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Abstract
In this work we are interested in stochastic particle methods for multi-objective
optimization. The problem is formulated via scalarization using parametrized, single-
objective sub-problems which are solved simultaneously. To this end a consensus
based multi-objective optimization method on the search space combined with an
additional heuristic strategy to adapt parameters during the computations is proposed.
The adaptive strategy aims to distribute the particles uniformly over the image space,
in particular over the Pareto front, by using energy-based measures to quantify the
diversity of the system. The resulting gradient-free metaheuristic algorithm is math-
ematically analyzed using a mean-field approximation of the algorithm iteration and
convergence guarantees towards Pareto optimal points are rigorously proven. In addi-
tion, we analyze the dynamics when the Pareto front corresponds to the unit simplex,
and show that the adaptive mechanism reduces to a gradient flow in this case. Several
numerical experiments show the validity of the proposed stochastic particle dynamics,
investigate the role of the algorithm parameters and validate the theoretical findings.
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1 Introduction

Motivated by the problem in which two or more objectives must be considered at the
same time, in this work we are interested in the design of stochastic algorithms for
multi-objective optimization. This type of problem is commonly found in everyday
life, for example, in physics, engineering, social sciences, economy, biology, and
many others [17, 22, 44, 45, 53]. Investing in the financial market while maximizing
profit and minimizing risk, or building a vehicle while maximizing performance and
minimizing fuel consumption and pollutant emissions are examples of multi-objective
optimization problems, where objectives typically conflict with each other.

From a mathematical viewpoint, the problem can be formulated through a variable
x ∈ R

d describing a possible decision and assuming that gi (x) is the i-th objective
for i = 1, . . . ,m, withm ∈ N being the total number of objectives. A multi–objective
problem then requires to solve for a decision x

min
x∈Rd

g(x) (1.1)

where g(x) = (g1(x), . . . , gm(x))�. A solution to (1.1) corresponds to several optimal
decisions. Here, we consider optimality in the sense of Pareto [45], i.e., no objective
can be improved without necessarily degrading another objective. Without additional
information about subjective preferences, there may be a (possibly infinite) number
of Pareto optimal solutions, all of which are considered equally good. Therefore, the
optimization task consists of providing a set of optimal decisions. To this end, it is also
desirable to have a diverse set, that is, addressing the problem not only by optimizing
the objectives, but also by aiming to best describe the (possibly) broad set of optimal
decisions.

Several methods have been proposed to numerically solve (1.1) and, as for single-
objective optimization, they typically belong to either the class of metaheuristic
algorithmsormathematical programmingmethods [59].Amongmetaheuristics,multi-
objective evolutionary algorithms [17], such as NSGA-II [18] and MOEA/D [64],
have gained popularity among practitioners due to their flexibility and ease of use. At
the same time, they usually lack of convergence analysis compared to mathematical
programming methods. Some of these algorithms, like MOEA/D, make use of scalar-
ization strategies [45] which allow to translate problem (1.1) into a set of parametrized
single-objective problems. With this detour, all classical, non-heuristic methods can
also be employed in multi-objective optimization, at the cost of solving a possibly
large amount of single-objective sub-problems. Many well-known techniques such
as descend methods, trust-region methods, and Newton’s method have been success-
fully adapted to directly solve multi-objective problems avoiding scalarization and
they typically guarantee to find locally Pareto optimal solutions, see e.g. [30, 37].
Among deterministic algorithms for non-convex problems we mention branch-and-
bound methods [27], DIRECT methods [11], and worst-case optimal algorithms [65].
For more details on mathematical programming methods and evolutionary algorithms
in multi-objective optimization we refer to the recent surveys [15, 22].
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We are interested in a particular class of gradient-free stochastic particle optimiza-
tion methods, called consensus-based optimization (CBO), which has recently gained
popularity due to the use of techniques developed in statistical physics that can provide
themwith a rigorousmathematical foundation. Suchmethods consider interacting par-
ticle systems which combine a consensus mechanism towards the estimated minimum
and random exploration of the search space [2, 12, 13, 56, 61]. From a mathemat-
ical viewpoint, this class of metaheuristic methods is inspired by the corresponding
mean-field dynamics based on particle swarming and multi-agent social interactions,
which have beenwidely used to study complex systems in life sciences, social sciences
and economics [19, 50, 51, 54, 63]. In the context of stochastic particle optimization,
mean-field techniques first approximate the heuristic iterative strategy as continuous-
in-time dynamics by means of a system of Stochastic Differential Equations (SDEs).
Then, the system is further approximated by a mono-particle process, the correspond-
ing mean-field model, which is more amenable to mathematical analysis. Quantitative
estimates of such approximations can eventually provide precise error estimates for the
original heuristic method, see e.g. [32]. This approach has proven fruitful to demon-
strate convergence towards a global minimum for single-objective problems, not only
in the case of CBO methods, but also for the popular Particle Swarm Optimization
(PSO) algorithm [36, 43], thus paving the way to provide a mathematical foundation
for other metaheuristics.

In the same spirit, the authors proposed in [7] a multi-objective optimization algo-
rithm (M-CBO) by prescribing aCBO-type interaction among several particlesmaking
use of a scalarization strategy. As already mentioned, scalarization allows to reduce
(1.1) into many single-objective sub-problems, which can be solved simultaneously
in the case of particle-based optimization methods. In this paper, we provide a con-
vergence analysis for the method proposed in [7] based on the mean-field description
of the M-CBO dynamics. Furthermore, we improve the method in order to capture
with uniform accuracy the shape of the Pareto front. This is done by iteratively updat-
ing the parameters of the method to minimize specific diversity measures, based on
two-body energy potentials. Mathematically, this last feature is achieved by enlarging
the phase space of the particles and introducing Vlasov-type dynamics in the space
of the parameters. A detailed analysis of the extended model is also presented by
studying a mean-field approximation of the particle dynamics which allows to recover
convergence guarantees towards optimal points. We further analyze the adaptive strat-
egy for bi-objective problems in simplified settings where the Pareto front is the unit
simplex, that is, a linear segment for m = 2. Under suitable regularity assumptions
on the potential, the particle dynamics takes a gradient-flow structure in the space of
the parameters. The latter, in particular, suggests that the heuristic strategy leads to a
better quality approximation of the Pareto front, where particles are uniformly spread
over it. We remark that another CBO algorithm for multi-objective optimization has
been recently proposed in [47]. This variant makes use of a multi-swarm approach
rather the a one-swarm approach, as it is the case of the algorithm proposed in [7] and
extended in this work.

The rest of the paper is organized as follows. In Sect. 2, we formally introduce the
concept of optimality for (1.1) and present the scalarization strategy. Next, in Sect. 3,
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we illustrate the particle dynamics both in the search space and in the space of param-
eters. Section4 is devoted to the mathematical analysis of the system evolution using
a mean-field description. Finally, in Sect. 5 numerical examples on convex and non-
convex as well as disjoint Pareto fronts are presented, which confirm the theoretical
results and the good performance of the new method. Some concluding remarks are
discussed in the last section.

2 ProblemDefinition and Scalarization

We will use the following notation. Let a ∈ R
n , |a| indicates its euclidean norm and

(a)l its l-th component. For given vectors a, b ∈ R
d , a · b denotes the scalar product.

For a Borel set A ⊂ R
d , |A| indicates its Lebesgue measure. P(Rd) is the set of Borel

probability measures over Rd and Pq(R
d) = {μ ∈ P(Rd) | ∫ |x |qdμ < ∞} the set

of Borel probability measures with finite q-th moment. The symbols≺ and� indicate
the partial ordering with respect to the cone Rm

>0 and R
m≥0 respectively.

2.1 Pareto Optimality and Diversity

When dealing with a vector-valued objective function g : Rd → R
m

g(x) = (g1(x), · · · , gm(x))� (2.1)

with m ≥ 2, the interpretation of the minimization problem (1.1) is not unique,
as the image space R

m is not fully ordered. We consider the notions of strong and
weak Edgeworth-Pareto optimality which rely on the natural, component-wise, partial
ordering on R

m [45].

Definition 2.1 (Edgeworth-Pareto optimality) A point x̄ ∈ R
d is (strong) Edgeworth-

Pareto (EP) optimal, or simply optimal, if g(x̄) is a minimal element of the image set
g(Rd) with respect to the natural partial ordering, that is if there is no x ∈ R

d such
that

gi (x) ≤ gi (x̄) for all i = 1, . . . ,m, g(x) �= g(x̄).

Alike, x̄ is weakly EP optimal, if there is no x ∈ R
d such that

gi (x) < gi (x̄) for all i = 1, . . . ,m.

The set Fx = {x̄ ∈ R
d | x̄ is EP optimal} constitutes the set of EP optimal points,

while

F = {g(x̄) ∈ R
m | x̄ is EP optimal}

is the Pareto front.
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The multi-objective optimization problem (1.1) consists of finding the set of EP
optimal points. Unlike single-objective problems, the set is typically uncountable and
the optimization task involves finding a finite subset of optimal points. The image
of those points should ideally cover F and the concept of diversity is introduced to
distinguish between two approximations [17]. Intuitively, if points on the Pareto front
aremore distanced, the diversity is higher. In viewof theminimization problem, having
a diverse approximation is desirable as it provides at the same cost a broader variety
of possible solutions.

The most diverse approximation is possibly given by a set of points which is uni-
formly distributed over the Pareto front. Quantifying the diversity of an optimal set is
of paramount importance both to assess the performance of optimization methods and
to design them. Indeed, oftentimes the heuristic of a specific method is constructed to
specifically minimize, or maximize, a specific measure [15]. Without knowledge of
the exact Pareto front, popular diversity measures are given by hypervolume contri-
bution [66], crowding distance [18] and, recently, by the Riesz s-energy [25, 48]. Our
proposed algorithmwill aim to minimize the latter (or similar energy-based measures)
as it can be embedded in a mean-field framework. The exact definitions are introduced
later.

To sum up, themulti-objective optimization problemwe consider is a two-objective
task itself, as one needs to find a set of points which are both EP optimal and optimize
a suitable diversity measure.

2.2 Scalarization Strategy

Apopularway to approach (1.1) is to use a scalarization strategy [21, 45]which reduces
the multi-objective problem to an (infinite) number of single-objective sub-problems.

Among the possible scalarization strategies, we consider the approximation sub-
problems with weighted Chebyshev semi-norms [45] where the single-objectives sub-
problems are given by

min
x∈Rd

G(x, w) := max
k∈{1,...,m} wk |gk(x)| (2.2)

and are parametrized by a vector of weightswwhich belongs to the unit, or probability,
simplex

Ω :=
{

w ∈ R
m≥0 |

m∑

�=1

w� = 1

}

.

The link between the scalarized problems and the original multi-objective problem
is given by the following result.

Theorem 2.1 ([45, Corollaries 5.25, 11.21]) Assume g is component-wise positive.

(a) A point x̄ is weakly EP optimal if and only if x̄ is a solution to (2.2) for some
w ∈ Ω .
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(b) Assume all sub-problems (2.2) attain a unique minimum. Then, x̄ is EP optimal if
and only if x̄ is the solution to (2.2) for some w ∈ Ω .

Theorem 2.1 shows the strength of the Chebyshev scalarization strategy which
allows to find all the weakly EP optimal points, contrary to other strategies like linear
scalarization [45]. We remark that the proposed algorithm can also be applied to solve
any other scalarized problems of the form (2.2) where the parameters are taken from
the unit simplex Ω .

In practice, it will be sufficient to solve a finite number N ∈ N of sub-problems
to obtain a good approximation of the Pareto front. Even though solving N sub-
problems with corresponding weights vectors {Wi }Ni=1 ⊂ Ω ensures to find N optimal
points, we note that there is no guarantee to obtain a diverse approximation. Therefore,
scalarization targets only one of the two aspects of the problem, without addressing
the diversity of the solution. In the following, we introduce an algorithm where the
parametersWi dynamically change during the computation to obtain a set of EP points
which is also diverse.

3 Adaptive Multi-objective Consensus Based Optimization

We propose a dynamics where N ∈ N particles interact with each other to solve N
scalar sub-problems given in the form (2.2).

At the iteration step k = 0, 1, . . ., every particle is described by its position Xi
k ∈ R

d

and its vector of weightsWi
k ∈ Ω which determines the optimization sub-problem the

particle aims to solve. As a result, particles are described by N tuples

(Xi
k,W

i
k ) for i = 1, . . . , N for k = 0, 1, . . .

in the augmented space Rd × Ω .
The initial configuration is generated by sampling the positions Xi

0 from a common
distribution ρ0 ∈ P(Rd) and by taking uniformly distributed weights vectorsWi

0 over
Ω . The iteration is prescribed to solve the multi-objective optimization task. We recall
that (1.1) not only requires to find optimal points, but also points that are diverse, that
is, well-distributed over the Pareto front. To this end, the optimization process is made
of two mechanisms which address these two aims separately.

3.1 A Consensus Based Particle Dynamics in the Search Space

The first mechanism prescribes the update of the positions {Xi
k}Ni=1, such that they

converge towards EP optimal points. As in [7], this is done by introducing a CBO-
type interaction between the particles. To illustrate theCBOupdate rule, let us consider
for the moment a fixed single-objective sub-problem parametrized by w ∈ Ω . Similar
to Particle-Swarm Optimization methods, in CBO methods at step k, the particles
move towards an attracting point Y α

k (w)which is given by a weighted average of their
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position:

Y α
k (w) =

∑N
j=1 X

j
k exp

(
−αG(X j

k , w)
)

∑N
j=1 exp

(
−αG(X j

k , w)
) . (3.1)

Due to the coefficients used in (3.1), if α � 1, Y α
k (w) is closer to the particles with

low values of the objective function G(·, w) and, in the limiting case, it holds

Y α
k (w) −→ argmin

X j
k , j=1,...,N

G(X j
k , w) as α → ∞,

if the aboveminimum uniquely exists. This promotes the concentration of the particles
in areas of the search space where the objective function G(·, w) attains low values
and hence, more likely, a global minimum. We remark that the exponential coeffi-
cients correspond to the Gibbs distribution associated with the objective function and,
moreover, that this choice is justified by the Laplace principle [20]. The latter is an
essential result to study the convergence of CBO methods [33] and it states that for
any absolutely continuous probability density ρ ∈ P(Rd) we have

lim
α→∞

(

− 1

α
log

(∫
e−αG(x,w)dρ(x)

))

= inf
x∈supp(ρ)

G(x, w).

Since in the multi-objective optimization dynamics each particle addresses a dif-
ferent sub-problem, each of them moves towards a different attracting point given by
Y α
k (Wi

k ). The attraction strength is given by λ > 0, while another parameter σ > 0
determines the strength of an additional stochastic component. The update rule reads

Xi
k+1 = Xi

k + λΔt
(
Y α
k (Wi

k ) − Xi
k

)
+ σ

√
Δt Di

k(X
i
k,W

i
k )B

i
k (3.2)

for all i = 1, . . . , N where Bi
k are multivariate independent random vectors, Bi

k ∼
N (0, Id), Id being the d-dimensional identity matrix, and Δt > 0 is the step-length.
The update rule (3.2) is overparametrized and in CBO optimization schemes typically
λ = 1 is used. The matrices Di

k(X
i
k,W

i
k ) characterize the random exploration process

which might be isotropic [56]

Di
k,iso(X

i
k,W

i
k ) = |Y α

k (Wi
k ) − Xi

k | Id , (3.3)

or anisotropic [13]

Di
k,aniso(X

i
k,W

i
k ) = diag

(
Y α
k (Wi

k ) − Xi
k

)
. (3.4)

where diag(a) is the diagonal matrix with elements of a ∈ R
d on the main diagonal.

Both explorations depend on the distance between Xi
k and the corresponding attract-

ing point making, the variance of the stochastic component larger if the particle is far
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from Y α
k (Wi

k ). The difference lies in the direction of the random component: while
in the isotropic exploration all dimensions are equally explored, the anisotropic one
explores each dimension with a different magnitude.

We note that (3.2) can be interpreted as a simple Euler-Maruyama discretization
[41] of the following system of SDEs

dXi
t = λ

(
Y α
t (Wi

t ) − Xi
t

)
dt + σDi

t (X
i
t ,W

i
t )dB

i
t , (3.5)

for all i = 1, . . . , N , where Bi
t are d-dimensional independent Brownian processes

and Yt (Wi
t ), D

i
t (X

i
t ,W

i
t ) are defined as in (3.1), (3.3) and (3.4) depending on whether

isotropic or anisotropic diffusion is used. In Sect. 4 we will use this interpretation to
obtain convergence results for (3.2).

The expected outcome of the position update rule (3.2) is that every particle will
find a minimizer of a sub-problem and hence, by Theorem 2.1, a weak EP optimal
point. We have already mentioned that if the weights vectors are fixed to the initial,
uniform, distribution, i.e. Wi

k = Wi
0 for all i = 1, . . . , N , there is no guarantee to

obtain equidistant points on the front. Since it is impossible to determine beforehand
the optimal distribution onΩ , we propose a heuristic strategywhich updates the vector
weights promoting diversity.

Remark 3.1 Assume the particle position Xi
k attains a good value for a different prob-

lem W j
k . Given that the i-th particle aims to optimize a different objective, it will

probably leave such good location in the following iterations, possibly resulting in a
deterioration of the weighted average for the j-th particle. As we will see, a key role
is played by the Gaussian noise which ensures that the probability of finding another
particle in such good position Xi

k is non-zero throughout the whole computation. Sim-
ilarly to Particle Swarm Optimization methods, one could also avoid losing valuable
information by adding memory mechanisms to the CBO dynamics, see e.g [6, 58].

3.2 Uniform Approximation of the Pareto Front

A popular diversity metric in multi-objective optimization is the hypervolume contri-
bution metric [66], which has the drawbacks of being computationally expensive [3]
and, by definition, dependent on estimates of upper bounds of g. Motivated by this
and by the objective of designing algorithms which perform well for any shape of the
Pareto front [48], new energy-based diversity measures have recently gained popu-
larity [15, 25]. Such measures quantify the diversity of a given empirical distribution
ρN ∈ P(Rd) by considering the pairwise interaction given by a two-body potential
U : Rm → (−∞,∞] on the image space

U[g#ρN ] :=
∫∫

U (g(x) − g(y)) dρN (y) dρN (x), (3.6)

g#ρN being the push-forward measure of ρN .
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Fig. 1 Illustration of two particle
systems over the Pareto front (in
red): a high-energy configuration
(left) and a low-energy one
(right). The configuration Riesz
energy ((3.6) with (3.7)) is also
displayed, together with the
histogram illustrating the
corresponding particle
distribution on the simplex
(Color figure online)

The problem of finding well-spread points over the Pareto front is then equivalent
to finding a configuration which is minimal with respect to the given energy U where
we recall that Fx is the set of EP optimal points:

min
ρN∈P(Fx )

U [g#ρN ] → min

We refer to Fig. 1 for an intuition on the difference between low and high energy
configurations of particles over the Pareto front.

A distribution νN is called diverse, if and only if

νN ∈ argmin
ρN∈P(Fx )

U [g#ρN ].

Any energy U describing short range repulsion between particles, like Monge
energy or repulsive-attractive power-law energy, is in principle a candidate to be a
diversity measure. The Riesz s-energy, given by

UR(z) = 1

|z|s with s = m − 1, (3.7)

is a popular choice [25] due to its theoretic guarantees of being a good measure of
the uniformity of points. Indeed, if F is a (m − 1)-dimensional manifold, the minimal
energy configuration νN converges to the uniform Hausdorff distribution over F as
N → ∞. We refer to [40] for the precise statement of the result and more details.
Inspired by the electrostatic potential between charged particles, the authors in [10]
used a Newtonian potential which is also empirically proven to be a suitable diversity
measure [9, 10]. See [25] for a numerical comparison between two-body potentials as
diversitymeasures in evolutionary algorithms.Wewill also compare different energies
in Sect. 5 and considerU ∈ C1(Rm\{0}) to be any of the above. The exact computation
of minimal energy configurations of a system of N particles is a well-studied problem
as it is connected to e.g. crystallization phenomenon [4]. We note that, in our settings,
the configuration ρN is additionally mapped to the image space in (3.6), making the
task even harder. Therefore, we propose a heuristic strategy that is expected to find
only suboptimal configurations.

To promote diversity, we let the particles follow a vector field associatedwithU . The
movement will be only in parameter space, acting on {Wi

k }Ni=1, in order not to interfere
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Fig. 2 Illustration of dynamics
(3.10) in case of two particles
(Xi

t ,W
i
t ), i = 1, 2. Forces

∇U (g(Xi
t ) − g(X j

t )) are
collected in the image space and
applied to the weights vectors
Wi
t in the parameters space. The

projection operator PWi
t
(·)

ensures that the dynamics is
confined in the simplex Ω

with the CBO optimization dynamics acting on the positions {Xi
k}Ni=1. Intuitively, if

two particles are close to each other in the image space g(Rd), their weights vectors
are pulled apart, see Fig. 2. This resembles a short range repulsion of U . To ensure
Wi

k remains in the unit simplex Ω , a projection PΩ is required, where

PΩ(v) = argminw∈Ω |v − w| for all v ∈ R
m,

see, e.g., [16] for an implementation. A parameter τ ≥ 0 determines the time scale of
the weights adaptation process with respect to the CBO dynamics (3.2). The process
can be turned off for τ = 0.

In the case of bi-objective problems, wherem = 2, we, therefore, obtain the update
rule

Wi
k+1 = PΩ

(

Wi
k + τ

N

N∑

j=1

∇U
(
g(Xi

k) − g(X j
k )
)

Δt

)

, (3.8)

which is well-defined as the parameters space is embedded in the image space Rm . If
U has a singularity in 0, we set ∇U (0) = 0. We note that the lack of a minus sign in
(3.8), is due to the explicit form of the relation determined by Theorem 2.1 between
the Pareto front and Ω . This will become clear in the next section, as this choice gives
a gradient flow structure to the parameters dynamics, under suitable assumptions.

For m > 2, the relation between a weight vector w ∈ Ω and the correspondent
(weakly) EP optimal point is more involved. Indeed, (3.8) makes implicitly use of the
fact that parameters can only move in one direction when m = 2, as the simplex is
given by a segment. This is not the case form > 3 and there is no straightforward way
to pull back the vector field∇U from the objective space to the simplex. Nevertheless,
we prescribe a suitable heuristic dynamics as follows:

Wi
k+1 = PΩ

(

Wi
k − τ

N

N∑

j=1

Wi
k − W j

k

|Wi
k − W j

k |
∣
∣
∣∇U

(
g(Xi

k) − g(X j
k )
)∣∣
∣Δt

)

, (3.9)

for all i = 1, . . . , N . The term |∇U (g(Xi
k) − g(X j

k ))| determines the strength of the

interaction, while (Wi
k − W j

k )/|Wi
k − W j

k | the direction of movement. We note that
this second adaptive strategy can also be used in bi-objective problems, m = 2.
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Up to our knowledge, energy-based diversity metrics have only been used as a
selection criterion between candidate approximations of the Pareto front [26, 48], and
this is the first time the vector field associated with U is used to guide the particle
dynamics in a metaheuristic multi-objective optimization method.

As before, (3.8) and (3.9) can be interpreted as an explicit discretization of
continuous-in-time dynamics. In particular, to study the analytical properties of the
adaptive strategy, wewill consider the followingVlasov-type dynamics corresponding
to (3.8)

dWi
t = τ PT (Wi

t ,Ω)

⎛

⎝ 1

N

N∑

j=1

∇U
(
g(Xi

t ) − g(X j
t )
)
⎞

⎠ dt, (3.10)

for all i = 1, . . . , N , where PT (w,Ω) corresponds to the projection to the tangent cone
T (w,Ω) toΩ atw ∈ Ω , see also [14] for more details. Similarly, the time-continuous
approximation of (3.9) is given by

dWi
t = τ PT (Wi

t ,Ω)

⎛

⎝− 1

N

N∑

j=1

Wi
k − W j

k

|Wi
k − W j

k |
∣
∣
∣∇U

(
g(Xi

k) − g(X j
k )
)∣
∣
∣

⎞

⎠ dt . (3.11)

4 Convergence Analysis in Mean-Field Law

In this section, we give a statistical description of the optimization dynamics by
presenting the correspondingmean-fieldmodel, which allows us to analyze the conver-
gence of the method towards a solution to the multi-objective optimization problem.
We will consider any scalarization strategy where the scalar sub-problems take the
form of (2.2), with the parameters space given by the unit simplex Ω . We restrict
ourselves to the case where particle positions are updated with anisotropic diffusion
(3.4) for simplicity. The algorithm update rule for the positions Xi

k is given by (3.2),
while weights vectors Wi

k are given by either (3.8) or (3.9).
As anticipated, we first approximate the discrete-in-time algorithm with the

continuous-in-time dynamics given by (3.5) for particle locations, (3.10) or (3.11)
for particle weights vectors. At the cost of introducing an approximation error which
depends on Δt (see Remark 4.3 below for more details), we are able in this way to
derive the correspondent mean-field dynamics. Mean-field models are obtained by
taking the limit N → ∞, that is, by considering an infinite number of particles.
Such description allows to work with only one probability distribution of particles,
rather than a (usually large) number of N different particle trajectories given by the
microscopic description. Similar to [56], we make the so-called propagation of chaos
assumption on the marginals [60]. In particular, let FN (t) be the particles probability
distribution over (Rd × Ω)N at a time t ≥ 0. We assume FN (t) ≈ f (t)⊗N , that
is, we assume the particles (Xi

t ,W
i
t ), i = 1, . . . , N to be independently distributed

according to f (t) ∈ P(Rd × Ω) for some large N � 1.
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In the following, we indicate with ρ(t) ∈ P(Rd) the first marginal of f (t) and with
μ(t) ∈ P(Ω) the second marginal on the parameters space Ω .

As a consequence of the propagation of chaos assumption, we formally obtain that

Y α
t (Wi

t ) =
1
N

∑N
j=1 X

j
t e

−αG(X j
t ,Wi

t )

1
N

∑N
j=1 e

−αG(X j
t ,Wi

t )
≈

∫
xe−αG(x,Wi

t )dρ(t, x)
∫
e−αG(x,Wi

t )dρ(t, x)
=: yα(ρ(t),Wi

t )

and that

1

N

N∑

j=1

∇U
(
g(Xi

t ) − g(X j
t )
)

≈
∫

∇U
(
g(Xi

t ) − g(x)
)
dρ(t, x) ,

where the summationwith respect to the j-indices has been substitutedwith integration
with respect to the marginal ρ(t). We note that factorization of the marginals, f (t) =
ρ(t)⊗μ(t), is not required in the above derivations and it is not expected to hold true
due to the coupling between the dynamics in Rd and Ω .

The SDEs (3.5) and (3.10) are now independent on the index i and we obtain the
process (Xt ,Wt ), t > 0 as

{
dXt = λ(yα

t (ρ(t),Wt ) − Xt )dt + σdiag(yα
t (ρ(t),Wt ) − Xt )dBt

dWt = τ PWt

(∫ ∇U (g(Xt ) − g(x)) dρ(t, x)
)
dt

(4.1)

where we introduced Pw := PT (w,Ω) and anisotropic diffusion is used. In the same
way, we can derive the mean-field mono-particle process associated with the CBO
evolution (3.5) and the alternative adaptive dynamics (3.11). We obtain

{
dXt = λ(yα

t (ρ(t),Wt ) − Xt )dt + σdiag(yα
t (ρ(t),Wt ) − Xt )dBt

dWt = τ PWt

(
− ∫ Wt−w

|Wt−w| |∇U (g(Xt ) − g(x)) |d f (t, x, w)
)
dt .

(4.2)

Processes (4.1) and (4.2) are mean-field descriptions of the microscopic dynamics
generated by the optimization dynamics described in Sect. 3. We note that the rigor-
ous mean-field limit for single-objective CBO dynamics, which are similar to (3.5),
was proven in [42]. Following previous works, see e.g. [12, 33], we consider such
an approximation and mathematically analyze the proposed optimization method by
studying solutions to (4.1) and (4.2).

Remark 4.1 We note that the law f (t) of process (4.1) weakly satisfies

∂

∂t
f (t, x, w) = −λ∇x · ((yα(ρ(t), w) − x) f (t, x, w)

)

+σ 2

2

d∑

�=1

∂2x�x�

((
yα(ρ(t), w) − x

)2
�
f (t, x, w)

)
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−τ∇w ·
(

Pw

(∫
∇U (g(x) − g(y)) dρ(t, y)

)

f (t, x, w)

)

,

(4.3)

with initial conditions f (0, x, w) = ρ0 ⊗ μ0, ρ0 = Law(X0) and μ0 = Law(W0), if
we take as test function any φ ∈ C∞

c (Rd × Ω), as a consequence of Itô’s formula.

4.1 Convergence to the Pareto Front

In the following, we study solutions (Xt ,Wt )t∈[0,T ] to the mean-field approximations
(4.1), (4.2) to gain insights on the method convergence properties. We assess the
performance of a multi-objective algorithm by the average distance from the Pareto
front F and we use the Generational Distance (GD) [62] given by

GD[ρ(t)] =
(∫

dist(g(x), F)2dρ(t, x)

) 1
2

, (4.4)

where ρ(t) = Law(Xt ). In the following, we state conditions such that GD[ρ(t)]
decays up to a given accuracy ε > 0.

Assumption 4.1 (Uniqueness) Every sub-problem (2.2) with w ∈ Ω admits a unique
solution x̄(w) ∈ F .Moreover x̄ : Ω → Fx is aC1 map satisfying supw∈Ω ‖Dx̄(w)‖ <

∞, Dx̄(w) being the differential at w, and ‖.‖ is operator norm.

The uniqueness requirement is common in the analysis of CBOmethods [33]. This
is due to the difficulty of controlling the attractive term yα , whenever there are two or
more minimizers. For example, assume ν is a measure concentrated in two different
global minimizers of a sub-problem w, ν = (

δx1 + δx2
)
/2: the attractive term could

be located in the middle between them

yα(ν,w) = 1

2
(x1 + x2)

being obviously not(!) a minimizer. The regularity assumption on x̄ will be required
to provide bounds on the adaptive strategies (4.1), (4.2) and may be dropped if the
interaction in the weights space is not present.

The next assumption is concerned with lower and upper bounds in a neighborhood
of minimizers of G(·, w),w ∈ Ω . See also [35] and the references therein for more
details on the following conditions.

Assumption 4.2 (Stability at the minimizer) The functions G(·, w), w ∈ Ω , are
continuous and, in a neighborhood of their minimizer, satisfy the following growth
condition: there exists a radius R > 0, exponents p1 > 0, p2 ≤ p1 and constants
c1, c2 > 0 such that for all w ∈ Ω

c1‖x − x̄(w)‖p1∞ ≤ G(x, w) − min
y∈Rd

G(y, w) ≤ c2‖x − x̄(w)‖p2∞, (4.5)
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for all x ∈ R
d such that ‖x − x̄(w)‖∞ ≤ R.

Moreover, outside such a neighborhood, the function cannot be arbitrarily close to
the minimum: there exists c3 > 0 such that for all w ∈ Ω

c3 ≤ G(x, w) − min
y∈Rd

G(y, w) ∀ x : ‖x − x̄(w)‖∞ ≥ R.

We note that the lower bound in (4.5) is known in the literature as conditioning
property [35] or also as inverse continuity property [33]. For a better understanding,
we provide a simple example of scalarized sub-problem satisfying the above condition.

Example 1 Consider the bi-objective problem given by g1(x) = (x − 0.5)2, g2(x) =
(x + 0.5)2, x ∈ R, and let the scalarized sub-problems be given by G(x, w) =
w1g1(x) + w2g2(x), for any w = (w1, w2)

� ∈ Ω . By setting ∇xG(x, w) = 0,
one obtains that the EP optimal points are given by x̄(w) = w1 − 0.5 and
miny∈R G(y, w) = −w1(w1 − 1). For all w = (w1, w2)

� ∈ Ω, x ∈ R, it holds

G(w, x) − min
y∈R G(y, w) = (x − w1 + 0.5)2 , |x − x̄(w)| = |x − w1 + 0.5|

and therefore Assumption 4.3 is satisfied for c1 = c2 = 1, p1 = p2 = 2 and any
R > 0.

Finally, we assume the EP optimal points to be bounded. As for the single-objective
case [33, 34], we also prescribe a condition on the initial data ρ0 and μ0.

Assumption 4.3 (Boundedness and initial datum) The set Fx of optimal points is
contained by a bounded, open set Fx ⊂ H . The initial distribution f0 is given by
f0 = ρ0⊗μ0 with anyμ0 ∈ P(Ω) and ρ0 = Unif(H), that is, the uniform probability
distribution over H .

Boundedness of the EP optimal points will be necessary to provide estimates on
the probability mass around the solutions to the sub-problems. We note that, in many
applications, the prescribed search space is bounded.

Assumptions 4.1–4.3 ensure that the quantitative results on the Laplace principle
[33, 34] are applicable to all the different sub-problems (2.2) with uniform choice of α.
Therefore, under such assumptions, it is possible to prove convergence of the particle
system towards EP optimal points by studying the large time behavior of the average
�2-error

Err[ f (t)] := E

[
|Xt − x̄(Wt )|2

]
(4.6)

where f (t) = Law(Xt ,Wt ). We will do so by following the analysis of the single-
objective CBO methods [33, Theorem 12], [34, Theorem 2].

Theorem 4.1 Assume scalar sub-problems and initial data X0 ∼ ρ0,W0 ∼ μ0, f0 =
ρ0 ⊗ μ0 satisfy Assumptions 4.1–4.3 and ∇U ∈ L∞(Rm).
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For any accuracy ε ∈ (0,Err[ f (0)]), let λ, σ > 0, τ ≥ 0 satisfy

λ > 2σ 2 + C
τ√
ε
, where C := 4 sup

w∈Ω

‖Dx̄(w)‖‖∇U‖L∞(Rm) (4.7)

and T ∗ > 0 be the time horizon given by

T ∗ = 2

λ − 2σ 2 − Cτ/
√

ε
log

(
Err[ f (0)]

ε

)

. (4.8)

Consider now a solution (Xt ,Wt )t∈[0,T ∗] to either (4.1) or (4.2)with initial data given
by (X0,W0) and such that supt∈[0,T ∗] E[|Xt |4] < ∞.

Provided α is sufficiently large, it holds

min
t∈[0,T ∗]Err[ f (t)] ≤ ε, (4.9)

where f (t) = Law(Xt ,Wt ). Moreover, until the desired accuracy is reached, the error
decays exponentially

Err[ f (t)] ≤ Err[ f (0)] exp
(

−1

2

(

λ − 2σ 2 − C
τ√
ε

)

t

)

. (4.10)

We remark that the choice of α depends on the estimates given in Assumption 4.2
and, in particular, on the accuracy ε. We will provide a proof in the next section.
Before, we show how to link the above convergence result to the GD performance
metric.

Corollary 4.1 Under assumptions of Theorem 4.1, consider ρ(t) = Law(Xt ), f (t) =
Law(Xt ,Wt ). If g is Lipschitz continuous and component-wise positive, it holds

min
t∈[0,T ∗]GD[ρ(t)] ≤ Lip(g)

√
ε

and, until the desired accuracy is reached,

GD[ρ(t)] ≤ Lip(g)
√
Err[ f (0)] exp

(

−λ − κσ 2 − Cτ/
√

ε

2
t

)

.

Proof Since every sub-problem admits a unique solution (Assumption 4.1), by Theo-
rem 2.1 every solution x̄(w) is EP optimal and therefore its image g(x̄(w)) belongs
to the Pareto front F . Therefore

dist(g(x), F) ≤ |g(x) − g(x̄(w))| ≤ Lip(g)|x − x̄(w)|

from which follows that GD[ρ(t)] is bounded by the average �2-error. ��
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Remark 4.2 In Theorem 4.1, τ must be taken of order o(
√

ε) suggesting that the
parameters should adapt at a much slower time scale with respect to the positions,
so as not to interfere with the CBO dynamics. With no weights vectors interaction,
τ = 0, the decay estimate (4.10) is independent of ε and the rate is larger compared
to the case with τ > 0.

Remark 4.3 Whenquantitative estimates of themean-field limit are given, the expected
�2-error can be decomposed as

E

[
N∑

i=1

|Xi
k − x̄(Wi

k )|2
]

≤ O(Δt) + O(N−1) + O(ε) (4.11)

see, for instance, [31, 33]. The first term quantifies the distance between the algorithm
iteration (3.2), (3.8) (or (3.9)) and the system of SDEs (3.5), (3.10) (or (3.11)) and
it is given by classical results in numerical approximation of SDEs by means of the
Euler-Maruyama scheme [57]. The second term, of order N−1, is the (expected) error
introduced by the mean-field approximation, see e.g. [33]. The last term comes from
the convergence of the mean-field model to the sub-problems solutions and it is given
by Theorem 4.1.

We note that the additional dynamics of the weight vectors in (4.1) and (4.2) adds
non-linearity to the particle system. Thus, standard arguments used to prove well-
posedness and mean-field convergence of the CBO dynamics, see for instance [12,
33], cannot be adapted to the present case in a straightforward manner. For this reason,
we leave such investigations for future work.

4.2 Proof of Theorem 4.1

To prove Theorem 4.1, we follow the strategy introduced in [33, 34] for the analysis
of single-objective CBO particle methods.

We start by studying the time evolution of Err[ f (t)].
Proposition 4.1 Under assumptions of Theorem 4.1, for all t ∈ [0, T ∗] it holds
d

dt
Err[ f (t)] ≤

(
−λ + 2σ 2

)
Err[ f (t)] +

(
λ + 2σ 2

)
E

[
|yα(ρ(t),Wt ) − x̄(Wt )|2

]

+2τ sup
w∈Ω

‖Dx̄(w)‖‖∇U‖L∞(Rm )

√
Err[ f (t)].

Proof By applying Itô’s formula with φ(x, w) = |x − x̄(w)|2, we obtain

dφ(Xt ,Wt ) = λ∇xφ(Xt ,Wt ) · (yα(ρ(t),Wt ) − Xt )dt

+ σ

d∑

�=1

∂x�
φ(Xt ,Wt )(y

α(ρ(t),Wt ) − Xt )�dBt,�
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+ σ 2

2

d∑

�=1

∂2x�x�
φ(Xt ,Wt )(y

α(ρ(t),Wt ) − Xt )
2
�dt

+ τDwφ(Xt ,Wt )dWt .

Thanks to the solution regularity E[|Xt |4] < ∞ for all t ∈ [0, T ∗], we have
E[∫ t

0 |∂x�
φ(Xs,Ws)(yα(ρ(s),Ws) − Xs)�|2ds] < ∞ from which follows

E

[∫ t

0
∂x�

φ(Xs,Ws)(y
α(ρ(s),Ws) − Xs)�dBs,�

]

= 0 ∀� = 1, . . . , d

due to [52, Theorem 3.2.1 (iii)]. Therefore, by taking the expectation and applying
Fubini’s theorem we obtain

d

dt
Err[ f (t)] = d

dt
E[φ(Xt ,Wt )]

= E
[
λ∇xφ(Xt ,Wt ) · (yα(ρ(t),Wt ) − Xt )

]

+ E

[
σ 2

2

d∑

�=1

∂2x�x�
φ(Xt ,Wt )

(
yα(ρ(t),Wt ) − Xt

)2
�

]

+ E

[

τDwφ(Xt ,Wt )
d

dt
Wt

]

=: T1 + T2 + T3 .

The first term can be bounded as follows:

T1 = 2λE
[
(Xt − x̄(Wt )) · (yα(ρ(t),Wt ) − Xt )

]

= 2λE
[
(Xt − x̄(Wt )) · (yα(ρ(t),Wt ) − x̄(Wt ))

]− 2λE
[
|Xt − x̄(Wt )|2

]

≤ λE
[
|Xt − x̄(Wt )|2

]
+ λE

[
|yα(ρ(t),Wt ) − x̄(Wt )|2

]

− 2λE
[
|Xt − x̄(Wt )|2

]
,

where in the last inequality we used that a · b ≤ (|a|2 + |b|2)/2 for any a, b ∈ R
d . By

employing the definition of Err[ f (t)], we obtain

T1 ≤ −λErr[ f (t)] + λE
[
|yα(ρ(t),Wt ) − x̄(Wt )|2

]
. (4.12)

Given that ∂2x�x�
φ(x, w) = 2, it holds

T2 = σ 2
E

[
d∑

�=1

(yα(ρ(t),Wt ) − Xt )
2
�

]

= σ 2
E

[
|yα(ρ(t),Wt ) − Xt |2

]
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≤ 2σ 2
E[|yα(ρ(t),Wt ) − x̄(Wt )|2] + 2σ 2

E[|x̄(Wt ) − Xt |2]
= 2σ 2

E[|yα(ρ(t),Wt ) − x̄(Wt )|2] + 2σ 2Err[ f (t)] , (4.13)

thanks to inequality |a − b|2 ≤ 2(|a − c|2 + |c − b|2) for any a, b, c ∈ R
d . To bound

the third term, we first note that Dwφ(x, w)(v) = 2(x − x̄(w)) · Dx̄(w)(v), for any
v ∈ R

m . Note that this requires to differentiate on the manifold and the corresponding
differential is denoted by Dw.

Now, thanks to the boundedness of ∇U , it holds

∣
∣
∣
∣
d

dt
Wt

∣
∣
∣
∣ ≤ ‖∇U‖L∞(Rm),

nomatter if theweights are adapted according to (4.1) or (4.2). Thanks to the regularity
of x̄ , we obtain

T3 = 2τE

[

(Xt − x̄(Wt )) · Dx̄(Wt )
d

dt
Wt

]

≤ 2τ sup
w∈Ω

‖Dx̄(w)‖‖∇U‖L∞(Rm )E [|Xt − x̄(Wt )|]

≤ 2τ sup
w∈Ω

‖Dx̄(w)‖‖∇U‖L∞(Rm )

√
Err[ f (t)] (4.14)

where we applied Jensen’s inequality in the last step. By putting together (4.12), (4.13)
and (4.14), we obtain the desired estimate. ��
Lemma 4.1 (Quantitative Laplace principle) Under assumptions of Theorem 4.1, let
ρ ∈ P(Rd) be any measure such that the EP optimal points belong to its support,
Fx ⊂ supp(ρ). Consider any r ∈ [0, R], q > 0 such that q + c2r1/p2 ≤ c3, for all
w ∈ Ω it holds

|yα(ρ,w) − x̄(w)| ≤ √
dc1

(
q + c2r

1/p2
)1/p1 +

√
d exp(−αq)

ρ
(
B∞
r (x̄(w))

)
∫

|x − x̄(w)|dρ(x)

where B∞
r (z) is the open �∞-ball centered in z ∈ R

d with radius r .

Proof For a fixed w ∈ Ω , we recall the analogous result from the single-objective
case [34, Proposition 1]. Let miny∈Rd G(y, w) = 0 without loss of generality, and
define Gr (w) := supy∈B∞

r (x̄(w)) G(y, w). For any r ∈ [0, R] and q > 0 such that
q + Gr (w) ≤ c3, it holds

|yα(ρ,w) − x̄(w)| ≤ √
dc1 (q + Gr (w))1/p1 +

√
d exp(−αq)

ρ
(
B∞
r (x̄(w))

)
∫

|x − x̄(w)|dρ(x).

Assumption 4.1 ensures that all sub-objectives G(·, w) satisfy a common growth
condition around the minimizers. In particular, we have that Gr (w) ≤ c2r1/p2 for all
w ∈ Ω , which leads to the desired estimate. ��
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Next, to apply the above result for all t ∈ [0, T ∗], we provide a lower bound
on ρ

(
B∞
r (x̄(w))

)
for all w ∈ Ω . As the lower bound will be independent on the

definition of x̄(w), we consider in the following any point x∗ ∈ R
d belonging to

the initial search domain, x∗ ∈ supp(ρ0) = H (see Assumption 4.3). To do so, we
introduce the mollifier φr , for r > 0:

φr (x) :=
⎧
⎨

⎩

∏d
k=1 exp

(

1 − r2

r2−(x−x∗)2k

)

, if ‖x − x∗‖∞ < r ,

0, else.

Lemma 4.2 Under the settings of Theorem 4.1, let T ∈ [0, T ∗], r > 0, and x∗ ∈
supp(ρ0) be fixed. Assume

sup
t∈[0,T ]

sup
w∈Ω

‖yα(ρ(t), w) − x∗‖∞ < B (4.15)

for some B > 0. It holds

P(Xt ∈ B∞
r (x∗)) ≥ E[φr (X0)] exp(−qt)

for q := 2d max

{
λ(cr + B

√
c)

(1 − c)2r
+ σ 2(cr2 + B2)(2c + 1)

(1 − c)4r2
,

2λ2

(2c − 1)σ 2

}

were c ∈ (0.5, 1) can be any constant satisfying (1 − c2)2 ≤ (2c − 1)c.

We refer to Appendix C for a proof. Now, we are ready to provide a proof of the main
result.

Proof (Theorem 4.1) Thanks to Proposition 4.1, we have for all t ∈ [0, T ∗],
d

dt
Err[ f (t)] ≤

(
−λ + 2σ 2

)
Err[ f (t)] +

(
λ + 2σ 2

)
E

[
|yα(ρ(t),Wt ) − x̄(Wt )|2

]

+2τ sup
w∈Ω

‖Dx̄(w)‖‖∇U‖L∞(Rm )

√
Err[ f (t)].

We consider now

T := sup

{

t ≥ 0
∣
∣
∣Err(s) > ε and sup

w∈Ω

|yα(ρ(s), w) − x̄(w)| ≤ C̃(s) ∀s ∈ [0, t]
}

where

C̃(t) := 1

2

λ − 2σ 2

λ + 2σ 2 Err[ f (t)].

For all t ∈ [0, T ] it holds Err[ f (t)] ≥ ε and therefore we have
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2τ sup
w∈Ω

‖Dx̄(w)‖‖∇U‖L∞(Rm)

√
Err[ f (t)]

≤ 2τ sup
w∈Ω

‖Dx̄(w)‖‖∇U‖L∞(Rm )

√
Err[ f (t)]

√
Err[ f (t)]√

ε

=: C τ

2
√

ε
Err[ f (t)] .

By using the above estimate and definition of C̃(t), we then obtain

d

dt
Err[ f (t)] ≤

(
−λ + 2σ 2

)
Err[ f (t)] +

(
λ + 2σ 2

) 1

2

λ − 2σ 2

λ + 2σ 2 Err[ f (t)]

+ C
τ

2
√

ε
Err[ f (t)]

= −1

2

(

λ − 2σ 2 − C
τ√
ε

)

Err[ f (t)] .

By applying Grönwall’s inequality we obtain the error decay

Err[ f (t)] ≤ Err[ f (0)] exp
(

−1

2

(
λ − 2σ 2 − Cτ/

√
ε
)
t

)

(4.16)

for all t ∈ [0, T ]. In particular, by definition of C̃(t), it holds

sup
w∈Ω

|yα(ρ(s), w) − x̄(w)| ≤ C̃(s) ≤ C̃(0)

from which follows, for any w∗ ∈ Ω ,

sup
w∈Ω

|yα(ρ(s), w) − x̄(w∗)| ≤ sup
w∈Ω

|yα(ρ(s), w) − x̄(w)| + |x̄(w) − x̄(w∗)|

≤ C̃(0) + diam(Fx ) (4.17)

due to the boundedness of the EP optimal points Fx = {x̄(w) |w ∈ Ω}. We now
consider three different cases.

Case T ≥ T ∗. By definition of T ∗ and thanks to the error decay (4.16) over [0, T ],
it holds Err[ f (T ∗)] ≤ ε.

Case T < T ∗ and Err[ f (T )] = ε. There is nothing to prove here.
Case T < T ∗, Err[ f (T )] > ε and supw∈Ω |yα(ρ(T ), w) − x̄(w)| > C̃(T ). We

will show that if α is sufficiently large this case cannot occur. In particular, we prove
that for large α’s, supw∈Ω |yα(ρ(T ), w) − x̄(w)| < C̃(T ) and therefore we have a
contradiction.

Let us fix any w ∈ Ω and let C̃ε be given by

C̃ε := 1

2

λ − 2σ 2

λ + 2σ 2 ε.
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We take q, r as follows

q := 1

2
min

{(
C̃ε

c12
√
d

)p1

, c3

}

,

r := min

{(
q

c2

)p2
, R

}

.

This choice implies r ≤ R and

√
dc1

(
q + c2r

1/p2
)1/p1 ≤ √

dc1

(

q + c2
q

c2

)1/p1
= √

dc1 (2q)1/p1

≤ √
dc1

C̃ε

c12
√
d

= C̃ε

2
. (4.18)

We can apply now Lemma 4.1 with x∗ = x̄(w) and ρ = ρ(T ) = Law(XT ). We obtain

|yα(ρ(t), w) − x̄(w)|

≤ √
dc1

(
q + c2r

1/p2
)1/p1 +

√
d exp(−αq)

P(XT ∈ B∞
r (x̄(w)))

E[|XT − x̄(w)|]

≤ C̃ε

2
+

√
d exp(−αq)E[|XT − x̄(w)|]

P(XT ∈ B∞
r (x̄(w)))

, (4.19)

where the last inequality follows from (4.18). At the same time, thanks to the bound
provided by (4.17), we can apply Lemma 4.2 to obtain a lower bound on the mass
around x̄(w) at time T :

P(XT ∈ B∞
r (x̄(w))) ≥ E[φr ,w(X0)] exp(−pT ) (4.20)

for some p > 0 independent onw, α, and where φr ,w(x) is now the mollifier centered
around the EP optimal point x̄(w). We note that infw∈Ω E[φr ,w(X0)] =: m0 > 0, due
to our choice of initial data. Moreover, we have by Jensen’s inequality

E[|XT − x̄(w)|] ≤ E[|XT − x̄(WT )|] + E[|x̄(WT ) − x̄(w)|]
≤ √

2Err[ f (0)] + diam(Fx )

where we used again the error decay estimate and the boundedness of Fx . By
combining the above estimates, we obtain

√
d exp(−αq)E[|XT − x̄(w)|]

P(XT ∈ B∞
r (x̄(w)))

≤
√
d exp(−αq + T p)

m0

(√
2Err[ f (0)] + diam(Fx )

)

≤
√
d exp(−αq + T ∗ p)

m0

(√
2Err[ f (0)] + diam(Fx )

)
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where the right-hand side is independent on the choice of w ∈ Ω . We also note that
the decay rate q does not depend on α. As a consequence, there exists α0 > 0, such
that it holds

√
d exp(−αq)E[|XT − x̄(w)|]

P(XT ∈ B∞
r (x̄(w)))

<
C̃ε

2
for allw ∈ Ω,

for any α > α0.
Together with (4.19), this leads to supw∈Ω |yα(ρ(T ), w) − x̄(w)| < C̃ε. By def-

inition of C̃(T ), it holds C̃ε ≤ C̃(T ) and so we reached the desired contradiction.
��

Theorem 4.1 and Corollary 4.1 show that the particle distribution will converge
towards a neighborhood of the Pareto front. Due to the adaptive strategy, the dis-
tribution might move along the front. In the next section, we will therefore analyze
the dynamics in the parameters space Ω to investigate the diversity of the computed
solution.

4.3 Decay of Diversity Measure

The aim of interactions (3.8), (3.9) is to improve the distribution of the parameters
{Wi

t }Ni=1 so that, in view of Theorem 2.1, the corresponding (weak) EP optimal points
are well-distributed in the image space. In the following, wewill investigate the special
case wherem = 2 and the Pareto front F corresponds to the unit simplexΩ . Dynamics
(3.8) can then be shown to be a discretization of a gradient flow on the unit simplex
Ω when Chebyshev scalarization (2.2) is used. While considering F = Ω is clearly
a strong assumption, the analysis sheds some light on why (3.8) may be a suitable
adaptive strategy for the parameters.

We restrict again to the case of Assumption 4.1, which ensures uniqueness of
global minima and continuity of x̄ , where x̄(w) is the global solution to (2.2) for a
given w ∈ Ω . As we are interested in the relation between w and its corresponding
point on the Pareto front g (x̄(w)) ∈ F , let us assume

Xt = x̄(Wt ) (4.21)

that is, every particle is assumed to be located at its corresponding EP optimal point.
This is justified by the convergence result (Theorem 4.1) and by the fact that the
particle interactions in the search space Rd take place at a faster time scale than the
adaptation of the parameters, see Remark 4.2.

The parameter evolution in the mean-field model (4.1) becomes then independent
on Xt and can be written as

dWt = τ PWt

(∫
∇U (ḡ(Wt ) − ḡ(w)) dμ(t, w)

)

dt (4.22)

where μ(t) = Law(Wt ) and, for simplicity, we introduced ḡ := g ◦ x̄ .
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Assumption 4.4 Let (1.1) be a bi-objective problem, m = 2, and the scalar sub-
problems be given by theChebyshev scalarization strategy (2.2).We assume the Pareto
front F is given by

F = Ω = {(s, 1 − s)� : s ∈ [0, 1]}

and that the binary potential energy U is radially symmetric.

Lemma 4.3 Under Assumption 4.4, for all w, v ∈ Ω it holds

Pw

(
∇U

(
ḡ(w) − ḡ(v)

)) = −Pw

(∇U (w − v)
)
. (4.23)

Proof We note that when F = Ω , all weakly EP optimal points are also EP optimal
and hence by Theorem 2.1 ḡ(w) = g(x̄(w)) ∈ F for allw ∈ Ω . Then, for anyw ∈ Ω ,
there exists s ∈ [0, 1] such that ḡ(w) = (s, 1 − s). By definition of the sub-problem
(2.2) with w = (w1, w2) = (w1, 1 − w1),

ḡ(w) = min
y∈F max {y1w1, y2w2} = min

s∈[0,1]max{sw1, (1 − s)(1 − w1)},

due to the definition ofG(x, w). At the minimizer, it must hold sw1 = (1−s)(1−w1)

and hence s = (1 − w1). It follows that

ḡ(w) = Aw, where A =
(
0 1
1 0

)

. (4.24)

Since U is radially symmetric it holds ∇U (Aw − Av) = A∇U (w − v).
Finally, let us consider the basis n1 = (1, 1)�, n2 = (1,−1)� and a vector u ∈

R
2, u = u1n1 + u2n2 for some u1, u2 ∈ R. We note that the tangent cone at w ∈ Ω

satisfies T (w,Ω) ⊆ span(n2) and therefore Pw(n1) = 0. Together with the fact that
Au = u1n1 − u2n2, this leads to

Pw(Au) = Pw(−u2n2) = Pw(−u)

and identity (4.23) follows. ��
Thanks to Lemma 4.3, under Assumption 4.4 equation (4.22) can be simplified to

dWt = τ PWt

(

−
∫

∇U (Wt − w) dμ(t, w)

)

dt . (4.25)

We note that μ(t) weakly satisfies

∂

∂t
μ(t, w) = −τ∇w ·

(

Pw

(

−
∫

∇U (w − v) dμ(t, v)

)

μ(t, w)

)

(4.26)

123



58 Page 24 of 43 Applied Mathematics & Optimization (2023) 88 :58

with initial conditions μ(0) = μ0 over the test set C∞
c (Ω). Equation (4.26) describes

the continuum dynamics of particles which binary interact and that are confined to the
set Ω . Such aggregation model on bounded domains has been the subject of several
works, see for instance [14, 28, 29, 55]. Particularly relevant to the present work is
[14] where general prox-regular sets, likeΩ , are considered. We recall the main result
from [14] for completeness, after introducing the necessary notation.

In the following, Conv(Ω −Ω) denotes the convex envelop of (Ω −Ω) = {w−v :
w, v ∈ Ω} and U ∈ C1(Rm) is said to be λ̃-geodesically convex on a set A ⊂ R

m if
for all x, y ∈ A

U (x) ≥ U (x) + ∇U · (y − x) + λ̃

w
|y − x |2.

Theorem 4.2 ([14, Theorem 1.5]) Assume U ∈ C1(Rm) to be λ̃-geodesically convex
on Conv(Ω − Ω) for some λ̃ ∈ R. For any initial data μ0 ∈ P2(Ω) there exists a
locally absolutely continuous curve μ(t) ∈ P2(Ω), t > 0, such that μ is a gradient
flow with respect to U . Also, μ is a weak measure solution to (4.26).

Furthermore,

d

dt
U[μ(t)] ≤ −

∫
|Pw (∇U ∗ μ(t)(w))|2 dμ(t, w), (4.27)

where ∗ denotes the convolution operator.

In these specific settings, thanks (4.24) and continuity of x̄ we have

U[μ(t)] = U[ḡ#μ(t)] = U[g#ρ(t)]

since ḡ = g ◦ x̄ and ρ(t) = x̄#μ(t) due to (4.21). Therefore, Theorem 4.2 states
that the energy over the front is decreasing. We note that the flow may converge to
stationary points of (4.22) that are not minimal configurations, as observed in [28] for
even simple domains.

Clearly, without ansatz (4.21), there is no guarantee that the potential decreases
along the evolution of the algorithm. Quite the opposite, by Theorem 4.1 particles
are expected to concentrate on the Pareto front leading to an increased potential U .
Nevertheless, if Theorem 4.1 applies, there exists a time T > 0 where

E[|Xt − x̄(Wt )|2] < ε and hence Xt ≈ x̄(Wt )

making ansatz (4.21) valid. Therefore, we claim that the reduced model (4.22)
describes the dynamics for t > T . We will numerically investigate two phases of the
algorithm: the first one when concentration over the Pareto happens, and the second
when the potential U decays leading to an improved diversity of the solution.
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5 Numerical Experiments

In this section, we numerically investigate the performance of the proposed method
by testing it against several benchmark bi-objective problems. We also examine the
role of the parameters – in particular of τ which controls the step size of the adaptation
process of the weights vectors Wi

k .
For the sake of reproducible research, an implementation in MATLAB code of the

proposed algorithm is made available in the GitHub repository https://github.com/
borghig/AM-CBO .

We recall that the particles positions {Xi
k}Ni=1 are updated according to (3.2), while

the sub-problem parameters {Wi
k }Ni=1 are updated according to (3.8) in the following

experiments. For experiments with the second adaptive strategy (3.9) and validation
against tri-objective problems, we refer to [5]. The complete optimization method
is described by Algorithm 1. A remark on the algorithm computational complexity
follows.

Algorithm 1 AM-CBO
Set parameters: α, λ, σ, τ,Δt
Initialize the positions: Xi

0 ∼ ρ0 , i = 1, . . . , N

Initialize the weights vectors {Wi
0}Ni=1 uniformly in Ω

k ← 0
while stopping criterion is NOT satisfied do

Compute g(Xi
k ) , i = 1, . . . , N

for i = 1, . . . , N do
compute Yα

k (Wi
k ) according to (3.1)

sample Bi
k fromN (0, Id )

update Xi
k+1 according to (3.2)

update Wi
k+1 according to (3.8)

end for
k ← k + 1

end while
return {Xi

k }Ni=1

Remark 5.1 Even though in every iteration the objective function g is evaluated only
N times, the overall computational complexity is O(N 2) because the computation of
Y α
k (w) requires O(N ) computations, as well as the parameters update (3.8) which is

particularly costly.
One can reduce the computation complexity by considering only a random subset

I Mk ⊂ {1, . . . , N }ofM � N particleswhencomputing (3.1) and (3.8), by substituting

1

N

N∑

j=1

(·) j with
1

M

∑

j∈I Mk
(·) j ,

whenever a sum over the different particles is performed. Inspired by Monte-Carlo
particle simulations [1, 46], this mini-random batch technique allows to lower the
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complexity to O(NM). We also note that Fast Multipole Methods (FMM) [38] may
additionally be used to speed up the computation of the potential field. Then, the
computational complexity of (3.8), (3.9) is further reduced.

5.1 PerformanceMetrics

Denote by {Xi
k}Ni=1 the set of particle positions at the k-th algorithm iteration and their

empirical distribution by ρN
k ∈ P(Rd). We employ three different energies, the Riesz

s-energy (3.7), Newtonian and the Morse potentials, both to measure the diversity of
the solutions and to determine the dynamics of the weights vectors. The Newtonian
binary potential is given by

UN (z) =
{

− log |z| if m = 2

|z|2−m if m > 2
, (5.1)

while the Morse potential is given

UM (z) = e−C|z| with C > 0. (5.2)

All considered potentials describe short-range repulsion between the particles. While
the Morse potential is λ̃-geodesically convex, the Newtonian and Riesz potentials are
not. Since we will also employ the corresponding energies UR , UN , UM to define the
interaction between weights vectors, the constantC can be considered as an algorithm
parameter when the Morse repulsion is used.

To show the validity of the energy-based diversity metrics, we additionally consider
the hypervolume contribution metric S [66]. Let g∗ ∈ R

m be a maximal element with
respect to the natural partial ordering

yi ≺ g∗
j for all y ∈ F,

the hypervolumemeasure is givenby theLebesguemeasure of the set of points between
the computed solution and the maximal point g∗, that is

S[ρN
k ] =

∣
∣
∣
∣
∣

N⋃

i=1

{
y ∈ R

m | g(Xi
k) ≺ y ≺ g∗}

∣
∣
∣
∣
∣
. (5.3)

Maximizing S has been shown to lead to a diverse approximation of the Pareto front
[23].

In Sect. 4.1, the convergence of the mean-field dynamics towards the Pareto front is
shown by studying the evolution of the Generation Distance GD (4.4). In the experi-
ments,we approximate this quantity by considering a reference approximation {y j }Mj=1

of the front with M = 100 points yi ∈ F , i = 1, . . . , M for every test problem. More
details on the reference solution are given in Appendix A. For simplicity, we indicate
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the numerical approximation of the Generational Distance again by GD, which is
defined by

GD[ρN
k ] =

(
1

N

N∑

i=1

dist(g(Xi
k), FM )2

) 1
2

. (5.4)

The Inverted Generational Distance (IGD) is also considered. It consists of the
average distance between the points of the reference solution {yi }Mj=1 and the computed
front

IGD[ρN
k ] =

⎛

⎝ 1

M

M∑

j=1

dist(y j ,Gk)
2

⎞

⎠

1
2

with Gk := {g(Xi
k)}Ni=1. (5.5)

Contrary to GD, which only measures the distance from the Pareto front, IGD takes
into account the diversity of the computed solution, too. Hence, IGD is also a suitable
indicator of the overall quality of the solution.

5.2 Test Problems

Test problems with diverse Pareto front geometries are selected to show the perfor-
mance of the proposed method. In the Lamé problems [24] the parameter γ > 0
controls the front curvature: we use γ = 0.25, 1, 3 to obtain convex, linear and con-
cave fronts respectively.We also consider the DO2DK [8] problems with k = 2, s = 1
and k = 4, s = 2. Here, the Pareto fronts have more complex geometries as they are
not symmetric and, in one case, the front is discontinuous. All the above problems
are scalable to any dimension of the search space d and in the image space m. For
presentation purposes, we restrict ourselves to bi-objective optimization problems by
setting m = 2, but consider possibly large d. In the considered benchmark prob-
lems, the analytical description of the fronts is known, allowing us to obtain reference
solutions (see Appendix A). The problems definitions are recalled in Appendix B for
completeness.

In this section, we use Algorithm 1 in four different scenarios

1. No parameters interaction τ = 0;
2. Riesz potential (3.7), with τ = 10−5 ;
3. Newtonian potential (5.1), with τ = 10−3 ;
4. Morse potential (5.2), with τ = 10−1, C = 20;

The first scenario clearly corresponds to the standard M-CBO approximation, while
the others to different AM-CBO strategies. The parameter τ for each setting has
been tuned to obtain the best performance. We note how the stronger the potential
singularity is at the origin, the smaller the optimal value of τ is. To validate model
(4.26) and Theorem 4.2, we update the parameters of the scalarized sub-problems
according to (3.8). The initial weights vectors {Wi

0}Ni=1 are taken (deterministically)
uniformly distributed over Ω , while the particle positions are uniformly sampled over

123



58 Page 28 of 43 Applied Mathematics & Optimization (2023) 88 :58

H = [0, 1]d , d = 10. We employ N = 100 particles, which evolve for a maximum
of kmax = 5000 steps. The remaining parameters are set to λ = 1, σ = 4, α = 106.
This parameter choice consists of a compromise between the optimal parameters of
each problem. Anisotropic diffusion (3.4) is used.

Figure 3 shows the computed solutions, in the image-space, in the four different
scenarios. Regardless of the interaction on Ω , the particles always converge towards
EP optimal points and hence to the Pareto front. By definition of the Chebyshev
sub-problems (2.2), a uniform distribution in Ω leads to a uniform distribution of
the particles over the front only when F is linear (as in the Lamé problem γ = 1).
Indeed, Fig. 3 shows that the particles arewell distributed evenwhen there is noweights
interaction (τ = 0). If the front geometry differs from this straight segment, the optimal
parameters distribution on Ω differs from the uniform one. In particular, subsets of
the Pareto front which are almost parallel to the axis are difficult to approximate
without any interaction in the parameter space, see for instance Lamé γ = 0.25 and
the DO2DK problems in Fig. 3. When using τ �= 0, solutions improve as the particles
are more distributed over the entire front.

Table 1reports the performance metrics for all the problems. For a reference, we
include the results obtained with the well-known NSGA-II algorithm [18], using the
implementation provided in [49]. For better comparability, we use the same initial
population size N = 100 and number of iterations kmax = 5000, while the remain-
ing parameters are set to default settings (crossover probability pc = 0.9, mutation
probability pm = 0.5, mutation strength ms = 0.05). For most problems, the strat-
egy τ = 0 with no interaction in Ω allows to reach lower values of GD. This is
consistent with Theorem 4.1 and Remark 4.2, which suggested that the additional
dynamics may interfere with the CBO mechanism and, as a consequence, slow down
the convergence towards EP optimal points. If diversity metrics UR , UN , UM and S
are considered, dynamics including the interaction of parameters allow to obtain more
diverse solutions. Interestingly, using Morse binary potential in the interaction leads
to a final lower Newtonian energy in some cases. We will investigate the role of the
choice of the potential U and τ in the next section. We note that NSGA-II outperforms
the proposed algorithm in the Lamé problems in terms of IGDmetrics, whereas better
results are obtained by AM-CBO in the DO2DK benchmarks.

In Fig. 3 the IGD performance shows that letting particles interact in parameter
space improves the overall quality of the solution. While the improvement is more
substantial in problems with complex Pareto fronts (see for instance Lamé γ = 0.25,
or DO2DK k = 2), we remark that the additional mechanism allows to obtain better
solutions even if the parameter distribution is already optimal form the beginning (see
Lamé γ = 1). We conjecture that this is due to the additional stochasticity introduced
by the potential. We will also investigate this aspect in the next subsection.

Figure 4a and b show the time evolution of GD, UR , UN , UM and IGD for two of
the considered test problems. As suggested by the analysis of the mean-field model, in
particular Theorem 4.1, GD exponentially decays up to a maximum accuracy within
the first iterations of the algorithm. This is due to the CBO dynamics driving the
particles around EP optimal points. At the same time, the potential energies increase
as the particles concentrate towards the front in the image-space. If the particles are
concentrated at the local minimizer, then the resulting dynamics on the mean-field
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Fig. 3 Plots display, in gray, the particle positions in the image space after a single run for different bench-
mark problems. The reference solution is displayed in red. Four different parameters interaction strategies
are used: no interaction, Riesz, Newtonian andMorse potential. Histograms show the final distribution over
Ω (blue) and the optimal one (red) (Color figure online)
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Fig. 4 Performance metric evolution, results are averaged over 25 runs

level are described by equation (4.26). This is a gradient flow for the marginal μ.

While this is rigorously true only under Assumption 4.4, we nevertheless observe
similar phenomena also numerically in other cases, as seen in Fig. 4a and b, where
the potentials start decreasing provided that relatively low GD values are attained.

5.3 Effect of the Parameter � and Scalability

By looking at the computational results, it becomes clear that the two phases of the
algorithm, the one characterized by the CBO dynamics and the one characterized by
the gradient-flows dynamics, have different scales. Typically, the former dynamics are
much slower compared with the second one. This was consistent with assumptions to
Theorem 4.1, where τ needs to be taken of order o(

√
ε). Interestingly, we note that the

multi-swarm CBO approach suggested in [47] leads to the opposite behavior, where
weights adapt first and particles create consensus afterwards.

To experimentally investigate the importance of parameter τ , we test the algorithm
for various values of τ , keeping the remaining parameters fixed. Figure 5a and b show
the final GD and IGD metrics when different binary potentials are used during the
computation. As expected, relatively large values of τ lead to a strong interaction in
parameter space that interferes with the CBO mechanism. As a result, the GD metric
increases for large values of τ . Interestingly, the lowest GD values are not always
attained for the smallest values of τ , suggesting that the additional weights vectors
dynamics might help the CBO mechanism in optimizing the sub-problems.

The IGD metrics in Fig. 5b, show that the optimal value of τ is different for
each test case. In particular, DO2DK problems benefit from a strong interaction in
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Fig. 5 Performance metrics as a function of τ for all the problems considered. Results are averaged over
10 runs

parameter space. This might be explained by the front geometry (Fig. 3): the front
length is long and, as consequence, the particles tend to be further apart in the image
space, making the binary potential interaction weaker. Larger values of τ mitigate this
effect, leading to better algorithm performances. If the extrema of the Pareto front
are known in advance, one could address this issue by estimating the front length and
choosing the parameter τ accordingly.We also note that the proposed algorithm seems
to perform better when the Morse potential is used during the computation.

As already mentioned, the dynamics in Ω add stochasticity to the particle evo-
lution. Hence, the additional diffusive term σDi

k(X
i
k,W

i
k )B

i
k in (3.2) might not be

necessary. Yet, taking σ = 0 yields poor approximations of the Pareto front, see Fig. 6
b, suggesting that the diffusive term is still of paramount importance for the particles
exploratory behavior and their statistical independence. From Fig. 6a, it is obvious that
the optimal diffusion parameter σ is larger, the smaller τ is. In particular, if τ = 0 the
particles diverge from the EP optimal points only when σ > 10, which is consistent
with other CBO methods for single-objective optimization with anisotropic diffusion,
see for instance [2]. At the same time, for some problems, if σ is too small, larger
values of τ improve the convergence towards optimal points.

Finally, we test the algorithm performance for different dimensions d of the search
space, keeping the same parameters choice. If the same number N = 100 of particles is
used, the IGD of the computed solutions increases as the space dimension d becomes
larger, see Fig. 7 . This effect can be simply reduced by increasing the number of
particles linearly with the space dimension, see Fig. 7.
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Fig. 6 Metrics as functions of σ , for different values of τ . Morse interaction is used and results are averaged
over 5 runs

Fig. 7 IGD metrics as functions of the search space dimension d. Morse interaction is used and results are
averaged over 20 runs

6 Conclusions

In this work, we proposed an adaptive stochastic particle dynamics based on consensus
to solve multi-objective optimization problems. The method makes use of a scalariza-
tion strategy to break down the original problem into N parametrized single-objective
sub-problems and can deal with non-differentiable objective functions. The proposed
algorithm, AM-CBO, extends prior work on multi-objective consensus based opti-
mization by additional adaptive dynamics in the parameter space in order to ensure
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that the particles distribute uniformly over the Pareto front. This is achieved by exploit-
ing energy-based diversity measures. A rigorous mathematical analysis is provided to
validate this behavior however only in a particular case, where Assumptions 4.1–4.3
hold true. Under those conditions, we theoretically investigated the long-time behav-
ior of the particle dynamics under the propagation of chaos assumption and establish
convergence towards EP optimal points. The particles are capable of solving several
single-objective problems at the same time, saving also computational cost with the
respect to a naive approach. The additional dynamics on the parameter space are also
analyzed based on results on non-linear aggregation equation under Assumption 4.4.
Numerical experiments show that the proposed method is capable to solve multi-
objective problems with very different Pareto front even those violating the previous
assumptions. The algorithm scales well with the problem dimension, even when using
a relatively small number of particles. Our scaling of the dynamics in the weights leads
to a behavior, where first the particles concentrate along the front and then are redis-
tributed. In future work, also the opposite may be considered as typical for classical
multi-objective optimization methods.
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Appendix A: Construction of Reference Solutions

Even if we assume there exists an analytical representation of the Pareto front F ,
finding an M-approximation of F which also minimizes a given two-body potential
is a computationally expensive task, which is related to the already mentioned crys-
tallization problem in physics [4]. In [10], this was achieved by using mathematical
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programming techniques, while in [26] the authors proposed the following heuristic
strategy: generate N � M points on the front and iteratively delete the point subject
to the highest potential energy until only M are left. In this appendix, we propose a
different heuristic strategywhich not only generates low-energy approximations of the
front, but also provides more insight into the choice of the proposed update strategy
(3.8).

In the following, we assume F to be a (m − 1)-dimensional manifold with known
chart ḡ ∈ C2(V , F)

F = {ḡ(z) | z ∈ V },

where V = [0, 1]m−1 or V = Ω . As before, let T (y, F) be the tangent cone at y ∈ F
to F . Let {Gi

t }Mi=1 ⊂ F describe the positions at time t ≥ 0 of M particles interacting
over the front under a potential U , that is

d

dt
Gi

t = PT (Gi
t ,F)

⎛

⎝− 1

M

M∑

j=1

∇U (Gi
t − G j

t )

⎞

⎠ , (A.1)

with some given initial conditions Gi
0 = ḡ(Zi

0), for all i = 1, . . . , M . Our heuristic
strategy is based on the conjecture that, as t → ∞, the systemwill eventually converge
towards a low-energy configuration. Rather then solving (A.1) in R

m where F is
embedded, we consider the equivalent system for the coordinates {Zi

t }Mi=1,

d

dt
Zi
t =

(
Dḡ(Zi

t )
)+

PT (Gi
t ,F)

⎛

⎝− 1

M

M∑

j=1

∇U (Gi
t − G j

t )

⎞

⎠ , (A.2)

where Gi
t = ḡ(Zi

t ) and (·)+ is the pseudo-inverse of (·). Equivalence between the
systems is a consequence of the chain rule, see [39, Chapter 5]. We note that if Gi

t
belongs to the extrema of F (or its “contour” when m > 2), Dḡ(Zi

t ) might not be
well-defined. In this case, though, the projection is the null map so we set dZi

t /dt = 0.
System (A.2) can then be solved numerically if ḡ is explicitly known. The reference,
low-energy, solution to (1.1) will then be given by the final configuration {Gi

T }Mi=1
reached at a certain time horizon T > 0.

We note that dynamics (3.10) introduced in the parameters space Ω can be seen
as an approximation to (A.2) when m = 2. Indeed, let V = Ω and the chart ḡ be the
relation (given by Theorem 2.1) between parameters and points on F

ḡ(w) = argmin
x∈Rd

G(x, w).

As ḡ and T (y, F) in (A.2) are unknown during the optimization process, one could
approximate them by assuming linearity on F . In particular, if no further information
on the front geometry is available, let us take F = Ω as in Assumption 4.4. This leads

123



58 Page 36 of 43 Applied Mathematics & Optimization (2023) 88 :58

Fig. 8 Final configuration of M = 20 particles evolved according to (A.2) (exact dynamics) and (A.3)
(approximated dynamics) under Riesz binary potential (3.7). Arrows show the total potential forces the
particles are subject to. Two different front shapes are considered. The particle systems are solved with an
explicit Euler scheme, Δt = 10−8, T = 0.01. Histograms show the final distribution over the coordinate
space V = Ω

to

ḡ(w) ≈ Aw, Dḡ(w) ≈ A where A =
(
0 1
1 0

)

,

as before in Lemma 4.3, and

PT (ḡ(w),F) ≈ PT (Aw,Ω) =
(

1 −1
−1 1

)

=: B

if w > 0 component-wise, and PT (Aw,Ω) = 0 otherwise. Starting from (A.2), it
follows

d

dt
Wi

t =
(
Dḡ(Wi

t )
)+

PT (Gi
t ,F)

⎛

⎝− 1

M

M∑

j=1

∇U (Gi
t − G j

t )

⎞

⎠

≈ A+B

⎛

⎝− 1

M

M∑

j=1

∇U (Gi
t − G j

t )

⎞

⎠ .

Now, since A+ = A and AB = −B we obtain

d

dt
Wi

t ≈ −PT (w,Ω)

⎛

⎝− 1

M

M∑

j=1

∇U (Gi
t − G j

t )

⎞

⎠ (A.3)

which corresponds to the dynamics proposed in Sect. 3, provided Gi
t ≈ g(Xi

t ).
To conclude, we remark that the above approximation has a mild impact on the

final distribution over the front, even when F differs substantially from Ω , see Fig. 8.
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Appendix B: ProblemDefinition

Wereport here the definition of the benchmark problems, togetherwith the penalization
strategy and knownparametrization of F . TheLamé [24] and theDO2DK [8] problems
are originally formulated as constrained multi-objective optimization problems where
the feasible domain is given by H = [0, 1]d . Moreover, the set of EP optimal points
corresponds to the edge [0, 1] × {0}d−1. Adding a projection step to H has a relevant
impact on the algorithm dynamics, as any point belonging to the cone R × R

d−1
≤0 is

projected to an EP optimal point. Therefore, we make use of an exact penalization
strategy to ensure the particles remain in the feasible region adding a �1-penalty term
of the form βdist(x, H), β > 0, to the original objective functions.

Let x ∈ R
d , x = (x1, . . . , xd) for d ≥ 1, the objective functions are given by

– Lamé [24] with γ ∈ R>0,

g1(x) =
∣
∣
∣cos

(π

2
x1
)∣∣
∣
2
γ

(1 + r(x)) + π

γ
dist(x, H)

g2(x) =
∣
∣
∣sin

(π

2
x1
)
cos

(π

2
x2
)∣
∣
∣
2
γ

(1 + r(x)) + π

γ
dist(x, H)

(B.1)

with r(x) =
√∑d

i=2 x
2
i .

– DO2DK [8] with k ∈ N, s ∈ R>0

g1(x) = sin

(
π

2
x1 +

(

1 + 2s − 1

2s+2

)

π + 1

)

ra(x)rb(x) + 10dist(x, H)

g2(x) =
(
cos

(π

2
x1 + π

)
+ 1

)
ra(x)rb(x) + 10dist(x, H)

(B.2)

with

ra(x) = 1 + 9

d − 1

d∑

i=2

xi

rb(x) = 5 + 10

(

x1 − 1

2

)2

+ 2
s
2 cos(2kπx1)

k
.

The parametrization used to construct reference solutions is given by

h : [0, 1] → F , h(r) = g ((r , 0, . . . , 0)) ∈ F .

Appendix C: Proof of Lemma 4.2

Proof (Lemma 4.2) The proof closely follows the one of [34, Proposition 2] and
we recall here the main steps for completeness. Given that Im(φr ) ⊂ [0, 1] and
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supp(φr ) = B∞
r (x∗), it holds

P(Xt ∈ B∞
r (x∗)) ≥ E[φr (Xt )].

By applying Itô’s fomula as in the proof of Proposition 4.1, we study the evolution of
E[φr (Xt )]

d

dt
E[φr (Xt )] =

d∑

k=1

E
[
λ(yα(ρ(t),Wt ) − Xt )k ∂xkφr (Xt )

]

+
d∑

k=1

E

[
σ 2

2
(yα(ρ(t),Wt ) − Xt )

2
k ∂2xk xkφr (Xt )

]

=:
d∑

k=1

E[T1k(Xt ,Wt )] +
d∑

k=1

E[T2k(Xt ,Wt )] (C.1)

We will show in the following that

E[T1k(Xt ,Wt )] + E[T2k(Xt ,Wt )] ≥ −q

d
E[φ(Xt )]

for all k = 1, . . . , d.
Let Ωr := {Xt ∈ B∞

r (x∗)}, we have E[Tik(Xt ,Wt ) | Ωc
r ] = 0 for i = 1, 2 as

supp(φr ) = B∞
r (x∗). We introduce now the sets

K1k := {|(Xt − x∗)k | >
√
cr
}

(C.2)

and

K2k :=
{

− λ(Xt − yα(ρ(t),Wt ))k(Xt − x∗)k
(
r2 − (Xt − x∗)2k

)2

> c̃r
σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k(Xt − x∗)2k

}

, (C.3)

where c̃ = 2c− 1 ∈ (0, 1). For every k = 1, . . . , d, we now decompose Ωr into three
different sets

Ωr = (Kc
1k ∩ Ωr ) ∪ (K1k ∩ Kc

2k ∩ Ωr ) ∪ (K1k ∩ K2k ∩ Ωr ). (C.4)

Subset Kc
1k ∩ Ωr : We have

E[T1k(Xt ,Wt ) | Kc
1k ∩ Ωr ]

= E

[

2r2λ(Xt − yα(ρ(t),Wt ))k
(Xt − x∗)k

(
r2 − (Xt − x∗)2k

)2 φr (Xt )

∣
∣
∣ Kc

1k ∩ Ωr

]
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≥ E

[

−2r2λ
|(Xt − yα(ρ(t),Wt ))k ||(Xt − x∗)k |

(
r2 − (Xt − x∗)2k

)2 φr (Xt )

∣
∣
∣ Kc

1k ∩ Ωr

]

≥ −2λ(
√
cr + B)

√
c

(1 − c)2r
E
[
φr (Xt )

∣
∣ Kc

1k ∩ Ωr
]

=: −q1E
[
φr (Xt )

∣
∣ Kc

1k ∩ Ωr
]

,

where we used that in Kc
1k it holds

|(Xt − yα(ρ(t),Wt ))k | ≤ |(Xt − x∗)k | + sup
w∈Ω

|(x∗ − yα(ρ(t), w))k | < B.

We now turn to T2k and see that it holds

E[T2k(Xt ,Wt ) | Kc
1k ∩ Ωr ]

= E

[
σ 2r2(Xt − yα(ρ(t),Wt ))

2
k ·

· 2
(
2(Xt − x∗)2k − r2

)
(Xt − x∗)2k − (

r2 − (Xt − x∗)2k
)2

(r2 − (Xt − x∗)2k)4
φr (Xt )

∣
∣
∣ Kc

1k ∩ Ωr

]

≥ −2σ 2(cr2 + B2)(2c + 1)

(1 − c)4r2
E
[
φr (Xt )

∣
∣ Kc

1k ∩ Ωr
]

=: −q2E
[
φr (Xt )

∣
∣ Kc

1k ∩ Ωr
]

,

where we used again (Xt − yα(ρ(t),Wt ))
2
k ≤ (

√
cr + B)2 ≤ 2(cr2 + B2) in Kc

1k .
Subset K1k ∩ Kc

2k ∩ Ωr : Here, we have |(Xt − x∗)k | >
√
cr . We note that

T1k(Xt ,Wt ) + T2k(Xt ,Wt ) ≥ 0 whenever

(
− λ(Xt − yα(ρ(t),Wt ))k(Xt − x∗)k + σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k

)
(r2 − (Xt − x∗)2k)2

≤ σ 2(Xt − yα(ρ(t),Wt ))
2
k

(
2(Xt − x∗)2k − r2

)
(Xt − x∗)2k . (C.5)

If we consider the set Kc
2k , the first term on the left-hand side above can be bounded

as

− λ(Xt − yα(ρ(t),Wt ))k(Xt − x∗)k(r2 − (Xt − x∗)2k)2

≤ c̃r2
σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k(Xt − x∗)2k

= (2c − 1)r2
σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k(Xt − x∗)2k

≤
(
2(Xt − x∗)2k − r2

) σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k(Xt − x∗)2k ,

where we used c̃ = 2c−1 and, in the last inequality, that we are considering events in
K1k . To bound the second term in (C.5) we use that (1 − c)2 ≤ (2c − 1)c and, again,
that we are taking events in K1k :
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σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k(r

2 − (Xt − x∗)2k)2

≤ σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k(1 − c)2r4

≤ σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k(2c − 1)r2cr2

≤ σ 2

2
(Xt − yα(ρ(t),Wt ))

2
k

(
2(Xt − x∗)2k − r2

)
(Xt − x∗)2k .

Therefore, (C.5) holds in K1k ∩ Kc
2k ∩ Ωr and we have

E
[
T1k(Xt ,Wt ) + T2k(Xt ,Wt ) | K1k ∩ Kc

2k ∩ Ωr
] ≥ 0.

Subset K1k ∩ K2k ∩Ωr : Whenever (Xt )k = (yα(ρ(t),Wt ))k , T1k = 0. Otherwise,
since σ > 0 and we consider events in K2k , we have

(Xt − yα(ρ(t),Wt ))k(Xt − x∗)k
(r2 − (Xt − x∗)2k)2

≥ −|(Xt − yα(ρ(t),Wt ))k ||(Xt − x∗)k |
(r2 − (Xt − x∗)2k)2

>
2λ(Xt − yα(ρ(t),Wt ))k(Xt − x∗)k

c̃r2σ 2|(Xt − yα(ρ(t),Wt ))k ||(Xt − x∗)k |
≥ − 2λ

c̃r2σ 2 .

As a consequence, it holds

E[T1k(Xt ,Wt ) | K1k ∩ K2k ∩ Ωr ]
= E

[
2r2λ(Xt − yα(ρ(t),Wt ))k

(Xt − x∗)
(r2 − (Xt − x∗)2k)2

φr (Xt )

| K1k ∩ K2k ∩ Ωr

]

≥ − 4λ2

c̃σ 2E [φr (Xt ) | K1k ∩ K2k ∩ Ωr ] =: −q3E [φr (Xt ) | K1k ∩ K2k ∩ Ωr ] .

By definition of K1k and assumption 2(2c − 1)c ≥ (1 − c)2 we also have

E[T2k(Xt ,Wt ) | K1k ∩ K2k ∩ Ωr ] ≥ 0.

Conclusion of the proof: We now plug the computed estimates in (C.1) and obtain

d

dt
E[φr (Xt )] =

d∑

k=1

E[T1k(Xt ,Wt )] +
d∑

k=1

E[T2k(Xt ,Wt )]

≥ −2d max{q1 + q2, q3}E [φr (Xt )] =: −qE [φr (Xt )] . (C.6)

The desired lower bound is then obtained after applying Grönwall’s inequality. ��
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