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Abstract. Gas turbine (GT) trip is one of the most disrupting events that affect GT operation, 

since its occurrence causes a reduction of equipment remaining useful life as well as revenue 

loss because of business interruption. Thus, early detection of incipient symptoms of GT trip is 

crucial to ensure efficient operation and lower operation and maintenance costs. This paper 

applies a data-driven methodology that employs a Long Short-Term Memory (LSTM) neural 

network and a clustering technique to identify the time point at which trip symptoms are 

triggered. The same methodology also partitions trips into homogeneous clusters according to 

their most likely trigger position. The methodology is applied to two real-world case studies 

composed of a collection of trips, of which the causes are different, taken from various fleets of 

industrial GTs. Data collected from twenty sensors during three days of operation before trip 

occurrence are analyzed. For each trigger scenario, this paper investigates different lengths of 

the training and testing time window (namely “trigger time window”), by considering up to 24, 

18, 12 or 6 hours before and after the considered trigger position. The results demonstrate that 

longer time windows allow an improvement of the predictive capability.  

1. Introduction 

In the current competitive market, monitoring and diagnostics of gas turbines (GTs) require the 

implementation of a robust, efficient, and flexible predictive maintenance plan to ensure high 

reliability and productivity [1 - 2]. To this purpose, machine learning approaches can exploit the data 

of GT history to detect deviations of normal behavior and changes in GT health state before they 

impact customer operation and profitability [2]. However, the capability of the diagnostic process 

depends on data reliability, which can be affected by both feature and label noise. To tackle these 

issues, data should be pre-processed. Several tools are available in the literature, as for instance [3, 4] 

for feature noise and [5, 6] for label noise. 

In the field of GT monitoring and diagnostics, GT trip is of great concern for both manufactures 

and users. In fact, trip is an unscheduled operational event during which a GT abnormally shuts down 

[7], thus leading to a direct impact on GT lifespan and revenue. In addition, since GT trip may be 

triggered by different causes, e.g., turbine vibrations and overspeed, increase in the gradients of 

exhaust gases or problems in fuel spray nozzles, its occurrence may not be infrequent. Therefore, 

predicting GT trip during its incipient phase would allow saving costs and improving GT reliability.  

In the literature, very few studies dealt with GT trip prediction. The study [8] presented a tool for 

the analysis of the causes of GT trips. The study [9] aimed at predicting GT trips produced by a 

specific cause (hydraulic valve failure) by means of a physics-based model.  

The authors of the current paper also tackled the challenge of predicting GT trip by exploiting 

operating data gathered from multiple GT assets and by applying machine learning (ML) techniques. 
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The study [10] presented a procedure for handling big data and a structured methodology aimed at 

partitioning GT transients. Subsequently, based on the transients classified in [10], the study [11] 

proposed a procedure for target data selection by identifying two datasets of transients, gathered from 

fleets of GTs installed in different sites, and developed a feature engineering methodology to generate 

and select the most suitable features to fit an ML model aimed at predicting GT trip. The Random 

Forest (RF) model developed in [12] allowed predicting GT trip with an accuracy in the range  

75% - 85%. The paper [12] also reported a discussion about feature importance, by demonstrating that 

features related to compressor efficiency and specific fuel consumption likely embed most of the 

pieces of information useful to discriminate GT trip from normal operation. The study [13] 

investigated the fusion of five data-driven base models (k-Nearest Neighbors, Support Vector 

Machine, Naïve Bayes, Decision Trees, and Long Short-Term Memory neural networks) by means of 

voting and stacking, in order to increase base model accuracy and improve prediction robustness.  

The results demonstrated that the stacked model provided higher accuracy than base models and also 

outperformed voting. The study [14] applied a systematic statistical analysis to identify the most 

important variables, followed by the application of a novel machine learning technique known as 

temporal decision tree. The learned models were used to extract statistical rules for predicting trip. 

Finally, in the study [15], the authors developed a data-driven methodology aimed at disclosing the 

onset of trip symptoms. A Long Short-Term Memory (LSTM) neural network was employed as the 

classification model. The methodology provided the most likely trigger position for four clusters of 

trips within the two days before trip occurrence with a confidence in the range 66% - 97%.  

The outcome of the study [15] is the starting point of the analyses conducted in the current paper.  

One of the most consolidated outcomes of the previous studies conducted by the authors of the 

current paper is that, given its inherent complexity and randomness of occurrence, the goal of GT trip 

prediction can be pursued by employing ML data-driven techniques. For this reason, a brief survey is 

reported below about the potential of applying neural network models to GT health monitoring.  

In particular, Long Short-Term Memory (LSTM) neural networks represent a powerful machine 

learning tool potentially suitable to GT diagnostics and prognostics, since they can exploit their 

inherent ability to encode temporal information.  

Bai et al. [16] used an ensemble of LSTM regressors for detecting faults in marine GTs and 

compared LSTM network to other methods including support vector regression, single-layer 

feedforward neural network, extreme learning machine and Elman recurrent neural network by 

demonstrating the superiorities of LSTM network in fault detection. Thanks to the capability of 

learning long-term patterns in time-dependent data, LSTMs proved high reliability in predicting 

degradation of GT assets and estimating their remaining useful life. The study [17] demonstrated that 

LSTMs could predict the declining trend of performance of heavy-duty GT assets with maximum 

prediction error lower than 0.2%. Xiang et al. [18] employed LSTMs to construct health indicators for 

remaining useful life prediction of aircraft engines. The studies [19 - 22] documented other specific 

applications of LSTM to remaining useful life prediction of aircraft turbofan engines.  

As anticipated, the current paper stems from the study [15] in order to further investigate the time 

evolution of trip symptoms and identify the most likely time window within which the symptoms of an 

incoming trip arise, thus potentially allowing early actions for trip prevention. In this paper, symptoms 

are intended as perturbances in the data that cannot be detected by means of classical approaches (e.g., 

physics-based thermodynamic models or frequency-domain vibration analysis) and thus require a 

data-driven approach to grasp signs embedded in the measured values.  

More in detail, the current paper applies the data-driven methodology presented in [15], which is 

composed of two steps. The first step makes use of a data labeling approach to model a variation in 

GT health state due to the trigger of trip symptoms; multiple scenarios characterized by different 

trigger positions are investigated. An LSTM is employed as the predictive model to estimate the 

trigger time point. The second step of the methodology uses the responses of the trained models to 

isolate the most likely trigger position and cluster trips into homogeneous groups that reflect different 

trip causes. To validate the analyses carried out in this paper, two large field datasets comprising trip 

observations composed of three days before trip occurrence are considered. The main novel 

contribution of this paper is represented by the systematic analysis of different lengths of the training 
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and testing time window (namely “trigger time window”). First, the data-driven models developed in 

[15] by employing the longest available time window for each trigger scenario (up to 24 hours) are 

tested on unseen trips by reducing the trigger time window up to 1 hour in order to search for the most 

likely time window within which symptoms appear. Second, for each trigger scenario, the training of 

the data-driven models is also conducted by considering different trigger time windows, i.e., 24, 18, 

12, 6 or 1 hour before and after the considered trigger position, while the test is always conducted by 

considering the longest available time window (up to 24 hours), in order to investigate the influence of 

the amount of training information on the prediction capability of the data-driven models.  

2. Methodology 

This section summarizes the procedure used for identifying the time point of the onset of GT trip 

symptoms developed in [15]. First, the rationale of the methodology is presented. Then, data labeling 

subsection describes the approach employed to model the onset of trip symptoms. Finally, observation 

partition subsection summarizes the identification of the most likely trigger time point and the 

partition of trips into homogeneous clusters according to the time point at which the symptoms arise. 

2.1. Overview 

The proposed data-driven methodology shown in Figure 1 aims at modeling a deviation in GT 

performance by means of a step variation in the label of available data and forces the predictive  

data-driven model (in this paper, LSTM) to learn hidden patterns and rules embedded in the data.  

The time point of the onset of GT trip symptoms is usually unknown. Moreover, it can be 

reasonably expected that the considered trips are not homogeneous since trip causes can be disparate, 

e.g., failed sensors, compressor failure or combustion issues, and the time point of the onset of GT trip 

symptoms varies. For this reason, different trigger scenarios are modelled to partition GT trip 

observations into homogeneous clusters according to the respective most likely time point of 

occurrence of trip onset.  

2.2. Data labeling 

To identify the onset of trip symptoms, the proposed approach makes use of a parameter T (trigger) 

that quantifies the time before trip occurrence. For each trigger position, the approach makes use of 

two time windows of the same length, where symptoms are supposed to be absent before the trigger 

and present after the trigger. Thus, the data sequence before the time point T is labeled as “No trip” 

and is supposed to be representative of normal operation, while the data sequence after the time point 

T is labeled as “Trip” to model a deviation in GT performance and always starts right after the No trip 

sequence, as shown on the left hand-side of Figure 1. The length of the two time windows (expressed 

in hours) is denoted by L in this paper.  

As discussed in the Case Study section, 72 hours of operation (i.e., three days) are taken into 

account for each trip observation, and the trigger T varies from 48 hours through 1 hour before trip 

occurrence, thus modeling NT = 48 trigger scenarios in total in this paper. The first (NT – Lmax + 1) 

scenarios have L = Lmax. Then, the trigger moves forward timewise one hour at a time by decreasing 

the value of L in such a manner that the trigger is closer to trip occurrence, and L is equal to the 

number of remaining hours between the trigger and the time point at which trip occurs. Unlike the 

analyses made in [15], this paper investigates different values of Lmax in order to provide a further 

insight about the detection of GT trip symptoms. 

2.3. Training and testing 

In the training phase, one classification model is trained for each scenario, i.e., 48 models are 

developed in total, by assuming that the same trigger position fits all trip observations. In this paper, 

the training phase is conducted by considering different values of Lmax. 

In the test phase, each trained model is tested on unseen trips in all the considered training 

scenarios. Therefore, for a given model, the trigger point moves from T = 48 through T = 1 one hour at 

a time, regardless of the trigger position used to train model, to search for the most likely trigger time 

point. For each trip observation, 48 predictions in total (equal to the total number of trained models) 
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are performed for each trigger position. In such a manner, the responses of different models are 

exploited to identify the most likely trigger position for any given observation.  

2.4. Observation partition 

To identify the most likely trigger time point of a given trip and cluster multiple trips into 

homogeneous groups, the observation partition methodology, sketched on the right hand-side of 

Figure 1, goes through the following steps:  

• The quantity Ipp is calculated to quantify the confidence with which a trained model predicts 

the No trip label before the trigger and the Trip label after the trigger for a given trigger 

scenario and trip observation. Therefore, the higher the confidence of the predictions before 

and after the trigger, the higher Ipp (the maximum value is 1); otherwise, if at least one of the 

predictions before or after the trigger is not correct, the value of Ipp is set to 0.  

• For each trip observation separately, the values of Ipp feed the k-medoids technique that 

groups trained models into three homogeneous subsets. Each subset contains those models 

that perform similarly by varying the trigger position. The least informative subset (i.e., the 

one that contains those models that do not provide valuable information on the detection of the 

most likely trigger position for the trip under analysis) is discarded.  

• For each of the two remaining subsets, a change-point detection technique [23] isolates the 

range of consecutive trigger positions that has the highest mean and the barycenter of this 

range is the most likely trigger position T* according to the models included in the considered 

subset.  

• Based on the identified trigger position T*, the observation under analysis is assigned to the 

cth cluster (four clusters in total), according to the criterion reported in Eq. (1): 

 

c = 1  T*  [48, 36[ 

(1) 
c = 2  T*  [36, 24[ 

c = 3  T*  [24, 12[ 

c = 4  T*  [12, 01] 

 

 

Figure 1. Methodology. 
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• Since two different cluster assignments may be possible, the best choice is the one that 

provides the highest value of the silhouette metric and the most informative subset of models 

used to predict the trip under analysis is obtained.  

• To characterize the behavior of a given trip over multiple trigger positions, the mean of the Ipp 

values provided by the models included in the most informative subset of that trip is 

calculated. 

2.5. Long short-term memory network 

The data-driven model employed in the proposed methodology is an LSTM neural network [24], i.e.,  

a recurrent neural network (RNN) capable of encoding temporal information and learning long-term 

dependencies embedded in multivariate timeseries data.  

Based on the analyses carried out in [15], the neural network employed in this paper is composed 

of i) a sequence input layer, ii) three LSTM layers, iii) a fully connect layer, iv) a softmax layer and v) 

a classification output layer. To avoid overfitting, a dropout layer is inserted after each LSTM layer 

[25]. The number of hidden units is set equal to 200, 150, and 125 for the three LSTM layers, 

respectively. The dropout probability is set equal to 0.5 according to [25]. The LSTM is trained by 

using the ADAM stochastic optimization method and all the training parameters are in agreement with 

[26]. The training process stops if the maximum number of epochs is reached or the loss function falls 

below a given threshold, which in this paper is set equal to 10−3. 

3. Case study 

3.1. Data description 

Two real-world case studies, namely case study A and case study B, are considered in this paper. 

Dataset A is composed of 44 trip observations collected from four GTs and dataset B includes 39 trip 

observations in total from six GTs. Therefore, the two datasets have a comparable size. It is worth 

highlighting that both datasets contain some trip observations that occurred at the same time in 

different units of the same power plant. 

For each observation, 20 measured variables, namely compressor outlet temperature, compressor 

outlet pressure, fuel flow rate, power output, and sixteen turbine outlet temperatures, are monitored 

with frequency equal to one minute during three days before trip occurrence and are employed in this 

paper to detect the trigger of trip symptoms. 

3.2. Clusters 

Based on the methodology summarized in Section 2, the paper [15] identified four different clusters of 

trips for both case study A and case study B. Table 1 reports the number of trips contained in each 

cluster for both case studies. It can be noted that trips of case study A are split almost uniformly 

among the four clusters; instead, cluster 3 of case study B contains more than half trip observations.  

In both case studies, cluster 3 and 4 contain the highest number of observations. This means that trip 

symptoms tend to more frequently arise closer to trip occurrence, thus challenging their detection and 

prediction.  

 

Table 1. Cluster sizes [15]. 

Cluster Cluster size 

 Case study A Case study B 

1 8 4 

2 9 4 

3 13 21 

4 14 10 

Total 44 39 
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3.3. Analyses 

With respect to [15], in this paper two brand-new analyses, namely “Analysis #1” and “Analysis #2”, 

which are summarized in Table 2, are carried out by varying the dimension of the trigger time 

window: the former considers different time windows during the test phase of the models developed in 

[15], while the latter consists of training new models by reducing the maximum length Lmax of the 

trigger time window by keeping the same test configuration as in [15]. Therefore, Analysis #1 exploits 

the maximum amount of information during training, while it is progressively decreased in the test 

phase. Instead, for each trigger position, Analysis #2 trains models with different amounts of 

information while each model is subsequently tested by always exploiting the maximum amount of 

information. 

More in detail, the first analysis considers the models developed in [15] and trained by considering 

a time window of length L = Lmax = 24 hours before and after the trigger for scenarios from 1 through 

25 and L = T, i.e., the number of remaining hours between the trigger and the time point at which trip 

occurs, from scenarios 26 through 48. For each trigger scenario, the models developed in [15] exploit 

the longest time window before and after the considered trigger time point. These models are then 

tested on new trips by progressively reducing the length of the time window before and after a  

given trigger position, from Lmax to 1 for trigger positions T = 48 through T = 24 and from T to 1  

when T  23.  

The second analysis is challenged to detect the onset of trip symptoms by reducing the length of the 

trigger time window when training the data-driven models. During the training phase, different values 

of Lmax are considered, i.e., 24 (which is the case reported in [15] and considered in Analysis #1), 18, 

12, 6 and 1. In fact, the more Lmax decreases, the farther the sequence representative of Trip condition 

to trip occurrence and the lower the number of models trained by also including the hour right before 

trip occurrence. The test is conducted as in [15] by considering for each training scenario a maximum 

time window of 24 hours when the first 25 scenarios are simulated and equal to T for the remaining 

scenarios, i.e., by exploiting the maximum amount of information during test.  

These new analyses are carried out to evaluate the influence of trigger window length on the 

reliability of the detection of trip symptoms. As can be grasped from Table 2, the training and test 

phase switch in the two Analyses. In fact, the test phase of Analysis #2 is performed in the same way 

as the training phase of Analysis #1, while some of the scenarios considered during the test phase of 

Analysis #1 are employed to train the models of Analysis #2. Therefore, the two analyses are 

complementary and allow to check whether most of information on GT trip symptoms is included in 

the day of trip occurrence.  

4. Results and discussion 
This Section presents and discusses the results for the two analyses described in Section 3. For both 
case studies, the results are presented in terms of Ipp by partitioning the available trip into the four 
clusters identified in [15]. The prototype of each cluster is calculated as the average of Ipp values 
among the trips included in a given cluster. In [15], a most likely trigger time point for each cluster 
was identified as the trigger position that provided the maximum of the prototype of that cluster (see 
Table 3). The values in Table 3 refer to the case Lmax = 24. 
 

Table 2. Analyses conducted in this paper. 

  Analysis #1 Analysis #2 

 Trigger position, T Time window length, L Time window length, L 

Training 
T = {48, 47, …, Lmax} L = Lmax = 24 L = Lmax = {24, 18, 12, 6, 1} 

T = {Lmax−1, …, 1} L = T L = T 

Test 
T = {48, 47, …, Lmax} L = {Lmax, Lmax−1, …, 1} L = Lmax = 24 

T = {Lmax−1, …, 1} L = {T, T−1, …, 1} L = T 
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Table 3. Most likely trigger time point of each cluster [15]. 

Cluster Most likely trigger position 

 Case study A Case study B 

1 42 42 

2 31 32 

3 16 14 

4 7 6 

4.1. First analysis 

Figures 2 and 3 report the Ipp values of the prototype of four clusters of trips for 48 different trigger 

positions as a function of the length L of the trigger time window for case study A and B, respectively.  

In both case studies, regardless of the considered cluster, for a given trigger position T, the values 

of Ipp decrease by decreasing the length L of the trigger time window. The variation of Ipp is more 

evident if the considered trigger position T is equal or close to its most likely value (see Table 3); 

otherwise, the length L of the trigger time window is not influential on Ipp. This reasonably occurs 

since Ipp is sensitive to a change in the performance of the GT, while its value tends to 0 before the 

occurrence of this change or once this change is occurred. In fact, Ipp is generally lower than 0.3 for 

cluster 1 if T is lower than 24 or for clusters 3 and 4 if T is higher than 24. 

It can be noted that, if the most likely trigger time point is considered, the decrease is more rapid 

passing from cluster 1 to cluster 4. In fact, for cluster 1, the value of Ipp remains as high as 

approximately 0.8 even if the length L is reduced from 24 to 19 or 13 for case study A or B, 

respectively; then the value of Ipp gradually decreases up to approximately 0.1 if L = 1. This means 

that symptoms of trips included in cluster 1 are likely to appear even 23 and 30 hours before trip 

occurrence for case study A and B, respectively. Instead, if clusters 3 and 4 are considered, the 

decrease of Ipp (at T equal to 16 or 7 for case study A and T equal to 14 and 6 for case study B) is 

higher than 0.3 and 0.2 for case study A and B, respectively, just by reducing the length of the trigger 

time window of one hour with respect to the maximum available value, which is equal to T. 

In addition, Figures 2 and 3 point out that symptoms of trips of clusters 1 and 2 appear earlier and 

more gradually than those of clusters 3 and 4. In fact, the highest values of Ipp cover a time span that 

is larger than that of clusters 3 and 4 (multiple pairs of T and L provide an high value of Ipp), where 

Ipp achieves values close to or higher than 0.8 only if the length of the trigger time window is equal to 

its maximum value (L = T), i.e., it includes the hour of operation right before trip occurrence. For trips 

of clusters 3 and 4, symptoms arise abruptly when approaching the time point of trip occurrence.  

4.2. Second analysis 

Figures 4 and 5 show the prototypes of the four clusters by varying the amount of information used to 

train the predictive data-driven models. The black curves refer to the longest time windows (L = 24 for 

T > 24 scenarios and L = T for T  24) during training and were already reported in [15]. The main 

general outcome of this analysis is that, regardless of the cluster and the case study, the confidence 

with which the most likely trigger time point is provided for a given cluster reduces by reducing Lmax. 

The overall behavior of the curves obtained with Lmax lower than 24 reflects that of the reference 

curves (Lmax = 24). However, in both case studies, the decrease of Ipp is higher than 0.2 just by 

reducing the maximum length of the trigger time window to 18. Moreover, if Lmax is lower than 6 the 

values of Ipp are quite independent of the considered trigger position, and lower than 0.4 regardless of 

the considered trigger position.  

By decreasing the value of Lmax from 24 to 1 implies that i) the time window after the trigger of the 

first 24 scenarios ends farther from trip occurrence and ii) a smaller number of trained models exploits 

the data until the time point of trip occurrence. Since the decrease with respect to the reference case is 

significant, the results convey that most of valuable information to capture the signs of trip occurrence 

is included in the data points collected right before trip occurrence.  
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Figure 2. Analysis #1 for case study A. Colors reflect the value of Ipp. 

 

 

Figure 3. Analysis #1 for case study B. Colors reflect the value of Ipp. 
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Figure 4. Analysis #2 for case study A: Ipp trends for different values of Lmax.  

 

 

 

Figure 5. Analysis #2 for case study B: Ipp trends for different values of Lmax. 
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5. Conclusions 

This paper applied a data-driven methodology developed by the authors in a previous study by 

performing a systematic analysis of the influence of the trigger time window on the identification of 

the onset of gas turbine trip symptoms. 

The data-driven methodology considered different trigger scenarios, from 48 hours to just 1 hour 

before trip occurrence, and two consecutive time windows of the same length, where the symptoms 

are supposed to be absent (before the trigger) and present (after the trigger). For each trigger scenario, 

a Long Short-Term Memory neural network was trained and tested on new trips to provide their most 

likely trigger time point.  

The paper presented two different analyses, namely Analysis #1 and Analysis #2: the former 

considered the maximum amount of data during training and different trigger time windows were 

investigated during testing by progressively reducing the length of the time windows within which 

searching for the symptoms of gas turbine trip; the latter investigated different time windows during 

training for each trigger scenarios and then tested the models by always considering the longest 

available time window. 

The results demonstrated that GT trip symptoms mainly arise on the day of trip occurrence, thus 

implying that the detection of trip symptoms is significantly influenced by the length of the two time 

windows before and after the trigger time point. Analysis #1 demonstrated that the confidence on the 

most likely trigger time point decreases from at least 0.8 to approximately 0.1 if the time window is 

reduced up to 1 hour. Analysis #2 demonstrated that the longest time windows have to be exploited 

during training in order to take into account the data that are closest to trip occurrence and contain 

most of trip symptoms. In fact, a reduction of the training window from 24 hours to 18 hours 

decreased the confidence on the most likely trigger time point by up to 0.3; this effect is magnified if 

the length of the training time window is further reduced. Therefore, the results of Analysis #1 and 

Analysis #2 validate each other. However, it has to be highlighted that performing Analysis #2 is more 

computationally expensive.  
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Nomenclature 

c cluster label 

Ipp prediction confidence 

L time window length 

NT number of trigger scenarios 

T trigger 

T* most likely trigger position 
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