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The world’s extant building stock accounts for a significant portion of 
worldwide energy consumption and greenhouse gas emissions. In 2020, 
buildings and construction accounted for 36% of global final energy con-
sumption and 37% of energy-related CO2 emissions. The European Union 
(EU) estimates that up to 75% of the EU’s existing building stock has 
poor energy performance, 85–95% of which will still be in use in 2050.

To meet the goals of the Paris Agreement on Climate Change will require 
a transformation of construction processes and deep renovation of the 
extant building stock. The World Economic Forum, World Business Council 
for Sustainable Development, and the European Commission are amongst 
the many global organisations that recognise the important role ICTs can 
play in construction, renovation, and maintenance, as well as supporting the 
incentivisation and financing of deep renovation. Technologies such as sen-
sors, big data analytics and machine learning, building information model-
ling (BIM), digital twinning, simulation, robots, cobots and unmanned 
autonomous vehicles (UAVs), additive manufacturing, smart contracts, and 
the Internet of Things are transforming the deep renovation process, 
improving sustainability performance, and developing new services and 
markets.

This book defines a deep renovation digital ecosystem for the twenty-
first century, providing a state-of-the art review of current literature, sug-
gesting avenues for new research, and offering perspectives from business, 
technology, and industry.
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CHAPTER 8

Intelligent Construction Equipment 
and Robotics

Alessandro Pracucci, Laura Vandi, 
and SeyedReza RazaviAlavi

Abstract  With recent advancement in software, hardware, and comput-
ing technologies, applications of intelligent equipment and robots (IER) 
are growing in the construction industry. This chapter aims to review key 
advantages, use cases and barriers of adopting IER in construction and 
renovation projects. The chapter evaluates the maturity of available IER 
technologies in the market and discusses the key concerns and barriers for 
adopting IER such as the unstructured and dynamic nature of construc-
tion sites limiting mobility and communication of IER, hazards of human-
robot interactions, training and skills required for operating and 
collaborating with IER, and cybersecurity concerns. Finally, the chapter 
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proposes a framework for implementing IER that helps in their benefits by 
defining relevant metrics while considering their pitfalls in terms of quality, 
safety, time, and cost. This framework assists practitioners in decision-
making for adopting IER in their construction operation.

Keywords  Robotics • Construction • Safety • Monitoring • Quality 
control • Assessment framework

8.1    Key Definitions and Concepts

Table 8.1 provides a summary of key definitions and concepts related to 
the use of intelligent construction equipment and robotics in the con-
struction industry.

Table 8.1  Key definitions and concepts

Construction 
Automation and 
Robotics (CAR)

A field of research and development focused on automating 
construction processes; construction automation deals with applying 
the principles of industrial automation to the construction sector 
(Saidi et al., 2016).

Single Task 
Construction Robots

Robots or automated devices that are developed primarily for 
performing a specific task on the construction site (Hu et al., 2020).

Integrated 
Robotised 
Construction Sites

Construction sites in which multiple robots/machines collaborate to 
build an entire structure (Saidi et al., 2016).

Teleoperation A robot technology where a human operator controls a remote 
robot (Lichiardopol, 2007).

Programmable 
Construction 
Machines

A type of machine of which operator can change the activities to be 
accomplished within certain constraints either by selecting from a 
preprogrammed menu of functions or by teaching the machine a 
new function (Saidi et al., 2016).

Intelligent Systems Software programs that syndicate the knowledge of experts and 
attempt to resolve distinct problems by imitating the reasoning 
processes of experts (Irani & Kamal, 2014).

Cobots A system that amplifies or assists human skills, while performing 
tasks that require both the capacity of a human and the accuracy of a 
robot (Melo et al., 2012).

Exoskeletons Emerging wearable technologies involved in the entire construction 
sector phase which allow to facilitate construction workers to lift 
heavy weights by reducing fatigue and site injuries and improving 
the work productivity (Kim et al., 2019).

(continued)

  A. PRACUCCI ET AL.
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Table 8.1  (continued)

Robots Devices that execute specific operations either autonomously or 
under an operator’s direct control. The use of robots on 
construction sites is still very limited but the robotics production 
market is predicted to grow steadily over the next few years (Davila 
Delgado et al., 2019; European Construction Sector Observatory, 
2021).

Unmanned Aerial 
Vehicle (UAV)

Commonly known as “drones,” programmed technologies which 
can perform air operations reaching dangerous places for humans. 
Their use results in evident economic savings and environmental 
benefits while reducing the risk to human life (Outay et al., 2020).

8.2  I  ntroduction

The construction industry plays a crucial role in ensuring job creation, 
driving economic growth, and providing solutions to address environ-
mental, social, and economic challenges. The market value of the con-
struction sector represents between 9% and 15% of GDP in most countries 
(Davila Delgado et al., 2019). Despite its huge economic importance, the 
construction industry is traditionally slow to change and consequently 
beset with inefficiencies resulting in lower productivity levels compared to 
other sectors (Davila Delgado et al., 2019). However, despite the com-
plexity and fragmentation of the construction industry and the difficulties 
of coordinating the wide numbers of players and their tasks that slow 
down the introduction of innovative solutions, the construction sector has 
evolved in the last 25 years. This is especially driven by digital technologies 
and automation providing the construction industry with an opportunity 
to find innovative solutions to some of its rooted challenges. These inno-
vations spanned across the whole project lifecycle, from design and engi-
neering, through manufacturing and construction, to operation and 
maintenance, and retrofit/reuse/end-of-life. Among these, robotics is an 
emerging technological branch that can have an impact in construction 
areas such as off-site production, installation activities on-site, and opera-
tion and maintenance. This chapter will provide key insights about the 
digital transformation enabled by IER solutions in construction sites, ana-
lyze their current applications, limitations, and future developments, and 
propose an assessment framework to support construction actors in the 
decision-making process into the gradual adoption of IER for performing 
specific tasks.

8  INTELLIGENT CONSTRUCTION EQUIPMENT AND ROBOTICS 
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8.3  A  dvantages and Benefits of IER

8.3.1    Improving Safety

The incident rate in the construction industry is the highest among various 
major industries in many countries (Choi et al., 2011). In the US, 25% of 
the fatal work injuries in 2020 belong to the construction sector 
(U.S. Bureau of Labor, 2021). In Great Britain, 1.8% of the construction 
workers reported a musculoskeletal disorder, which is the highest rate 
among the industries with similar work activities (Health and Safety 
Executive, 2021). Replacing humans by semi-autonomous and autono-
mous robots for undertaking unsafe tasks can reduce the number of inci-
dents (Ilyas et  al., 2021). Robots can be used for automating unsafe 
activities including heavy lifting and on-site inspection in dangerous work 
environments such as underground mines (Zimroz et al., 2019) and bridges 
(Lin et al., 2021). To reduce musculoskeletal injuries and physical fatigue 
of construction workers caused by repetitive and prolonged manual tasks, 
exoskeleton is being used for augmenting workers’ physical ability (Brissi 
et al., 2022). Safety inspections and monitoring are other tasks that can be 
automated by robots for detecting unsafe locations (Martinez et al., 2020) 
and Personal Protective Equipment (PPE) on job sites (Ilyas et al., 2021).

8.3.2    Improving Productivity

Productivity growth has been a major concern in the construction indus-
try as it was only one-third of the average total economy productivity 
growth over the past 20 years (Ribeirinho et al., 2020). Productivity of the 
construction industry can be improved by automating and robotising 
repetitive and labour-intensive activities. Autonomous transportation of 
construction materials by robots can improve productivity and eliminate 
human errors in these processes (Chea et  al., 2020). For heavy lifting, 
robotic crane systems could improve productivity by 9.9–50% (Lee et al., 
2009). The examples of IER applications for automation of different con-
struction activity types are presented in Table 8.2.

8.3.3    Addressing Skilled Worker Shortage

Skilled worker shortage has been one of main issues in the construction 
industry over the past few years (Kim et al., 2020). The growing demand 
of construction workers and the aging workforces in many countries such 
as the UK (CITB, 2021; Green, 2021) are the main contributors to the 

  A. PRACUCCI ET AL.



115

Table 8.2  IER application for improving productivity of different types of con-
struction activities

Construction 
operation

Robot application

Masonry work IER are used for automating bricklaying in masonry work. Hadrian X 
is the first mobile robotic bricklaying machine that uses 3D CAD 
model for accurately building masonry structures (FBR, 2022).

Precast concrete IER are used for undertaking various tasks such as placing molds, 
reinforcement and distribution of concrete, and transportation of 
concrete formwork (Reichenbach & Kromoser, 2019; Saidi et al., 2016).

Steel component 
fabrication

IER are used for welding (Heimig et al., 2020), laser cutting (Bogue, 
2008), bolting (Chu et al., 2013), and assembly (C. J. Liang et al., 
2017) of steel components.

Timber 
construction

IER are used for cutting and drilling timber, and grasping, 
manipulating, and positioning building components (Eversmann et al., 
2017; Willmann et al., 2016).

skilled worker shortage. In the long term, leveraging construction auto-
mation and replacing humans with IER can address this issue (Melenbrink 
et al., 2020). In addition, use of IER can address the challenges of the 
high labour wage in construction projects particularly in the metropolitan 
areas (Pan et al., 2020).

8.4    Key Use Cases for Intelligent Construction 
Equipment and Robotics

Although the impact of IER has not yet been fully realised in the construc-
tion industry (Carra et al., 2018), their applications are emerging to enhance 
construction productivity, safety management, quality control, and site 
planning issues. The first examples of construction robots were seen in the 
Japanese construction industry in the late 1970s and 1980s to supplement 
and replace workforce (Yilmaz & Metin, 2020). Construction automation 
and robotics application are classified in this chapter according to:

•	 Construction phase involvement—whether they are applied at the 
construction site (related to on-site activities) or at a factory for pre-
fabrication activities (related to off-site activities) (Saidi et al., 2016). 
(Table 8.3);

•	 Level of autonomy—the second classification is based on the level of 
autonomy that IER technologies allow to perform (Table 8.4).

8  INTELLIGENT CONSTRUCTION EQUIPMENT AND ROBOTICS 
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Table 8.3  Description of construction phase for IER classification

Off-site 
application

Off-site construction is widely used since the adoption of prefabrication 
approaches increase the control and the quality of the technological 
component manufactured. Indeed, the activities are conducted in a 
controlled environment as a factory with the consequence of reducing the 
risk of low quality during on-site installation. The adoption of IER solutions 
in a factory moves construction toward an industrialised sector with 
well-consolidated off-site activities.

On-site 
application

On-site execution is still a manual activity in many cases with the consequences 
of leading to problems such as unpredictable tasks and low levels of accuracy 
(Davila Delgado et al., 2019). The tasks during on-site stage are focused on 
the correct product installation, keep control of tasks advancement and 
monitoring with inspections activities the quality results. The traditional 
on-site activities require an appropriate level of labour skills to achieve the 
necessary efficiency in terms of construction duration and cost, and building 
quality (Yilmaz & Metin, 2020). On-site applications include:

• � Construction—phase which involves the installation of different 
materials and construction actions (bricks laying, concrete formwork, 
timber frame as described in Table 8.2).

• � Inspection—the objective of this task is to monitor the construction site 
activities in terms of time, quality, and cost. Technologies involved in this 
phase are equipped by a camera with the objectives to take pictures and 
share information regarding the construction site. Therefore, through the 
optimisation of the route, it reports in a regular range of time the work 
status verifying the correctness of installation.

• � Maintenance—this stage includes the set of actions to preserve the 
integrity and the functionalities of the building during its life. The 
different technologies installed in the building or infrastructure, mainly 
the active ones with a higher degree of deterioration and the ones 
subjected to external interference (e.g., weather conditions, users’ 
utilisation) that require a scheduled plan of maintenance and control of 
performance over time (Fig. 8.1).

Table 8.4  Description of autonomy level for IER classification

Teleoperated systems The system includes remote and human control systems. This 
fulfills industrial situations where there is danger to the operator 
and where remote-controlled machinery is necessary.

Programmable 
Construction 
Machines (PCM)

It includes most construction equipment that is outfitted with 
sensors and mechanisms to augment operation by an onboard 
human operator.

Intelligent systems It relates to unmanned construction robots which operate in 
either a semi- or a fully autonomous mode. This category also 
referred to the concept of adaptive manipulation, imitation 
learning, improvisatory control, and full autonomy.

  A. PRACUCCI ET AL.
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Fig. 8.1  Allianz Tower while human workers are cleaning the façade. (Credit: 
Piermario Ruggeri-Focchi façade)

IER technologies can be further classified based on their technology 
readiness level (TRL) which identifies the maturity of the technologies 
within the market. In particular:

•	 TRL < 5—implies technologies which have been prototyped;
•	 TRL 6–7—implies technologies which have been tested and vali-

dated in an operational environment;
•	 TRL > 8—implies technologies which are widely used on market, 

indeed are considered actual system/process completed, and 
qualified through test and demonstration (pre-commercial 
demonstration).

Table 8.5 shows TRL for different IER technologies. The TRL level 
has been assigned based on market and academic research.

8  INTELLIGENT CONSTRUCTION EQUIPMENT AND ROBOTICS 
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The next subsections present some key examples of IER applications in 
the construction industry to highlight their significant impacts on various 
aspects of construction projects.

Additive manufacturing for construction phase—MX3D Bridge is a 
pedestrian bridge designed with generative design—complying between 
sustainable aspects and structural needs—and manufactured by exploiting 
the synergies between robotic and additive manufacturing. This is one of 
the first impactful examples for metal components moving from intelligent 
design to robotic-based production, validating the notion of the ability of 
such systems to move the construction sector into industrialised construc-
tion (MX3D Bridge, 2020) (Figs. 8.2 and 8.3).

Automatics monitoring for inspection—The potential of the combi-
nation between digital platform and inspection robotics is providing new 
opportunities for construction. This is well represented by the collabora-
tion of Boston Dynamics and its sophisticated and movable robots 
SPOTWALK with HOLO BUILDER platform for the site project man-
agement controls which is revealing new digital workflows in the con-
struction sector (HoloBuilder and Boston Dynamics Launch SpotWalk for 
Autonomous Reality Capture | Geo Week News | Lidar, 3D, and More 
Tools at the Intersection of Geospatial Technology and the Built World, 
2020) (Figs. 8.4 and 8.5).

Unmanned Aerial Vehicle (UAV) for maintenance activities— 
UAVs could reach hazardous or high places, which is becoming a diffused 

Fig. 8.2  MX3D Bridge. (Photo by Joris Laarman Lab)
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Fig. 8.4  Spot robot for autonomous 360° photo capture. (Image courtesy of 
HoloBuilder)

Fig. 8.3  MX3D Bridge. (Photo by Adriaan de Groot)

practice with heightened expectations considering the opportunities that 
these technologies open to control the health of built assets. For instance, 
Elios is a UAV tool which inspects the photovoltaic (PV) panels with the 
aim of tracking and monitoring each cell to discover irregularities or loss 
of performances (Elios Aerial Thermography, 2021) (Figs. 8.6 and 8.7).
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121

Fig. 8.5  HoloBuilder SpotWalk integration with Boston Dynamics. (Image 
courtesy of HoloBuilder)

Fig. 8.6  Thermography inspection of a PV plant by drone

Robotics arm in construction phase—MULE is a construction robot, 
flexible, portable, job-site ready lift assist which reduces time for lifting 
activities by 80% (MULE Lifting System | R.I.  Lampus, 2021). ROB-
Keller System AG have designed Robotic brickwork, Rob, to control the 
positioning of the masonry entirely positioned and controlled by the 
robotic arm. Rob allows to build walls even with shapes in compliance with 
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Fig. 8.7  Wesii digital 
platform: RGB view with 
colored anomaly 
classification

the calculations and resistance simulations made in the design phase 
(Robotic Brickwork, 2021).

Vehicles for construction phase—HX2 is an autonomous and electric 
load carrier that can move heavy construction components. It has a vision 
system that allows the robot to detect humans and obstacles (Volvo CE 
Unveils the next Generation of Its Electric Load Carrier Concept, 2020).

Exoskeleton—Eksovest is an upper-body exoskeleton that supports 
arms during lifting activities (Exoskeletons Trialled on UK Construction 
Sites, 2021). Exopush, developed by Colas, is an exoskeleton designed to 
give power assistance to operatives working leveling with a rake. The exo-
skeleton improves the worker posture by reducing the stress movement of 
30% (Colas Introduces the Exopush Exoskeleton to the UK, 2021). 
G-Ekso bionics has developed a robot which is able to hold heavy tools on 
aerial work platforms like scissor lifts and to standard scaffolding 
(EksoZeroG—Zero Gravity Tool Assistance, 2021).

Integrated solution—Hephaestus—A H2020 co-funded project has 
designed an IER tool for the installation of prefabricated building enve-
lopes (Elia et al., 2018; Highly AutomatEd PHysical Achievements and 
PerformancES Using Cable RoboTs Unique Systems | HEPHAESTUS 
Project | Fact Sheet | H2020 | CORDIS | European Commission, 2020). 
The Hephaestus robot is composed of a cable-driven parallel robot 
(CDPR) and a modular End-Effector kit (MEE) which host tools and 
devices for the bracket positioning and façade modules installation. This 
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robot expects in the next few years to provide a market autonomous 
solution for on-site tasks for installation of prefabricated envelopes, 
focusing on highly risky and critical construction tasks. The long-term 
purpose is to adopt Hephaestus not only for the installation stage but 
also for operations of maintenance and façade module replacement 
(Figs. 8.8 and 8.9).

Fig. 8.8  Cable-driven parallel robot installed in the demo building. (Credit Alex 
Iturralde)

Fig. 8.9  Hephaestus details during façade installation. (Credit Alex Iturralde)
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8.5  IER   for the Renovation Phase

In Europe more than 70% of the building stock was built before the 1970s 
and suffers from poor energy performance. Renovation is a key strategy to 
reduce the energy impact and the carbon footprint of buildings. The 
European Commission’s target is to retrofit at least 3% of the building 
stock market by 2030. The retrofitting intervention involves changing in 
the building configuration to improve the energy performance while 
maintaining the occupant’s comfort (Green Building 101, 2014). In this 
scenario construction automation and robotics can accelerate retrofitting 
interventions. For example, robotics applications support the existing 
workforce with on-site activities, which are currently based on crafts-
oriented processes (Tellado, 2019). However, current key advantages of 
using robotics in retrofitting projects are focused on building data collec-
tion especially for the planning and design phase such as:

•	 Data collection regarding current building dimensions and shapes 
(survey). The utilisation of robotics as UAVs allows to collect accu-
rate data in a reduced amount of time.

•	 Data collection regarding current building energy consumption by 
analyzing current building energy data, identifying areas with energy 
wastages, and understanding building energy use.

Robotics applications play a crucial role in addressing the challenges of 
building energy retrofit (Mantha et al., 2018). Accurate measurements, 
real time, and instant transfer of data can be integrated in the Building 
Information Modeling (BIM)1 and exploited by relevant IER operations. 
A generic framework could be developed to support the data collected to 
arrive at an optimal building retrofit decision (e.g., most economical and 
most energy saving). Some examples are Bertim (Refurbishment Solutions 
| STUNNING), which is a H2020 project that aimed to enhance a build-
ing retrofitting intervention by integrating automation applications in the 
process, and Vertliner (VERTLINER)—an application-focused autono-
mous UAV that navigates inside the building, acquiring precise 3D data, 
images, or videos—to inform and update several layers of digital twin 
models and BIM representing the indoor environment.

1 Chapter 3 in this book present BIM in more detail.
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8.6    Challenges and Barriers

Despite the advantages and benefits of IER, the construction industry has 
faced several challenges and barriers with their adoption as summarised in 
Table 8.6.

Table 8.6  Challenges for adopting IER in the construction industry

Challenge/
barriers

Description

High cost of 
capital

While use of IER can improve productivity and reduce the labour 
cost, it requires high capital cost, which is not affordable for the 
majority of construction companies that are small and medium size 
(Davila Delgado et al., 2019; Llale et al., 2019).

Unstructured 
and dynamic 
nature of 
construction sites

Unique and unstructured nature of the construction environment, 
dynamics of existing objects, and ambient conditions of construction 
sites (e.g., adverse weather conditions and existence of dust) have been 
major barriers for on-site applications of IER, limiting their mobility 
and communication (Ardiny et al., 2015; Carra et al., 2018).

Hazards of 
human-robot 
interactions

In the current state of the construction industry, fully automated 
construction is a long-term goal (Czarnowski et al., 2018) and 
integration of human and robot is imperative (Brosque et al., 2020). 
Interaction of human and robots in the construction industry is a 
major challenge because it is fraught with safety issues such as collision 
and distracting workers (McCabe et al., 2017). Ensuring a safe work 
environment for human-robot collaboration requires development of 
a formal safety standard (Liang et al., 2021) and a high cost for 
implementing safety measures (Davila Delgado et al., 2019).

Training and 
skills

Lack of continuous training and the required time and cost of training 
construction workers to operate and collaborate with IER are the 
main challenges of efficiently and safely using IER in the construction 
industry (Davila Delgado et al., 2019; Wang et al., 2021).

Cybersecuritya Cybersecurity is a major concern for IER systems. Cybersecurity 
threats such as malicious misuse of the robots via cyber-attacks can 
cause serious financial losses and safety hazards to humans (Clark 
et al., 2017; Yaacoub et al., 2022).

aChapter 9 in this book provides a more extensive discussion on cybersecurity and privacy considerations 
for deep renovation
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8.7  F  rameworks for Assessing 
and Implementing IER

A systematic approach to guide IER implementation is still missing in the 
construction sector (Hu et al., 2021; Pan et al., 2018). This section pro-
poses a preliminary framework of indicators for assessing the advantages 
of using IER for buildings based on the current construction needs. The 
framework is designed for construction companies interested in evaluat-
ing whether robotic applications facilitate their planned tasks according 
to specific tasks’ indicators. Using the selected metrics, the framework 
compares between the current manually handled tasks with the ones 
achievable by the adoption of a selected robotic technology. Hence, a 
quantitative ranking is used for the different tasks assigning a score for 
key macro indicators (quality, safety, time and cost) with the follow-
ing scores:

•	 “−2” The robotic adoption hugely worsens task’s indicators
•	 “−1” The robotic adoption worsens task’s indicators
•	 “0” The robotic adoption does not affect task’s indicators
•	 “+1” The robotic adoption improves task’s indicators
•	 “+2” The robotic adoption hugely improves task’s indicators

The total of all scores is a preliminary result to evaluate the IER for the 
selected activity: if the total score is positive, IER could facilitate the con-
struction work, and if the total score is negative, IER will not improve the 
construction work.

The assessment framework is a preliminary decision support tool to 
facilitate the evaluation about advantages for IER adoption. More detailed 
investigation will need to be implemented to boost IER technologies 
adoption, especially once more solutions are available on the market. At 
this stage, the proposed framework can be considered an early-stage tool 
for navigating the advantages of emerging IER applications in the con-
struction industry (Table 8.7).
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8.8    Conclusion

There is emerging evidence that IER can benefit on-site and off-site con-
struction operations. However, there are some challenges and barriers to 
overcome. From a contractor-side, economic factors including the high 
capital costs along with the costs pertaining to training and upskilling 
workers to operate IER are the main challenges. The nature of construc-
tion sites, which is generally unstructured, complex, and dynamic, entails 
further safety and operational challenges for using IER. Moreover, inade-
quate digitalisation levels within the construction industry limit the utilisa-
tion of IER. Tools for comparing traditional methods with advanced IER 
technologies are lacking in the construction industry. To contribute to 
these important gaps, this chapter classified the application of IER, 
reviewed key emerging applications and technologies, and proposed a 
framework to help assess the feasibility of implementing IER in construc-
tion. While some challenges to the adoption of IER are likely to persist in 
the short and mid-term, the emerging opportunities opened by IER have 
started to offer evidence about their disruptive nature and positive impact 
to quality, safety, and productivity in this key industry.
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