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Abstract

In the analysis of the Griliches’ knowledge capital production function, previous works
pointed out the relevance of incorporating slope heterogeneity in the technological
parameters, cross-sectional dependence arising simultaneously from common factors and
spillovers, and possible nonlinear effects of relevant common observed variables. In order
to solve the above problems, in this article we introduce a semi-parametric model in a
partially linear form that copes simultaneously with all the previous specification issues.
The asymptotic properties of the resulting estimators are obtained and the theoretical
findings are further supported for small samples via several Monte Carlo experiments and
an empirical application.

I. Introduction

Assessing the effect of common variables (such as technological, institutional,
environmental and health factors) on economic activity is of crucial relevance in many
empirical cases. These may include, among many others, the study of the impact of
real common shocks on productivity or economic growth; the estimation of the effects
of changes in oil prices on wages, employment or production activity (Keane and
Prasad, 1996; Hamilton, 2003) or the study of the relationship between housing rental
prices and labour market conditions (Phillips and Wang, 2021). Furthermore, the impact
of these common shocks is likely to vary across different population units and ignoring
this fact can lead to misleading inference (see Andrews, 2005).
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In the panel data literature, the consideration of models with multi-factor error structure
(see Pesaran, 2006; Bai, 2009) has enabled researchers to cope in part with the previous
challenge because these types of models usually allow for unknown common factors to
affect individuals heterogeneously. However, it remains unclear some specification issues
related the introduction of observed common covariates in these models. For example, in
Eberhardt, Helmers, and Strauss (2013) data on 12 manufacturing industries in 10 countries
it is used to estimate the knowledge capital production function of Griliches (1979), that is:

Yit = gi(Lit, Kit, Rit) exp(αi + γ ′
i ft + εit),

where Yit is value-added, Lit and Kit are standard labour and capital inputs, and Rit is
knowledge capital. In addition, the αi’s are individual heterogeneity effects, ft is a vector
of unobserved common factors, γi are the corresponding factor loadings and εit is a
zero mean error term. Following Griliches (1979), among many others, in Eberhardt
et al. (2013) it is adopted a Cobb–Douglas technology, gi(Lit, Kit, Rit) = Lβ1i

it Kβ2i
it Rβ3i

it ,
and taking logs, the following specification is proposed:

yit = αi + β1ilit + β2ikit + β3irit + γ ′
i ft + εit, (1)

where lowercase letters indicate that the variables are in log form.
Despite that the specification proposed in (1) is quite general and incorporates the

multifactor error structure, it might ignore some observed common variables such as
oil prices shocks, say zt, that can affect production activity through their effects on
production costs or measures of worldwide economic activity (Kilian, 2009). Indeed,
while a large body of research has attempted to estimate the effects of oil price shocks
on economic activity, the fact that these shocks contribute directly to economic decline
remains controversial as the empirical relationship between oil prices and output has
been very unstable across previous works. Since the pioneering work of Mork (1989),
such instability has been attributed to a misspecification of the linear approximation of
the relationship between oil prices and economic activity. Thus, it has been argued that
economic activity responds asymmetrically to positive and negative oil prices shocks
as rising oil prices should negatively affect aggregate economic activity more than
decreasing oil prices should stimulate it (Lescaroux and Mignon, 2008), thus calling for
the adoption of flexible specifications (Hamilton, 2003). Indeed, there is generally little
prior knowledge – theoretical or empirical – about the shape of the relationship between
the common covariates and production. Moreover, erroneously imposing a parametric
form for these variables may lead to biased estimates of the technological parameters.

Furthermore, the cross-sectional dependence (CSD) sometimes might not be due only
to the presence of latent common factors, but can be a result of the presence of spatial
dependence. In Millo (2019) it is provided empirical evidence of spatially correlated
residuals even when unobserved common factors are introduced in the knowledge capital
production function of Griliches (1979). Spatial processes such as the well-known spatial
autoregressive or spatial moving average models are very popular in this approach (See
Cliff and Ord, 1972; Arbia, 2006; Lee and Lee and Yu, 2010 among others). However,
although both factors and spatial models allow for CSD, the motivations underlying these
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Semi-parametric panel data model 907

models differ meaningfully (see, e.g. Ertur and Musolesi, 2017, for a discussion). Indeed,
recent works highlight the relevance of jointly modelling both forms of dependence.
Nevertheless, while there is a relatively rich literature on linear panel data models with
both sources of CSD (see Holly, Pesaran, and Yamagata, 2010; Pesaran and Tosetti, 2011;
Bailey, Holly, and Pesaran, 2016; Shi and Lee, 2017, among others), few advances
have been made in the study of non-parametric/semi-parametric panel data models in
the presence of both sources of CSD. So far, to our knowledge, it does not exist a full
analysis of the impact of both sources of dependence on the statistical properties of both
the parametric and non-parametric components in a semi-parametric panel data model.

Given the previous considerations, in this article, we propose a semi-parametric
heterogeneous panel data model that extends the model in (1) by including an unknown
heterogeneous function of the oil prices, mi(zt), and different sources of CSD (a factor
model combined with a spatial correlation structure). This appears to be suitable for
modelling the knowledge capital production function. Hence, we propose the following
specification:

yit = αi + β1ilit + β2ikit + β3irit + mi(zt) + γ ′
i ft + εit. (2)

A motivation for introducing such a specification is that, despite the well-known
limitations of a Cobb–Douglas specification for g(Lit, Kit, Rit) (Ivaldi et al., 1996; Ma,
Racine, and Ullah, 2020), it remains the cornerstone of a huge literature in empirical
economics at all levels of aggregation (Doraszelski and Jaumandreu, 2013; Eberhardt
et al., 2013; Ackerberg, Caves, and Frazer, 2015; Antonioli, Gioldasis, and Musolesi, 2021)
because it builds on economic theory and generally provides a good approximation of the
underlying data in a parsimonious setting. The same cannot be said about the impact of
zt which is much undetermined. As we have mentioned before, we decide to include it
non-parametrically in our model. Additionally, note that the heterogeneous effects of these
covariates may be the result of unit-specific technological constraints. We emphasize that
the model proposed in this article can be applied to many other empirical problems.

In order to obtain estimators of the parameters of interest, we extend the common
correlated effects (CCE) technique (see Pesaran, 2006) to consider simultaneously all the
above relevant empirical problems and then, we obtain the following outcomes: (i)

√
T-

consistent estimators of the slope parameters under heterogeneity and
√

NT-consistent
estimators in case of homogeneity. Estimators of the non-parametric components that
achieve the optimal rate of convergence are also obtained. ii) The asymptotic properties
of the mean group estimator and the pooled estimator of the slope parameters under
both homogeneous and heterogeneous parameters are derived. iii) All non-parametric
estimators exhibit a rate that is going to depend on the strength of the spatial dependence.
In this sense, this result coincides with those obtained in Robinson (2012), Lee and
Robinson (2015) and Soberon, Rodriguez-Poo, and Robinson (2022).

The remainder of the article is organized as follows. In section II, we set up the
econometric model. In section III, we provide the main theoretical results, i.e. the
estimation method and the asymptotic properties. Section IV presents some Monte
Carlo simulation results. In section V an empirical application of the knowledge capital
production function in Griliches (1979) is conducted by exploiting an annual country-level

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.

 14680084, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12609 by C

ochraneItalia, W
iley O

nline L
ibrary on [23/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



908 Bulletin

balanced panel data set covering 24 OECD countries from 1971 to 2014. We conclude in
section VI. Finally, all proofs of the mathematical results are relegated to the Appendix B.

II. A semi-parametric panel data model

Let yit be the observation on cross-sectional unit i at time t, and suppose that it is generated
according to the following DGP:

yit = α′
idt + x′

itβi + mi(zt) + uit, i = 1, . . . , N , t = 1, . . . , T , (3)

where dt = (d1t, d2t, . . . , dr1t)
′ is an r1 × 1 vector of observed common effects, xit is a

p × 1 vector of observed explanatory variables, zt is a q × 1 vector of observed stochastic
covariates, and mi(·) is an unknown smooth function to estimate. In addition, uit is a
random error term that follows the following multifactor structure

uit = γ ′
i ft + εit, (4)

where ft = (f1t, f2t, . . . , fr2t)
′ is an r2 × 1 vector of unobserved common factors with

associated factor loadings γi, and εit is an idiosyncratic error.
In order to allow the unobserved factors ft to be correlated with the observed data

(xit, zt, dt), similar to Pesaran (2006), we can model this correlation via the following
fairly general semi-parametric model:

xit = A′
idt + gi(zt) + �′

ift + vit, (5)

where Ai and �i are r1 × p and r2 × p factor loading matrices with fixed components,
respectively, gi(zt) ≡ (g1i(zt), . . . , gpi(zt))

′ is a p × 1 vector of unknown smooth
functions, and vit is a (p + q) × 1 vector of individual-specific components of (x′

it, z′
t)

′.
The idiosyncratic errors, εit, are assumed to be spatially and temporally correlated and

follow an arbitrary form such as

ε·t = �1/2η·t, for t = 1, . . . , T , (6)

where ε·t = (ε1t, . . . , εNt)
′ and η·t = (η1t, . . . , ηNt)

′ are N × 1 vectors, and �1/2 is a
N × N matrix.

The model outlined in (3)–(6) is sufficiently general and enables us to deal with
several limitations in the existing literature. Firstly, it allows to include common stochastic
covariates, zt, in a nonlinear heterogeneous manner (mi(·) in equation (3) and gi(·) in
equation (5)). Secondly, we introduce a general non-parametric type of model of spatial
correlation through the idiosyncratic error term (see equation (6)) that is very appealing
from the empirical point of view. On the one hand, asymptotic normality of the proposed
estimators for the parameters of interest can be obtained avoiding parametric descriptions
of dependence that may lead to substantial size distortions in tests based on Maximum
Likelihood or Quasi-maximum likelihood estimators (see Pesaran and Tosetti, 2011 for
further details). On the other hand, it enables us to consider different types of cross
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Semi-parametric panel data model 909

sectional dependence (i.e. weak or long-range dependence). More precisely, let ωij be the
ijth element of E

(
ε·tε′·t

)
for all t. If CSD is limited by the condition

lim
N→∞

1

N

N∑

i=1

N∑

j=1

ωij < ∞, (7)

weak dependence is allowed. On the contrary, if condition

lim
N→∞

1

N2

N∑

i=1

N∑

j=1

ωij = 0 (8)

is allowed, long-range dependence is permitted (see Lemma 1 for a deeper discussion).
Furthermore, our model is related to other models already considered in the literature.

For example, if mi = gi = 0 and � = I then the model renders to the proposal in
Pesaran (2006). In Su and Jin (2012) and Huang (2013) a fully non-parametric model
for the xit’s, with common factors, is considered. Unfortunately, they do not allow either
common covariates or spatial dependence. Finally, in Lee and Robinson (2015) a fixed
effects panel data model is considered, jointly with spatial dependence, but unobserved
common factors are not allowed for.

III. Estimation method and asymptotic theory

In this section we estimate βi and mi(·) for i ≥ 1. However, as Heckman (2001)
concludes while the representative agent paradigm is shown to lack empirical support, the
average person becomes a popular alternative and therefore we provide the corresponding
estimators for their weighted averages, i.e., β = N−1 ∑N

i=1 βi and mi(·) = N−1 ∑N
i=1 mi(·).

We also derive estimators in the case of homogeneous slope parameters. Further their
main asymptotic properties are analysed.

Estimation procedure

The following augmented regression model for (3)–(6) is proposed.1

yit = β ′
i xit + mi(zt) + δ′

iλt + eit, i = 1, . . . , N , t = 1, . . . , T , (9)

where λt = (yAt, xAt, dt) is a (1 + p + r1) × 1 vector of observable proxies for ft,
eit = εit + op(1), and δi is a nuisance parameter.

In order to obtain estimators for the parameters of interest in (9) we will follow a
profile least squares technique (see Fan and Huang, 2005). Note that for any given βi and
δi, (9) can be rewritten as

yit − x′
itβi − λ′

tδi = mi(zt) + eit, (10)

1For a more detailed discussion of this equation see Appendix A.
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910 Bulletin

and for zt in a small neighbourhood of z, one can estimate mi(z) by minimizing the
following weighted local least-squares problem:

T∑

t=1

[(yit − x′
itβi − λ′

tδi) − mi(z) − (zt − z)′Dmi(z)]
2KH(zt − z), (11)

where K(·) is a product kernel function such that for each u it holds that
KH(u) = |H |−1 ∏q

�=1 k(H−1u�), for u = (u1, . . . , uq)
′, where k(·) is a univariate kernel

function and H is a q × q bandwidth matrix that is symmetric and positive definite. Let
KH(z) = diag{KH(z1 − z), . . . , KH(zT − z)} be a T × T matrix and Zz = [Z′

z1
, . . . , Z′

zT
]′

a T × (q + 1) matrix, where Zzt = [1, (zt − z)]. Assuming that Z′
zKH(z)Zz is non-singular,

the solution to (11) for mi(·) is

m̂i(z, H) = ι′1(Z
′
zKH(z)Zz)

−1Z′
zKH(z)(Yi· − Xi·βi − �δi), (12)

where Yi ≡ (yi1, . . . , yiT ) is a T × 1 vector, Xi· ≡ (Xi1, . . . , XiT )′ and � ≡ (λ1, . . . , λT )′
are T × p and T × (r1 + 1 + p) matrices, respectively, and ι1 is a (1 + q) × 1 vector
having 1 in the first entry and all other entries being 0.

However, this estimator is infeasible since it depends on the unknown terms (βi, δi). To
overcome this, we use (12) to obtain a closed-form solution for the parametric estimators.
Let mi(Z) = (mi(z1), . . . , mi(zT ))′ be a T × 1 vector of the smooth unknown function,
the estimator (12) in vectorial form is

m̂i(Z, H) = S(Z, H)(Yi· − Xi·βi − �δi), (13)

where S(Z, H) is a smoothing matrix that depends only on the observations of zt,
t = 1, . . . , T . Writing (10) in vectorial form and substituting (12) in (10), we get

Ŷi· = X̂i·βi + �̂δi + êi·, (14)

where êi· is a T-dimensional term such that êit = eit − (m̂i(Z, H) − mi(Z)) + op(1).
In addition, Ŷi· = (IT − S(Z, H))Yi·, X̂i· = (IT − S(Z, H))Xi·, and �̂ = (IT − S(Z, H))�,
where IT is a T × T diagonal matrix.

To estimate βi consistently, we use the idea of partitioned regression and define the
projection function M�̂ = IT − �̂(�̂

′
�̂)−1�̂

′
. Premultiplying both sides of (14) by M�̂

and applying least squares to the resulting model, we obtain the so-called semi-parametric
Common Correlated Effects (SCCE) estimator for βi,

β̂i = (
X̂ ′

i·M�̂X̂i·
)−1

X̂ ′
i·M�̂Ŷi·. (15)

Similarly, a consistent estimator for δi is required, so we define the projection matrix
MX̂i

= IT − X̂i·(X̂ ′
i·X̂i·)−1X̂ ′

i·. Then, premultiplying both sides of (14) by MX̂i
yields

δ̂i =
(
�̂

′
MX̂i

�̂
)−1

�̂
′
MX̂i

Ŷi·, (16)

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 911

and using (15) and (16) in (12), the feasible non-parametric estimator for mi(·) is the
so-called Non-parametric CCE estimator,

m̂i(z, H) = ι′1(Z
′
zKH(z)Zz)

−1Z′
zKH(z)(Yi· − Xi·β̂i − �δ̂i). (17)

Finally, if the parameters of interest are the cross-sectional means of βi and mi(·),
i.e. β = E(βi) and m(·) = E[mi(·)], we follow Pesaran and Smith (1995) and propose a
SCCE estimator of the mean group β, which is a simple average of the individual SCCE
estimators of βi:

β̂MG = 1

N

N∑

i=1

β̂i, (18)

while the corresponding mean group estimator for m(·) is such that

m̂MG(z, H) = 1

N

N∑

i=1

m̂i(z, H). (19)

Alternatively, we can generalize the pooled estimator proposed in Pesaran (2006),
obtaining the following SCCE pooled estimator for β:

β̂P =
(

N∑

i=1

X̂ ′
i·M�̂X̂i·

)−1 N∑

i=1

X̂ ′
i·M�̂Ŷi. (20)

A non-parametric CCE pooled estimator for m(·) is also obtained such that

m̂P(z, H) = ι′1(Z
′
zKH(z)Zz)

−1Z′
zKH(z)

[

Y A· − N−1
N∑

i=1

Xi·β̂i − N−1
N∑

i=1

�δ̂i

]

. (21)

Note that a relevant feature of the above estimator is that given the fact that m(·) is a
non-parametric function of time-varying stochastic regressors, the pooled and mean group
non-parametric estimators are the same, i.e. m̂MG(z, H) ≡ m̂P(z, H).

Finally, from an empirical point of view, it can be also of interest to estimate a
restricted submodel of (3) in which homogeneous slopes are assumed, i.e. βi = β, ∀i.
For this particular setting, the homogeneous SCCE pooled and mean group estimators
(β̂H ,MG and β̂H ,P, respectively) proposed for β are the same as the corresponding
for the heterogeneous case (i.e. β̂H ,MG = β̂MG and β̂H ,P = β̂P), whereas the resulting
non-parametric estimator for m(·) is of the form

m̂MG(z, H) = ι′1(Z
′
zKH(z)Zz)

−1Z′
zKH(z)[Y A· − X A·β̂H ,P − �δ̂MG], (22)

where δ̂MG is the mean group estimator for the mean of δi, defined as δ̂MG = N−1 ∑N
i=1 δ̂i.
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912 Bulletin

Assumptions and asymptotic theory

For ease of reference, we first state the definition of a strongly mixing sequence. Let {ζt}
be a strictly stationary process and F t

s denotes a σ -algebra of events generated by the
random variables (ζs, . . . , ζt) for s ≤ t. Following Rosenblatt (1956), a process is said to
be strongly mixing or α-mixing if

α(τ) = sup
s∈N

{|P(A ∩ B) − P(A)P(B)| : A ∈ F s
−∞, B ∈ F∞

s+τ

} → 0 as T → ∞.

Next, we introduce the following notation: σ 2
εi

≡ Var(εit), σ 2
η ≡ Var(ηit), and �vi ≡

Var(vit), where �vi is a positive definite matrix. Also, X̃i· = Xi· − BX (z), �̃ = � − B�(z),
F̃ = F − BF(z), and D̃ = D − BD(z), where BX (z) = E(Xi·|zt = z), B�(z) = E(�|zt =
z), BF(z) = E[F|zt = z], and BD(z) = E[D|zt = z] for D ≡ (d1, . . . , dT )′ being a
T × r1 matrix.

MG̃ = IT − G̃(G̃′G̃)−1G̃′, (23)

is a T × T projection matrix where G̃ = (D̃, F̃) is a T × (r1 + r2) matrix.
We add some additional notation. λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) are the eigenvalues

of the n × n-matrix A. The column norm of A is ||A||1 = max 1≤j≤n
∑n

i=1 |aij|. The row
norm of A is ||A||∞ = max 1≤i≤n

∑n
j=1 |aij|. The euclidean norm of A is ||A||22 = Tr

(
A′A

)

and (N , T)
j−→ ∞ denotes N and T tending to infinity jointly but not in particular order.

We now impose the following assumptions that are required to analyse the main
asymptotic properties of the proposed estimators. Most of them are inspired by
Pesaran (2006) or Pesaran and Tosetti (2011), among others, but they are appropriately
modified for this article.

Assumption 1. (Individual-specific errors)

(i) The individual-specific errors ηit and vjt are distributed independently for all i, j, and
t. Let ηi· ≡ (ηi1, . . . , ηiT )′ and vi· ≡ (vi1, . . . , viT )′, ηi· and vi· are independently
distributed across i with zero means. Also, ηit has finite variance, σ 2

η , and
finite fourth-order cumulants. Also, vit have covariance matrices, �vi , which
are non-singular and satisfy sup i||�vi || < C < ∞ and have uniformly bounded
fourth-order cumulants. There exists some φ > 0 such that E|ηit|2(1+φ) < ∞ and
E|vit|2(1+φ) < ∞.

(ii) Let {(ηit, vit) : t ≥ 1} be independent across i for each fixed t. For each fixed i,
the process {ηit, vit} is strictly stationary and α-mixing with the mixing coefficient
satisfying αi(τ ) = O(τ−θ ), where τ = |t − s|, θ = (2 + φ)(1 + φ)/φ, and φ > 0.
For some φ > 0,

∑T
t=1

∑T
s=1 [α(|t − s|)]2φ/(2+φ) = O(T).

Assumption 2. (Common factors and covariates)

(i) {(dt, ft, zt) : t ≥ 1} are strictly stationary and α-mixing with the mixing coefficients
satisfying αd(τ ) = O(τ−θ ), αf (τ ) = O(τ−θ ), and αz(τ ) = O(τ−θ ), respectively.

(ii) (dt, ft, zt) are distributed independently of ηis and vis for all i, t, and s.
(iii) E|ft − E [ft| zt = z] |2(1+φ) < ∞ and E|dt − E [dt| zt = z] |2(1+φ) < ∞, for

some φ > 0.

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 913

Assumption 3. (Spatial weight matrix) �1/2 has bounded rows and column norms
for all t.

Assumption 4. (Random slope coefficients) The slope coefficients βi follow the
random coefficient model

βi = β + ξi, ξi ∼ i.i.d.(0, �ξ), for i = 1, 2, . . . , N ,

where ||β|| < C, ||�ξ || < C, and �ξ is a p × p symmetric nonnegative definite matrix,
for some positive constant C < ∞. In addition, the random deviations ξi are distributed
independently of (γj, �j, ηjt, vjt, dt, zt, ft) for all i, j, and t.

Assumption 5. (Factor loadings and rank condition)

(i) The unobserved factor loadings (γi, �i) are bounded, i.e. ||γi||2 < C and ||�i||2 < C,
for all i. Further, it is assumed that the random deviations ξi for the slope coefficients
are independently distributed of (γi, �i).

(ii) Let �∗ = E(γi, �i) = (γ , �), Rank(�∗) = r ≤ (1 + p).

Assumption 6. (Identification of βi, β, and β) Consider the covariates contained in
λt = (yAt, xAt, dt) and let MG̃ be defined as in (23). The following conditions hold:

(i) The p × p matrices T−1X̃ ′
i·M�̂X̃i· and T−1X̃ ′

i·MG̃X̃i· exist and are non-singular for
all i. In addition, their corresponding inverse matrices have finite second-order
moments for all i.

(ii) The matrix limN→∞N−1 ∑N
i=1 �vi exists and is non-singular.

(iii) There exists T0 and N0 such that for all T ≥ T0 and N ≥ N0, (T−1X̃ ′
i·M�̂X̃i·) and

(T−1X̃ ′
i·MG̃X̃i·) exist and are nonsingular for all i. In addition, sup iE

∥∥
∥

X̃ ′
i·MG̃X̃i·

T

∥∥
∥

< C < ∞.

Assumption 7. (Density function) The density of zt satisfies ρzt(z) > 0 at an interior
point z ∈ Z, where Z is the support of zt.

Assumption 8. (Smoothness condition) The functions mi(z), m(z) and ρzt(z) are all
twice continuously differentiable in the neighbourhood of z ∈ Z with bounded derivatives.
Furthermore, BX (z), B�(z), BD(z) and BG(z) have continuous second derivatives in the
compact support of zt (i.e., Z).

Assumption 9. (Kernel function) K(u) = ∏q
l=1 k(ul) is a product kernel, and the

univariate kernel function k(·) is compactly supported and bounded such that
∫

k(u)du = 1,∫
uu′k(u)du = μ2(K)Iq, and

∫
k2(u)du = R(K), where μ2(K) �= 0 and R(K) �= 0 are

scalars and Iq is a q × q identity matrix. All odd-order moments of k vanish, that
is,

∫
uı1

1 , . . . , u
ıq
q k(u)du = 0, for all non-negative integers ı1, . . . , ıq such that their

sum is odd.

Assumption 10. (Bandwidth)

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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914 Bulletin

(i) Let cH = tr{H2} + {logT/T |H |}1/2. The bandwidth matrix H is symmetric and

positive definite, where each element of H tends to zero. As (N , T)
j−→ ∞,√

Tc2
H → 0 and T |H | → ∞.

(ii) T (θ+1)|H |(2+φ)/(1+φ) → ∞, where θ = (2 + φ)(1 + φ)/φ and φ > 0.

Assumption 11. (Identification of γi) Consider the covariates contained in λt and let
MG̃ be defined as in (23). The � × � matrices T−1�̃

′
MX̂i·�̃ and T−1�̃

′
MG̃�̃ exist and

are non-singular for all i. In addition, their corresponding inverse matrices have finite
second-order moments for all i.

Before considering the main asymptotic properties of the proposed estimators, we first
establish the following lemma that will be key to determining the impact of the weak or
long-range CSD on the rate of convergence of the above estimators.

Lemma 1. Let εit = ((
εit + v′

itβi
)

, vit
)′

and εAt = N−1 ∑N
i=1 εit. If we assume that

either ||βi|| < C or that Assumption 4 holds. Under Assumption 1, for each t, we have

(a) E(εAt) = 0;
(b) (Weak dependence) Var(εAt) = O

(
N−1

)
, if additionally Assumption 3 holds,

(c) (Long-range dependence) Var(εAt) = O(1) if each ijth element of �1/2 is bounded.

This lemma guarantees that for any process of the form (6), εAt
q.m.−−−→ 0 as N → ∞

and the degree of CSD of εi· will be bounded by νN = N−2ı ′N�ıN , where ıN is an
N × 1 vector of ones. If νN = O(N−1) is assumed, we get Var(εAt) = Op(N−1) which
is analogous to the common weak dependence assumption in time series (see Chudik,
Pesaran, and Tosetti, 2011). Boundedness of all rows and columns of � implies that
νN = O(1), so Var(εAt) = O(1), and we allow ‘‘long-range cross-sectional dependence’’
(Robinson, 2012). In this article, we use Assumption 3 which implies weak CSD.

Asymptotic properties for the heterogeneous framework
In order to analyse the main asymptotic properties of β̂i, we may replace (3) and (4) in
(15) obtaining

β̂i − βi = (
X̂ ′

i·M�̂X̂i·
)−1

X̂ ′
i·M�̂(IT − S)Fγi + (

X̂ ′
i·M�̂X̂i·

)−1
X̂ ′

i·M�̂εi·, +op(c
2
H),

since X̂ ′
i·M�̂mi(Z) = Op(c2

H) (see the proof of Theorem 1). In the above expression it is
shown that β̂i depends directly on both the unobserved factors and the idiosyncratic error
term. However, the following theorem shows that, its asymptotic distribution depends
only on the idiosyncratic component.

Theorem 1. Consider the panel data model (3)–(6), and suppose that ||βi|| ≤ C and
Assumptions 1–3,5 and 6(i), and 7–11 hold. If it is further assumed that

√
T/N → 0 and√

Tc2
H → 0 as (N , T)

j−→∞,

√
T(β̂i − βi)

d−→ N
(
0, �−1

vi
�εi�

−1
vi

)
,

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 915

where �vi = limT→∞T−1E
[
X̃ ′· MG̃X̃i·

]
, �εi = limT→∞T−1E

[
X̃ ′

i·MG̃�εiMG̃X̃i·
]

and �εi =
E(εi·ε′

i·) is a T × T matrix, with εi· = (εi1, . . . , εiT )′ being a T × 1 vector.

In Theorem 1 it is shown that the asymptotic distribution of β̂i will be normal if the
rank condition of Assumption 5(ii) holds and if

√
T/N → 0 as N and T goes to infinity.

Furthermore, similar asymptotic results can be obtained whether the rank condition is
violated, but that is beyond the scope of this article. See Pesaran and Tosetti (2011) or
Kapetanios, Pesaran, and Yamagata (2011) for further details.

For inference reasons, it is very interesting to obtain consistent estimators of the
asymptotic variance of β̂i. Hence, using the Newey and West (1987)-type procedure, for
example, that variance is given by

̂Asy.Var(β̂i) =
(

X̂ ′
i·M�̂X̂i·

T

)−1
X̂ ′

i·M�̂�̂εiM�̂X̂i·
T

(
X̂ ′

i·M�̂X̂i·
T

)−1

,

where �̂εi = T−1̂ε′
i·ε̂i· and ε̂it = Ŷit − X̂ ′

itβ̂i. Replacing (3) and (4) in (17) and applying
Taylor’s expansion of mi(zt) around z yields

m̂i(z, H) − mi(z) = 1

2
ι′1(Z

′
zKH(z)Zz)

−1Z′
zKH(z)Qmi(z) − ι′1(Z

′
zKH(z)Zz)

−1Z′
zKH(z)�(̂δi − δi)

−ι′1(Z
′
zKH(z)Zz)

−1Z′
zKH(z)Xi·(β̂i − βi) + ι′1(Z

′
zKH(z)Zz)

−1Z′
zKH(z)ei·

+op(tr{H2}),

where Qmi(z) = [(z1 − z)′Hmi(z)(z1 − z), . . . , (zT − z)′Hmi(z)(zT − z)]′ is a T × 1 vector
and Hmi(·) is the Hessian matrix of mi(·). Hence, the difference between m̂i(z, H) and its
true value is the sum of the above four terms plus a higher-order term that is the remainder
of the Taylor expansion. More precisely, the first one is a standard bias term of local
linear estimators, which contributes to the asymptotic bias; the second and third terms are
due to the approximation error of the fully parametric estimates once ft is replaced by the
observable proxies λt, so they also give asymptotic bias. Finally, the fourth term contains
the idiosyncratic errors eit, which determine the variance.

Theorem 2. Consider the panel data model presented in (3)–(6) and suppose that
Assumptions 1–3,5, and 7–11 hold. If

√
T |H |tr{H2} = O(1), as T → ∞,

√
T |H |

(
m̂i(z, H) − mi(z) − 1

2
μ

q
2(K)tr{H2Hmi(z)}

)
d−→ N

(

0,
σ 2

εi
Rq(K)

ρzt(z)

)

.

Theorem 2 shows that m̂i(z, H) achieves a rate of convergence of
√

T |H |, regardless
of the rank condition assumption.

Theorem 3. Consider the panel data model presented in (3)–(6) and suppose that
Assumptions 1–6(ii), 7–10 hold. If it is further assumed that

√
Nc2

H → 0, as (N , T)
j−→∞ then √

N(β̂MG − β)
d−→ N

(
0, �ξ

)
.

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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916 Bulletin

Theorem 4. Consider the panel data model presented in (3)-(6) and suppose that
Assumptions 1–6(iii), and 7–10 hold. If it is further assumed that

√
Nc2

H → 0, as

(N , T)
j−→ ∞ then

√
N(β̂P − β)

d−→ N
(
0, �∗−1R∗�∗−1) ,

where �∗ = limN→∞ 1
N

∑N
i=1 �vi and R∗ = limN→∞ 1

N

∑N
i=1 �vi�ξ�vi .

Looking at the above theorems, some results should be pointed out. First, as it can
be realized, the asymptotic variance-covariance matrix of both mean group and pooled
estimators does not depend on the spatial correlation structure of the model. This is
because by Assumption 4, the variability of βi dominates the other sources of randomness
in the model. Second, the rate of convergence of β̂MG and β̂P is

√
N , rather than the usual√

NT . This is due to the rank condition in Assumption 5(ii). Finally, the pooled estimator
is more efficient than the mean group one.

Furthermore, for inference reasons a consistent estimator of the asymptotic variance
of the mean group estimator can be given by

̂Asy.Var(β̂MG) = 1

N(N − 1)

N∑

i=1

(β̂i − β̂MG)(β̂i − β̂MG)′, (24)

and the corresponding estimator of the asymptotic variance of the pooled estimator is

̂Asy.Var(β̂P) = 1

N
�−1

NT RNT�−1
NT , (25)

where �NT = 1
NT

∑N
i=1 X̂ ′

i·M�̂X̂i· and

RNT = 1

(N − 1)T2

N∑

i=1

(X̂ ′
i·M�̂X̂i·)−1(β̂i − β̂MG)(β̂i − β̂MG)′(X̂ ′

i·M�̂X̂i·)−1.

A very nice feature of the above non-parametric variance estimators is that they avoid any
misspecification problem related to the spatial weights matrix since they do not require
prior knowledge of the spatial weights matrix.

Theorem 5. Consider the panel data model presented in (3)-(6) and suppose
that Assumptions 1–11 hold. If it is further assumed that

√
NT |H |tr{H2} = O(1), as

(N , T)
j−→ ∞ then

√
T |H |ν−1/2

N

(
m̂MG(z, H) − m(z) − 1

2
μ

q
2(K)tr{H2Hm(z)}

)
d−→ N

(

0,
σ 2

η Rq(K)

ρzt(z)

)

,

where Hm(·) is the Hessian matrix of m(·).
The non-parametric estimators, m̂i(z, H) and m̂MG(z, H) exhibit the same rate of

convergence,
√

T |H |. Therefore, efficiency gains from pooling observations over the

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 917

cross-section units are not achieved. However, the reader can observe that for m̂MG(z, H)

the rate exhibits a new element, νN . This term reflects the strengthening of the spatial
correlation and depends directly on the particular specification of �. Hence, the rate
of convergence of this estimator depends on the rate of νN , if any, as it was noted in
Lemma 1. If weak dependence is assumed as in Assumption 3, the rate of convergence
will be

√
NT |H | , whereas we will get

√
T |H | if strong dependence is allowed for.

Furthermore, more efficient estimators could be obtained by taking into account the
spatial correlation involved. Note that a similar result is also obtained in Robinson (2012);
Lee and Robinson (2015), and Soberon et al. (2022) in a different framework.

Finally, the optimal bandwidth is of order O(T−1/(4+q)). However, one might choose
O((NT)−1/(4+q)). If we do so since we are smoothing only in zt over time series
observations, a smaller bandwidth than the optimal will be obtained, especially when N
is large. Furthermore, special care is needed when N is large and T is moderate as the
optimal rate may lead to a very small bandwidth and the non-parametric estimators can be
vulnerable to denominator singularity (see Phillips and Wang, 2021 for further details).

Asymptotic properties for the homogeneous framework
We consider now the main asymptotic properties of the estimators proposed when the
slope parameters are homogeneous. The following theorems can be proved following a
similar reasoning as for Theorems 3–5, respectively. For the sake of brevity, the specific
proofs have been omitted but are available upon request.

Theorem 6. Consider the panel data model presented in (3)-(6) and βi = β, ∀i.
Suppose that Assumptions 1–3,5,6(ii), and 7–10 hold. If it is further assumed that√

T/N → 0 and
√

NTc2
H → 0, as (N , T)

j−→∞
√

NT(β̂H ,MG − β)
d−→ N

(
0, σ 2

η �MG
)

,

where �MG = limN ,T→∞ 1
NT P̃′P̃ with P̃′ = (W̃ ′

·1�
1/2, . . . , W̃ ′

·T�1/2) and W̃ ′·t =
(w̃1t, . . . , w̃Nt) being p × NT matrices, whereas w̃it is the tth column of
(T−1V ′

i·MG̃Vi·)−1V ′
i·MG̃.

Theorem 7. Consider the panel data model presented in (3)-(6) and βi = β, ∀i.
Suppose that Assumptions 1–3,5,6(iii), and 7–10 hold. If it is further assumed that√

T/N → 0 and
√

NTc2
H → 0, as (N , T)

j−→∞
√

NT(β̂H ,P − β)
d−→ N

(
0, σ 2

η �∗−1
H R∗

H�∗−1
H

)
,

where R∗
H = limN ,T→∞ 1

NT X̃ ′(IN ⊗ MG̃)′(� ⊗ IT )(IN ⊗ MG̃)X̃ and �∗
H = limN ,T→∞

1
NT

∑N
i=1 V ′

i·MG̃Vi·.

Theorem 8. Consider the panel data model presented in (3)-(6) and and βi = β, ∀i.
Suppose that Assumptions 1–3 and 7–11 hold. If it is further assumed that√

T |H |ν−1/2
N tr{H2} = O(1), as N and T tend to infinity

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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918 Bulletin

√
T |H |ν−1/2

N

(
m̂MG(z, H) − m(z) − 1

2
μ

q
2(K)tr{H2Hm(z)}

)
d−→ N

(

0,
σ 2

η Rq(K)

ρzt(z)

)

.

Looking at the above theorems, several features must be pointed out. As it was noted
in Pesaran (2006) for the fully parametric case, the convergence rates of β̂H ,MG and β̂H ,P

are
√

NT , instead of
√

N as it was in the heterogeneous case. This is independent of
the type of CSD. On its part, the rate of convergence of the non-parametric estimator
depends on the rate of νN , if any, as it was explained in Theorem 5. Further, unlike in the
heterogeneous case, the asymptotic variances of the parametric estimators depend on the
particular specification of �. However, using results in Ibragimov and Müller (2010) it is
possible to show that the robust variance estimators given by (24) and (25) are still valid
for the mean group and pooled estimators when the slope parameters are homogeneous
(see Pesaran and Tosetti, 2011 for a deeper discussion).

IV. Monte Carlo simulations

To investigate the extent to which the proposed estimators capture the effects of various
forms of CSD, we consider two alternative sets of experiments that involve different
hypotheses on the data-generating process (DGP). In the first DGP, we consider a semi-
parametric model with heterogeneous slope parameters, whereas in the second DGP
homogeneous slope parameters are assumed.

For both experiments, we consider the following DGP

yit = αidit + x′
itβi + mi(zt) + γ1if1t + γ2if2t + εit,

xit = A′
idt + gi(zt) + �′

1if1t + �′
2if2t + vit,

for i = 1, 2, . . . , N , t = 1, 2, . . . , T . In the above DGP, there are two individual-
specific regressors, xit = (x1it, x2it)

′, two observed common factors (zt, dt), two
unobserved common factors (f1t, f2t), and three unknown functions (mi(zt) and
gi(zt) = (g1i(zt), g2i(zt))). The observed common factor zt is a random variable generated
from a normal distribution with mean 0 and variance 1.

We next specify how to generate the individual-specific errors, unobserved factors,
factor loadings, heterogeneous interaction parameters, and other aspects in the DGPs.

a. The factor loadings of the observed common factors are generated as A′
i ∼

IIDN(0.5ı2, 0.5I2), where ı2 = (1, 1)′ and I2 is a 2 × 2 identity matrix, and
αi ∼ IIDN(1, 1), for i = 1, . . . , N . As Pesaran and Tosetti (2011), αi and Ai

do not change across replications and dt = 1.
b. The unobserved common factors are generated as independent stationary

AR(1) processes with zero means and variances 1. More precisely, s = 1, 2,
fs,t = 0.5fs,(t−1) + (1 − 0.52)1/2ξs,t, where ξs,t ∼ IIDN(0, 1) across t, for t =
−49, . . . , 0, 1, . . . , T .

c. The factor loadings (γ1i, γ2i) of the unobserved common factors in the yit

equation as generated as γ1i ∼ IIDN(0, 1) and γ2i ∼ IIDN(0, 1). Also, for the
factor loadings of the unobserved common factors in the xit equation we

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 919

consider two different cases for �i = (�1i, �2i) that we denote by A and
B, respectively: vec(�i) = (�11,i, �12,i, �21,i, �22,i)

′ ∼ IIDN(�τ , I4), τ = A, B. In
case A, �A = (1, 0, 0, 1)′, so the rank condition in Assumption 3.1 is satisfied,
whereas in Case B, �B = (1, 1, 0, 0)′, and the rank condition is not satisfied.

d. The idiosyncratic errors εit of yit are generated according to the following SAR
model: ε·t = �1/2η·t, where �1/2 = (IN − θ0WN )−1, η·t is a N × 1 vector generated
as independent N(0, 1), and θ0 is the autoregressive parameter which takes three
different values (i.e. 0.3, 0.6, 0.9). Also, WN is a spatial weight matrix generated from
independent N(0, 1) random variables. Specifically, the weights are constructed
so WN is a row-normalized spatial weight based on an exponential distance
decay function whose typical element is such as �ij = exp(−ϑij)/

∑
jexp(−ϑij),

where ϑij is the distance between units given by the Euclidean distance. On
its part, the individual-specific errors of xit are generated independently of each
other as stationary AR(1) processes: vs,it = ρvsivs,i(t−1) + (1 − ρ2

vsi
)1/2ϑs,it, where

ρvsi ∼ IIDU(0.05, 0.95) and ϑs,it are i.i.d. N(0, 1) across i and t. For each i, the
three processes εit, v1it, and v2it are generated independently of each other.

e. The unknown functions are generated as mi(zt) = exp(zt)/(1 +
exp(zt)) + ϕi(0.5zt − 0.25z2

t ), g1i(zt) = (1 + ϕ1i)(1 + sin(10zt)), and g2i(zt)

= (1 + ϕ2i) sin(2zt), where ϕi ∼ IIDU(0, 1), ϕ1i ∼ IIDU(0, 0.12), and
ϕ2i ∼ IIDU(0, 0.12).

Note that the first 50 observations of v1it, v2it, f1t, and f2t are discarded. Further,
two alternative assumptions on the slope coefficients are considered. In particular,
heterogeneous slopes are assumed in DGP1 with βs,i = βs + ψs,i where βs = 1 and
ψs,i ∼ IIDN(0, 0.04), for i = 1, 2, . . . , N and s = 1, 2 varying across replications, while
homogeneous slope parameters are allowed in DGP2 with βs,i = 1. Each experiment was
replicated 1,000 times for N = 100,140, 200 and T to be either (25, 50, 75). Also, the
Epanechnikov kernel k(u) = 0.75(1 − u2)1{|u| ≤ 1} was used and we choose H = Iqh0,
where h0 = c0σ̂zT−1/5 is the bandwidth term, σ̂z the sample SD of the smoothing variable
{zt}t=1, ... ,T , and c0 = 2.34.

For evaluation of the performance of our estimators, we use the bias, root mean
squared errors (RMSE), and coverage rate for the slope parameters, whereas the RMSE is
computed for the regression functions. In what follows, we shall focus on β1, since results
for β2 are very similar and will not be reported. Results for the full rank experiments (case
A) and the rank deficient experiments (case B) are summarized in Table 1 and Figure 1.
This tables represent the results for the heterogeneous slope case. The corresponding
tables and figures for the homogeneous slope setting are relegated to the Appendix C.

Overall, the Monte Carlo results confirm the good performance of the proposed
estimators in finite samples. More precisely, the mean group and pooled estimators
display very small biases, their RMSEs decline steadily with increases in N and/or
T for the different experiments, and their coverage rate oscillates around the standard
significance level even in the smallest case. Further, the asymptotic efficiency of the mean
group estimators relative to the pooled estimators is confirmed, although the differences
between the two estimators are rather slight for relatively large samples. This general
conclusion also holds on the rank-deficient case.

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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920 Bulletin

Table 1

Small sample properties of the parametric estimators under slope heterogeneity

Pooled Mean group Pooled Mean group

θ0 N \ T 25 50 75 25 50 75 25 50 75 25 50 75

Case A: Full rank Case B: rank deficient
BIAS (×100)
0.3 100 0.057 0.040 0.012 0.003 0.009 0.020 0.129 0.035 0.003 0.070 0.022 0.007

140 0.066 0.066 −0.018 0.080 0.067 −0.009 0.027 0.045 0.013 0.032 0.032 0.010
200 0.125 0.001 0.042 0.092 0.000 0.023 0.130 0.004 0.054 0.096 0.003 0.032

0.6 100 0.060 0.042 0.010 0.004 0.011 0.018 0.132 0.038 0.001 0.071 0.025 0.005
140 0.067 0.069 −0.017 0.082 0.069 −0.009 0.029 0.047 0.013 0.034 0.033 0.010
200 0.127 0.002 0.043 0.094 0.001 0.024 0.081 −0.015 0.035 0.050 −0.007 0.002

0.9 100 0.062 0.044 0.002 0.006 0.014 0.008 0.136 0.041 −0.007 0.072 0.029 −0.005
140 0.075 0.081 −0.012 0.091 0.075 −0.007 0.043 0.060 0.013 0.045 0.040 0.008
200 0.129 0.004 0.054 0.100 0.003 0.032 0.083 −0.013 0.040 0.053 −0.005 0.022

RMSE (×100)
0.3 100 2.771 2.619 1.944 2.670 2.335 1.700 2.588 2.656 1.921 2.535 2.344 1.674

140 2.108 1.617 1.381 2.069 1.502 1.237 1.896 1.459 1.228 1.900 1.383 1.130
200 1.858 1.565 1.235 1.788 1.434 1.099 1.860 1.567 1.267 1.790 1.436 1.136

0.6 100 2.770 2.649 2.021 2.667 2.335 1.703 2.587 2.657 1.927 2.533 2.344 1.674
140 2.111 1.621 1.385 2.070 1.504 1.241 1.900 1.465 1.233 1.903 1.386 1.135
200 1.858 1.565 1.236 1.788 1.434 1.101 1.679 1.511 1.171 1.670 1.360 1.13045

0.9 100 2.773 2.624 2.131 2.669 2.338 1.865 2.591 2.660 2.103 2.536 2.346 1.837
140 2.174 1.692 1.470 2.117 1.561 1.321 1.962 1.548 1.339 1.955 1.451 1.231
200 1.860 1.566 1.267 1.790 1.436 1.136 1.679 1.512 1.211 1.672 1.361 1.088

Coverage rate
0.3 100 0.955 0.944 0.950 0.955 0.960 0.955 0.952 0.949 0.947 0.952 0.957 0.954

140 0.947 0.949 0.954 0.950 0.950 0.951 0.953 0.941 0.944 0.957 0.950 0.952
200 0.951 0.954 0.952 0.950 0.951 0.955 0.950 0.958 0.952 0.950 0.955 0.954

0.6 100 0.951 0.953 0.953 0.960 0.962 0.956 0.950 0.949 0.947 0.954 0.958 0.951
140 0.948 0.949 0.953 0.950 0.950 0.949 0.955 0.942 0.941 0.957 0.952 0.950
200 0.949 0.952 0.952 0.948 0.952 0.955 0.951 0.958 0.953 0.950 0.955 0.954

0.9 100 0.953 0.944 0.952 0.954 0.962 0.948 0.952 0.951 0.950 0.955 0.958 0.952
140 0.950 0.944 0.950 0.945 0.949 0.944 0.953 0.951 0.944 0.958 0.950 0.948
200 0.949 0.946 0.946 0.946 0.956 0.953 0.953 0.957 0.951 0.954 0.956 0.948

Considering now the results in Figure 1 it can be noted that, as it was expected,
the RMSEs of the mean group non-parametric estimators shrink to zero as the sample
size increases. Furthermore, all these results corroborate that both parametric and non-
parametric estimates are robust to the presence of spatially correlated errors since their
RMSEs are steady independently of the θ0 value.

V. A new look at the knowledge capital production function

Following the discussion already established in section I, we propose to estimate (2)
for which we build an annual country-level balanced panel data set covering 24 OECD
countries from 1973 to 2014. We use a different dataset than Eberhardt et al. (2013)
for two main reasons. The first reason is a computational one, as exploiting a balanced
data set greatly facilitates the computations, even though the proposed estimators can be

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 921

Figure 1. Boxplots of the RMSE values of the non-parametric estimates in 1,000 independent simulations
under slope heterogeneity

adapted to the case of unbalanced panels. Second, this is also useful to provide novel and
complementary results.

As for the dependent variable (Yit), we use the real GDP at constant prices from
Penn World Table version 9.0 (Feenstra, Inklaar, and Timmer, 2015, PWT9). As for
the explanatory variables, the capital stock (Kit) measured at constant prices is also
collected from PWT9. Then, for the labour input (Lit), following (Henderson and
Parmeter, 2015, p. 142-144) we build a textit‘‘human capital augmented labor’ variable,
where employment is also collected from PWT9 while human capital stock is computed
as in Ertur and Musolesi (2017). To build an R&D stock variable (Rit), we consider
gross domestic expenditure on research and development (GERD) flow values collected
from the OECD-STATS database. Missing values are filled in a similar way as in Coe,
Helpman, and Hoffmaister (2009), and then we calculate the GERD stock using a perpetual
inventory method as in Coe and Helpman (1995), assuming the depreciation rate to be
0.05. As for zt, we introduce oil price shocks.

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Table 2

Heterogeneous fully parametric and semi-parametric results.

Parametric Semi-parametric

(i) (ii) (iii) (iv) (v)

ln Lit 0.585∗∗∗ 0.588∗∗∗ 0.599∗∗∗ 0.600∗∗∗ 0.547∗∗∗
(0.073) (0.073) (0.072) (0.071) (0.063)

ln Kit 0.308∗∗ 0.307∗∗ 0.270∗∗ 0.267∗∗ 0.414∗∗∗
(0.098) (0.010) (0.096) (0.092) (0.123)

ln Rit 0.059∗∗∗ 0.060∗∗∗ 0.059∗∗∗ 0.058∗∗∗ 0.056∗∗∗
(0.017) (0.017) (0.017) (0.016) (0.018)

oil −3.37e−10∗ −3.78e−10∗ −4.49e−10∗
(1.38e−10) (1.58e−10) (1.89e−10)

oil2 5.01e−11∗ −1.69e−10∗
(2.09e−11) (7.15e−11)

oil3 −1.74e−11∗
(7.36e−12)

Elasticity of scale 0.952 0.955 0.928 0.925 1.017

Note: The t-values are within brackets.
Significant at ***1%, **5%, and *10% levels.

Previous works have discussed what is an appropriate measure of oil shocks, and in
particular, it has been suggested to use an oil shock measure that filters out both price
declines and price increases (Hamilton, 1996). Following this reasoning, we similarly
construct an oil shock index as Davis and Haltiwanger (2001). Our index equals the log
of the ratio of the current crude real oil prices divided by the average of the real prices in
the previous 5 years. Note that stationarity of the observed stochastic common covariates
is fundamental for valid estimation. In Data S1, we depict some univariate plots, i.e. the
oil price index evolution over time and the corresponding autocorrelation function and
partial autocorrelation function. These plots suggest that the price oil index is a slightly
persistent time series and is consistent with a first-order auto-regressive stationary process.
Furthermore, in the Appendix D some formal statistical testing is also conducted. The
results support that the oil price index is a stationary time series process.

In Table 2 we consider the heterogeneous slope parameters framework and provide
mean group estimates of the elasticities of capital stock, labour, and R&D.2 In addition,
with the aim of assessing the potential misspecification related to the oil price index,
different specifications are considered (see columns (ii)–(iv)). In column (ii) we estimate
a linear and heterogeneous effect of the oil price, that is, by imposing mi(zt) = φizt

in (2). In column (iii), we estimate the possible nonlinear effect of the oil price by
considering a second-order polynomial function, mi(zt) = φ1izt + φ2iz2

t . Also, in column
(iv) we consider a third-order polynomial specification of the oil price. Finally, based on
Theorem 3 we provide asymptotic standard errors of parameter estimators.

It would be also possible to estimate the technological parameters in (2) under a
homogeneous framework. However, the assumptions needed for this estimator to be
consistent are not fulfiled by our data (see Theorem 6 for a more detailed discussion)
and therefore we prefer not to use them. Moreover, homogeneity in the slope parameters

2Pooled estimates of these elasticities are available upon request.

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 923

can be questioned also from an economic viewpoint as a theoretical foundation for
heterogeneous slope parameters across countries can be found in the ‘‘new growth’’
literature, which argues that technology differs across countries. While (Brock and
Durlauf, 2001, pp. 8–9) remark that the assumption of parameter homogeneity seems
particularly inappropriate when one is studying complex heterogeneous objects such
as countries, in Durlauf, Kourtellos, and Minkin (2001) it is also suggested that the
explanatory power of the Solow growth model is substantially enhanced by allowing for
country-specific production functions.

Looking at the results in Table 2, the parametric CCE model (column (i)) provides
estimated output elasticities with respect to labour, capital, and R&D stock that are equal to
0.585, 0.308, and 0.059, respectively, with an estimated elasticity of scale equals to 0.952.
These estimates are similar to those obtained in Eberhardt et al. (2013) and Millo (2019).
Furthermore, the estimated output elasticity with respect to R&D is consistent with the
huge amount of literature surveyed by Hall, Mairesse, and Mohnen (2010). As it can
be observed, the oil price variable, both in linear, quadratic, and cubic terms (columns
(ii)–(iv)), appears as significant, despite the estimated parameters are implausibly small.
This result contradicts a huge amount of empirical literature that has been previously
mentioned and it warns us about a possible misspecification error. Indeed, a tacit
assumption of the parametric approach is that the curve can be represented in terms of
the parametric model. By contrast, non-parametric modelling of a regression relationship
does not project the observed data into a Procrustean bed of a fixed parametrization.
Then, instead of assuming a parametric functional form for zt, we opt to estimate it
non-parametrically. In order to do so we use our estimator proposed in (19). To compute
it, we use the Epanechnikov kernel k(u) = 0.75(1 − u2)1{|u| ≤ 1} and choose H = Iqh0,
where h0 = c0σ̂zT−1/5 is the bandwidth term, σ̂z the sample SD of zt, and c0 = 2.34. This
choice for h0 fulfils Assumption 10, but we have also performed a sensitivity analysis
with different values. Parameter estimates were rather invariant to the bandwidth choice.

Allowing for a non-parametric function mi(·) may be important to avoid a
misspecification bias not only with respect to the estimated effect of the common
factors – here, the oil prices index – but also with respect to the estimation of the
parameters of interest – here, the technological parameters in a Griliches-type production
function. We do find that this bias is empirically sizeable as when estimating the semi-
parametric model (column (v)) the estimated coefficient of labour decreases to 0.547,
while that of capital increases up to 0.414, which represents an increase of about 50%
with respect to the specifications where the oil price index enters with a parametric form
(columns (ii) to (iv)). This result is interesting as it is consistent with the reasoning
by Romer (1987), who stresses that the true elasticity of output with respect to capital
should be greater than the share of capital in total income because of positive externalities
associated with investments. Overall, these results now indicate slightly increasing returns
to scale, with an estimated elasticity of scale equal to 1.017, which is about 6% to 8% higher
with respect to that obtained when the oil price index enters into the model parametrically.

Moreover, and very importantly, as far as the effect of the oil price index is concerned,
Figure 2 depicts the estimated functional relationship. The elasticity between output and
oil price index is clearly nonlinear: it is about 0.02 for negative values of the explanatory
variable, which corresponds to a decrease in oil prices, and then starts to decrease and

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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924 Bulletin

Figure 2. Elasticity of GDP with respect to oil price index

becomes negative for positive values of the oil price index, which correspond to oil
price increases, up to –0.05, for the highest positive values of the index. Note that the
dotted lines indicate the 95% pointwise confidence interval. This result complements
some previous time series evidence and provides additional evidence of an asymmetric
effect of oil prices on GDP (Lescaroux and Mignon, 2008; Hamilton, 2003). Although the
purpose of this section is simply to illustrate the usefulness of the proposed econometric
method, to the best of our knowledge, this article represents the first attempt (i) to estimate
the output elasticity with respect to the oil price within a production function framework
by exploiting semi-parametric panel data models with several sources of CSD and (ii) to
assess the bias associated to the technological parameters when erroneously imposing a
parametric specification for the oil price.

VI. Conclusions

In the analysis of the Griliches’ knowledge capital production function, at both sectoral
and country level, previous works have pointed out the relevance of incorporating
slope heterogeneity in the technological parameters and CSD arising from unobserved
common factors. However, additional issues to be addressed might be (i) the presence
of spatial dependence in the idiosyncratic error term and (ii) possible nonlinear effects
of relevant common observed variables, such as the oil price. Accordingly, in this article
we have introduced a partially linear panel data model that faces up all previously
mentioned drawbacks simultaneouly, namely (i) functional specification; (ii) CSD arising
simultaneously from common factors and spatial dependence and (iii) heterogeneous
relationships among variables.

Extending the CCE approach to this semi-parametric framework, a
√

T-consistent
estimator for the heterogeneous slope parameters has been proposed and an estimator for
the non-parametric component has been also obtained. Furthermore, several alternative
estimators based on cross-sectional means and pooled data have been also proposed.
Their asymptotic properties were obtained under quite standard assumptions in this

© 2024 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Semi-parametric panel data model 925

literature and the theoretical findings were further supported for small samples sizes via
several Montecarlo experiments and an empirical illustration. For the latter, we revisit
the knowledge capital production function à la Griliches. The empirical results have
highlighted that modelling the common covariates (here, an oil prices index) with a non-
parametric smooth function greatly affects the elasticities estimates. All that has remarked
a sizeable empirical bias when estimating a fully parametric model, and ultimately it has
enabled us to obtain results that appear to be more reliable, richer, and more consistent
with respect to economic theory than those obtained from a fully parametric model.

Final Manuscript Received: July 2023
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