and Ξ− baryons follows refs. [44–47]. Briefly, to reconstruct
Λ candidates and suppress non-Λ background, a secondary vertex fit [48] is applied to all
pπ− combinations, and their invariant mass is required to be within 5MeV/c2 from the
known Λ mass. The selection window is determined by optimizing a figure of merit (FOM)
defined as S/

√
S +B, where S is the number of signal MC events and B is the number

of the background events expected from simulation. Similarly, the Ξ− candidates are
reconstructed using a further secondary vertex fit applied to the combination of the selected
π− and Λ candidates which minimizes the difference |Mπ−Λ −mΞ− |, where Mπ−Λ is the
invariant mass of the π−Λ combination and mΞ− is the known mass of Ξ− from the Particle
Data Group (PDG) [49]. The signal window is defined by requiring that Mπ−Λ is within
10MeV/c2 from the known Ξ− mass. This width of the window is determined by optimizing
the FOM and is about three times the experimental mass resolution. The decay length
of the Ξ− candidate, i.e. the distance between the average position of the e+e− collisions
and the decay vertex of Ξ−, is required to be greater than zero. The decay length of the Λ
candidate is also required to be greater than zero.
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To extract anti-baryon Ξ̄+ candidates, we calculate the mass recoiling against the
selected π−Λ system as

M recoil
π−Λ =

√(√
s− Eπ−Λ

)2 − p⃗2
π−Λ, (3.1)

where Eπ−Λ and p⃗π−Λ are the energy and momentum of the selected π−Λ candidates in
the CM frame, and

√
s is the CM energy. The signal window is defined by requiring that

M recoil
π−Λ is within 60MeV/c2 from the known Ξ− mass. Figure 1 shows the scatter plots of

Mπ−Λ versus M recoil
π−Λ for each energy point separately and for the sum of all energy points.

A clear cluster of events around the nominal Ξ− mass can be seen.

4 Born cross section measurement

4.1 Extraction of signal yields

After applying the above selection criteria, the surviving background events are mainly from
non-Ξ−Ξ̄+ events, such as e+e− → π+π−ΛΛ̄. The background yield in the signal region is
estimated using four sideband regions Bi, where i = 1, 2, 3, 4, each with the same area as
the signal region. The regions are shown in figure 1, and the exact ranges are defined by

• B1: Mπ−Λ ∈ [1.282, 1.302] GeV/c2 & M recoil
π−Λ ∈ [1.442, 1.562] GeV/c2,

• B2: Mπ−Λ ∈ [1.342, 1.362] GeV/c2 & M recoil
π−Λ ∈ [1.442, 1.562] GeV/c2,

• B3: Mπ−Λ ∈ [1.342, 1.362] GeV/c2 & M recoil
π−Λ ∈ [1.082, 1.202] GeV/c2,

• B4: Mπ−Λ ∈ [1.282, 1.302] GeV/c2 & M recoil
π−Λ ∈ [1.082, 1.202] GeV/c2.

The signal yield Nobs for the e+e− → Ξ−Ξ̄+ reaction at each energy point can then
be determined by subtracting the number of events in the sideband regions from the
signal region, i.e. Nobs = NS − Nbkg, where NS is number of events in the signal region,
Nbkg = 1

4
∑4
i=1Bi. The signal yields are listed in table 1. The single baryon-tag method

leads to a double counting effect for the Ξ−Ξ̄+ final state, which is taken into account in
the calculation of the statistical uncertainty based on the study of MC simulation [26].
This does not affect the central value of the final result but it requires a correction of the
statistical uncertainty, which is underestimated by approximately 12%.

4.2 Determination of the Born cross section

The Born cross section for the e+e− → Ξ−Ξ̄+ process at a given CM energy is calculated as

σB = Nobs

2 · L · (1 + δ) · 1
|1−Π|2 · ϵ · B(Ξ− → π−Λ) · B(Λ → pπ−)

, (4.1)

where Nobs is the number of the observed signal events, a factor of 2 represents the charge
conjugate mode included, L is the integrated luminosity, (1+ δ) is the ISR correction factor,

1
|1−Π|2 is the vacuum polarization (VP) correction factor, ϵ is the detection efficiency, while
B(Ξ− → π−Λ) and B(Λ → pπ−) are the corresponding branching fractions taken from the
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Figure 1. Distributions of Mπ−Λ versus M recoil
π−Λ for each energy point and for the sum of all energy

points (bottom, right) between 3.510 and 4.843GeV from data. The red boxes represent the signal
regions and the green boxes represent the selected sideband regions.
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√
s (GeV) NS Nbkg Nobs (NUL) S (σ)
3.510 143.0 18.5 124.5+12.8

−11.1 10.4
3.650 144.0 11.5 132.5+12.8

−11.2 11.0
3.773 703.0 100.8 602.2+27.7

−25.4 22.7
3.808 8.0 1.8 6.2+4.0

−1.7 (<13.2) 2.2
3.867 12.0 1.0 11.0+3.8

−3.1 3.2
3.871 9.0 2.0 7.0+3.3

−2.7 (<13.4) 2.3
3.896 2.0 0.2 1.8+2.0

−0.9 (<5.4) 1.2
4.128 18.0 2.8 15.2+5.4

−3.1 3.6
4.157 14.0 3.2 10.8+4.3

−3.2 (<18.8) 2.9
4.288 19.0 2.2 16.8+4.9

−3.8 3.8
4.312 17.0 1.5 15.5+5.0

−3.3 3.8
4.337 16.0 1.8 14.2+5.1

−2.9 3.6
4.377 11.0 1.5 9.5+4.2

−2.5 (<16.8) 2.9
4.396 11.0 0.5 10.5+4.2

−2.5 3.2
4.436 9.0 1.0 8.0+3.3

−2.7 (<14.3) 2.7
4.612 1.0 0.5 0.5+1.9

−0.2 (<3.7) 0.5
4.628 4.0 1.2 2.8+2.5

−1.5 (<7.5) 1.4
4.641 6.0 0.0 6.0+2.8

−2.1 (<11.1) 2.4
4.661 9.0 1.0 8.0+3.3

−2.7 (<14.3) 2.7
4.682 16.0 3.8 12.2+5.1

−2.9 3.1
4.699 6.0 0.5 5.5+3.3

−1.6 (<11.1) 2.2
4.781 2.0 1.5 0.5+2.3

−0.5 (<4.6) 0.4
4.843 0.0 0.8 −0.8+1.7

−0.8 (<2.0) 0.0

Table 1. Number of signal (NS) and background (Nbkg) events for each energy points. The upper
limits (NUL) at the 90% confidence level including the systematic uncertainty, and the statistical
uncertainties for the observed events are determined by the TRolke method with Poisson background
and Gaussian efficiency model [50]. The signal significance (S) is estimated as NS/

√
NS +Nbkg.

world average [49]. The ISR correction factor is obtained using the QED calculation as
described in ref. [51]. The VP correction factor is calculated according to ref. [52]. The
Born cross section is not well determined beforehand, thus an iterative weighting method
for updating the efficiency and ISR correction factor is used as proposed in ref. [53]. This
procedure is repeated until the difference of (1 + δ)ϵ between iterations is less than 0.5%.
The efficiency, ISR correction factor, and Born cross section of the last round are accepted
as the final results. The measured cross sections for each energy point together with the
CLEO-c results at

√
s = 3.770 and 4.160GeV [54] are shown in figure 2.
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5 Determination of the effective form factor

Under the assumption that the dominant process is one-photon exchange e+e− → γ∗ →
Ξ−Ξ̄+, one can parameterize the differential cross section in terms of electric and magnetic
form factors GE and GM . These are assumed to be continuous functions of the momentum
transfer squared, s = q2. The differential cross section can be written [55] as

dσB(s)
dΩ = α2βC

4s

[
|GM (s)|2(1 + cos2 θ) + 1

τ
|GE(s)|2 sin2 θ

]
, (5.1)

where s is the square of the CM energy, α is the fine structure constant, the variable
β =

√
1− 1

τ is the velocity, τ = s
4m2

Ξ−
, and the Coulomb correction factor C [55, 56]

parameterizes the electromagnetic interaction between the outgoing baryon and anti-baryon.
For neutral baryons, the Coulomb factor is unity, while for point-like charged fermions
C = πα

β ·
√

1−β2

1−e− πα
β

[57–60]. Similarly, the Born cross section can be derived by integrating
over the full solid angle as

σB(s) = 4πα2Cβ

3s

[
|GM (s)|2 + 1

2τ |GE(s)|
2
]
. (5.2)

Furthermore, we define the effective form factor Geff(s) as a linear combination of the
electric and magnetic form factors as

|Geff(s)| =
√

2τ |GM (s)|2 + |GE(s)|2
2τ + 1 , (5.3)

which can be transformed to

|Geff(s)| =
√√√√√ 3sσB

4πα2Cβ

(
1 + 2m2

Ξ−
s

) , (5.4)

and its uncertainty is propagated to be

δ|Geff(s)| =
1
2C

′
√

1
σB

· δσB , (5.5)

where δσB is the uncertainty of the Born cross section and

C ′ =
√√√√√ 3s

4πα2Cβ

(
1 + 2m2

Ξ−
s

) , (5.6)

where mΞ− is the Ξ− baryon mass. The results for the effective form factors at each energy
point are shown in figure 2 and summarized in table 2.

6 Systematic uncertainty

The systematic uncertainties on the Born cross section measurement mainly originate
from integrated luminosity, Ξ− reconstruction, background, angular distribution, branching
fraction, and input line shape. All of these sources of systematic uncertainty are discussed
in detail below.
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Figure 2. Measured Born cross section (top) and Ξ− effective form factor (bottom) for e+e− →
Ξ−Ξ̄+ as a function of the CM energy, where the uncertainties include both the statistical and
systematic ones.

6.1 Luminosity

The integrated luminosity is measured using e+e− → (γ)e+e− events with a method similar
to refs. [61–63] with an uncertainty of 1.0%.

6.2 Ξ− reconstruction

The systematic uncertainty due to the Ξ− reconstruction efficiency incorporating the tracking
and PID efficiencies, the Λ reconstruction efficiency, the selection on Λ and Ξ− decay lengths,
and the Λ and Ξ− mass windows, is estimated from a control sample of ψ(3686) → Ξ−Ξ̄+

decays with the same method as described in refs. [64–72]. The Ξ− reconstruction efficiency
is defined as the ratio of the number of events from the double baryon-tag Ξ−Ξ̄+ to that
from the single baryon-tag. The difference in the Ξ− reconstruction efficiency between data
and MC simulation is taken as the systematic uncertainty.
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√
s (GeV) L (pb−1) 1

|1−Π|2 D (×10−2) Nobs (NUL) σB (fb) |Geff(s)| (×10−3) S (σ)
3.510 405.7 1.04 24.9± 0.1 124.5+12.8

−11.1 923.6+106.4
−92.3 ± 70.2 14.2+0.8

−0.7 ± 0.5 10.4
3.650 410.0 1.02 25.6± 0.1 132.5+12.8

−11.2 970.8+105.1
−92.0 ± 72.8 15.2+0.8

−0.7 ± 0.6 11.0
3.773 2931.8 1.06 27.7± 0.1 602.2+27.7

−25.4 548.8+28.4
−26.0 ± 46.1 11.9+0.3

−0.3 ± 0.5 22.7
3.808 50.5 1.06 29.1± 0.2 6.2+4.0

−1.7 (<13.2) 312.2+225.6
−95.9 ±35.9 (<664.7) 9.1+3.3

−1.4±0.5 (<13.3) 2.2
3.867 108.9 1.05 24.9± 0.1 11.0+3.8

−3.1 302.1+116.9
−95.4 ± 22.7 9.1+1.8

−1.4 ± 0.3 3.2
3.871 110.3 1.05 24.9± 0.1 7.0+3.3

−2.7 (<13.4) 190.3+100.5
−82.2 ±14.3 (<364.4) 7.2+1.9

−1.6±0.3 (<10.0) 2.3
3.896 52.6 1.05 25.1± 0.1 1.8+2.0

−0.9 (<5.4) 101.9+126.7
−57.0 ±7.6 (<305.6) 5.3+3.3

−1.5±0.2 (<9.3) 1.2
4.128 401.5 1.05 22.6± 0.1 15.2+5.4

−3.1 124.9+49.7
−28.5 ± 9.4 6.4+1.3

−0.7 ± 0.2 3.6
4.157 408.7 1.05 22.6± 0.1 10.8+4.3

−3.2 (<18.8) 86.9+38.7
−28.8 ±6.5 (<151.2) 5.4+1.2

−0.9±0.2 (<7.1) 2.9
4.288 502.4 1.05 21.2± 0.1 16.8+4.9

−3.8 117.3+38.3
−29.7 ± 8.8 6.5+1.1

−0.8 ± 0.2 3.8
4.312 501.2 1.05 21.3± 0.1 15.5+5.0

−3.3 107.9+39.0
−25.8 ± 8.1 6.3+1.1

−0.8 ± 0.2 3.8
4.337 505.0 1.05 21.3± 0.1 14.2+5.1

−2.9 98.6+39.7
−22.6 ± 7.4 6.1+1.2

−0.7 ± 0.2 3.6
4.377 522.7 1.05 20.9± 0.1 9.5+4.2

−2.5 (<16.8) 64.8+32.1
−19.1 ±4.9 (<114.5) 5.0+1.2

−0.7±0.2 (<6.6) 2.9
4.396 507.8 1.05 20.5± 0.1 10.5+4.2

−2.5 75.2+33.7
−20.1 ± 5.6 5.4+1.2

−0.7 ± 0.2 3.2
4.436 569.9 1.05 20.5± 0.2 8.0+3.3

−2.7 (<14.3) 51.0+23.6
−19.3 ± 3.8 (<91.2) 4.5+1.0

−0.8±0.2 (<6.0) 2.7
4.612 103.8 1.05 17.7± 0.2 0.5+1.9

−0.2 (<3.7) 20.2+86.1
−9.1 ±1.5 (<149.6) 3.0+6.4

−0.7±0.1 (<8.1) 0.5
4.628 521.5 1.05 17.4± 0.2 2.8+2.5

−1.5 (<7.5) 22.9+22.9
−13.8 ± 1.7 (<61.5) 3.2+1.6

−1.0±0.1 (<5.2) 1.4
4.641 552.4 1.05 17.3± 0.1 6.0+2.8

−2.1 (<11.1) 46.5+24.3
−18.2 ± 3.5 (<86.1) 4.6+1.2

−0.9±0.2 (<6.2) 2.4
4.661 529.6 1.05 17.0± 0.1 8.0+3.3

−2.7 (<14.3) 66.2+30.6
−25.0 ±5.0 (<118.3) 5.5+1.3

−1.0±0.2 (<7.3) 2.7
4.682 1669.3 1.05 16.7± 0.1 12.2+5.1

−2.9 32.5+15.2
−8.7 ± 2.4 3.9+0.9

−0.5 ± 0.1 3.1
4.699 536.5 1.05 16.8± 0.1 5.5+3.3

−1.6 (<11.1) 45.2+30.4
−14.7 ± 3.4 (<91.3) 4.6+1.5

−0.7±0.2 (<6.5) 2.2
4.781 512.8 1.06 17.3± 0.2 0.5+2.3

−0.5 (<4.6) 4.2+21.5
−4.7 ± 0.3 (<38.5) 1.4+3.7

−0.8±0.1 (<4.3) 0.4
4.843 527.3 1.06 16.5± 0.2 −0.8+1.7

−0.8 (<2.0) −6.8+16.2
−7.6 ± 0.5 (<17.0) 0.0+0.0

−0.0±0.0 (<2.9) 0.0

Table 2. The CM energy (
√
s), the integrated luminosity (L), the VP correction factor ( 1

|1−Π|2 ), the
ISR correction factor and the detection efficiency (D = (1 + δ)ϵ), the signal yields (Nobs), the upper
limit of signal yield at the 90% confidence level (NUL), the Born cross section (σB), the effective
form factor (|Geff(s)|) and the statistical significance (S). The first and second uncertainties for σB

are statistical and systematic, respectively.

6.3 Background

The systematic uncertainty associated with the background, which is estimated based on
the sideband strategy, is determined by changing the gap between the signal region and the
sideband regions from half box size to the full box size. Since the statistics for each energy
points are very limited. To avoid the statistical effect, all energy points are combined when
we estimate this systematic uncertainty. The difference of signal yields before and after
changing the gap of the sideband box is taken as the systematic uncertainty.

6.4 Angular distribution

In this analysis, not enough statistics is available to determine the angular distribution
parameter for each energy point separately. Thus, the selection efficiency for e+e− → Ξ−Ξ̄+

is determined based on a PHSP model, which may differ from the real angular distribution.
Alternatively, we utilize the joint angular distribution obtained from ref. [71] to reproduce
a MC sample, and take the efficiency difference between the signal MC samples and the
alternative MC as the systematic uncertainty due to the angular distribution.
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6.5 Branching fraction

The uncertainty from the branching fraction of Λ → pπ− is 0.8%, taken from the world
average [49]. The uncertainty of the branching fraction of Ξ− → π−Λ is negligible.

6.6 Input line shape

The ISR correction and the detection efficiency depend on the input line shape of the cross
section. The associated systematic uncertainty can be divided into two parts. One part
is due to the statistical uncertainty of the input line shape of the cross section, which
is estimated by varying the central value of the nominal input line shape within ±1σ of
statistical uncertainty. Then, the (1 + δ)ϵ values for each energy point are recalculated.
This process is repeated 3000 times, after which a Gaussian function is used to fit the
(1 + δ)ϵ distribution. The width of the Gaussian function is taken as the corresponding
systematic uncertainty. The other uncertainty arises due to the resonance parameters which
are fixed in the fit to the input cross section. The resonance parameters are changed in the
fit by ±1σ and the resulting changes of the values of (1 + δ)ϵ are taken as the systematic
uncertainty. The total systematic uncertainty is calculated by adding the two uncertainties
in quadrature.

6.7 Total systematic uncertainty

The various systematic uncertainties on the Born cross section measurement are summarized
in table 3. Assuming all sources are independent, the total systematic uncertainty on the
cross section measurement is determined by adding these sources in quadrature.

7 Fit to the dressed cross section

Potential resonances in the line shape of the cross section for the reaction e+e− → Ξ−Ξ̄+

are studied by applying a fit to the dressed cross section, σdressed = σB/|1−Π|2 (without
the VP effect) with the least square method. The fit minimizes

χ2 = ∆XTV −1∆X, (7.1)

where ∆X is the vector of residuals between measured and fitted cross section. The
covariance matrix V incorporates the correlated and uncorrelated uncertainties among
different energy points, where the systematic uncertainties due to the luminosity, Ξ−

reconstruction and branching fraction are assumed to be fully correlated among CM
energies and the other ones are uncorrelated.

Assuming the cross section of e+e− → Ξ−Ξ̄+ includes a resonance plus a continuum
contribution, a fit to the dressed cross section with the coherent sum of a power-law (PL)
function and a Breit-Wigner (BW) function

σdressed (√
s
)
=

∣∣∣∣∣∣c0

√
P (

√
s)

√
s
n + eiϕBW

(√
s
)√P (

√
s)

P (M)

∣∣∣∣∣∣
2

, (7.2)
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√
s (GeV) Luminosity Ξ− reconstruction Background AD B ILS Total
3.510 1.2 7.6
3.650 1.1 7.5
3.773 3.8 8.4
3.808 8.7 11.5
3.867 0.9 7.5
3.871 1.1 7.5
3.896 0.8 7.5
4.128 0.6 7.5
4.157 0.4 7.5
4.288 1.1 7.5
4.312 0.6 7.5
4.337 1.0 5.7 1.7 4.3 0.8 0.2 7.5
4.377 0.5 7.5
4.396 0.5 7.5
4.436 1.0 7.5
4.612 1.3 7.6
4.628 1.0 7.5
4.641 0.3 7.5
4.661 0.4 7.5
4.682 0.1 7.5
4.699 1.5 7.6
4.781 0.6 7.5
4.843 2.2 7.8

Table 3. Systematic uncertainties (in %) and their sources for each energy point on the Born cross
section measurement. Here, AD denotes angular distribution, B denotes branching fraction, and ILS
denotes input line shape. The systematic uncertainty, which is the same for each energy point, is
simplified into a single numerical value.

is applied. Here ϕ is the relative phase between the BW function

BW
(√
s
)
=

√
12πΓeeBΓ

s−M2 + iMΓ , (7.3)

and the PL function, c0 and n are free fit parameters,
√
P (

√
s) is the two-body phase

space factor, the mass M and total width Γ are fixed to the assumed resonance with
the PDG values [49], and ΓeeB is the product of the electronic partial width and the
branching fraction for the assumed resonance decaying into the Ξ−Ξ̄+ final state. A fit
without resonance contribution results in parameters (c0 = 1.8± 0.4, n = 8.2± 0.2) with
the goodness of fit χ2/n.d.f = 75.5/(38 − 2). The result of the fit with ψ(3770) plus a
continuum contribution is presented in table 4. Due to ambiguities in the fit, multiple
solutions with the same likelihood are found [73]. Both solutions are presented in table 4
under the inclusion of different resonant states. The result of the fit with the ψ(3770) plus
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a continuum contribution is presented in table 4. Since the two solutions of this fit are
very close, only a single solution is considered. When the other possible charmonium(- like)
states, ψ(4040), ψ(4160), Y (4230), Y (4360), ψ(4415), Y (4660) are included one-by-one
in the fit, in addition to the ψ(3770) plus continuum, the result of the ψ(3770) is nearly
unchanged. Therefore, only the results corresponding to the additional charmonium(-like)
states are presented in table 4. Taking systematic uncertainties into account, the significance
of the resonance contribution is calculated by comparing χ2/n.d.f with and without the
resonance assumption. For different assumptions, n is almost unchanged. Evidence for the
decay ψ(3770) → Ξ−Ξ̄+ with a significance of 4.5σ including the systematic uncertainty is
found by combining these results with earlier BESIII measurements [26]. For other possible
charmonium(-like) states, no obvious signal is found and the upper limits on the products
of branching fraction and two-electronic partial width for these charmonium(-like) states
decaying into the Ξ−Ξ̄+ final state including the systematic uncertainty are provided at the
90% confidence level (C.L.) using a Bayesian approach [74]. Systematic uncertainties due to
beam energy, mass, and width of the ψ(3770) resonance have been considered by varying the
known values within one standard deviation; they turn out to be negligible. Figure 3 shows
the fit to the dressed cross section with and without assumption of resonance contributions.

8 Summary

Using a total of 12.9 fb−1 of e+e− collision data above the open-charm threshold collected
with the BESIII detector at the BEPCII collider, the process e+e− → Ξ−Ξ̄+ is studied
based on a single baryon-tag technique. The Born cross sections and effective form
factors are measured at 23 CM energies in the range from 3.510 to 4.843GeV. Combined
with earlier BESIII measurements [26], a fit to the dressed cross section of the reaction
e+e− → Ξ−Ξ̄+ is performed, in which the line shape is described by a ψ(3770) plus a
continuum contribution. First evidence for the decay ψ(3770) → Ξ−Ξ̄+ is found with a
significance of 4.5σ, accounting also for the systematic uncertainty. The branching fraction
is determined to be B(ψ(3770) → Ξ−Ξ̄+) = (136.0± 35.2)× 10−6, which is larger by at least
an order of magnitude than the prediction (4× 10−7) based on a scaling from the electronic
branching fraction values using eq. (1) in ref. [54]. This implies that the ψ(3770) resonance
needs to be considered when interpreting the CLEO-c data. No obvious signal from ψ(4040),
ψ(4160), Y (4230), Y (4360), ψ(4415), or Y (4660) has been found. Thus, the upper limits of
the products of branching fraction and electronic partial width for these charmonium(-like)
states decaying into the Ξ−Ξ̄+ final state are provided at the 90% C.L. This measurement
provides evidence of non-DD̄ decays of ψ(3770), and can be useful for the understanding
of the charmonium(-like) states coupling to the baryon-antibaryon final states. It gives
additional insight into the puzzle of a large non-DD̄ component of ψ(3770) state.
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Figure 3. Fits to the dressed cross section at the CM energy from 3.510 to 4.843GeV with the
assumptions of a PL function only (first one), a PL function plus a (ψ(3770)) resonance, a PL
function plus a (ψ(3770)) resonance and one more additional resonance (ψ(4040), ψ(4160), Y (4230),
Y (4360), ψ(4415), and Y (4660)). Dots with error bars are the dressed cross sections and the solid
lines show the fit results.
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Resonance parameter Solution I Solution II χ2/n.d.f

ϕψ(3770) (rad) −2.1 ± 0.2 −
ΓeeBψ(3770) (10−3 eV) 35.5 ± 9.2 − 45.0/(38− 4)
B[ψ(3770) → Ξ−Ξ̄+] (10−6) 136.0 ± 35.2 −
ϕψ(4040) (rad) −1.9 ± 0.2 −2.5 ± 0.1
ΓeeBψ(4040) (10−3 eV) 15.2 ± 27.6 (< 44.0) 19.7 ± 30.9 (< 51.9) 37.1/(38− 6)
B[ψ(4040) → Ξ−Ξ̄+] (10−6) 17.8 ± 32.2 (< 51.4) 23.0 ± 36.1 (< 60.6)
ϕψ(4160) (rad) −1.7 ± 0.1 −2.3 ± 0.1
ΓeeBψ(4160) (10−3 eV) 29.8 ± 2.5 (< 32.9) 33.9 ± 2.7 (< 37.2) 38.1/(38− 6)
B[ψ(4160) → Ξ−Ξ̄+] (10−6) 61.7 ± 5.2 (< 68.1) 70.2 ± 5.6 (< 77.0)
ϕY (4230) (rad) −1.7 ± 0.1 −2.2 ± 0.1
ΓeeBY (4230) (10−3 eV) 19.4 ± 1.9 (< 22.3) 22.0 ± 2.1 (< 25.1) 39.5/(38− 6)
B[Y (4230) → Ξ−Ξ̄+] (10−6) − −
ϕY (4360) (rad) −1.8 ± 0.1 −2.1 ± 0.1
ΓeeBY (4360) (10−3 eV) 36.0 ± 3.2 (< 41.2) 39.4 ± 3.3 (< 44.8) 41.7/(38− 6)
B[Y (4360) → Ξ−Ξ̄+] (10−6) − −
ϕψ(4415) (rad) −1.7 ± 0.1 −2.2 ± 0.1
ΓeeBψ(4415) (10−3 eV) 16.5 ± 1.9 (< 19.8) 18.3 ± 2.0 (< 21.7) 44.5/(38− 6)
B[ψ(4415) → Ξ−Ξ̄+] (10−6) 28.3 ± 3.3 (< 34.0) 31.4 ± 3.4 (< 37.2)
ϕY (4660) (rad) −1.6 ± 0.1 −2.2 ± 0.1
ΓeeBY (4660) (10−3 eV) 13.6 ± 2.0 (< 18.0) 15.3 ± 2.2 (< 19.9) 41.1/(38− 6)
B[Y (4660) → Ξ−Ξ̄+] (10−6) − −

Table 4. The fitted resonance parameters to the dressed cross section for the e+e− → Ξ−Ξ̄+

process for the two ambiguous solutions. The fit procedure includes both statistical and systematic
uncertainties except for the CM energy calibration. The top row represents the result for ψ(3770)
plus a continuum. Only one solution is found in this case. The other rows represent the results of
the resonances ψ(4040), ψ(4160), Y (4230), Y (4360), ψ(4415), and Y (4660), respectively, when they
are added one-by-one to the fit in addition to the ψ(3770) plus a continuum. The B is the branching
fraction for the assumed resonance decaying into Ξ−Ξ̄+ final state, where possible, B is determined
using Γee values from PDG [49].
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