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Chapter 1

Introduction

Digital Twins (DTs), whose overarching ambition is to serve as bridges between

the physical and virtual worlds, have been gaining momentum in both academia

and industry. Originally developed for the manufacturing sector, DTs nowadays

play a crucial role in a plethora of di↵erent domains, ranging from the Internet of

Things (IoT) to Cyber-Physical System (CPS).

This work proposes a vision of DTs that revolves around the concept of en-

tanglement, which is what primarily distinguishes DTs from traditional software

components. However, the limitations of existing platforms and metrics do not

support this vision. To bridge this gap, not only does this work provide a novel

perspective on what DTs are, but it also engineers, discusses possible implemen-

tations of, and experimentally evaluates an entanglement-aware DT ecosystem.

In this ecosystem, DTs expose information about their entanglement, and the

middleware orchestrates them accordingly.

Fundamentally, the strands of the entanglement-aware DT ecosystem are:

• A metric to measure the entanglement. In this regard, the original contribu-

tion is Overall Digital Twin Entanglement (ODTE)—a concise yet expressive

metric to measure entanglement.

• Entanglement-aware DTs. This work delves into DT engineering with a focus

on entanglement awareness. It originally discusses how to apply software

design patterns for building DTs as microservices and a methodology for

building DTs with serverless functions.
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• Entanglement-aware middleware. The novel contribution primarily lies in

the middleware orchestration capability of enforcing the desired quality of

entanglement despite failures along the cloud-to-edge continuum.

As there is no consensus on a definition of DT, the following aims to investigate

what DTs are and explore the meaning of entanglement in this context.

Intuitively, a DT is a virtual representation of a physical object. Imagine a DT

of a self-driving car. Engineers could work on the virtual representation running on

a computer, without actually putting any car on the road. Note that there are no

constraints against creating virtual representations of intangible objects as well. In

this regard, consider a DT of a patent. Such a DT would record all the information

about an invention, making it accessible online for research and reference, just like

the original patent document. Therefore, a DT may be tentatively defined as a

virtual representation of an object, whether tangible or intangible.

However, the virtual representation would probably di↵er from the actual repre-

sentation. This might happen intentionally or accidentally. It occurs intentionally

when the design of the DT itself rules out the possibility of having an exact repre-

sentation. In fact, a subset of the properties of the object is typically of application

interest. Only such properties are therefore used to build the virtual representa-

tion. In some cases, instead, it is not possible to represent the properties of an

object in the virtual space because, for example, of technological limitations. But

even in those cases where an exact representation would be in principle possible,

it might be eventually ruled out because it is irrationally expensive. Discrepancies

between virtual and actual representations may occur accidentally when the design

aims to provide an exact representation, but it turns out that this is not the case.

In light of the aforementioned considerations, what is the value of a DT, as

tentatively defined so far? First, a virtual representation is virtually accessible

from anywhere and at any time, as long as the code that describes it, the computer

that runs the code, and the network that connects the computer to the Internet

are functioning properly. This means that it is no longer required to be physically

close to the object to observe it. In other words, a DT physically decouples the

object from the observer. Moreover, a virtual representation can augment the

actual representation. A virtual representation is augmented when it describes
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things that the actual representation does not. Let us consider a temperature

sensor that detects the environment every minute and measures the temperature.

A DT of such a sensor could not only represent the state of the sensor (i.e., the

current measured temperature) in the virtual space, but also provide analytics

derived from historical data (e.g., the maximum measured temperature). In this

example, analytics are augmentation functions.

It might be argued that it is possible to physically decouple an object from

the observer by simply connecting the object to the Internet, with the underlying

assumption that the object has an adequate interface to expose information about

itself. However, it is worth noting that the set of these objects is rather limited

compared to the class of any existing object. For example, a building does not

belong to that set because it lacks computational and communication capabilities.

Another counterargument might be that the devices deployed in the building can

be connected to the Internet and, therefore, provide information about the build-

ing. Although these devices can describe what they observe about the building

(e.g., how many people are within the building), they fall short in providing ex-

planations about it, let alone the emergent phenomena (e.g., why is there no one

on Sunday and Saturday?). This is also where the tentative definition falls short.

A DT includes not only the virtual representation of the object, but also a model

of the object. To some extent, a DT has an explanatory power greater than that

of the object it represents.

The model may be used to conjecture about what might happen or what might

have happened. When the object goes o✏ine unexpectedly (and consequently stops

sharing information with the DT, making it unable to provide an up-to-date virtual

representation), the DT can conjecture about the object o✏ine status. For exam-

ple, if the most recent update from the object indicated a low battery level, the

DT could employ the model to calculate the energy consumption since then, thus

deducing whether the object could have depleted its battery during that interval.

The model can also be used to make predictions. In this regard, a typical example

is predictive maintenance, which seeks to prevent equipment failures before they

occur. As a result, a DT decouples the object from the observer in both space

and time. As mentioned above, the former removes the requirement for physical

proximity between the object and the observer. The latter refers to the capability

3



of a DT to revert the virtual representation of the object to a past state, depict

its current state, predict future states, and speculate about potential events (i.e.,

things that did not happen but might have or things that did happen but the

outcome is still unknown).

But to what extent can a DT depict the current state of the object it represents

in the virtual space? In practical terms, how can an observer be sure that the DT

and the object are in the same state? Note that the DT and the object would

likely never be in literally the same state. This is because, as mentioned, the

virtual representation would probably di↵er from the actual representation, either

intentionally or accidentally. Thus, the expression ”the same state” is meant to

refer to the alignment of the object properties as represented by the DT in the

virtual space with those of the actual object at a specific point in time. But it

is also physically impossible to transmit information instantaneously. Therefore,

there is an inevitable time lag between when the object changes state and when the

DT mirrors it. Note that even assuming instantaneous exchange of information,

such a time lag would persist. In fact, state transition requires computation, which

in turn takes time.

So far, it has only been considered a unidirectional communication flow—from

the object to the DT. It is possible, though, that an object not only shares in-

formation about itself but also provides a means to receive commands. If so, a

DT would be able to take actions on the object, thus potentially transforming the

physical space. This also implies a bidirectional communication flow—from the

object to the DT to build the virtual representation and, vice versa, from the

DT to the object to change the physical space. A DT can send commands to an

object either in response to an observer’s request or through autonomous decision-

making. Imagine that an observer (e.g., an application or a human being) makes

a request that requires the DT to take action. For example, a technician who

interacts with a DT of a production line might send a single request to switch

production mode. Note that the observer might not even know the sets of under-

lying actions that the DT is pushing downwards, i.e., towards the object. Behind

the scenes, the DT might translate that request into several low-level requests for

the single components of the production line to make that switch happen. It is

also possible that such a DT does not directly interact with the physical objects
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either. A composition of DTs might be in place, with a high-level DT, the one the

technician interacts with, communicating with low-level DTs, each representing a

single component of the production line.

This bidirectional communication pattern introduces an additional require-

ment. Ensuring that the observer and the DT are in the same state is not su�cient.

For example, consider a light bulb that cycles on and o↵ regularly, a DT repre-

senting it virtually, and an observer interacting with the DT to turn o↵ the light

bulb. If the DT is in the ”o↵” state, is the light o↵ because the DT command

was executed correctly, or is it o↵ due to its regular cycling? This is an instance

of what may be defined as the entanglement problem in the context of DTs. In

particular, a DT and the object that the DT represents in the virtual space are

entangled if (i) the object virtual representation mirrors the actual representation

over time, and (ii) the object behavior aligns with the issued commands. The mir-

roring between the virtual representation and the actual representation refers to

the subset of object properties of application interest. For those DTs that do not

issue commands, only the first condition a↵ects the entanglement.

In conclusion, a DT is a virtual entity entangled with an object, whether tan-

gible or intangible, of which the DT provides a (augmented) representation in the

virtual space, thus decoupling the object from the observer in space and time. Since

this work mainly deals with physical objects, the object that a DT represents will

be referred to as a Physical Twin (PT) in the following.

The reminder of this thesis is structured as follows.

Chapter 2 introduces two cloud-to-edge continuum scenarios that can benefit

from the adoption of DTs. The first scenario is Industry 4.0. In this context,

several research e↵orts have already explored the role that DTs can play through-

out the production cycle. The other scenario is coalition tactical operations. The

rationale behind the inclusion of this scenario is that tactical environments pose

unique challenges, thus revealing facets of what DTs can do or where DTs can be

used that would remain largely unexplored otherwise.

Chapter 3 lists the identified requirements for an entanglement-aware DT

ecosystem, which consists of DTs and the middleware to orchestrate them. Each
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requirement is examined from three angles: DTs, the middleware, and what are

the limitations of existing platforms.

Chapter 4 discusses the foundational technologies that serve as the building

blocks for the entanglement-aware DT ecosystem. Specifically, this chapter delves

into three technologies—Software-Defined Networking (SDN), container orches-

tration, and chaos engineering. It also includes dedicated in-depth examinations

aimed at demystifying the application of a technology beyond commonly accepted

frameworks. For example, Kubernetes is the de facto industry standard container

orchestration system, making its adoption in the context of Industry 4.0 self-

evident. However, the challenge lies in demonstrating its e↵ectiveness in a tactical

environment, where the assumptions of modern industrial settings no longer apply.

Chapter 5 investigates how to engineer DTs. Specifically, it proposes how to

apply software engineering design patterns to build DTs based on microservices.

Furthermore, this chapter explores the development of DTs within the framework

of serverless computing. In both cases, the design is inherently event driven. The

primary distinction lies in the core abstractions, with containers being central in

the former case and functions in the latter.

Chapter 6 introduces the entanglement-aware DT ecosystem. This chapter pro-

vides a technical perspective on the entanglement problem and proposes the ODTE

metric to measure the quality of entanglement. Then, it details an architecture for

entanglement-aware DTs and their life cycle. Lastly, it describes the architecture

of the middleware to orchestrate such DTs. The key feature of this middleware is

entanglement-aware orchestration along the cloud-to-edge continuum.

Chapter 7 o↵ers an overview of the implemented components of the entanglement-

aware DT ecosystem, covering both microservices and serverless implementations.

This chapter then delves into the experimental evaluation of these implementa-

tions, which includes a performance assessment of the entanglement-aware DTs,

an analysis of the overhead of the entire ecosystem, and an exploration of the

e↵ectiveness of the middleware orchestration capabilities along the cloud-to-edge

continuum.

Chapter 8 provides conclusive remarks and discusses future work.
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Chapter 2

Digital Twins in the

Cloud-to-Edge Continuum

This chapter introduces two scenarios where DTs can unleash their potential.

Although quite di↵erent, they both include the cloud-to-edge continuum in their

modern settings. These scenarios are Industry 4.0 (see Section 2.1) and coalition

tactical operations (see Section 2.2). Each scenario is first described in detail,

followed by a discussion of the role DTs could play. As opposed to Industry 4.0,

where there exists extensive research literature, DTs are largely unexplored in the

context of coalition tactical operations. Consequently, Section 2.2 takes on a more

speculative nature. The unique challenges that tactical environments pose make it

possible to explore facets of DTs that would remain largely unexplored otherwise.

Lastly, Section 2.3 provides a summary of the chapter.

Original contributions are as follows. Industry 4.0 is presented through the

lenses of the Purdue model, considering the convergence between Operation Tech-

nology (OT) and Information Technology (IT), and o↵ering an overview of its

recent evolution towards the cloud-to-edge continuum. At the tactical edge, where

coalition tactical operations occur, several assumptions that hold for enterprise

environments no longer apply. The notion of tactical cloud is introduced, and the

cloud-to-edge continuum is discussed accordingly. For each scenario, an analysis of

the role of DTs is provided, considering instances where they have already proven

e↵ective and envisioning their potential for future advancements.
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2.1 Industry 4.0

The spread of IoT within industrial environments has recently enabled easier mon-

itoring and control of industrial equipment from remote locations, e.g., via Rep-

resentational State Transfer (REST) or Open Platform Communications United

Architecture (OPC UA), thus fostering the advent of the fourth industrial revo-

lution. Initial attempts to implement the Industry 4.0 paradigm relied on ad hoc

approaches, allowing technicians and industrial applications to directly interact

with machines through their Application Programming Interfaces (APIs). This

trend promoted the integration of OT, i.e., the part related to industrial machines

and automation, and IT, i.e., the part related to data management and processing.

However, this has raised several issues related to, among others, machine hetero-

geneity and proper management. In particular, industrial machines typically o↵er

non-standard APIs, which require users to be familiar with machine-specific de-

tails. Since commands and information are sent and retrieved directly, this may

not only lead to issuing contradictory, if not even inconsistent, commands, but also

to querying machines too frequently. These issues become more apparent when

considering and properly modeling the actual organization of modern industrial

environments, which comprise the shop floor, plant, and enterprise levels.

The shop floor level primarily focuses on industrial automation. Its main

components include industrial machines, Programmable Logic Controllers (PLCs),

Human-Machine Interfaces (HMIs), and Industrial Internet of Things (IIoT) de-

vices. Industrial machines tend to have extremely long lifetimes (between 10 and

15 years, if not even longer in some cases) and may implement di↵erent (propri-

etary) protocols. In addition, software upgrades may not always be possible, since

manufacturers usually forbid software upgrades for safety reasons, or industrial

machines may not support them at all. In contrast to industrial machines, IIoT

devices are characterized by a substantially shorter lifetime, usually communicate

via well-known protocols, and support monitoring and control capabilities while

being low cost. It is worth mentioning, however, that IIoT devices also present

complex chains of software dependencies (e.g., third-party libraries), thus making

integrity mechanisms challenging to be guaranteed [1].

The plant level regards the management of manufacturing processes. The crit-
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Figure 2.1: The Purdue model.

ical component is the Manufacturing Execution System (MES), which allows in-

formation to flow upstream and downstream between the shop floor level (where

industrial machines produce goods) and the enterprise one (where managers make

decisions). In particular, the MES receives instructions about how industrial ma-

chines should behave from operators, and then it transmits such instructions down-

wards, i.e., towards the shop floor.

The enterprise level is about making decisions on how to plan business oper-

ations. In this regard, decision-makers rely on the Enterprise Resource Planning

(ERP), which collects information about supply chains, cash flows, customer or-

ders, and production processes, to decide what, when, and how many products

should be manufactured.

The most common network implementation of this logical structure is arguably

the Purdue model [2], which organizes the industrial network into three zones and

six layers (see Figure 2.1). The cell/area zone is the bottom one, comprises layers

0 to 2, and concerns OT. The shop floor components that craft goods belong to

layers 0 and 1. Such layers rely on a time-sensitive network connecting industrial
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machines and PLCs, while devices that control crafting processes, e.g., HMIs,

reside in layer 2. The manufacturing zone resides in the middle. It contains layer

3, which traditionally included only OT. With the convergence of OT and IT, it

now encompasses both OT and IT, including those components that manage the

manufacturing process as a whole, e.g., the MES. At the top there is the enterprise

zone, which comprises layers 4 and 5. Such layers primarily provide IT-oriented

functionalities and facilities, such as web servers, email servers, databases, and

the ERP system, to name a few. Recently, industrial network implementations

have evolved into multi-domain infrastructures, with some software components

being deployed o↵-premises within the so-called cloud-to-edge continuum. In this

context, the cloud-to-edge continuum refers to a distributed computing paradigm

that spans from edge computing resources managed at the digital factory level, to

Multi-access Edge Computing (MEC) resources deployed in close proximity to the

digital factory but managed by telecommunication operators, and extending to

data centers managed by cloud providers. Consequently, in the current landscape,

the enterprise zone of the Purdue model now encompasses multiple heterogeneous

domains, even potentially owned by di↵erent actors.

When Industry 4.0 started to emerge, Reference Architecture Model Industrie

4.0 (RAMI 4.0) aimed to align the Purdue model with modern industrial environ-

ments [3]. Compared to other emerging standards that mainly focused on how

smart appliances and related data are managed, such as Industrial Internet Refer-

ence Architecture (IIRA) [4], RAMI 4.0 was a better fit for the larger scenario of

the smart value chain, also properly handling the development, deployment, and

maintenance of smart appliances [5]. In particular, RAMI 4.0 provides functional

descriptions per component that illustrate how the (smart) product life cycle can

interact cross-layer with any other component of the factory. This ranges from

field and control devices to stations, work centers, and the enterprise as a whole.

In other words, RAMI 4.0 envisions a more open architecture in comparison with

the Purdue model, characterized by partial deperimetration, i.e., even manufac-

turing zone borders tend to be blurred, thus allowing industrial components and

controllers to interact more freely. The ultimate goal is to maximize the flexibility

of the system by integrating the factory environment with the external world.

RAMI 4.0 greatly fostered the discussion among academic and industrial re-
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searchers on the proper architecture on which Industry 4.0 applications should

be based, with the notable positive e↵ect of disseminating the broader concept of

smart factory. However, its actual implementation is still far from being achieved

(if it ever will be), since this high-level model has not always reflected actual

requirements and capabilities of real-world industrial environments. In particu-

lar, the envisioned cross-layer interactions among factory components have been

shown to be very complex to develop and manage. In fact, most industrial ma-

chines are configured to receive control messages from the control room (by the

MES above all) and send back some information about their current state (e.g.,

number of crafted and faulty products). Sporadically, industrial machines also ex-

change messages with each other, e.g., machines in the same production line share

information about the rate of crafted products. In any case, once industrial ma-

chines and companion control servers are deployed, their dynamic reconfiguration

is not possible, e.g., requiring to stop production to reroute messages towards a

di↵erent control server.

2.1.1 Digital Twins for Industry 4.0

Recently, the role of DTs has been re-analyzed and re-shaped both by the scien-

tific and the industrial communities. The primary objective is to clearly identify

their definitions and responsibilities, as well as to identify new challenges and op-

portunities among di↵erent application domains, in particular in relation to IoT

and IIoT [6]–[9]. A shared reference architecture [10] has been proposed in the

context of the Industrial Internet of Things Consortium, taking into account DT

relationships, composition, and main services (e.g., prediction, maintenance, and

safety). Such architecture also covers di↵erent production stages and use cases,

in particular related to manufacturing [11] and product design [12]. DTs are in-

creasingly being considered a part of CPS architectures, realising twin models of

assets and machines [13], the computational modules of the physical components

of CPSs [14], or within the RAMI 4.0 ecosystem as an important pattern for the

manufacturing process and the administration shell [15].

DTs have already been proposed and investigated in many di↵erent industrial

applications and contexts, such as job scheduling [16], resource management [17],
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network tra�c prediction [18], anomaly detection [19], zero defect manufacturing

[20], and structural health monitoring [21]. Since DTs had proved to be e↵ective

in a wide range of use cases, they became a critically important element of the

smart factory infrastructure. However, the deployment of DTs is everything but

trivial. In this regard, it is worth mentioning the heterogeneity of involved devices,

ranging from simple vibration sensors to complex drilling/assembly tools, and the

adoption of emerging standards for securing the OT domain, such as IEC 62443

for cybersecurity that pushes for network segregation [22].

2.2 Coalition Tactical Operations

Nowadays, ever-increasing processing and storage resources are available at all

echelons, from operations centers to tactical units. However, tactical edge com-

munications still su↵er from scarce network resources. In fact, Tactical Networks

(TNs) are wireless and ad-hoc, implying unreliable connectivity, limited band-

width, and variable latency [23]. The absence of a fixed infrastructure, as in the

civilian environment, implies that the nodes must implement routing functional-

ities to enable communication capabilities, and therefore the loss of connectivity

of one node may a↵ect connectivity to other nodes. Also, the hostility of the en-

vironment in which they must operate implies reduced performance due to high

churn rate, Radio Frequency (RF) interferences, and poor connectivity. It is also

necessary to take into account attacks from enemies that might cause network

partitions as well as the movement of air, sea, and land troops a↵ecting the topol-

ogy of the network continuously. Additionally, modern military missions typically

involve coalition operations, where heterogeneous mission partners (even belong-

ing to di↵erent nations) cooperate in the field. As a result, the distribution of

mission-critical information is more complicated than ever. On the one hand, the

dynamic nature of the tactical environment frequently disrupts communications.

On the other hand, individual resource sharing policies prevent mission partners

from taking full advantage of available resources in situ.

Coalition tactical operations typically involve several operational domains, po-

tentially commanded by distinct Tactical Operations Centers (TOCs) belonging

to di↵erent nations [24]. As a result, the battlefield comprises a plethora of het-
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erogeneous assets that need to communicate mission-critical information to each

other as close as possible to real time to enable Situation Awareness (SA) dis-

semination [25], which is crucial to improve decision making. Such information

distribution should adhere to the Need-To-Know (NTK) principle [26] that al-

lows the sharing of sensitive information directly at the tactical edge, without

having to resort to the traditional path of going up one command hierarchy be-

fore coming down a second hierarchy. Another crucial aspect of coalition tactical

operations concerns the dissimilarity of computational capabilities (i.e., network,

storage, and processing [27]) between the decision-making level (i.e., TOCs) and

the tactical operational level (i.e., mobile dismounted units deployed in the tac-

tical field). In fact, the former benefits from abundant resources, whereas the

latter cannot take resources for granted. At the tactical operational level, Tac-

tical Edge Networks (TENs) interconnect mobile units in self-organizing wireless

multi-hop networks, enabling communications on the battlefield without relying

on preexisting network infrastructures. Such interconnected units di↵er greatly

in terms of computational capabilities, ranging from resource-rich aircraft, bat-

tleships, and vehicles to resource-constrained dismounted soldiers and Unmanned

Aerial Vehicles (UAVs) [28].

Nations are starting to adopt cloud environments in military contexts. For

example, in January 2021 the NATO has selected the company Thales to provide

a defense cloud solution. This cloud solution should be deployable from the head-

quarters level down to a forward base level [29]. The tactical edge level, primarily

consisting of dismounted soldiers and vehicles on the move, is not integrated into

this cloud environment. Similarily, in September 2021, the European Commission

started a project for a ”Military multi-domain operations cloud.” In the military

context, a cloud is still a pool of general-purpose resources available on-demand to

run services. This pool is also a location-agnostic environment where services can

transparently migrate across available resources. However, either connectivity to

the cloud or connectivity inside the cloud (or both) relies on TNs. In contrast to

a general cloud, this kind of cloud is called a tactical cloud. For a tactical cloud,

two scenarios need to be discussed. The first scenario deals with a tactical cloud

in the mission infrastructure. Such a cloud consists of a small data center at the

compound level or on a ship. As a result, the connectivity between cloud nodes is
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fast and reliable. Connectivity outside the tactical cloud is instead limited. The

second scenario regards a tactical cloud spanning di↵erent platforms on the move,

e.g., vehicles, ships, or aircraft moving in the theater. In this case, connectiv-

ity outside (cloud-to-cloud/other network) and inside the tactical cloud relies on

TNs. Figure 2.2 illustrates cloud-to-cloud and cloud-to-edge communications in a

federated cloud infrastructure between two nations. In particular, partner clouds

are deployed at headquarters and at the level of platforms (e.g., vehicles, ships,

and aircraft), whereas dismounted soldiers connect as edge nodes. In this context,

instead, the cloud-to-edge continuum includes resources from the tactical edge to

the headquarters, with tactical clouds potentially on the move and belonging to

di↵erent nations.

2.2.1 Digital Twins for Coalition Tactical Operations

In the military field, DTs have primarily been investigated in the aviation and

aerospace sectors [30]. Although examples in the literature are limited, DTs have

proven e↵ective in supporting the life cycle of costly, di�cult, and risky products,

such as rocket engines. In this context, DTs are typically viewed as passive entities.

Glaessgen et al. [31], outlining the role of the DT paradigm for future National

Aeronautics and Space Administration (NASA) and U.S. Air Force vehicles, de-

fined DTs as “an integrated multiphysics, multiscale, probabilistic simulation of

an as-built vehicle or system that uses the best available physical models, sensor

updates, fleet history, etc., to mirror the life of its corresponding flying twin.”

From this point of view, it is evident that DTs are not intended, for example, to

send commands to their physical counterparts.

In coalition tactical operations, the potential role of DTs remains largely un-

explored. Before delving into the issues that DTs could address, it is crucial to

highlight the specific nuances of this scenario that might initially hinder their e↵ec-

tiveness. Connectivity issues at the tactical edge could render real-time operations

almost impossible, especially when dealing with large volumes of data. A poten-

tial countermeasure could involve relocating the DT as close as possible to its PT,

minimizing the raw data flowing over the network. Although computational re-

sources are not as scarce as network ones, the potential demands of heavy models
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might not be met at the tactical edge. Another challenge is the transient availabil-

ity of computational resources, with priorities and external factors (e.g., enemy

attacks) dictating their fluctuation. Lastly, DTs would likely become targets of

cyber-security attacks. This becomes even more evident when DTs are envisioned

as active entities capable of directly influencing their counterparts.

In a federated cloud infrastructure, DTs would be services within tactical

clouds. Within this heterogeneous domain, DTs could play a crucial role in fed-

erating underlying assets, serving as gateways for one nation to expose its assets

to others in accordance with the owner’s policies. Additionally, as DTs build vir-

tual representations of the objects they are entangled with, they would enhance

the observability, manageability, and accountability of the underlying assets. This

is in addition to those tasks where DTs have already demonstrated e↵ectiveness,

such as predictive maintenance, anomaly detection, and resource management.

2.3 Chapter Summary

This chapter discussed two scenarios that incorporate the concept of the cloud-

to-edge continuum in their modern settings. These scenarios are Industry 4.0 and

coalition tactical operations. Each scenario was thoroughly described, followed by

an analysis of the potential roles that DTs could fulfill.

Section 2.1 outlined the logical structure (i.e., shoop floor, plan, and enterprise

levels), along with its most common network implementation (i.e., Purdue model),

of modern industrial scenarios. The identified challenges range from heterogeneity

to security. In this context, DTs have already proven to be e↵ective in various use

cases, such as job scheduling, anomaly detection, and zero defect manufacturing.

Section 2.2 explored the unique peculiarities of coalition tactical operations,

such as scarce and transient resources, potential attacks by enemies, and the pres-

ence of heterogeneous operational domains. In this demanding scenario, DTs could

prove beneficial not only at the federation level, but also in enhancing the observ-

ability, manageability, and accountability of the underlying assets.
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Chapter 3

Entanglement-Aware Digital

Twin Ecosystem: Requirements

To meet the need for cost-e↵ective development and deployment, big tech compa-

nies have started to provide platforms to create and operate DTs, e.g. Microsoft

Azure, Amazon Web Services (AWS), and Eclipse Ditto. Although they are fea-

ture rich and production grade platforms [32], they intend DTs as centralized,

passive entities based on JavaScript Object Notation (JSON) files instead of an

ecosystem of entities that coexist with an orchestration environment.

To bridge this gap, this chapter delineates the requirements for an entanglement-

aware DT ecosystem. In this work, the word ”ecosystem” encompasses both DTs

and the orchestration middleware responsible for their e↵ective management in the

cloud-to-edge continuum. Figure 3.1 provides a schematic representation of the

ecosystem. Each identified requirement is approached in three steps: (i) defini-

tion, (ii) exploration of how DTs and the middleware may fulfill the requirement,

and (iii) examination of the limitations of existing platforms in supporting the

requirement. Additionally, related work is presented throughout the discussion

for each requirement, with an analysis of the gaps that need to be bridged in

existing platforms. The identified requirements are cloud-to-edge mobility (see

Section 3.1), variable load resilience (see Section 3.2), entanglement awareness

(see Section 3.3), life cycle (see Section 3.4), declarative application description

(see Section 3.5), and accountability (see Section 3.6). Lastly, Section 3.7 provides
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a summary of the chapter.

The novelty of this chapter lies in the identification of the requirements for an

entanglement-aware DT ecosystem. The discussion of such requirements makes

it clear why they are essential for such an ecosystem and where the examined

platforms fall short in supporting them. A key takeaway is that none of the

examined platforms supports all the identified requirements, emphasizing the need

for a tailored ecosystem.

3.1 Cloud-to-Edge Mobility

Definition: A mobility-capable DT ecosystem supports mobility along the cloud-

to-edge continuum and allows individual containerized DTs to be transparently

migrated to the hosting domains that best fit the application constraints.

Computing and communication resources can be owned by di↵erent providers

and located in di↵erent domains, such as edge on-premises (e.g., digital factories),

MEC (e.g., telco networks), or in the cloud (e.g., big tech companies). Each

solution has benefits and drawbacks: public clouds o↵er lower investment costs but

less predictable performance w.r.t. edge solutions, whereas edge solutions provide

tenants with full control and likely the highest performance in exchange for higher

maintenance costs [33]–[36]. The capability of transparently moving DTs along the

cloud-to-edge continuum is crucial to fulfilling entanglement requirements. A DT

can be dynamically (re)deployed to the location that best suits its needs, either

closer to its physical counterpart or to where more resources are available.

Digital Twins: Nowadays, containerization is the key to e�ciently supporting

mobility. As such, DTs should be packaged with all the necessary configuration

files, libraries, and dependencies to run across di↵erent environments reliably. This

approach leads to conceive DTs as containerized microservices, using specific APIs

to communicate with their peers, applications, objects, and orchestration services.

Once containerized, DTs can be easily deployed on any hosting platform (thereby

supporting mobility) and replicated to meet demand. Containerization is also

likely to facilitate their adoption, promoting automation and standardization [37]–

[40].
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Middleware: The orchestration middleware migrates DT containers, optimizes

the use of resources, replicates containers under excessive load (see Section 3.2),

while maintaining them monitored and healthy. More specifically, it should sup-

port the following: (i) DT mobility : if required, a DT should be o✏oaded from

the current location and moved to a new location; (ii) DT service continuity : if

a DT moves to another location, the application associated with that DT should

continue to run properly; (iii) mobility of the PT state: historical data regarding

the PT state should support mobility and possibly be migrated along with the

DT. Relocation procedures should minimize total migration time [41]–[43].

Limitations of existing platforms: Mobility is not supported on available

commercial platforms. In particular, Azure and AWS model DTs as JSON en-

tities capable of receiving data from PTs via a set of connectors. As such, all

DTs reside on cloud nodes and cannot be moved to di↵erent hosting domains or

even change tenant. Eclipse Ditto, instead, provides a library for writing DTs

that could potentially help developers support mobility (i.e., Ditto DTs could be

containerized), but there is no native support for such a feature and everything is

delegated to the developers.

3.2 Variable Load Resilience

Definition: A DT ecosystem resilient to variable loads supports DT replication,

admission control, and resource allocation mechanisms for incoming tasks, e.g., an

application requesting to observe an object.

Applications (especially those rooted in low-latency high-bandwidth scenarios)

might impose variable loads, thus possibly requiring a variable amount of resources

over time. Two key factors drive the overall load on a distributed system such as

an ecosystem of DTs: (i) the number of requests to be accomplished, and (ii)

the complexity of those requests. To deal with peaks in the number of requests,

replicas of a DT may be spawned, limiting their number according to the available

resources (admission control). Concerning requests complexity, a DT model may

require non-negligible resources. For example, a deployment domain without a suf-

ficient number of GPUs or CPUs may negatively impact the responsiveness of a DT
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model or even completely prevent it from working. Because of this, mechanisms

for allocating resources when and where they are needed should be supported (re-

source allocation). As for cloud-to-edge mobility (see Section 3.1), the capability to

be resilient against variable loads plays a significant role in meeting entanglement

requirements. For example, a DT that lacks the necessary resources is unlikely

to remain consistently entangled over time. It is important to note that resource

allocation cannot only be predetermined (fire-and-forget strategy). In fact, a DT

whose resources are not dynamically scaled up and down to accommodate fluctu-

ating volumes of incoming requests would also likely become disentangled.

Digital Twins: Handling variable loads implies horizontal replication of DTs.

Replicas of the same DT, all associated with the same PT, should behave consis-

tently, i.e., they should represent the same status and behavior of the PT. How-

ever, multiple replicas requiring independent synchronization inevitably increase

the load on the PT. To avoid this e↵ect, replicas may be organized in a hierarchical

fashion. A primary DT directly synchronizes with the PT while it interacts with

other secondary DTs, which do not interact directly with the PT. This scheme has

the advantage of a centralized implementation for the primary DT, but introduces

a delay in updating the secondary DTs [44], [45].

Middleware: Almasan et al. [46] recently discussed how networks of DTs can

be integrated with two typical mechanisms of distributed systems: admission con-

trol and resource allocation. The admission control system maintains the network

of DTs performance and availability when some DTs experience high load. When

admission control is enabled, it sorts requests by priority, giving preference to

higher priority operations. In particular, a tenant experiencing a high load should

not degrade the performance or availability of other tenants running on the same

host. In case of a positive decision from the admission control, the resource allo-

cation mechanism verifies and, if necessary, adjusts the resources requested (see

Section 3.5) according to those which are available.

Limitations of existing platforms: Microsoft Azure and AWS support some

form of replication. Specifically, the data structures representing DTs are updated
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via serverless functions running in the cloud that can be replicated and thus sup-

port variable loads. However, the actual concept of a DT replica, intended as

an active component, does not exist. On the contrary, a DT implemented with

Eclipse Ditto could potentially be containerized and replicated. However, there is

no native support for this feature.

3.3 Entanglement Awareness

Definition: An entanglement-aware DT ecosystem exposes the quality of entan-

glement and is capable of actions aimed at safeguarding the constraints defined by

applications.

In a practical application, engineering a DT that exactly reflects the PT is

di�cult for a number of reasons. Nevertheless, applications are often designed

and implemented in light of specific assumptions, such as the DT replies in less

than 100 ms, or the PT sends updates every 200 ms [16]. Because of this, providing

applications with a metric describing how well the DT is rendering its PT w.r.t.

the expected performance is key. Recent works [47], [48] proposed approaches to

quantify the quality of entanglement taking into account both the freshness of the

data collected from the PT and the ratio between the amount of collected and

required data.

Digital Twins: The need for independent communications, possibly using dif-

ferent protocols and timings, to (i) communicate with the physical counterpart(s),

(ii) communicate with applications, and (iii) exchange commands, configurations,

and metrics with the orchestration middleware calls for a modular internal ar-

chitecture. In this regard, we conceive DTs as multi-component, multi-container

entities, supposed to be pluggable and reconfigurable at runtime. Isolation and

extensibility can be supported by making use of micro-kernel designs (at the com-

ponent level) and subcontainers associated with di↵erent scheduling priorities and

resources (at the container level) [49].

Middleware: DTs providing well-defined entanglement interfaces enable the or-

chestration middleware to perceive the ecosystem and plan actions to reach the
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service levels required by the applications. Thus, the middleware should be aware

of the communication interfaces provided by DTs and use them to collect contex-

tual data, analyze them w.r.t. application constraints, and take actions accord-

ingly. For example, the middleware might improve the quality of entanglement of

a DT by reconfiguring its communication protocols, assigning to it more resources

for speeding up its internal model, spawning a replica, or migrating it closer to its

PT.

Limitations of existing platforms: Commercial platforms do not embed any

form of entanglement support. In fact, they only provide connectors to receive data

from PTs and store them as JSON data without providing any further assistance.

Developers can build entanglement-aware functionalities, for example, by enriching

PT data with timestamps, but without relying on any systematic support.

3.4 Life Cycle

Definition: A DT ecosystem should be fully aware of the cyber-physical nature of

the DTs (compared to general purpose containerized software) and should support

their complete life cycle: deployment, entanglement, updates (for model augmen-

tation), and reconfiguration (for enforcing application constraints).

Conceiving DTs as an orchestrated ecosystem acting as a medium for cyber-

physical applications implies several changes w.r.t. plain microservices. Firstly,

DTs should support a runtime environment (i.e., expose contextual metrics, receive

commands, etc.) and enforce adaptation. Indeed, they should support a synergic

decision making process in which decisions at the orchestration level are refined

at the DT level and viceversa. Secondly, the orchestration middleware should be

aware of the internal status of the DTs (i.e., unbound, bound, entangled, disen-

tangled, etc.) and support their life cycle [50]. Finally, due to a possibly large

number of DTs under management, the orchestration middleware should minimize

human interventions and promote the automation of frequent operations, such as

updates and reconfigurations [51].
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Digital Twins: Containerized DTs should be reliable and dependable compo-

nents preventing catastrophic failures. As such, they should adopt modular designs

that allow internal modules and communication interfaces to work independently.

For example, separate interfaces can be used for communicating with the physical,

digital, and control (i.e. the middleware) layers independently. Other modules can

be used for managing the DT model, augmentation functions, the storage of the

PT history, and the entanglement. Furthermore, PTs and applications might re-

ceive updates over time due to software/security issues or changing requirements.

As such, DTs should support updates (via the control interface) to reflect those

changes (e.g., supporting a new network protocol introduced in the PT). Finally,

since DTs might be subjected to changing operating conditions, they should sup-

port dynamic reconfigurations (via the control interface).

Middleware: The orchestration middleware cannot be a standard orchestration

system (i.e., Kubernetes) but, instead, it requires specific features that account

for this scenario. As such, it should receive data and send commands to/from

the control interfaces of DTs, and be aware of the network topology, resources,

configurations, and application constraints. In this manner, it can compare the

status of the DT ecosystem with the application requirements, possibly planning

adaptive actions.

Limitations of existing platforms: None of the available commercial plat-

forms support these features. In fact, Microsoft Azure and AWS conceive DTs

as centralized passive entities that do not send/receive data and commands, and

do not require reconfigurations and updates. It would be possible to build con-

tainerized DTs using Eclipse Ditto, but without any systematic support from the

library.

3.5 Declarative Application Description

Definition: A DT ecosystem that supports application descriptions provides a

declarative Domain Specific Language (DSL) for describing cyber-physical appli-

cations, thus enabling a clear separation of concerns between development and
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operations.

DSLs are alternatives to general purpose languages (e.g., Java, Python, etc.).

While the latter tend to be more complete, they can be time-consuming when

performing domain-specific actions. A DSL reduces these issues with a simpler

grammar that lends itself to the specific application domain. Developers can adopt

a DSL to describe applications in terms of DTs, PTs, resources, constraints, etc.

For example, the description of an application that requires five DTs deployed on

edge nodes and associated to specific PTs, supporting replication, requiring one

GPU each, and providing updates every 150 ms. In addition, they can o✏oad

complexity from the design and development of the application core by defining

complex objects, such as composite DTs or pipelines in a human-readable fash-

ion. For example, instead of coding a function that computes the average power

consumption of a set of industrial robots within a DT (which implies additional

coding, testing, and integration activities), a DSL configuration file could be used

to describe the need to deploy an additional DT dedicated to receiving values and

computing their average.

Digital Twins: A cyber-physical application is a comprehensive construct that

unifies DTs and their PTs. Fundamentally, a cyber-physical application must con-

tain at least one physical entity and one digital entity. Each PT has a unique

identifier and is associated with metadata about the properties of application in-

terest. Likewise, each DT has its own unique identifier, a source for deployment

(e.g., the container image to be used), and a type indicating if it is simple or com-

posed. Each DT is associated with one or more objects, carries specific deployment

requirements, and provides details about its own deployment specifications.

Regarding composition, DTs should provide APIs and communication schemes

for managing other DTs as if they were PTs in a hierarchical fashion. Each change

in one DT that is part of a composition scheme (i.e., an observed DT) is propagated

towards the upper levels of the composition scheme. The communication scheme

to be used is strictly tied to the quality of representation expected by applications

because keeping a composition of DTs highly entangled might require significant

networking resources, possibly disrupting other services. To save bandwidth in

case the composition of DTs is not observed (i.e., used) by applications, DTs

25



might choose not to propagate updates coming from PTs to upper layers [52].

Middleware: The orchestration middleware should be able to parse DSL de-

scriptions and enact the required actions during both deployment and operations.

Firstly, during deployment, the orchestration middleware should fetch DTs and

deploy them according to the specified resources (e.g., memory, disk, number of

CPUs or GPUs, connectivity, etc.), and constraints (e.g., entanglement, mobility

boundaries, etc.). Secondly, as described above in this section, during operations,

the orchestration middleware should monitor DT metrics and plan actions aimed

at safeguarding application constraints.

Limitations of existing platforms: While Eclipse Ditto and AWS do not o↵er

any DSL, Microsoft Azure provides users with the ability to define custom DTs in

self-defined terms. This capability is provided through user-provided models and

represented in the Digital Twin Definition Language (DTDL) [53]. DTDL models

have names and contain elements, such as properties, telemetry, and relationships,

that describe what these types of entity do. However, given the passive nature of

Azure DTs, DTDL can only be used to describe the DT model, thus not shaping

the whole life cycle of a DT.

3.6 Accountability

Definition: An accountable DT ecosystem gathers information, analyzes it, and

takes appropriate measures based on actual data. It is also capable of producing

audit trails that can be inspected when problems occur.

A DT ecosystem integrates loosely coupled DTs into one cohesive system sup-

porting applications expected to provide both functionally correct results and ac-

ceptable performance levels in accordance with application constraints (e.g., qual-

ity of entanglement). However, identifying the source of a failure in a DT system

can be di�cult: DTs can be complex, having many execution branches and in-

voking services from other DTs, their PTs, or even the execution node/runtime

environment [54], [55].
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Digital Twins: Key aspects of accountability at the DT level are: (i) tracing

and monitoring : DTs should expose metrics and tracing information that allow

the orchestration middleware to monitor their status (including the status of their

host nodes) and performance. In this context, DTs are also required to main-

tain the status of their associated PTs, at least those associated with relevant

events/decisions/actions; (ii) logging and auditing : DTs should log their decisions

and actions (together with associated events and data). These logs should be

stored in a trusted location to enable further analytics.

Middleware: The orchestration middleware should periodically collect, aggre-

gate, and analyze DT logs, detect di↵erent types of faults, and support manage-

ment algorithms for handling them whenever possible. In practical terms, ac-

countability can be reached by keeping track of the ownership of DTs and PTs,

monitoring their status and metrics, and using tracing techniques to identify which

DTs are involved in each event, decision, or action.

Limitations of existing platforms: Microsoft Azure and AWS are cloud ser-

vices and thus accountable by design (trusted logging is supported at the platform

level). However, they do not take decisions and do not enforce actions: they receive

data from tailored connectors and store them. On the contrary, a DT ecosystem

should be able of taking actions (e.g., replicating, migrating, and reconfiguring

DTs) for satisfying application constraints and thus should rely on an accountable

decision-making process.

3.7 Chapter Summary

This chapter discussed the identified requirements for an entanglement-aware DT

ecosystem, i.e., cloud-to-edge mobility, variable load resilience, entanglement aware-

ness, life cycle, declarative application description, and accountability. The key

takeaways are the following.

DTs should be conceived as containerized entities. This facilitates mobility

along the cloud-to-edge continuum (see Section 3.1) and variable load resilience

(see Section 3.2). For example, a containerized DT can be easily migrated to a
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di↵erent location to optimize resource allocation or a new replica spawned to deal

with tra�c surges.

What primarily sets DTs apart from traditional software components is their

cyber-physical nature, with entanglement being the prominent characteristic (re-

fer to Section 3.3). Consequently, DTs should provide information about their

entanglement (as discussed in Section 3.4), and the middleware should e↵ectively

consume this information. For instance, a DT might lose its entanglement due

to slow communication links with the PT or insu�cient resources. In the former

case, the middleware might facilitate migration to a di↵erent location, requiring

cloud-to-edge mobility. In the latter, it could scale up resources, thus necessitating

variable load resilience.

The need for a declarative application description arises from the cyber-physical

nature of DTs. Section 3.5 introduced the concept of a cyber-physical application,

which serves as a comprehensive construct for defining the relationship between

DTs and PTs within an application context.

In conclusion, Section 3.6 highlighted the significance of accountability. Given

the potential for various issues to arise, it is crucial to meticulously monitor events

and the corresponding measures taken to address them, enabling comprehensive

analysis.
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Chapter 4

Entanglement-Aware Digital

Twin Ecosystem: Foundational

Technologies

This chapter delves into the foundational technologies for building an entanglement-

aware DT ecosystem that meets the requirements delineated in Chapter 3. These

technologies are SDN (see Section 4.1), container orchestration (see Section 4.2),

and chaos engineering (see Section 4.3). Each technology is first discussed from

an historical point of view, thus delineating its trajectory and current state of

the art. While a technology may be prevalent in one domain, it might not hold

the same status in another domain, and in some cases, it may even be considered

impractical. If so, an in-depth discussion that debunks the misconception follows.

In conclusion, Section 4.4 provides a summary of the chapter.

The reasons why these technologies are foundational for the entanglement-

aware DT ecosystem are as follows. First, SDN provides high-level abstractions

that make networks programmable, enabling fine-grained network management.

This feature is critical to optimize network performance and flexibility. Second,

the concept of DTs as containerized entities, as envisioned in the requirements out-

lined in Chapter 3, requires an underlying container orchestration system to ensure

e�cient management and deployment of these entities. The middleware plays a key

role in this architecture, logically employing both SDN and container orchestra-
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tion technologies. By leveraging the abstractions o↵ered by these technologies, the

middleware can e↵ectively orchestrate both networking and computing resources.

This orchestration is carried out with the overarching objective of maintaining

the entanglement requirements over time. The entire ecosystem thus forms a dis-

tributed system, characterized by a complex network of interdependencies that

may not become fully apparent until they are encountered in the production en-

vironment. It is in this context that certain system failures can only be detected

and, more importantly, thoroughly understood. This is where chaos engineering

comes in. Chaos engineering provides a systematic approach to identifying vul-

nerabilities and enhancing the resilience of the system, thereby playing a crucial

role in the continuous improvement and robustness of the entanglement-aware DT

ecosystem.

The original contributions of this chapter primarily lie in identifying the founda-

tional technologies for building an entanglement-aware DT ecosystem and debunk-

ing some common misconceptions about their adoption in the scenarios identified

in Chapter 2. The first misconception pertains to SDN, which traditionally focused

on fixed wired environments but has now extended its principles to wireless ad hoc

scenarios. Section 4.1.4 o↵ers an in-depth discussion of software-defined wireless ad

hoc networks, commonly found in TENs. In the domain of container orchestration

systems, Kubernetes stands as the industry standard. However, Kubernetes relies

on assumptions that might no longer be valid at the tactical edge. Section 4.2.3

presents an empirical study on the performance of various Kubernetes distribu-

tions under challenging network conditions. Finally, chaos engineering originated

in the realm of IT systems. Section 4.3.2 explores the application of its principles

in the OT domain, thus making it actionable for resilience assessment of DTs in

modern industrial settings.

4.1 Software-Defined Networking

4.1.1 History

In the 1990s, active networking emerged as a set of strategies to overcome relevant

network issues, such as network ossification, which is due to vertically-integrated
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purpose-built Network Devices (NDs) consisting of tightly coupled hardware and

proprietary software, and proliferation of middleboxes (e.g., firewalls, network ad-

dress translators, and load balancers). Active networks aimed to go beyond tra-

ditional packet networks by envisioning packets carrying software executed by

routers/switches for manipulating packets’ content.

According to [56], the metaphor of active networking was pursued through

two distinct approaches, either programmable switches or capsules. The former

relies on an out-of-band channel for management and an in-band channel for data

transfer. Users inject programs into routers/switches through the out-of-band

channel, and, in turn, routers/switches inspect data packet headers and deliver

packets to programs accordingly. The latter conceives every packet (or capsule)

as a piece of software. Such a so-called capsule, along its path, may pass through

several routers/switches, which execute its content in an isolated environment. On

the one hand, active networks o↵ered several significant intellectual contributions

towards programmable networks. On the other hand, as [57] points out, since

the active networking movement missed the ”killer” application justifying such a

network redesign, active networks did not see widespread deployment.

If compared with active networks, subsequent research e↵orts adopted a more

pragmatic strategy. Instead of proposing radical paradigm shifts, e.g., programmable

switches and capsules, the networking research community focused on decoupling

the Forwarding Plane (FP) and Control Plane (CP), moving the control logic out-

side NDs, i.e., outside the core network. The FP forwards packets according to a

data structure called Forwarding Information Base (FIB), while the CP controls

the FP by updating the FIB through a device-specific interface. Developed at Stan-

ford in the mid-2000s, OpenFlow [58] is the most significant implementation of an

open interface between the CP and FP. The research task group behind OpenFlow

was interested in enabling researchers to perform experiments in their everyday

campus networks, given that researchers had no practical ways to test their ideas

in real-world scenarios. Exploiting a common set of features shared by Ether-

net routers and switches across di↵erent network equipment vendors, OpenFlow

provides a programmatic interface for manipulating the FIB. OpenFlow-enabled

routers/switches (henceforth defined as OpenFlow switches) associate an action

to each flow entry and establish a secure channel with a remote controller. Sim-
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Figure 4.1: Layering and fundamental abstractions.

ilar to a traditional operating system, such a controller abstracts the underlying

resources, i.e., NDs, and o↵ers network-wide abstractions to network applications,

which exploit such abstractions as building blocks to perform high-level network

control and management tasks.

4.1.2 Definition and Layering

While there is no agreement on a standard architecture design [59], [60], the SDN

paradigm mainly leads to a 3-tier network architecture (see Figure 4.1).

First, the control logic is removed from NDs, which become mere Forwarding

Elements (FEs) that make flow-based (rather than destination-based) forwarding

decisions, where a flow is defined by rules matching a set of packet header values.

Accordingly, the FP (see Figure 4.1-down), also called ”data plane”, consists of

wireless or wired interconnected NDs, available both in hardware (e.g., Arista 7150

Series [61], NoviSwitch 2000 Series, and Centec V350 Series [62]) and software

(e.g., Open vSwitch [63], BOFUSS [64]). To mitigate the network infrastructure

32



heterogeneity, the FP exposes its resources through abstraction models, such as

OpenFlow Switch Specification [65], Forwarding and Control Element Separation

(ForCES) [66], YANG [67], and Management Information Base for Simple Network

Management Protocol [68].

Then, the control logic is moved in an out-of-network software entity, i.e., the

SDN controller in charge of dictating the behavior of the entire network infrastruc-

ture. Thus, the CP (see Figure 4.1-center) abstracts the underlying network in-

frastructure and, based on its network-wide view, provides high-level abstractions

to network applications. In particular, the CP is a logically (but not necessarily

physically) centralized entity that comprises one or more SDN controllers.

Finally, software applications running on top of such a controller can program

the whole network. Consequently, the Management Plane (MP) (see Figure 4.1-

up) consists of network applications that dictate the network behavior, performing

sophisticated tasks, such as routing, load balancing, policy enforcement, mobility

management, tra�c shaping, and failure recovery, among others. In turn, the CP

is responsible for translating such high-level requests coming from the MP in low-

level instructions for the FP. Summing up, network applications dictate ”what to

do”, SDN controllers define ”how to do”, and NDs behave accordingly.

In addition, Southbound Interfaces (SIs) connect FP and CP by providing low-

level communication mechanisms to the SDN controller so that it can remotely

manage NDs in a vendor-agnostic fashion. Control-oriented SIs may be distin-

guished from configuration-oriented ones, where the former support the SDN con-

troller in controlling tra�c flows, while the latter in configuring NDs. Although

OpenFlow is the most widely adopted control-oriented SI, alternatives are ForCES

[69], Protocol-Oblivious Forwarding [70], OpenState [71], and OpFlex [72]. In-

stead, examples of configuration-oriented SIs are ForCES [69], Network Configura-

tion Protocol [73], Simple Network Management Protocol [74], and Open vSwitch

Database Management Protocol [75].

Eastbound Interfaces (EIs) enable controller-to-controller communications, while

Westbound Interfaces (WIs) link the SDN domain with traditional networks [76].

Examples of EIs are SDNi [77], Apache ZooKeeper [78], Advanced Message Queu-

ing Protocol [79], and WheelFS [80]. Instead, examples of WIs are Border Gateway

Protocol [81] and Path Computation Element Communication Protocol [82].
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Northbound Interfaces (NIs) connect CP and MP by providing high-level ser-

vices to network applications, easing network programmability. In contrast to SIs,

where OpenFlow represents a de facto standard, a widely accepted NI is still miss-

ing. Therefore, the portability of network applications across heterogeneous SDN

controllers is heavily limited. According to [59], [83], NIs range from ad hoc APIs,

RESTful APIs, and APIs based on programming languages (e.g., Frenetic [84],

Nettle [85], Procera [86], and Pyretic [87]).

By advocating for a clear FP and CP decoupling, SDN moves control logic away

from NDs to controllers. This leads to a logically centralized CP responsible for

monitoring, controlling, and configuring the FP. Control architectures, i.e., how

controllers interact with each other, may be categorized in centralized, distributed,

and federated (plus hybrid as a cross-category attribute). In addition, distributed

control architectures may be further specialized in flat (each controller acts as a

peer) and hierarchical (controllers are hierarchically organized). The rest of this

section discusses design patterns (see Figure 4.2 and Figure 4.3) of such control

architectures and provides notable examples of how well-known SDN controllers

fit this taxonomy.

4.1.3 Control Architecture

Centralized

As Figure 4.2a shows, a centralized control architecture consists of a single con-

troller responsible for every ND. Although a single controller represents the optimal

design choice in terms of simplicity, it intrinsically implies scalability and resiliency

issues [88]. Regarding scalability, the incoming requests may overwhelm the con-

troller as the network grows. In fact, when a packet goes through a ND without

matching any flow rule, the ND sends a flow request to the controller, which replies

with the generated flow rule. Therefore, centralized control architectures, where a

single controller takes over the flow setup process for the whole network, may easily

result in bottlenecks, additional delays, and thus limited network scalability. In

this regard, a workaround is the adoption of proactive strategies, which inject flow

rules into NDs in a proactive fashion, mitigating the controller load consequently.

About resiliency, a single controller represents a Single Point of Failure (SPoF),
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(a) A centralized control architecture. (b) A flat control architecture.

(c) A hierarchical control architecture. (d) A federated control architecture.

Figure 4.2: Control architectures for software-defined networks.

potentially breaking the network when NDs cannot serve incoming flows due to the

controller’s unreachability. Hybrid strategies (see Section 4.1.3) can overcome such

a lack of resiliency by (temporarily) falling back to traditional routing protocols

on NDs that cannot reach the controller.

Examples of controllers based on centralized control architectures are NOX

[89], Maestro [90], [91], Beacon [92], NOX-MT [93], Floodlight [94], POX [95],

Ryu [96], POF Controller [97], Meridian [98], and Rosemary [99].
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Figure 4.3: A hybrid centralized control architecture.

Distributed

To address the scalability and resiliency issues raised by centralized control archi-

tectures, the SDN community started to propose distributed control architectures

in which multiple controllers interact with each other to manage the network infras-

tructure. On the one hand, multiple controllers can improve overall performance

(by fairly sharing network load), resiliency (by avoiding a SPoF), and scalabil-

ity (by on-demand deploying additional controllers if necessary). On the other

hand, such controllers must accomplish coordination and synchronization tasks

to maintain a global and (eventually) consistent network-wide view [100]–[102].

In addition, distributed architectures make extremely challenging the controller

placement problem [103], which consists in optimizing the number of deployed

controllers and their placement in the network topology.

The taxonomy further distinguishes distributed control architectures in flat and

hierarchical. As Figure 4.2b shows, flat control architectures involve multiple con-

trollers managing non-overlapping subsets of NDs. Note that controllers based on

flat architectures interact with each other to share complete knowledge of the whole

network, while each controller directly manages only a subset of NDs. One of the

first published proposals designing a flat control architecture is HyperFlow [104],

which proposes multiple controllers sharing the same consistent network-wide view,

i.e., the state is fully available in each controller. HyperFlow is implemented as an

application running on top of NOX. Other examples of controllers based on flat
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control architectures are Onix [105], ONOS [106], and OpenDayLight [107].

As Figure 4.2c shows, hierarchical control architectures assume a multi-layer

CP. For example, Kandoo [108] proposes a two-layer hierarchical CP, where the

bottom layer consists of multiple Local Controllers (LCs) that do not communicate

with each other, while the top one comprises a single Root Controller (RC). LCs

hold local-domain network views and handle frequent and small (mice) flows, while

the RC takes over infrequent and huge (elephant) flows by taking advantage of its

network-wide view. Given that mice flows are more than elephant ones, LCs

substantially reduce the burden of the RC. Other examples of controllers based on

hierarchical control architectures are Orion [109], B4 [110], and Espresso [111].

In conclusion, it is worth stressing the main di↵erence between flat and hier-

archical control architectures. In flat control architectures, all controllers share

the same network-wide view ensuring optimal decision-making but leading to non-

trivial issues in guaranteeing state consistency. In hierarchical control architec-

tures, LCs, whose visibility is limited to a local network domain, provide regular

updates to RCs, which aggregate such information. Therefore, only RCs (i.e.,

a subset of controllers) hold such a network-wide view, whereas LCs may make

suboptimal decisions.

Federated

As Figure 4.2d shows, a federated control architecture assumes loosely coupled con-

trollers (managing non-overlapping network domains) that do not share a global

network-wide view. Instead, each controller shares a summary of its own state (i.e.,

typically a high-level abstraction of its local network view) or requests specific in-

formation to remote controllers for enabling end-to-end services. Since controllers

do not share the whole picture of what they know, federated control architectures

naturally fit inter-organizational scenarios, in contrast to distributed architectures

that best suit intra-organizational ones. Note that the absence of a global network-

wide view reduces complexity since there are no consistency strategies in place,

decreases control network tra�c because controllers do not share their whole state,

and improves privacy thanks to the sovereignty of controllers over information

sharing. An example of federated control architecture is DISCO [112].
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Hybrid

The peculiarity of hybrid control architectures is to maintain a certain degree of

control logic within NDs, as Figure 4.3 shows. Therefore, such hybrid solutions do

not strictly follow the SDN canonical approach, which advocates for NDs acting

as mere FEs. In this taxonomy, ”hybrid” is an orthogonal attribute to centralized,

flat, hierarchical, and federated.

As mentioned in Section 4.1.3, a typical scenario involving hybrid control archi-

tectures is when NDs reenable their local control logic (e.g., by falling back to tra-

ditional routing protocols) to face emergency circumstances (e.g., the controller’s

unreachability). More radical hybrid approaches take advantage of hybridization

not only when unexpected events occur but on a regular basis, e.g., the controller

computes forwarding weights and disseminates them to NDs that take into ac-

count such weights but make (semi-)autonomous decisions. Another example is

the case of in-network processing, where NDs locally process network tra�c by

dropping, delaying, or aggregating packets. In particular, in-network processing,

also known as in-network computing, has been proposed to support the execution

on networking devices of software modules that typically run on hosts [113], [114].

Let us note that hybridization positively impacts not only on resiliency, e.g.,

NDs keep operating successfully despite controller failures, but also on scalability,

e.g., in-network processing allows reducing the packets traversing the network.

4.1.4 Software-Defined Wireless Ad Hoc Networks

Figure 4.4 schematically depicts how centralized, flat, and hierarchical control ar-

chitectures fit resiliency, scalability, and simplicity requirements. The figure omits

federated control architectures because they may be considered as compositions

of di↵erent architectures, where each federated domain may implement a distinct

design pattern. In this taxonomy, hybridization is a cross-category attribute, and

thus it can be applied to each control architecture. For example, centralized con-

trol architectures best fit simplicity with little resiliency and scalabilty. However,

by adopting an hybrid strategy, centralized control architectures can improve re-

siliency (e.g., fallback routing mechanisms) as well as scalability (e.g., in-network

processing) at the cost of simplicity. Similar considerations can be done for hi-
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Figure 4.4: Correlation between design patterns and complexity.

erarchical and flat architectures: hybrid strategies provide better resiliency or

scalability, while increasing complexity.

Table 4.1 lists the surveyed literature by outlining the role of hybridization

in designing control architectures for Software-Defined Wireless Sensor Networks

(SDWSNs), Software-DefinedWireless Mesh Networks (SDWMNs), Software-Defined

Mobile Ad hoc Networks (SDMANs), Software-Defined Vehicular Networks (SD-

VNs), and Software-Defined Flying Networks (SDFNs). For the sake of clarity,

Figure 4.5 depicts a slice of Table 4.1 graphically, i.e., the role of hybridization in

correlation with the mobility degree.

In particular, the figure shows that wireless ad hoc scenarios involving rela-

tively stable NDs, such as SDWSNs and SDWMNs, do not recur to hybridization

extensively. In this regard, it is worth remarking that the FP of SDWSNs includes

primarily static sensor nodes. Moreover, the FP of SDWMNs usually consists of

only mesh routers (i.e., static elements) [120]–[123], while mesh clients (i.e., dy-

namic elements) are included rarely [124]. Since relatively stable network topolo-

gies usually prevent the need to maintain control logic outside the controller(s),

the role of hybridization is rather marginal. A notable exception regards SDWSNs,

where [115], [118] exploit hybrid architectures to enable in-network processing for
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Table 4.1: The role of hybridization in software-defined wireless ad hoc networks.

SDN Proposal Architecture Network Devices Network Topology Hybridization Strategy Objective

SDWSN

[115] Centralized Sensors Relatively stable In-network processing Scalability
[116] Centralized Sensors Relatively stable Fallback routing mechanism Resiliency
[117] Flat Sensors Relatively stable - -
[118] Flat Sensors Relatively stable In-network processing Scalability
[119] Hierarchical Sensors Relatively stable - -

SDWMN

[120] Centralized Mesh routers Relatively stable - -
[121] Centralized Mesh routers Relatively stable Fallback routing mechanism Resiliency
[122] Flat Mesh routers Relatively stable - -
[123] Flat Mesh routers Relatively stable - -
[124] Federated Mesh routers and clients Dynamic Dynamic controller election Resiliency

SDMAN

[125] Centralized Mobile nodes Dynamic Dynamic controller election Resiliency
[126] Centralized Mobile nodes Dynamic Backup forwarding rules Resiliency
[127] Flat Mobile nodes Dynamic Distributed routing protocol Resiliency
[26] Hierarchical Mobile nodes Dynamic Fallback routing mechanism Resiliency

SDVN

[128] Centralized Vehicles Highly dynamic Distributed routing decision-making Scalability
[129] Centralized Vehicles and RSUs Highly dynamic Fallback routing mechanism Resiliency
[130] Hierarchical Vehicles and RSUs Highly dynamic Fallback routing mechanism Resiliency
[131] Centralized Vehicles, RSUs, and BSs Highly dynamic - -
[132] Flat Vehicles, RSUs, and BSs Highly dynamic - -
[133] Hierarchical Vehicles, RSUs, and BSs Highly dynamic Dynamic controller election Resiliency

SDFN

[134] Centralized UAVs Extremely dynamic - -
[135] Centralized UAVs Extremely dynamic Dynamic controller election Resiliency
[136] Flat UAVs Extremely dynamic - -
[137] Hierarchical UAVs Extremely dynamic - -
[138] Hierarchical Aircraft Extremely dynamic - -

improving scalability.

As the mobility degree grows, so does the role of hybridization. In fact, SD-

MANs systematically take advantage of hybridization. Since Mobile Ad Hoc Net-

works (MANETs) are infrastructure-less multi-hop wireless ad hoc networks where

nodes move unpredictably, resiliency is critical. Accordingly, [26], [125]–[127] (i.e.,

the full spectrum of the proposals surveyed for this scenario) implement hybridiza-

tion strategies for improving resiliency. Note that even flat control architectures

recur to hybridization in SDMANs, notwithstanding such architectures are the

most resilient by nature (see Figure 4.4).

Although SDVNs are characterized by a higher mobility degree than SDMANs

(dynamic vs. highly dynamic), the role of hybridization is not as much as pervasive

in the former in comparison with the latter. However, it is worth noting that several

proposals for SDVNs include Base Stations (BSs) as part of the FP to benefit from

better coverage of fixed network infrastructure [131]–[133]. SDVNs mainly exploit

hybridization to ensure information circulation among vehicles when the CP is

unreachable, keeping the ability to cope with emergency circumstances (e.g., road

accidents) timely.

Lastly, the role of hybridization seems negligible in SDFNs at first glance.

However, it is worth noting that [134], [136] place the CP on BSs, which are
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Figure 4.5: Correlation between mobility and hybridization.

not formally part of Flying Ad Hoc Networks (FANETs). Similarly, [137] places

the CP on stationary airships, which, as BSs, are stable. This explains why the

proposals for SDFNs quantitatively recur to hybridization less than the others,

although SDFNs have the highest mobility degree.

4.2 Container Orchestration

4.2.1 History

Virtualization may be defined as the act of creating the virtual version of a re-

source, where, in computer science, a resource may be either hardware or software.

IBM started to work on virtualization in the early 1960s by concurrently launching

two projects: SIMMON and CP-40. The latter was the precursor of the VM/370,

nowadays known as z/VM. The heart of VM/370 architecture is the Virtual Ma-

chine Monitor (VMM) running directly on the bare hardware. In general, a VMM

is a piece of software that behaves as follows [139]: any program running under

VMM should show the same behavior as if it ran on the original machine di-

rectly except for di↵erences due to available resources and timing dependencies,
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Figure 4.6: Comparison between hypervisors of type 1 and type 2.

e�ciency, and control of the hardware resources. Virtual Machines (VMs) may be

considered as environments created and orchestrated by the VMM. A VM can run

every Operating System (OS) with the only and obvious requirement that the OS

must be compatible with the underlying virtualized hardware layer. Nowadays,

VMMs are also known as hypervisors, and they can fall into two categories: type 1

and type 2. The di↵erence between them is that hypervisors of type 1 run directly

on the hardware layer, whereas hypervisors of type 2 exploit the advantages that

the underlying OS makes available [140], as shown in Figure 4.6.

From a high-level view, they denote two di↵erent approaches: hardware-level

and OS-level virtualization. The strategies mentioned above vary in the point at

which they draw the virtualization boundary. The virtualization boundary may

be defined as the abstraction level at which the virtualized part of the system is

separated from the virtualizing infrastructure [141]. Type 1 hypervisors represent

a decoupling level between guest OSs and the underlying hardware, meaning that

this class of hypervisors can control how guest OSs use the hardware resources [142]

(the virtualization boundary is at the hardware interface level). On the other

hand, type 2 hypervisors by running on top of the host OS may be threatened

like any other applications (the virtualization boundary is at the OS interface

level). In both cases, virtualization allows encapsulation referring to the ability of

a VMM to capture the VM software’s state and remap it, implying a chief degree of

portability. Therefore, VMs can be stopped and resumed as well as moved between

di↵erent physical machines. Migrating VMs is easier than migrating processes

running directly on the host OS. The former case requires only the movement

of memory and disk images, while the latter requires taking into account all the
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Figure 4.7: Comparison between VMs and containers.

information usually managed from an OS to handle processes. Another significant

benefit is the strong isolation level provided by virtualization. Each VM may

be considered as a sandbox; what happened in a sandbox remains isolated from

the rest without a↵ecting the overall system. Type 1 hypervisors provide a more

robust level of isolation than those of type 2 due to the fact that a hypervisor is

more straightforward than an OS; it requires fewer lines of code, and the presence

of bugs is consequently reduced. From a security and fault-tolerance perspective,

isolation implies an excellent advantage.

Containerization is an OS-level virtualization technique. A container may be

defined as an object that isolates a set of resources of the host, for the applica-

tion or system running in it [143]. Containers represent a lightweight alternative

as compared to hypervisor-based virtualization techniques. Hypervisors abstract

hardware; therefore, they naturally introduce a certain degree of overhead in terms

of hardware and device drivers [144]. In contrast, containers avoid that overhead

by acting at the OS level by isolating processes. Each container runs on top of

the host OS and shares the underlying host OS kernel with the others, as shown

in Figure 4.7.

The concept of containerization is decades old, since it emerged in 1979 when

chroot was implemented in Unix V7. chroot is a system call that changes the root

directory of the current running process and its children [145]. That process can-

not access files and commands outside that designated directory tree. Given that

chroot acts by changing an ingredient in the pathname resolution and nothing else,

it does not aspire to solve security issues, nor to provide a fully sandboxing mech-

anism for processes as well as to restrict filesystem system calls [146]. Despite its
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limitations, chroot was the first step towards the fundamental concept of process

isolation. The namespaces feature was implemented in the Linux kernel in 2002. A

namespace wraps a global system resource in an abstraction that makes it appear

to the processes within the namespace that they have their own isolated instance

of the global resource [147]. Currently, there are available seven namespace types:

cgroup namespaces, ipc namespaces, network namespaces, mount namespaces,

pid namespaces, user namespaces, and uts namespaces. For example, the names-

pace type network namespaces virtualizes the network stack by providing isolation

of the system resources associated with networking [148]. namespaces represent

a remarkable breakthrough towards the e↵ective implementation of the concept

of processes isolation. In 2006, Google released cgroups (Control Groups), a fea-

ture implemented in the Linux kernel to manage, restrict, and audit groups of

processes [149]. From a technical perspective, it provides a mechanism for ag-

gregating/partitioning sets of tasks (processes), and all their future children, into

hierarchical groups (each of them called cgroup) with specialized behavior [150].

A cgroup binds a collection of processes with a set of parameters involving one or

more subsystems. A subsystem, also known as a resource controller, represents a

kernel module that modifies the behavior of the processes in a cgroup [151]. For

example, resource controllers can limit the memory available for a cgroup as well

as account the CPU time used by a cgroup. Two years later, in 2008, lxc (Linux

Containers) emerged. lxc is a low-level Linux container runtime [143] or, in other

words, an OS-level virtualization technique to manage multiple containers by uti-

lizing a single Linux kernel. lxc provides resource management through cgroups

and resource isolation via namespaces.

4.2.2 Kubernetes

Containers have transformed the application creation process, a↵ecting develop-

ment, testing, and distribution. A monolithic application can be broken down into

several loosely coupled containerized modules, where each of them follows di↵erent

released policies without a↵ecting the overall working system. The starting mono-

lithic application may be distributed across multiple cloud providers in di↵erent

regions of the world. Several development teams may work only on a specific mod-
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ule to best meet their know-how and then distribute their work through container

images. A container image is autarchic by definition; it is self-su�cient, given that

it knows and contains everything needed to work correctly. However, along with

the benefits introduced by containerization, new challenges arise.

Kubernetes is an open-source platform that provides basic mechanisms for

deployment, maintenance, and scaling to manage containerized applications in a

cluster [152]. Objects are persistent entities in the Kubernetes system representing

the state of the cluster. Each object is composed of two sections: spec and status,

where the former represents the desired state for the object while the latter the

actual state of the object. In other words, an object represents a record of intent

in the sense that Kubernetes will continuously work to ensure that the desired

state matches the actual state [153]. Pods are the smallest deployable object in

the Kubernetes objects model and represent units of deployment. Each Pod con-

sists of a group of containers tightly coupled, storage resources, unique network

IP, and policies governing how it should behave [154]. A Pod may be defined as

a group of containers with shared namespaces and volumes, indicating that con-

tainers involved in a Pod hold the same IP, must coordinate for utilizing network

resources (such as network ports), and can communicate through inter-process

communications (for example using localhost network interface). Deployment is

the high-level object to manage a replicated application where each replica is a

Pod running in the Kubernetes cluster [155]. Deployments permit to declare the

number of the desired replica (Pods) of a specific application, and Kubernetes will

take care that the desired number corresponds to the real number. Opposed to

Deployments, Pods are not durable entities. Indeed, Pods are mortal, and when

they die (due to schedule failures, node failures, or other evictions), they are not

resurrected. Therefore, users do not create Pods (low-level objects) directly but

declare Deployments (high-level objects), which, in turn, can create and destroy

Pods dynamically. Given that each Pod has its own IP, the Pods’ ephemerality

would cause serious reliability problems because a set of Pods may provide func-

tionalities to another set of Pods, but the IP range available may change over time.

Services are the objects that define how to access sets of Pods by exposing them

as network services [155]. In particular, a Service keeps tracking the IPs of its

targeted set of Pods. Consequently, di↵erent sets of Pods should not communi-
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Figure 4.8: Kubernetes cluster architecture.

cate directly, but through Services representing an essential decoupling level in the

Kubernetes ecosystem. Services as well as Deployments use labels to target Pods.

Kubernetes provides a labeling mechanism where labels are key/value pairs, and

they can be attached to objects to select only specific subsets of them [156].

The brain of a Kubernetes cluster is the control plane, and it consists of a set

of components that can run in a single master node as well as across multiple mas-

ters to support high-availability clusters. In the most straightforward Kubernetes

cluster architecture, a cluster is composed of a set of workers and a master, as

shown in Figure 4.8.

The components forming the control plane are [157]:

• etcd. It may be defined as a distributed reliable key-value store for the most

critical data of a distributed system [158]. A Kubernetes cluster stores its

persistent state (objects) in an instance of etcd;

• kube-apiserver. It represents the front-end for the control plane by act-

ing as a gateway for the Kubernetes cluster, meaning that every component

interacts with the others through the kube-apiserver. It exposes the Ku-

bernetes API and validates the objects received before storing them in etcd;

• kube-controller-manager. It runs controller processes that are the core

46



abstraction of the Kubernetes ecosystem. Controllers may be defined as

control loops that attempt to move the current cluster state towards the

desired state. For example, the Deployment controller ensures that the ac-

tual state of each Deployment object matches its desired state. Controllers

retrieve objects through the kube-apiserver;

• kube-scheduler. It watches for unscheduled Pods and binds them to nodes

according to constraints, such as available resources, Quality of Service (QoS)

requirements, and a�nity as well as anti-a�nity specifications. For ex-

ample, when a user creates a new Deployment through kube-apiserver,

kube-scheduler (that is a controller) notices a change and decides where

places those new Pods;

• cloud-controller-manager. It runs controllers interacting with the un-

derlying cloud providers. cloud-controller-manager avoids dependencies

between Kubernetes and cloud providers so that they can evolve indepen-

dently.

Each node involved in a Kubernetes cluster runs kubelet, kube-proxy, and a

container runtime [157]. kubelet is the most important controller in the Kuber-

netes ecosystem, since it represents the container execution layer. Also, it ensures

that Pods scheduled in its node are running and healthy. kube-proxy is a net-

work proxy that implements the Service abstraction by maintaining network rules

to allow network communication inside and outside of a Kubernetes cluster. A

container runtime is the software layer responsible for running containers (e.g.,

Docker).

Networking represents a fundamental part of the Kubernetes ecosystem. There

are four di↵erent levels of networking in Kubernetes: Container-To-Container,

Pod-To-Pod, Pod-To-Service, and External-To-Service [159]. Each networking

level must not violate the following three constraints: all Pods can communi-

cate among them without using Network Address Translation (NAT), agents on a

node (e.g., kubelet) can communicate with all Pods on that node, and each Pod

sees for itself the same IP that other Pods sees for it. Pods are abstractions that

solve the Container-to-Container networking level according to the constraints,
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Table 4.2: Network scenarios

Scenario Bandwidth (Mbps) Latency (s) Packet Loss (%)

LAN No constraints No delay No loss

BEST 4 0.2 5

AVG 2 0.4 10

WORST 0.65 3 15

Table 4.3: Performance results

Distribution BEST AVG

K8s  11 workers

20 replicas per worker
 5 workers

20 replicas per worker

K3s  11 workers

20 replicas per worker
 5 workers

20 replicas per worker

KubeEdge  17 workers

20 replicas per worker
 11 workers

20 replicas per worker

given that containers involved in a Pod share the network namespace and can

communicate through the localhost network interface. Kubernetes follows an

IP-per-Pod model, in which each Pod has its own IP, meaning that Pod-To-Pod

communication is allowed through real IPs, either the Pods are in the same host

or di↵erent machines. Each Pod has its own Ethernet device (eth0), di↵erent

Pod’s namespaces are linked by using virtual Ethernet devices (veth), and the

communication among Pods on the same host is enabled by attaching each veth

to a network bridge (cbr0).

4.2.3 Kubernetes in Tactical Networks

Fogli et al. [160], [161] and Kudla et al. [162] explored how various Kuber-

netes distributions perform in TNs. The rationale behind these studies is that

since Kubernetes has been designed for enterprise environments, it might take

for granted resources that are not available in TNs. Specifically, they captured

the overhead introduced by three Kubernetes distributions, i.e., Kubernetes (K8s)

[163], Lightweight Kubernetes (K3s) [164], and Kubernetes Native Edge Comput-

ing Framework (KubeEdge) [165], while performing orchestration-related tasks,

i.e., cloud initialization and application deployment. Table 4.2 details the net-
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work scenarios (i.e., LAN, BEST, AVG, and WORST) a↵ected by incrementally

degraded network conditions used to evaluate performance. These scenarios vary

along three dimensions, i.e., bandwidth, latency, and packet loss. It is worth men-

tioning that the available bandwidth in each scenario is distributed among nodes

equally, which means that each node consumes at most a fraction of the configured

bandwidth.

The performance results showed that the deployment of a container orches-

tration solution under disadvantaged network conditions is feasible under specific

circumstances. Such circumstances depend on a combination of factors, i.e., cloud

size (how many participating nodes), cloud workload (how many running appli-

cations), network parameters (bandwidth, packet loss, and latency), and the con-

tainer orchestration solution itself. In this regard, Table 4.3 provides insights on

how to size a cloud and its workload based on a given network scenario and a

Kubernetes distribution. A key takeaway is that a single giant cloud is not feasi-

ble. A further outcome is that narrowband networks do not fit the requirements

demanded by the Kubernetes distributions experimentally evaluated. In fact, such

networks consist of long-range communications links primarily intended for voice

and with limited data support, providing bandwidth of an order of magnitude

less than the WORST scenario. Lastly, with regard to Kubernetes distributions,

KubeEdge proved to be the most promising technology. It is worth mentioning

that KubeEdge is not a solution per se, but it requires a K8s-based cluster (even

a single control plane node) as a prerequisite.

4.3 Chaos Engineering

4.3.1 History

The traditional approach to software testing typically takes place during the de-

velopment phase. The rationale is to build resilient software before it is released in

production. Therefore, the objective is to avoid failures in production. Yet a dis-

tributed system is, in fact, a complex system whose dependencies might not even

be fully understood by those who have engineered it. As a result, the production

environment is the only place where some failures can be discovered and, above
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all, understood.

To improve the resilience of distributed systems, over twenty years ago Ama-

zon launched GameDay—a program whose overarching ambition was to make the

company’s systems, software, and people more resilient by purposely injecting fail-

ures in production on a pre-planned day [166]. More recently, Netflix has proposed

chaos engineering [167] and released some tools to implement it [168]. Specifically,

[167] defines chaos engineering as the discipline of “experimenting on a distributed

system to build confidence in its capability to withstand turbulent conditions in

production.”

What makes chaos engineering fundamentally di↵erent in comparison to the

traditional approach to software testing is how it looks at failures. The rationale is

as follows. Any system will break regardless of any prior testing when released in

production. This happens because many failures, which are usually unpredictable

by nature, can only happen in production. The only countermeasure, therefore,

is to try to deliberately break the system in production in a controlled manner

(thus preventing a complete system crash) and learn how to make it more resilient

accordingly. Note that this is not meant to diminish the usefulness of software

testing in development, which remains the basis for building resilient software

systems.

4.3.2 Resilience Assessment in Industrial Scenarios

Although chaos engineering was initially proposed for the testing of complex and

distributed IT services, its application may bring benefits to other application

domains that also require high reliability and fault tolerance. In the OT domain,

chaos engineering can help improve the resilience of the OT ecosystem by executing

what-if experiments to explore their impact on di↵erent configuration deployments.

For instance, such experiments can help identify the minimum set of resources,

i.e., computing and network devices, that would guarantee the desired working

conditions even in case of undesirable and unexpected faults.

Notable examples of real-world faults include hardware faults (both at the com-

puting and at the network appliance level), network issues (such as increased com-

munication latency, or limited bandwidth lower than the actual tra�c throughput
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generated by machines), and application (partial) unavailability (e.g., a crashed

microservice). The combination of those faults leads to the concept of profile, i.e.,

a set of faults to inject into the target running system that would make the target

system run outside its steady state, and thus likely causing undesirable e↵ects that

will expose undiscovered software vulnerabilities and architectural weaknesses.

Fogli et al. [169] identified three main chaos engineering profiles for DTs,

each targeting a di↵erent possible issue category related to network, computing

performance, and worker/node availability. Chaos engineering profiles may be

regarded as dynamic components that start with a baseline “intensity” and increase

it over time to put more stress on the system under testing, e.g., by gradually

increasing the latency of a communication link.

By delving into finer details, the network profile targets packet dispatching

issues of the industrial environment. In this regard, it is important to evaluate

both the resilience of the DT network and the network connectivity with the PT.

For example, an increase in communication latency might break the entanglement

between the DT and its physical counterpart, or it might cause inconsistencies

in the case of latency sensitive applications. Chaos engineering actions to stress

the network resources might increase network link latency and/or packet loss, or

might terminate a whole network appliance, e.g., a network switch.

The computing performance profile considers issues of worker nodes ex-

ecuting the DT, e.g., by simulating that required computing resources are only

partially available. This can be implemented by saturating the computational

resources available for the worker nodes. For example, the execution of faulty pro-

cesses designed to be CPU and memory consuming would reduce the amount of

CPU time and/or memory the DT can leverage, thus likely degrading its perfor-

mance. Note that here are several other methods to a↵ect the performance of DTs,

such as acting on the niceness (in the case of UNIX nodes) to assign a lower prior-

ity to the processes associated to the DT. Finally, in the case of virtualized worker

nodes, e.g., VMs, another approach is to interact with the virtualization platform

API to dynamically decrease the amount of reserved computing resources.

From a resilience perspective, the computing performance profile and the net-

work profile are crucial to estimate the performance of di↵erent deployments, e.g.,

to identify the minimum set of resources capable of providing a target QoS level.
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This factor is important in OT environments, since computing and network re-

sources at the di↵erent layers usually have very heterogeneous characteristics.

Moreover, the intensity of these profiles is an important element to consider. Chaos

engineering adopters should, based on their expertise, select a reasonable configu-

ration and intensity that would reflect real-life failures and malfunctions.

The node/worker availability profile describes the possibility of having

multiple failures caused by, e.g., software and hardware issues. Such experiments

can be implemented by terminating one or more worker nodes hosting the DT.

Specifically, the termination process can be limited to the worker executing the

DT, to other workers the DT interacts with, or both. This profile allows verifying

the correctness of the deployment configuration, i.e., if the computing resources

were opportunely replicated to be resilient to such failures. Although this profile is

easy to implement, its application should be tailored to each given scenario. In fact,

this profile is very e↵ective in testing the performance of highly distributed and

cloud-based IT applications, which can leverage a plethora of computing resources

from di↵erent cloud vendors. However, it could be less e↵ective when dealing

with OT applications, which are generally not characterized by a large number of

computing devices compared to datacenters.

Table 4.4 provides a list of possible fault actions that chaos engineering adopters

can use to implement profiles. Specifically, the table divides such actions into mul-

tiple categories to define the action target, e.g., the application protocol, the worker

node, or the network. Application protocol fault actions target application com-

ponents at multiple levels. For example, these actions can modify Domain Name

System (DNS) configurations to simulate naming and service lookup errors or can

introduce errors at the web sever level (in the case of web-based applications), such

as additional random termination of requests. Di↵erently, software component

fault actions can terminate or inject failures into a single software component,

e.g., a microservice running on a worker node, while host computing fault ac-

tions execute a process on a target worker node requiring a considerable amount

of CPU and/or memory. Host network fault actions can be injected to create

network failures at the host level. Such actions allow chaos engineering adopters

to introduce packet delay and corruption, partitions, and bandwidth shaping in a

very fine-grained manner. For example, Linux Netfilter provides a set of compo-
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Table 4.4: List of fault actions for chaos engineering

Category Action Description
Application Protocol DNS failure Returns a DNS error
Application Protocol DNS random response Returns a random IP address
Application Protocol HTTP abort Aborts a given request/response
Application Protocol HTTP delay Delays a given request/response
Application Protocol HTTP replace Replaces one or more sections of a given req./resp.
Application Protocol HTTP patch Adds content to one or more sections of a given req./resp.
Software Component Kill Kills the container
Software Component Failure Makes the container unavailable for a given time
Host Computing Memory Stress test Consumes a given amount of memory
Host Computing CPU Stress test Consumes a given amount of CPU
Host Network Packet delay Delays packets for a given time
Host Network Packet loss Drops packets with a given probability
Host Network Packet duplication Duplicates packets with a given probability
Host Network Packet corruption Corrupts packets with a given probability
Host Network Packet reordering Reorders packets with a given probability
Host Network Tra�c shaping Limits the bit rate
Host Network Partition Creates a network partition
Host Network Port Occupies a given port
Host I/O System call delay Delays file system calls for a given time
Host I/O System call failure Returns for file system calls an error with a given probab.
Host I/O Attribute override Overrides a file system attributes with a given probab.
Host I/O Read/write mistake Makes mistakes while reading/writing with a given probab.
Host Configuration Time Shifts the host’s time of a given amount
Host Configuration Shutdown Turns o↵ the host
Host Configuration Unmount Unmounts attached disks or partitions
Host Configuration Remove files Removes host configuration files

nents to change all these configuration parameters at run-time. Host I/O fault

actions inject failures such as execution delays or errors while executing system

calls. Such actions could be used to invalidate the readings coming from external

devices, e.g., a HMI or a sensor, and to test how the faulty data would a↵ect the

reliability of the system. Finally, other relevant fault actions are related to host

configuration errors, e.g., a time synchronization misalignment in a distributed

application. These actions can be very helpful for testing the resilience of ap-

plications that rely on accurate timing. Additionally, simulating storage failures

by unmounting attached network or physical disks might represent useful actions

reflecting faults that are likely to happen in a real-world scenario.

With regard to the implementation of the chaos engineering profiles, a network

profile may be implemented by applying some actions of the host network cate-

gory. To do so, a first plausible step might consist of modifying the steady-state

network latency by introducing an additional packet delay, e.g., an increased delay

of about 50 ms to all (or to a subset of) packets leaving the host network interface.

A computing performance profile, instead, may be implemented by applying the
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stress test actions of the host computing category to consume memory and CPU

resources. This profile would work well in the case of applications whose com-

ponents are replicated across multiple worker nodes. In fact, by targeting one or

more replicas with stress test actions, it is possible to evaluate how the application

would respond in the case of a non-optimal number of replicas available, e.g., by

detecting a decreased QoS for a given DT.

4.4 Chapter Summary

This chapter identified the foundational technologies, i.e., SDN, container orches-

tration, and chaos engineering, for building an entanglement-aware DT ecosystem.

Section 4.1 began by tracing the historical evolution of SDN and presenting

the well-accepted 3-tier network architecture. Then, it introduced a taxonomy

for control architectures. Lastly, the section explored software-defined wireless

ad hoc networks, uncovering the significance of hybridization in designing control

architectures for such networks. The discussion on software-defined wireless ad

hoc networks aimed to dispel the misconception that SDN is limited to fixed and

wired environments, thus justifying its applicability in dynamic scenarios, such as

coalition tactical operations.

Section 4.2 delved into containerization, an OS-level virtualization technique,

and provided an overview of Kubernetes, the industry-standard container orches-

tration system. Given that Kubernetes is not inherently designed for resilience

under challenging network conditions, as it typically assumes enterprise-like envi-

ronments, the section explored the performance of various Kubernetes distributions

in emulated TNs.

Finally, Section 4.3 explained the rationale behind chaos engineering—the dis-

cipline of “experimenting on a distributed system to build confidence in its capa-

bility to withstand turbulent conditions in production [167].” The section then

elucidated the relevance of chaos engineering to DTs and described how to apply

this concept in OT environments.
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Chapter 5

Digital Twin Engineering

In the realm of DTs, a trend gaining momentum is to adopt approaches and

technologies typical of web- and cloud-based IT environments, such as virtual

machines and containers. In fact, they represent valuable approaches to make

dynamic management of DTs easier and to ensure the required QoS while also

improving their reusability and composability [170], [171]. Containerization is

already a mature technology, widely used in cloud computing, and its adoption

is currently gaining speed also in industrial environments [172], [173], e.g., to

develop and deploy MESs and PLCs as microservices [174]. The state-of-the-art

literature either only proposes high-level guidelines, e.g., stressing the importance

of microservices architectures but without detailing how to design DTs accordingly,

or focuses on specific scenarios, e.g., by proposing vertical solutions for specific

markets.

To bridge this gap, Section 5.1 analyzes the most relevant DT properties in-

troduced by Minerva et al. [44] and the engineering requirements to build DTs

with those properties. Then, Section 5.2 proposes how to apply software engi-

neering design patterns to translate such properties into actionable tools to build

context-aware, adaptive, and autonomous DTs based on microservices. Subse-

quently, Section 5.3 discusses how to engineer DTs in the context of serverless

computing, along with the benefits of this approach. Lastly, Section 5.4 concludes

the chapter. In contrast to Chapter 3, which identifies the requirements for an

entanglement-aware DT ecosystem at the platform level, this chapter delves into
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DT internals. Specifically, it focuses on the engineering aspects of DTs, discussing

two di↵erent approaches to build DTs, both compliant with the proposed ecosys-

tem.

5.1 Digital Twin Properties

In the context of DT engineering, the relevant properties are reflection (see Sec-

tion 5.1.1), persistency (see Section 5.1.2), memorization (see Section 5.1.3), aug-

mentation (see Section 5.1.4), composability (see Section 5.1.5), replication (see

Section 5.1.6), and accountability/manageability (see Section 5.1.7). The discus-

sion around each property follows this format. First, a definition of the property

is provided. An investigation is then conducted to determine the requirements

necessary to engineer a DT in line with the definition. Lastly, the impact of a DT

that exhibits such a property is explored.

5.1.1 Reflection

Definition: The reflection property describes a DT as an entity that mirrors a

PT. Changes that occur to the PT should be reflected in the DT and viceversa.

Engineering: (R1) The DT should be able to discover the PT and handle

communications and interactions according to the supported protocols and data

formats. For example, a DT supporting a specific type of machine should au-

tonomously search for supported entities and either establish a permanent con-

nection (i.e., enabling reflection) or ease its configuration process. (R2) The DT

should be aware of the quality of reflection that it provides to applications. This no-

tion, generally identified as entanglement, can promote adaptive behaviors aimed

at providing determined service levels, such as tuning communication protocols,

throttling external requests, or even migrating the DT on the basis of internal or

environmental conditions.

Impact: The availability of DTs capable of delivering adaptive reflection repre-

sents a fundamental enabler towards their use as autonomous entities instead of
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passive digitalized replicas. DTs should be in charge of tasks concerning reflection,

such as discovering physical counterparts, identifying properties of interest, and

maintaining the desired level of entanglement according to internal and environ-

mental conditions. Additionally, DTs should autonomously detect and possibly re-

act to potential issues (e.g. adapting the networking configuration for increasing or

decreasing entanglement). Possibly, DTs may also notify external observers about

misalignments with physical counterparts. It is worth noting that the autonomous

discovery of compatible PTs has cascading benefits to other requirements. For

example, a DT representing thermal-related features of a smart building might

search and connect to all compatible devices of the building, or their associated

DTs, without time-consuming manual interventions.

5.1.2 Persistency

Definition: The persistency property defines a DT as an entity that is always

available. Its availability exceeds the actual existence of the PT. A DT may be

available before creation, during malfunctions and crashes, and after the end of

life of the PT.

Engineering: (R3) The DT should be resilient and therefore organized in de-

coupled and independent components, represented in Figure 5.1, so that a localized

fault does not compromise the entire container. (R4) The DT should be highly

available, i.e., it must support replication in response to failures, both internal (e.g.,

the DT fails) or environmental (e.g., the node running the DT container fails).

(R5) To minimize the e↵ects of such events, DTs should support autonomous re-

configuration. In fact, configurations should be remotely stored and retrieved when

needed. By doing so, replicas, instead of restarting with the same configuration of

a failed container, can possibly retrieve an alternative version.

Impact: The adoption of DTs decouples applications from the complexity and

fragmentation of the physical layer. This results in an implicit agreement between

these two levels. Applications rely on DTs to interact with PTs and any disruption

in their functioning might represent a critical issue (e.g., the control room that
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Figure 5.1: Schematic representation of a DT.

suddenly stops receiving telemetry from deployed robots).

5.1.3 Memorization

Definition: The memorization property defines a DT as an entity that stores

status changes and events that involved the PT. A DT represents the status of the

PT over time and space.

Engineering: (R6) The DT should be able to maintain the current state of

the PT internally, acting as a cache between the PT and applications. Indeed, to

improve autonomy and minimize response times to applications, the current state

of the PT should be held within the DT itself, without using external storage

services. (R7) The DT should manage the entire history of states and events

involving the PT in a context-aware fashion. Furthermore, the DT should manage

di↵erent loads of requests from applications. Thus, the DT should support di↵erent

replication strategies for its storage services and autonomously select the most

suitable one.

Impact: Observing and e�ciently interacting with a PT not only at its current

state but also through the navigation of its historical data via a uniform interface
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separates responsibilities and has the potential to significantly simplify the design

of applications. Memorization can also be used to support context awareness and

adaptation directly in DTs via machine learning algorithms capable of predicting

future states from past states. Furthermore, the resulting outputs (i.e., the pre-

dicted future states) can be memorized within the same data structure, allowing

forward navigation in the predicted “future” of the DT.

5.1.4 Augmentation

Definition: The augmentation property defines a DT as an entity that can o↵er

functions that the PT does not provide by means of APIs. Augmentation can

add new functionalities that the PT does not support or provide access to data in

particular formats.

Engineering: (R8) The DT should be expandable (adaptive) with additional

functionalities by supporting dynamic configuration. For example, a complex DT

supporting multiple PTs or functionalities could be deployed with di↵erent config-

urations on di↵erent nodes depending on their resources. The configuration should

be updated, without requiring manual interventions, whenever the DT is migrated

to a node with di↵erent capabilities. (R9) The DT should support software up-

dates. At the most basic level, both PTs and applications might receive updates

over time, thus requiring changes in the DT to keep it functional. Furthermore,

updates enable the addition of augmentation functions to the DT itself without

the need of a redeployment.

Impact: The possibility of easily and dynamically augmenting the capabilities

provided by a DT with respect to the original physical counterpart represents

the fundamental characteristic of DTs and the reason why they should be seen

and modeled as active software components with independent behavior. Through

dynamic augmentation, it is possible to extend interoperability without changes

in the PT or without requiring the redeployment of the DT (e.g., to support new

protocols or data formats). It can also allow to introduce intelligent and cognitive

functionalities directly in the DT, optimizing both digital and physical layers.
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5.1.5 Composability

Definition: The composability property defines a DT as an entity that sup-

ports the correlation of di↵erent elementary DTs into complex organizations and

provides views on the aggregated DT and individual components.

Definition: (R10) The DT should be able to manage other DTs as if they

were PTs. Each change in any DT that is part of a composition scheme (i.e., an

observed DT) is communicated to an observing DT. In this way, as soon as one

DT detects a change in its PT, the change is propagated towards the upper levels

of the composition scheme. Alternatively, in the case the composed DT is not

observed by any application, the lower levels might choose not to communicate

the changes to save bandwidth. The same principles should also be applied to

commands that can be propagated from the composed DT to the underlying DTs

to modify and actuate the physical counterparts.

Impact: The communication scheme used for composition is strictly tied to re-

flection, entanglement, and adaptive capabilities. In fact, being a distributed com-

munication scheme, it might require remarkable network resources to guarantee an

acceptable quality of entanglement. To avoid network overload, DTs participat-

ing in a composition scheme should coordinate to dynamically select a suitable

trade-o↵ between entanglement and networking resources.

5.1.6 Replication

Definition: The replication property defines a DT as an entity that can be

replicated to serve the needs of di↵erent applications. Replicas of the same PT

must behave consistently, i.e., they cannot have a di↵erent status and cannot

exhibit di↵erent behaviors.

Engineering: (R11) The DT, also leveraging the container orchestrator, should

support replication to deal with variable requests from applications. However,

as soon as replicas are spawned, two di↵erent communication schemes become

possible: peer-to-peer and master-slave. The former implies that all replicas of the
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same DT communicate directly with the PT. The latter implies that the group

of replicas elects a master responsible for managing the PT while all the others,

behaving as slaves, communicate with the master to receive updates about the

state of the PT. As a consequence, the DT should be aware of the internal and

environmental conditions to autonomously select the most suitable approach.

Impact: The DT leverages its awareness of the computational environment to

autonomously select the most suitable replication scheme. As an example, when

dealing with constrained PTs, the master-slave approach might be preferred. On

the other hand, when powerful PTs are involved, the peer-to-peer approach might

reduce communication overhead among replicated DTs and avoid all the intricacies

of distributed master-election protocols. The same flexibility can be also exploited

to handle di↵erent visibility and responsibilities levels in order to segregate the DT

authorized and in charge to communicate with the PT (master) and additional

DTs (slaves) responsible, for example, for specific interaction with applications

and unauthorized to directly interact with the physical layer.

5.1.7 Accountability/Manageability

Definition: The accountability property defines a DT as an entity that allows

one to determine its status and activities and to optimize its execution in the

framework in which it operates. It should also provide information about the

usage of the PT.

Engineering: (R12) The DT should be observable. Indeed, the DT should

not only be aware of its state but also make it available via standard interfaces

(e.g., REST APIs, event-driven communication patterns). Additionally, the whole

history of the events concerning the DT (i.e., execution logs) should be exposed

in a similar fashion.

Impact: Observability pushes adaptation outside the DT itself. For example,

the orchestrator might detect a DT running on limited resources and respond by

either migrating it to another node or spawning a replica for guaranteeing the

61



required quality of entanglement. Additionally, the availability of the history of

events related to the PT enables long-term analytics based on machine learning

algorithms, such as failure prediction or anomaly detection.

5.2 Design Patterns for Digital Twins as

Microservices

This section explores which software engineering design patterns help meet the

requirements identified while discussing reflection, persistency, memorization, aug-

mentation, composability, replication, and accountability/manageability (see Sec-

tion 5.1). These design patterns serve as the fundamental building blocks for the

development of DTs as microservices. In the following, the explored design pat-

terns are divided into three categories, i.e., those for building single-node, single-

container services (see Section 5.2.1), those for single-node, multi-container services

(see Section 5.2.2), and those for multi-node services (see Section 5.2.3).

5.2.1 Single-Node, Single-Container Services

The microkernel pattern consists of two types of components: a core system and

plug-in modules (i.e., the physical, digital, management, and storage interfaces)

as shown in Figure 5.2. The core system, usually containing only the minimal

functionalities required to make the system operational, manages the state, con-

figuration, and behavior of the PT (R6). The plug-in modules, instead, are in-

dependent components enhancing or extending the core system with additional

capabilities without the need of redeployments (R9). As an example, the storage

plug-in provides a clear boundary between the management of the current state

of the PT that happens inside the DT core and past and predicted states, which

are, instead, externalized (R7). Generally, plug-in modules should be independent

from each other and can be connected to the core in a number of di↵erent ways,

from point-to-point binding (i.e, the core accepts an object instance of a plug-in) to

messaging. This kind of architecture provides decoupled operations and prevents

generalized failures (R3). Indeed, the failure of one plug-in does not determine the

failure of the whole container. The asynchronous queuing pattern would further
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Figure 5.2: Microkernel pattern.

improve isolation and decoupling. The introduction of asynchronous queues allows

for extremely evolvable and resilient architectures. In fact, protection mechanisms

against bursts or sustained rates of excessive requests can be transparently embed-

ded within the queue themselves, thus simplifying the development of the other

components.

5.2.2 Single-Node, Multi-Container Services

Imagine a DT that supports dynamic configuration and exposes its configuration

via a standard API. One approach could be to add a specific plug-in to the mi-

crokernel architecture described above, while another approach could be to break

up the DT into two separate containers: one running the DT itself (i.e., core and

basic plugins) and the other running a dynamic configuration daemon. While the

former is perfectly legitimate, the latter case has notable advantages. Containers,

in fact, establish boundaries around resources (e.g., 8 GB of memory, 6 cores),

teams (e.g., one team owns one container image), and concerns (e.g., this image

provides dynamic configuration). As an example, using multiple containers allows

to assign them di↵erent priorities and resource requirements, e.g., ensuring that

the configuration daemon uses computing resources only when the DT is o✏oaded.
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In addition, containers represent a relatively small and focused piece of code man-

aged by a single team and usually can be updated, tested, and deployed more

easily than complex, monolithic services. Containers can also be easily reused

across multiple teams and applications, often leading to high-quality implementa-

tions since they are built once and used in di↵erent contexts. This is the rationale

behind conceiving DTs as multi-container entities, namely pods (a term introduced

in Kubernetes). The three patterns discussed here, represented in Figure 5.3, pro-

pose to deploy the DT container along with a secondary container responsible for

di↵erent tasks. In addition to being scheduled on the same machine, the two con-

tainers are assumed to have access to shared resources, such as the filesystem and

network interfaces.

The sidecar pattern considers two containers: the application container (i.e.,

the DT container) and the sidecar container, augmenting the application usually

without accepting or establishing network connections on its behalf. In its simplest

form, a sidecar container can be used to add functionalities to a container that

might otherwise be di�cult to improve. In more articulated cases, sidecars can

be used to engineer multi-container services which are inherently more robust and

scalable than those structured in a single container. Remote configuration (R5),

requiring DTs to store and retrieve their configurations from a remote server, can

be implemented with a sidecar container monitoring the configuration files of the
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DT. The sidecar is responsible for maintaining aligned local and remote configura-

tions. If the remote configuration di↵ers from the local one, it downloads the new

configuration and notifies the DT to reconfigure itself using the updated files. Sim-

ilarly, software updates (R9) can also be implemented using a sidecar container.

As an example, it is possible to use a containerized daemon that periodically down-

loads changes from a git repository, updates the local code of the DT (e.g., the

folder containing plug-ins), and triggers the DT to restart itself. As a consequence,

pushing updates to a git repository results in the updated code being deployed to

the running DT in a simple yet reusable fashion.

The ambassador pattern uses an ambassador container to act as a broker be-

tween the application container and external services. Similarly to sidecars, am-

bassadors are paired to the primary container and scheduled on the same node.

Requirements concerning adaptive reflection (R2) can be implemented using both

the ambassador and the microkernel patterns in a complementary fashion. For

example, they could be either implemented within the communication plug-ins

of the DT (i.e., physical/digital interface plug-ins) or delegated to a specialized

daemon running within the ambassador. In the latter case, the communication

plug-ins of the DT act as basic network proxies and delegate external connections

entirely to the ambassador container. As an intermediate solution, an ambassador

could be used to improve a DT providing only basic reflection capabilities with

more advanced properties, such as autonomous switching among di↵erent commu-

nication protocols (R2) or automatic search for compatible PTs (R1). In addition,

an ambassador can be used to provide the communication interfaces of the DT

with additional layers of protection against failures of other services. For example,

protection patterns, such as throttling, circuit breaker, or retry (R3), can be easily

implemented within ambassadors without the need of modifying and redeploying

the DT container.

Ambassador containers are not limited to function with digital or physical

interfaces. Indeed, they can be used for brokering any connection to external

services. The storage interface, for example, is designed to store and retrieve past

and future states of the PT. As expressed in (R7), the DT should be capable of

dealing with high request loads from applications asking for past or future states

of the PT as well as with large bodies of data representing its entire history. These
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functionalities can be implemented within ambassador containers, as depicted in

Figure 5.4. In case of high load of requests, data can be statelessly replicated

so that each replica manages the whole history of the DT, thus scaling up the

number of manageable requests. Alternatively, in the case of large bodies of data,

sharding (i.e., partitioning based on content, for example, each shard contains

one year of history) can be applied. This approach does not necessarily unload

the storage services (i.e., all requests might ask for the same shard) but, instead,

allows for scaling up the size of DT’s past and future states. In Figure 5.4, the two

cases are managed by separate ambassadors. Nevertheless, it would be possible

to implement both replication strategies in a single container, capable of choosing

the most suitable one.

The adapter pattern is used to modify the interface of the primary container

so that it conforms to a predefined interface. For example, an adapter might

ensure that an application implements a consistent monitoring interface (i.e., all

logs saved using the same format). The observability (R12) and dynamic con-

figuration (R8) requirements can be implemented using this approach. Indeed,

instead of modifying the DT core or adding plug-ins, a dedicated daemon could be

run inside an adapter container. Regarding the observability requirement (R12),

a daemon could monitor the logs produced within the DT container and expose

them via standard APIs. Accordingly, also the internal state of the DT (exposed

via its management interface) can be monitored and exposed to external services,

such as the container orchestrator using the same interface. Large factories run-
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ning massive deployments could greatly benefit from this containerized approach.

For example, it could be possible to deploy any kind of DT, possibly produced by

di↵erent vendors, and then make them uniformly observable by adding a properly

crafted adapter to their pod. Dynamic configuration (R8) shares many similari-

ties with remote configuration (R5). A daemon containerized as an adapter can

read the configuration files of the DT and expose them via a standard interface.

Whenever users or external services apply changes to the configuration, the dae-

mon updates the configuration files within the DT filesystem and signals the DT

to reload it.

5.2.3 Multi-Node Services

The persistency requirement (R4) relates to the availability of software compo-

nents. Indeed, DTs have to be restarted if their container fails or hangs. If the

node running the DT fails, the container has to be migrated and restarted on

another node. The implementation of this feature is based on a properly imple-

mented management interface exposing the internal state of the DT. For example,

the interface has to provide http endpoints specifying if the container is either

ready for execution or actually serving requests. By querying this interface, the

container orchestrator can take autonomous decision on whether the DT have to

be either restarted or migrated to another node. Another approach is based on

the Singleton pattern. The singleton pattern, despite the di↵erent flavours it as-

sumes in di↵erent contexts, generally implies that only one instance (of an object,

a process, a container, etc.) should exist at any given time for the sake of main-

taining integrity and consistency. In the context of containerized services, this

pattern implies the use of a load balancer managing only one replica of a service.

Since only one instance is running, that instance owns the access right to all the

resources (i.e., in this case the PT) without the need for electing a master replica.

This simplifies implementation and deployment, but introduces disadvantages in

terms of reliability since, in case of issues, software updates, or migrations, a little

downtime is required for reverting to a functioning state. Frequently, however, its

simplicity outweighs the reliability trade-o↵.

The replication requirement (R11) can be similarly implemented by making
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use of the load balancer pattern prescribing the use of a load balancer for splitting

requests among a pool of replicas. The pool can be monitored via the manage-

ment interfaces of the replicas and, depending on environmental conditions, can

be enlarged, shrunk, or migrated to di↵erent network locations. It is worth noting

that stateless replicas are advisable, since requests can be routed to any replica

regardless of their content or their state. In stateless replication, in fact, each

replica is aware of the entire state which, in our context, comprises both the PT

and the set of containers storing its future and past representations. Despite the

clear benefits in terms of reliability, this approach has some potential issues. For

example, the concurrent access of all replicas might overload the PT, thus degrad-

ing the quality of entanglement. To prevent this drawback, replicas can adopt a

master-slave strategy. The master DT is the single owner of the PT, while slave

DTs lose the right of direct access and interact with the PT only via the master

DT. In other words, the master enacts a proxy pattern between the slaves and

the PT, thus reducing its load. However, the master-slave approach requires to

implement a master election algorithm usually based on distributed consensus al-

gorithms, such as Paxos or RAFT [175]. Luckily, there are a number of distributed

key-value stores embedding such consensus algorithms without the need for com-

plex implementations within the DT itself. These systems, which can be packaged

in a sidecar container as depicted in Figure 5.5, provide a replicated and reli-

able data store comprising the primitives necessary to build election abstractions

out-of-the-box.

The composability requirement (R10) prescribes that DTs should receive up-

dates and possibly send commands to a group of peers instead of a single PT.

A bare implementation of this feature might require only slight changes to the

physical and digital interfaces of the DT to support groups of devices instead of

a single one. Indeed, each command directed to a PT could be sent to a group

of PTs or other DTs and each update directed to an application can be sent to a

group of applications or other DTs. However, the mere fact of receiving updates

or sending commands to a group of peers does not make a composed DT but more

a proxy between applications and the physical environment. What makes com-

posability meaningful is providing applications with composed APIs representing,

in a synthetic way, a complex underlying reality. As an example, a composed DT
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representing a smart-building should provide APIs for querying the average tem-

perature or the presence of fire in the entire building, rather than bare access to a

list of sensors. This problem is often tackled in software engineering with the API

gateway pattern. This pattern has been in fact proposed to aggregate multiple

requests, often directed to di↵erent microservices, into a single one. That is, an

application attached to a composed DT sends a single request that is decomposed

in simpler requests and dispatched to the involved DTs. The received replies are

then aggregated and presented to the application as one single response. In ad-

dition to providing a unified synthetic representation of a complex system, this

pattern is also useful in reducing chattiness among involved components.

5.3 Serverless Digital Twins

This section explores DTs in the context of serverless computing. Specifically,

Section 5.3.1 highlights the benefits of serverless computing, while Section 5.3.2

introduces an original proposal to design DTs using serverless functions.
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5.3.1 Benefits

The adoption of a serverless design for DTs implies substantial benefits from the

engineering and operations perspective. The serverless architecture removes all re-

sponsibility of server system maintenance, configuration, scalability tracking, and

management from application owners and puts it on the service provider. This can

reduce the investment required in operations and also frees up developers to create

and expand their applications without being constrained by server capacity. More-

over, application development built on a serverless system scales better regardless

of how high or low the usage is at any given time. As such, application developers

spend more time on design, coding, and testing instead of code deployment and

release management [176].

Developers can also code using a variety of languages. AWS Lambda functions

can be written in Java, Go, PowerShell, Node.js JavaScript, C#, Python, and

Ruby. Google Cloud Functions support Node.js JavaScript, Python, and Go, and

allow for unlimited execution time for functions. Microsoft Azure Functions sup-

port a wider range of languages, including Bash, Batch, C#, F#, Java, JavaScript

(Node.js), PHP, PowerShell, Python, and TypeScript, and have pricing similar to

Lambda. Google Cloud Run supports any language that can run in a container,

while AWS Lambda Layers allow developers to pull in additional code written in

other languages.

The serverless design also avoids the need to upload code to servers or to do any

back-end configuration to release working code. Since serverless applications are

not monolithic stacks, there is no need to make changes to the whole application;

instead, developers can update the application more granularly, one function at a

time. This enables quick updates, patches, or adding new features with reduced

e↵orts. Furthermore, since the application is not hosted on an origin server, its

code can be run from anywhere along the cloud-to-edge continuum. As such,

it is possible (transparently from the perspective of DTs) to run functions on

cloud datacenters, MEC, or edge on-premises nodes, depending on application

requirements and environmental situations [177].

In addition, designing DTs as serverless software components enables the reuse

of fundamental building blocks (e.g., the model describing the PT, augmenta-
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tion functions, physical/digital interfaces, etc.) across di↵erent domains, tenants,

and applications, thus lowering the technical barriers to adopt these technologies.

Along the same line, [178] has recently discussed the case for building a shared

catalog of reusable DT models that might greatly benefit from the adoption of

serverless functions.

Moreover, instead of spawning a replica of an entire DT (i.e., a new pod for

containers built as microservices), serverless infrastructures can be used to o✏oad

computation from the DT. The groundwork for serverless computing has been laid

with the PyWren [179], Lithops [180], and funcX [181] libraries. They showed that

it is possible to create a data processing system that inherits the elasticity and sim-

plicity of the serverless model, using stateless functions with remote storage. They

do not provide the best parallel performance but o↵er some significant advantages

if compared with a standalone server node. By using this approach, complex DT

models requiring, e.g., the repeated execution of the same function on di↵erent

data, are a good fit for serverless infrastructures, which can run many short tasks

in a highly elastic way, i.e., by acquiring thousands of resources very quickly. In-

deed, a DT capable of updating its internal model making use of an event-based

chain of functions can be easily parallelized, thus enabling shorter computation

delays and, consequently, an improvement of the quality of entanglement. As a

result, a serverless DT would be able to handle an unusually high number of re-

quests (or unusually complex models) as well as process a single request from a

single application. On the contrary, a traditionally structured DT with a fixed

amount of resources can be overwhelmed by a sudden increase in the number of

requests or in their complexity.

Cloud and serverless datacenters have a significant impact on the world’s total

energy consumption (about 1 to 2.5% total energy consumption), although it has

been estimated that half of this energy is consumed by idle servers [182]. Despite

this 50% waste could be reclaimed by the serverless paradigm (involving the execu-

tion of short-lived functions), ensuring adequate management of energy e�ciency

in such systems remains a crucial challenge. Indeed, the proliferation of sensing

capabilities is likely to further push the current trend of developing cyber-physical

applications orchestrated along the cloud-to-edge continuum and making use of

serverless infrastructures. Various approaches can be used to limit power consump-
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tion: power capping of serverless deployments, scheduling strategies to make more

e↵ective the use of physical resources where serverless functions are hosted, and

mechanisms to minimize cold start times that can have significant power consump-

tion requirements [182]. In addition, the inherent event-driven nature of function

invocation enables easy coupling with dynamic resumption, such as Wake-on-Lan,

and fast-booting technologies, such as Coreboot or Jumpstart [183], in conjunc-

tion with delay-tolerant function invocations. Libraries supporting serverless plat-

forms, such as PyWren or funcX, allow for more fine-grained power capping. In

fact, such libraries could target specific subcomponents that might not need to run

at full speed, and better characterize the resource requirements of its functions,

thus enabling improved execution density via adaptive resource sharing among

multitenant functions.

5.3.2 Digital Twins as Function Chains

Figures 5.6 and 5.7 depict a function chain triggered when a status update is

received from the PT, and another function chain triggered by an action request

from an application, respectively. Specifically, updates that reach the physical

interface involve a processing pipeline comprising five main steps (see Figure 5.6):

1. physicalEventHandler : any change of the state of the PT SPT is received as

a raw physical event (e.g., a MQTT message) and normalized to a standard

event evPT ;

2. shadowingHandler : given a physical event evPT and a model M , a candidate

for the new DT state S
0
DT is computed by means of a shadowing function;

3. augmentationFunction: given a candidate state S
0
DT , a set of (possibly par-

allel) augmentation functions is used to produce a richer candidate for the

DT state S
00
DT , which consists of more properties and relationships;

4. twinHandler : given a possibly augmented candidate state S
00
DT , the new

DT state SDT is consolidated and a digital event evDT is computed after

the entanglement and the DT life cycle state are updated. Note that the

twinHandler step has been designed as the composition of three smaller

steps, each managing a single responsibility;
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5. digitalEventHandler : digital event evDT is sent to listeners (e.g., external

applications) via the digital interface.

Instead, action requests trigger a function chain that propagates on the opposite

direction. This case is simpler than the previous one, typically not involving

augmentation, and is based on a sequence of three main steps (see Figure 5.7):

1. digitalActionHandler : any request from applications is received as a raw

digital action event and normalized to a standard event evDT ;

2. shadowingActionHandler : a new action request aPT for the PT is generated

by means of a shadowing function and propagated towards the PT;

3. physicalActionHandler : the action request aPT is applied to the PT, deter-

mining a change of the PT state SPT .

5.4 Chapter Summary

This chapter focused on DT engineering. In particular, it discussed how to build

DTs through two di↵erent approaches—microservices and serverless.

Among the characteristic properties of DTs introduced by Minerva et al. [44],

Section 5.1 extrapolated those relevant in the context of DT engineering: reflec-

tion, persistency, memorization, augmentation, composability, replication, and ac-

countability/manageability. Each property was accurately defined, examined from

an engineering perspective, and analyzed in terms of the potential impact upon

successful implementation.

Section 5.2 explained which software engineering design patterns help meet the

requirements identified while discussing the properties identified in Section 5.1,

thus providing actionable tools to build context-aware, adaptive, and autonomous

DTs based on microservices. The design patterns discussed in this section encom-

pass microkernel, asynchronous queuing, sidecar, ambassador, adapter, Singleton,

load balancer, proxy, and API gateway.

Lastly, Section 5.3 delved into DT engineering within the context of serverless

computing, addressing both the advantages and design considerations. The server-
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less design originally proposed in this section relies on function chains capable of

managing communication flows from physical to digital and vice versa.
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Chapter 6

Entanglement-Aware Digital

Twin Ecosystem

This chapter describes how to build an entanglement-aware DT ecosystem, where,

as the name suggests, entanglement awareness is the most fundamental character-

istic. This aligns with the definition of DT—a virtual entity entangled with an

object, whether tangible or intangible, of which the DT provides a (augmented)

representation in the virtual space, thus decoupling the object from the observer

in space and time.

The novel contributions of this chapter consist of (i) a metric to measure the

entanglement, (ii) entanglement-aware DTs, and (iii) an entanglement-aware mid-

dleware. The metric serves as a means for DTs to quantify entanglement with their

physical counterparts, allowing them to be aware of the quality of entanglement

over time. Entanglement-aware DTs share this information with the middleware,

which then consumes it and orchestrates the DTs accordingly. The entanglement-

aware DT ecosystem not only satisfies the requirements delineated in Chapter 3,

overcoming the limitations of existing platforms, but also includes a metric specif-

ically designed for measuring entanglement, thus fully supporting the proposed

vision of DTs centered around the concept of entanglement.

The remainder of the chapter is structured as follows. First, Section 6.1 inves-

tigates the problem of entanglement in the context of DTs and proposes a metric

to measure it. Then, Sections 6.2 and 6.3 elaborate on the architectural aspects
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Figure 6.1: Synchronization process for uni/bidirectional entanglement.

of entanglement-aware DTs and the middleware, respectively. The objective is to

provide high-level architectural abstractions, without implementation-specific de-

tails, which will be discussed in Chapter 7. Lastly, Section 6.4 provides conclusive

remarks.

6.1 The Role of Entanglement in Digital Twins

From a general perspective, the interactions between DTs and PTs can unfold in

two key ways: (a) a state change in the PT is to be communicated to the DT; (b)

a request to the DT from an application is to be communicated to the PT and

then a state change confirmation is to be sent back to the DT and the application.

Figure 6.1-left schematically depicts the synchronization flow required to keep

the DT and PT states aligned (denoted as SPT
i and S

DT
i ) when the PT detects a

state change. At the beginning S
PT and S

DT are aligned in version 1 (t0). When a

new physical event (e.g., a change in the environment) occurs, it triggers a variation

of the physical state (changed to S
PT
2 ) and generates a state update toward the

DT. At this point, there is a misalignment between the two counterparts since the

physical variation has not yet been reflected on the DT (t1). Only when the DT

receives the state update and computes its new state SDT
2 the two counterparts are

properly synchronized (t2). In this first scenario, the entanglement is unidirectional

and directly reflects the time shift between the state of the physical entity and its

digitalized replica.

Figure 6.1-right, instead, represents a scenario in which an action is performed

on the DT (e.g., from an IIoT application) and is to be propagated to the PT.

It is worth noting that an action issued on the DT—aiming at modifying the
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state of the PT—should be intended as another form of state synchronization.

When the DT receives the action, it notifies the PT about the request and waits

for its state transition (from S
PT
1 to S

PT
2 ). Then, once the state change on the

PT is confirmed, the state of the DT is updated as well (from S
DT
1 to S

DT
2 ). In

this second scenario, the entanglement is even more relevant since a bidirectional

exchange of information is required.

6.1.1 Entanglement: An Industrial Perspective

The following illustrative scenarios point out the main factors that may a↵ect

entanglement. Such scenarios illustrate the interactions between IT and OT in

IIoT environments and how these interactions a↵ect the entanglement. Specifically,

each scenario involves an OT technician working on a PT and an IT technician

working on a DT. For instance, the former might be a shop floor operator operating

on a production line, while the latter might be a software architect deploying a

DT as a microservice through a container orchestration system.

Baseline

The baseline scenario describes the interactions between IT and OT in a DT-based

industrial environment (see Figure 6.2a). Under the baseline scenario, it is assumed

that these interactions do not disrupt the current entanglement characterizing the

communication relationship between the PT and the DT. The OT technician in-

teracts with the PT (e.g., a production line) to craft goods and observes the PT

status to oversee what is going on. Additionally, the OT technician may request

a simulation to the DT and, based on the simulation results, decide on the sub-

sequent commands to send to the PT. The IT technician, instead, only interacts

with the DT. Such interactions may relate, for example, to the deployment of the

DT. It is worth remarking that di↵erent layers of the Purdue model provide dif-

ferent network performances, thus influencing the entanglement. Therefore, the

IT technician should plan the DT deployment carefully and re-plan it dynamically

according to the network conditions. As the number of DTs grows, so does the

complexity of making e↵ective decisions about their deployment. Thus, quantify-

ing the entanglement in a concise yet expressive way becomes even more critical.
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Physical Reconfiguration

The physical reconfiguration scenario sketches the case where an action of the OT

technician on the PT disrupts the entanglement (see Figure 6.2b). For instance,

the OT technician may change the configuration of the PT, which may result

in a di↵erent status update rate, say halving the status updates per second. In

turn, the DT detects an abnormal entanglement because it still expects double

the status updates it is actually receiving. As soon as the DT detects that the

entanglement got disrupted, it notifies the OT/IT technicians. At this time, the IT

technician can only infer that something is not going as expected. Therefore, the

OT technician, whose initial interaction caused the misalignment between the PT

and the DT, should notify the IT technician about the change they made to the

PT. Then, the IT technician can update the configuration of the DT accordingly,

thus bringing the system back to a steady-state phase.

Digital Reconfiguration

The digital reconfiguration scenario sketches the case where an action of the IT

technician on the DT disrupts the entanglement (see Figure 6.2c). At first glance,

this scenario might seem symmetrical to the physical reconfiguration one, but it

is not. In particular, the IT technician uses the DT to change the configuration of

the PT. For example, the IT technician may halve the status update rate of the

PT through the DT. As soon as the DT receives the instructions issued by the

IT technician, it sets the PT accordingly. At this time, the DT must wait until

the PT reports a status update reflecting a status change meeting the request(s)

of the DT. Then, the DT can notify the OT/IT technicians back. Note that the

OT technician might have already noticed that the PT changed status because of

physical feedback from the PT, e.g., a robot part of the production line where the

OT technician is operating changed position.

Anomaly Detection

Under the physical and digital reconfiguration scenarios, an intentional action trig-

gered the course of action a↵ecting the entanglement. In contrast, the anomaly

detection scenario is about things that could go wrong unpredictably (see Fig-
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ure 6.2d). In particular, this scenario takes into account anomalies striking either

the PT (e.g., crash of the production line), the environment (e.g., poor network

connectivity between the PT and the DT), or the DT (e.g., hardware fault of

the server hosting the DT). Let us assume an outburst of latency upon the com-

munication link that connects the PT and the DT. The DT can detect such an

anomaly by looking at the timeliness of the received status updates from the PT.

If we instead assume a crash of the PT, the DT can detect that something is

not as expected because of a drop in the status update rate. Note that the OT

technician may also detect the crash of the PT through physical feedback, e.g.,

the production line stops working. The recovery phase is started by the actor that

detects the anomaly first. In the former case, the DT would start the recovery

phase by notifying the IT technician, who might decide, e.g., to redeploy the DT

somewhere else or fix the network. In the latter case, the OT technician would

start the recovery phase, e.g., by fixing the PT. The outcome of the recovery phase

is to bring the system back to a steady-state phase.

6.1.2 Limitations of Existing Metrics

The standard set of performance indicators for measuring network link perfor-

mance (required to keep DTs and PTs entangled) is usually indicated with the

general term of QoS. Traditionally, QoS focuses on network characteristics, such

as latency, jitter, and packet loss, all of which, even if relevant, are not able to

capture application-specific nuances. For instance, an increase of one second in

network latency might be irrelevant for an application requiring updates every

minute while dramatic for another one monitoring near real-time phenomena and

requiring at least ten updates per second. To avoid such issues, alternative mea-

sures have been developed, e.g., Quality of Experience (QoE) [184] or Quality of

Information (QoI) [185], with the goal of evaluating the performance of applica-

tions instead of the network links they rely upon.

In the field of IoT systems, various attempts have been made to measure ap-

plication QoE via both subjective and objective means. Concerning the subjective

family, recent works [186]–[189] propose QoE metrics in di↵erent contexts. How-

ever, these approaches do not assess how the application QoE relates to the indi-

82



vidual components of IoT applications and models it through human evaluations.

These approaches are not suitable for evaluating the quality of entanglement, since

it is a product of a machine-to-machine process. Concerning the objective family,

Li et al. [190] aimed to ensure QoE through existing QoS metrics. They proposed a

regression model between QoE and QoS indicators (after extracting their principal

components). Their results show that, in case of the absence of human feedback,

QoE can be derived from QoS parameters. [191] proposes a QoE model for a com-

munication app. They identified five key factors impacting QoE (i.e., integrality,

retainability, availability, usability, and instantaneousness) and measured them.

The final QoE value is a composition of these five measures, normalized between

0 and 1.

Existing QoE definitions focus on evaluating application quality from the lens

of their users (e.g., video-conferencing) and are not suited for unsupervised use

cases (i.e., applications where human feedback is unavailable). An analysis of

the existing literature led Fizza et al. [184] to conclude that measuring QoE of

applications where human involvement or feedback is not readily available can be

approximated by observing four key features of collected data: timeliness (i.e.,

how fresh the collected data are for actually making decisions), completeness (i.e.,

the ratio of the amount of collected data to the total amount of required data),

accuracy (i.e., the precision of the collected data), and usefulness (i.e., how useful

the collected data are for the application).

6.1.3 Overall Digital Twin Entanglement

The main goal of the originally proposed ODTE metric is to measure in a concise

yet expressive way the interactions involving state updates between DTs and PTs.

Similarly to the traditional Overall Equipment E↵ectiveness (OEE) metric, de-

signed to measure production e↵ectiveness, ODTE is conceived as a multiplication

of factors resulting in a number between 0 and 1. The factors involved—timeliness

and completeness—have been suggested by Fizza et al. [184] for measuring the

QoE of applications where data features can be captured while human feedback is

unavailable. While we represent timeliness (T ) as a single factor, completeness is

represented with two subfactors: reliability (R), i.e., the ratio of the received state
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updates to the expected ones, and availability (A), i.e., the expected up-time of

the PT from the perspective of the DT. Accordingly, ODTE is defined as:

ODTE = T ⇥R⇥ A (6.1)

To quantify the timeliness of a state update, the DT needs to track the rate

of incoming status updates over time, the elapsed time between when the PT

produces a given update and when the DT receives it, and how long the DT takes

to change its state (based on the received update). A suitable way to model this

phenomenon is by making use of histograms. The DT may use a histogram to

sample observations about the timeliness of the received updates. In this case, an

observation oi may be defined as follows:

o
uni
i = t

DT
i � t

PT
i + t

exec
i (6.2)

where

• t
DT
i is the time at which the DT received the ith update;

• t
PT
i is the time at which the PT had produced the ith update;

• t
exec
i is the time the DT took to change state as a result of the ith update.

It is worth noting that ounii only works for unidirectional entanglement. In the

case of bidirectional entanglement, instead, an observation oi may be modeled as

follows:

o
bi
i = t

PT 0

i � t
DT 0

i + o
uni
i (6.3)

where

• t
PT 0
i is the time at which the PT received the command from the DT;

• t
DT 0
i is the time at which the DT had issued the command.

Timeliness T can now be expressed as a quantile over a time window:

T (', t, O) (6.4)

where
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• 0  '  1 is the quantile;

• t is a time window (e.g., last 5 minutes);

• O is the set of observations about the received updates.

For example, T (0.99, now � 5m,O) = 0.100 means that 99% of the observa-

tions had timeliness of at most 100 ms over the last 5 minutes. For computing

a normalized metric, such as ODTE, it is useful to express the timeliness as a

percentage instead of in seconds. Thus, Equation (6.4) may also be defined as:

T
0(Td, t, O) (6.5)

where Td is the desired timeliness.

Equation (6.5) expresses the timeliness as a percentage and encapsulates any

application-specific detail within the DT itself. It is reasonable, in fact, to assume

that a DT is aware of the desired timeliness (Td) of its physical counterpart. For

example, if Td is set to 200 ms (i.e., anything lower than 200 ms meets the require-

ment), T 0(200ms, 5m,O) = 0.999 means that 99.9% of the updates had the desired

timeliness. By doing so, anyone (or anything) monitoring the DT can understand

if the timeliness of state updates respects the entanglement requirements without

any a priori, application-specific knowledge.

Timeliness itself does not account for those updates that are never received by

the DT, which, instead, are taken into account by the completeness factor. As

stated above, completeness consists of two subfactors, namely R and A. Firstly,

R measures the reliability of an entity expressed as the ratio of the received state

updates to the expected ones within a specified time frame. Formally:

R(t, O) =
umeasured(t, O)

uexpected(t)
(6.6)

where

• umeasured(t, O) is the per-second average rate of the received updates based

on the set of observations O over the time window t;

• uexpected(t) is the minimum per-second average rate of the expected updates

over the time window t. If umeasured(t, O) > uexpected(t), then R(t, O) = 1.
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For example, R(now� 5m,O) = 0.5 indicates that the DT received half of the

expected updates within the last 5 minutes. Secondly, A measures the availability

of the PT over a specified time frame. For example, A(now� 5m,O) = 0.5 means

that the PT was active only half of the expected time over the last 5 minutes.

Putting the three components together, the ODTE is defined as:

ODTE = T
0(Td, t, O)⇥R(t, O)⇥ A(t, O) (6.7)

From an operational viewpoint, the DT should be responsible for quantifying its

own ODTE to provide either human operators or applications with a representation

of its entanglement. It would also be possible to compute the ODTE outside the

DT, e.g., by third parties services querying a time-series database containing T ,

R, and A.

6.2 Entanglement-Aware Digital Twins:

Life Cycle and Architecture

Entanglement-aware DTs should monitor entanglement with their physical coun-

terparts and evaluate it according to design principles, the context where they

operate, and the application requirements. Following this principle, the life cycle

proposed in [50] modeling the behavior over time of a DT-PT duality can be ex-

tended as follows (see Figure 6.3). Upon its start, the DT is Unbound and ready

to bind with the PT. Once the binding is completed (a network channel with the

PT is established and the DT is ready to initiate the digitization process), the DT

moves to the Bound state and the quality of entanglement starts to be measured.
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If binding errors occur, the state reverts back to Unbound and the DT tries to

recover the channel. Networking or computational resource issues involving the

DT-PT synchronization and degrading the level of entanglement below a target

threshold bring the DT into the Disentangled state. In this state, the DT becomes

unable to provide its intended functionality. From the Disentangled state, the DT

can transition to either the Unbound or Done state in case of an error during the

binding procedure or if it is explicitly stopped by the middleware. Upon successful

error recovery, the DT reverts back to the Entangled state. In the Done state, the

DT remains accessible to external applications as a software component detached

from the PT, retaining its memory and exposing collected historical data, events,

and metrics together with the last DT state until it is dismissed, by transitioning

to the Stop state.

Figure 6.4 depicts the architecture of an entanglement-aware DT. This archi-

tecture is built on top of state-of-the-art principles [44], [49], [50], aligns with the

requirements described in Chapter 3, and is event-driven in nature (thus working

for both microservices and serverless DT implementations).

From a technical point of view, the Digital Twin Model is responsible for de-

termining how and when changes in the physical world should be mapped into the

digital replica, as well as propagating inputs and actions to the PT. The model

closely works with the Digital Twin State component, storing attributes (e.g., phys-

ical properties), behaviors (e.g., actions that can be performed on the DT), and

relationships (e.g., modeling how PTs are linked in the physical space). The in-

teraction with the physical and digital layers builds upon the Physical and Digital
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Interfaces, each composed of di↵erent Adapters (which implement protocols and

data formats). The model receives inputs from the physical layer. Such inputs are

reflected in the digital representation either immediately or after various trans-

formations to align them with the DT model (e.g., resampling signals, changing

metric units). Given that modifying the functionalities of physical objects might

be costly and complex, a physical asset can be functionally expanded through its

DT, using a collection of Augmentation Modules introducing additional attributes,

behaviors, or relationships. All internal DT modules are supported by a Storage

& Persistence component that handles the memorization and retrieval of past DT

states and relevant events.

The DT also integrates an Entanglement Manager responsible for monitoring

the quality of entanglement. This module plays a role in ensuring that the DT

maintains an up-to-date representation of its PT, thereby enabling analysis, predic-

tion, and decision-making. It also adjusts the DT state and generates contextual

metrics. As previously introduced, the tra�c volume to maintain the DT-PT dual-

ity can significantly vary across deployments and scenarios, ranging from real-time

interactions (high volume) to batch processing (low volume). For this reason, it

is key to use a metric for measuring the quality of entanglement (e.g., ODTE, see

Section 6.1.3) that is decoupled from the specific use case in which the DT is used.

DTs also include a Monitoring & Management Interface (illustrated at the

bottom of Figure 6.4) as a tool that allows human operators and the middleware to

accommodate (time-varying) application requirements. Furthermore, the interface

exposes DT contextual metrics (e.g., quality of entanglement and internal life

cycle), providing insights into the performance and e↵ectiveness of the DT.

6.3 Entanglement-Aware Middleware:

Architecture

The first objective of the entanglement-aware middleware is to manage the exe-

cution of DTs while ensuring compliance with cyber-physical application require-

ments. This includes selecting the most suitable configuration and deployment

strategy based on the current context. The middleware proactively monitors the

88



quality of entanglement, facilitates optimal deployment execution, and plan coun-

termeasures against performance degradation. To achieve these objectives, the

middleware is structured around two main components: the Core Node and the

Worker Nodes (on the left and right parts of Figure 6.5, respectively). The Core

Node acts as the control plane and manages the operations of the distributed

DTs. Worker Nodes can be deployed on di↵erent network layers, such as edge

on-premises, MEC, and cloud, and execute the DTs. They run dedicated agents

that facilitate communication with the core and manage the execution of deployed

DTs.

The Core Node has a structured design with internal components and ex-

ternal interfaces, is dedicated to DTs management, and its use is intended for

stakeholders, application designers, and platform administrators. It communicates

with Worker Nodes via the Monitoring Interface (to collect contextual data from

DTs) and the Orchestration Interface (to control DTs). Additionally, through

the Management Interface, stakeholders can provide input, specify application re-

quirements, quality of entanglement, and interact with the ecosystem. Finally, the

Reporting Interface is to visualize and interact with the ecosystem. It allows the vi-

sualization of running applications with their DTs, inspecting resource utilization,

accessing logs, and monitoring the health of the system.

The Middleware Knowledge component stores configurations, events, and ac-

tions executed by the middleware and consists of three subcomponents: the DT

Repository, which contains DT artifacts, the Infrastructure Knowledge, which

stores specifications and configurations of the cloud-to-edge continuum infras-

tructure, and the Application Repository, which stores cyber-physical application

descriptions (including deployment specifications). The Orchestrator component

manages DT orchestration strategies. If not specified by the application, it iden-

tifies the most suitable deployment configuration across the continuum. Then, it

monitors contextual information (reading data from the Data Storage component)

and plans actions to keep the quality of entanglement above the target. The Data

Storage component represents a structured and multi-functional persistency layer

that stores metrics, logs, and events. This component ensures consistent and up-

to-date information for e↵ective decision making and provides historical records of

platform activities, thus enabling analysis and auditing. This component manages
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information related to Network Metrics, Resource Metrics, DT Metrics, and the

Event History, which collects all orchestration-related events.

Figure 6.6 provides an illustrative example of a cyber-physical application de-

scription. In contrast to traditional applications, cyber-physical ones encompass

both physical and digital layers. The physical facet of such applications consists of

one or more PTs, identified by a unique identifier and described by a set of meta-

data (in the form of key-value pairs) capturing the relevant features of the physical

object. It is worth noting that physical object metadata might vary depending

on what is relevant in the context of a cyber-physical application. The digital

facet, instead, consists of one or more DTs characterized by an unique identifier,

a source (a reference to the container image to be executed), a type (either simple

or composed), what it twins, a set of requirements (e.g., ODTE threshold), and a

list of allowed deployments configurations (described below). A DT is simple if it

twins one ore more PTs, while composed if it represents the status of other DTs.

For example, the DT representing a digital factory is likely to be the composition

of several underlying DTs, both simple (e.g., industrial machines) and composed

(e.g., production lines).

DTs are deployed according to their preferred locations as long as the quality

of entanglement is above the threshold set. When the ODTE value goes below

the threshold, the DT becomes Disentangled (see Figure 6.3) and alternative de-

ployments are provided as fallback strategies. A Deployment (see Figure 6.6, on

the right) includes a type, an a�nity, and a set of configuration files (needed to

implement it). For example, if the type is ”Kubernetes,” the configuration files are

expected to be Kubernetes objects, such as Deployment, Service, and ConfigMap.

Another possibility would be to use Helm charts instead of raw Kubernetes ob-

jects. In that case, the type would be ”Helm.” The a�nity specifies for which

location the deployment is targeted along the cloud-to-edge continuum.

6.4 Chapter Summary

This chapter proposed an entanglement-aware DT ecosystem. Entanglement is

what distinguishes DTs primarily from traditional software components, but there

are no existing metrics available that are suitable to measure it.

91



 
 
"
p
h
y
s
i
c
a
l
T
w
i
n
s
"
:
 
[

 
 
 
 
{

 
 
 
 
 
 
"
n
a
m
e
"
:
 
"
P
h
y
s
i
c
a
l
T
w
i
n
1
"
,

 
 
 
 
 
 
"
m
e
t
a
d
a
t
a
"
:
 
{

 
 
 
 
 
 
 
 
"
k
e
y
1
"
:
 
"
v
a
l
u
e
1
"
,

 
 
 
 
 
 
 
 
"
k
e
y
2
"
:
 
"
v
a
l
u
e
2
"

 
 
 
 
 
 
}

 
 
 
 
}
,

 
 
 
 
{

 
 
 
 
 
 
"
n
a
m
e
"
:
 
"
P
h
y
s
i
c
a
l
T
w
i
n
2
"
,

 
 
 
 
 
 
"
m
e
t
a
d
a
t
a
"
:
 
{

 
 
 
 
 
 
 
 
"
k
e
y
1
"
:
 
"
v
a
l
u
e
1
"
,

 
 
 
 
 
 
 
 
"
k
e
y
2
"
:
 
"
v
a
l
u
e
2
"

 
 
 
 
 
 
}

 
 
 
 
}

 
 
]

 
 
"
d
i
g
i
t
a
l
T
w
i
n
s
"
:
 
[

 
 
 
 
{

 
 
 
 
 
 
"
n
a
m
e
"
:
 
"
D
i
g
i
t
a
l
T
w
i
n
1
"
,

 
 
 
 
 
 
"
s
o
u
r
c
e
"
:
 
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
.
c
o
m
/
d
i
g
i
t
a
l
t
w
i
n
1
"
,

 
 
 
 
 
 
"
t
y
p
e
"
:
 
"
s
i
m
p
l
e
"
,

 
 
 
 
 
 
"
t
w
i
n
O
f
"
:
 
[
"
P
h
y
s
i
c
a
l
T
w
i
n
1
"
]
,

 
 
 
 
 
 
"
r
e
q
u
i
r
e
m
e
n
t
s
"
:
 
{
.
.
.
}
,

 
 
 
 
 
 
"
d
e
p
l
o
y
m
e
n
t
s
"
:
 
[
.
.
.
]

 
 
 
 
}

 
 
 
 
{
.
.
.
}
,

 
 
 
 
{

 
 
 
 
 
 
"
n
a
m
e
"
:
 
"
C
o
m
p
o
s
e
d
D
i
g
i
t
a
l
T
w
i
n
1
"
,

 
 
 
 
 
 
"
s
o
u
r
c
e
"
:

"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
.
c
o
m
/
c
o
m
p
o
s
e
d
d
i
g
i
t
a
l
t
w
i
n
1
"
,

 
 
 
 
 
 
"
t
y
p
e
"
:
 
"
c
o
m
p
o
s
e
d
"
,

 
 
 
 
 
 
"
t
w
i
n
O
f
"
:
 
[
"
D
i
g
i
t
a
l
T
w
i
n
1
"
,
"
D
i
g
i
t
a
l
T
w
i
n
2
"
]
,

 
 
 
 
 
 
"
r
e
q
u
i
r
e
m
e
n
t
s
"
:
 
{
.
.
.
}

 
 
 
 
 
 
"
d
e
p
l
o
y
m
e
n
t
s
"
:
 
[
.
.
.
]

 
 
 
 
}

Physical Tw
ins

D
igital Tw

ins
D

eploym
ent Specifications

C
yber-Physical A

pplication D
escription

"requirem
ents": {

   "preferredAffinity": "edge",
    "odte": 0.9
}

 "deploym
ents": [

        {
          "type": "Kubernetes",
          "affinity": "edge",
          "configs": [
            {
               "type": "C

onfigM
ap",

               "spec": "{...}"
           },
           {
              "type": "D

eploym
ent",

              "spec": "{...}"
            },
            {
              "type": "Service",
              "spec": "{...}"
            }
 ] } ]

"requirem
ents": {

   "preferredAffinity": "cloud",
    "odte": 0.9
}

 "deploym
ents": [

        {
          "type": "Kubernetes",
          "affinity": "cloud",
          "configs": [
            {
               "type": "C

onfigM
ap",

               "spec": "{...}"
           },
           {
              "type": "D

eploym
ent",

              "spec": "{...}"
            },
            {
              "type": "Service",
              "spec": "{...}"
            }
 ] } ]

F
igu

re
6.6:

E
xam

p
le

of
a
cyb

er-p
hysical

ap
p
lication

d
escrip

tion
.

92



To bridge this gap, Section 6.1 explored the entanglement in the context of

DTs. Section 6.1.1 elaborated on four illustrative industrial scenarios (i.e., base-

line, physical reconfiguration, digital reconfiguration, and anomaly detection) to

identify factors that can a↵ect entanglement. Then, Section 6.1.2 discussed the

limitations of existing metrics in representing entanglement. Lastly, Section 6.1.3

proposed ODTE—a concise yet expressive metric to measure entanglement.

ODTE was the first building block towards the entanglement-aware DT ecosys-

tem. Section 6.2 detailed the life cycle and architecture of an entanglement-aware

DT. The life cycle involves states to identify whether the DT is Bound or Unbound

with the PT, where Bound means that the DT is ready to initiate the digitaliza-

tion process, and, once Bound, whether the DT is Entangled or Disentangled.

The proposed architecture aligns with the requirements described in Chapter 3

and its event-driven nature makes it suitable for microservices and serverless DT

implementations.

Finally, Section 6.3 elaborated on the entanglement-aware middleware. The

primary objective of the middleware is to manage the execution of DTs while

ensuring compliance with cyber-physical application requirements. The section

also provides an illustrative example of a cyber-physical application description,

which serves as a comprehensive construct that unifies DTs and their PTs. The

middleware’s decision-making is intrinsically tied to the requirements specified in

the cyber-physical application description, such as the preferred DT deployment

along the cloud-to-edge continuum, or under which ODTE value a DT is no longer

considered entangled.
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Chapter 7

Experimentation

This chapter provides insights into the implementation of the entanglement-aware

DT ecosystem. In this regard, Section 7.1 explores the proof-of-concept implemen-

tation of the ecosystem. Entanglement-aware DTs have been realized through two

distinct approaches: microservices and serverless, o↵ering a comprehensive repre-

sentation of the concepts discussed in Chapter 5. These implementations adhere

to the architectural guidelines laid out in Section 6.2. The entanglement-aware

middleware has been implemented in the microservices flavor only. This is be-

cause serverless implementations of entanglement-aware DTs are heavily tied to

the serverless framework of the cloud provider.

The chapter evaluates the performance results and overhead of the implemented

entanglement-aware DT ecosystem (see Section 7.1). The notable outcome of

this experimentation is not only the demonstration of the feasibility of such an

ecosystem but also its e↵ectiveness in enforcing entanglement. The accompanying

analysis also highlights the benefits and drawbacks of microservices and serverless

implementations. In particular, Section 7.2 details the testbed used for experi-

mentation. Then, Section 7.3 analyzes the results of the performed experiments.

This analysis (i) demonstrates that entanglement-aware DTs can measure the en-

tanglement using the ODTE metric, (ii) quantifies the resource overhead of the

entanglement-aware DT ecosystem, and (iii) shows that the entanglement-aware

middleware can maintain the desired quality of entanglement over time, even in

the presence of failures. Lastly, Section 7.4 provides the summary of the chapter.
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7.1 Entanglement-Aware Digital Twin

Ecosystem: Implementations

This section provides an overview of the implementations of the entanglement-

aware DT ecosystem. The microservices implementation is detailed in Section 7.1.1,

and the serverless implementation is covered in Section 7.1.2.

7.1.1 Microservices Implementation

Entanglement-Aware Digital Twins

The Microservices Digital Twin (MDT) was implemented through the White La-

bel Digital Twin (WLDT) library, a modular Java stack based on a shared mul-

tithread engine to implement DT behavior and define its mirroring procedures,

data processing, and interaction with external applications [192]. The library was

extended to support cyber-physical entanglement and, more in general, the require-

ments described in Chapter 3 and the architectural specifications of Section 6.2.

A management interface was added to allow dynamic control and re-configuration

of a target DT, and existing metrics management systems were updated to ex-

pose life cycle and entanglement core metrics, thus matching the interoperability

requirements with the middleware monitoring interface. The container images

of the implemented DT were hosted in a dedicated container registry (i.e., DT

Repository).

Entanglement-Aware Middleware

The Orchestrator (see Figure 6.5) was implemented as a module written in Go,

which is a programming language that provides built-in support for concurrency

through goroutines (i.e., lightweight threads of execution) and channels (the way

goroutines exchange messages and synchronize their operations), scalability, high

performance, and e�ciency. The primary objective of the Orchestrator is to keep

the quality of entanglement within the cyber-physical application constraints. The

Management Interface was implemented as a RESTful API that o↵ers endpoints

to create, update, and delete cyber-physical applications. The OpenAPI Gener-
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ator was used to generate the web server stub programmatically. Cyber-physical

application definitions were stored as JSON files in a dedicated key-value store

(i.e., Applications Repository) built on top of Etcd, a strongly consistent, dis-

tributed key-value store that organizes data hierarchically into directories. Once

deployed, DTs expose metrics such as their life cycle state and the ODTE mea-

sure. Prometheus was used to collect such metrics periodically, store them in

a real-time time-series database (i.e., DT Metrics), and query the database to

extrapolate aggregated insights. Dedicated clients were integrated to make the

Orchestrator interact with Etcd, Prometheus, and Kubernetes. Specifically, this

implementation relies on (i) Etcd to be notified whenever an application definition

is created, updated, or deleted, (ii) Prometheus to know whenever a DT becomes

Disentangled, and (iii) Kubernetes to enforce orchestration decisions (e.g., a new

deployment when a cyber-physical application is created or an alternative deploy-

ment when a DT becomes Disentangled).

7.1.2 Serverless Implementation

Entanglement-Aware Digital Twins

The Serverless Digital Twin (SDT) was implemented as an Azure Function App

using Python. Such a Function App relies on Durable Functions, an extension for

dealing with stateful applications in a serverless compute environment. To realize

the event-driven functions illustrated in Figure 5.6, the function chaining pattern

was used. This pattern refers to the ability to chain multiple functions together in

a sequence, where each function output serves as the input to the next function in

the chain. This pattern is achieved by using an orchestration function in charge

of defining the sequence of function calls (known as the function chain). When

the orchestrator function is triggered, it then calls multiple functions one after the

other, passing the output of one function as the input to the next function in the

chain. In this implementation, the orchestrator function is triggered whenever a

new status update is published to the IoT Hub—a managed service hosted on the

cloud acting as a central message hub for bidirectional communication from the

edge to the cloud and vice versa.
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7.2 Testbed Setup

The vision of DTs as microservices requires an underlying container-orchestration

system. To this purpose, Kubernetes was used—the de facto industry standard

container-orchestration system currently. As the number of DTs grows, so does

the complexity of the system, which requires a scalable technology stack that ade-

quately supports the deployment of DTs as microservices. This calls for the adop-

tion of a so-called service mesh, an infrastructure layer that keeps the management,

observability, and security of the whole environment practical at scale. Service

meshes typically provide these capabilities (almost) transparently, i.e., with no (or

few) service code changes. In this regard, Istio was adopted, which is arguably

the most popular solution. Istio extends Kubernetes to establish a programmable,

application-aware network [193].

In addition to the technology stack layer providing scalable deployment of DTs,

there is also the need to support the monitoring of the environment, in particular

to check that everything works as desired. Let us note that the monitoring phase is

paramount for the OT domain, since DTs have to fulfill strict requirements, e.g.,

strong entanglement. In this regard, Prometheus was chosen to scrape metrics

from DTs, store such metrics in a real-time time-series database, and query the

database to extrapolate aggregate insights [194].

Since the introduction of the Symian Army toolkit by Netflix in 2011 [167],

several tools have been released that can help software developers and admin-

istrators to discover unexpected vulnerabilities of software systems running in a

production environment. In fact, the application of Chaos Engineering well suits

complex microservice-based applications where the failure of a single microservice

could undermine the execution of the whole distributed application. Chaos Mesh

is a cloud-native Chaos Engineering platform for Kubernetes that allows injecting

a broad spectrum of faults into a target [195].

The testbed consisted of a Kubernetes cluster of four nodes, each within its

own VM. A single node acted as the master (i.e., the node running the control

plane) while the others joined as workers (i.e., regular cluster nodes). Each VM

was equipped with 2 vCPU and 8 GB of RAM, each running the Ubuntu operating

system. The entire software stack was automatically installed in a configurable and

98



reproducible fashion. In this regard, Ansible was used, a well-known configuration

management tool that allows a control node to configure a set of target nodes over

SSH [196]. Through Ansible, the Kubernetes cluster was built (i.e., Kubernetes

along with the ancillary software required by Kubernetes to run successfully, such

as cri-o [197] and Flannel [198]) as well as Istio, Prometheus, and Chaos Mesh

deployed. The project developed to configure the testbed has been made publicly

available on GitHub [199].

7.3 Experimental Evaluation

This section outlines the conducted experiments and evaluates their outcomes.

Section 7.3.1 presents experiments designed to showcase the entanglement aware-

ness of the implemented DTs. These experiments consider di↵erent scenarios,

configurations, and deployment strategies, all of which impact the entanglement

in varying ways. Then, Section 7.3.2 quantifies the overhead of the implemented

entanglement-aware DT ecosystem, assessing network, CPU, and memory resource

utilization. Finally, Section 7.3.3 illustrates the middleware’s orchestration capa-

bilities in preserving the entanglement of a cyber-physical application, even in the

presence of injected failures.

7.3.1 Entanglement-Aware Digital Twins:

Performance Results

Microservices Implementation

Through Kubernetes, a DT (the implementation described in Section 7.1.1), a PT,

and a message broker were deployed as containerized applications. The PT, which

mimics the behavior of an IIoT device, was also implemented in Java and, as the

DT, exposes proper interfaces to make its behavior configurable at run-time. The

message broker was Mosquitto, which supports the MQTT protocol. The PT sent

status updates to the DT as MQTT messages, i.e., publishing on a specific topic

to which the DT was subscribed. Analogously, the DT issued commands to the

PT publishing on another topic to which the PT was subscribed.
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Table 7.1: Experiments based on the Purdue model layers

Purdue Model Network conditions Latency ± Jitter Loss

Layer 0/1
Regular (R) 2.5 ms± 2.5 ms -
Deteriorated (D) 5 ms± 5 ms 5 %
Critical (C) 12.5 ms± 12.5 ms 15 %

Layer 2
R 12.5 ms± 7.5 ms -
D 25 ms± 15 ms 5 %
C 50 ms± 30 ms 15 %

Layer 3
R 35 ms± 15 ms -
D 70 ms± 30 ms 5 %
C 175 ms± 75 ms 15 %

We first focused on the timeliness factor of the ODTE metric in the context of

an industrial environment based on the Purdue model. In this regard, Table 7.1

details the network conditions we injected while performing the experiments. More

specifically, we set the regular (R) network conditions potentially a↵ecting each

layer of the Purdue model. For example, a DT deployed at layer 0/1 under regular

network conditions experienced a one-way latency of 2.5 ms ± 2.5 ms (with a

correlation between consecutive packets of 25%) and no packet loss. We also

defined plausible deteriorated (D) and critical (C) network conditions for each

layer. These experiments were conducted over a time window of 5 minutes.

We then explored the responsiveness of the ODTE metric under the illustrative

scenarios described in Section 6.1.1. The physical reconfiguration scenario was

emulated by halving the status update rate sent by the PT to the DT, i.e., from 1

to 0.5 status updates per second. Then, we instantiated the digital reconfiguration

scenario by forcing the DT to calculate 17.5K prime numbers while performing

a state transition. Lastly, we produced two instances of the anomaly detection

scenario to investigate the responsiveness of the ODTE metric to latency (i.e.,

50 ms ± 50 ms) and the combined e↵ect of latency (as before) and packet loss

(i.e., 10%). We performed these experiments in three phases (5 minutes each)

over a time window of 15 minutes overall. The first phase resembled the baseline

scenario, the second put into action a given scenario, and the third consisted of

rolling back what had been injected to reproduce the scenario (thus bringing the

system back to the baseline).

Figure 7.1 shows the results that we collected from the experiments that focus

on timeliness. The results are expressed in percentiles, i.e., 90th, 95th, 98th, 99th,

and 99.9th, and computed based on the metrics Prometheus scraped over a 5-
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Figure 7.1: Purdue model.

minute window. Note that the left y-axis depicts the timeliness expressed in ms

on a logarithmic scale (base 10). The bottom x-axis divides the figure into three

vertical macro-sections, each representing a layer of the Purdue model. The top

x-axis further divides those macro-sections based on plausible network conditions,

i.e., regular, deteriorated, and critical, that might a↵ect each layer of the Purdue

model (see Table 7.1). For example, the yellow cross on the second column means

that 95% of the status updates received by the DT had timeliness of at most 20 ms

over the observed 5-minute window. The solid red horizontal line distinguishes the

layers of the Purdue model that fit a DT with desired timeliness of 50 ms between

those that do not. If the target is the 90th percentile, then layer 0/1 represents

a suitable option under any network condition. Layer 2 is also a suitable option

but only up to the deteriorated network conditions (the 90th percentile almost

doubled the desired timeliness while critical network conditions occurred). The

dashed blue horizontal line, instead, refers to a DT whose desired timeliness is 100

ms. If we still assume that the target is the 90th percentile, then both layers 0/1

and 2 are suitable deployment options under any network condition.

Figures 7.2a, 7.2b, 7.2c, and 7.2d show the responsiveness of the ODTE met-

ric over a 15-minute time window concerning the experiments instantiating the

(a) physical reconfiguration scenario, (b) digital reconfiguration scenario, (c) the

anomaly detection scenario where the anomaly was an outburst of latency, and
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(a) Physical reconfiguration. (b) Digital reconfiguration.

(c) Anomaly detection: Latency. (d) Anomaly detection: Latency & Loss.

Figure 7.2: ODTE performance in di↵erent experimental scenarios.

(d) where two anomalies were in place simultaneously, i.e., latency and loss. Such

figures depict three lines, i.e., red, blue, and green, each plotting the ODTE com-

puted on a di↵erent sliding window (see the abbreviation SW in the legend), i.e.,

30 s, 2 min, and 5 min, respectively. On the one hand, a shorter sliding win-

dow makes the ODTE metric more responsive (the red line reacts faster than the

others to the scenario). On the other hand, a shorter sliding window also makes

the ODTE metric more sensitive to noise. The wide fluctuations depicted in Fig-

ure 7.2d (see the red line) make evident the impact of a shorter sliding window on

the ODTE metric. However, this does not mean that longer sliding windows are

always better than shorter ones. The sliding window width choice should reflect
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Figure 7.3: ODTE comparison between applications with di↵erent Td.

the target DT sensitivity to short-lived variations of the entanglement over time.

Finally, Figure 7.3 shows the ODTE (sliding window of 30 s) concerning two DTs

whose desired timeliness was 50 ms (red line) and 100 ms (blue line), and both were

performing under the same anomaly detection scenario with latency and loss as

described above. Note that it is straightforward to understand if the DT is experi-

encing a ”good” or ”bad” entanglement. Also, the application-specific knowledge,

i.e., the desired timeliness, is embedded within the ODTE metric. Finally, it is

worth pointing out that the DT with 100 ms of desired timeliness was much less

influenced (blue line) by the scenario than the one whose desired timeliness was

50 ms (red line).

Serverless Implementation

Figure 7.4 illustrates the deployments along the cloud-to-edge continuum we used

to experimentally evaluate the serverless implementation, i.e., SDT, and compare

it with the microservices one, i.e., MDT. Specifically, Figure 7.4-top and Figure 7.4-

bottom depict the deployments used to assess the SDT and the MDT, respectively.

They both involved two di↵erent applications: an edge application requiring strong

cyber-physical entanglement and a third-party application designed to perform

batch analytics with more relaxed entanglement requirements.

The first deployment (Figure 7.4-top) was used to evaluate the performance of

the SDT to represent the PT, which was configured to transmit a status update
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Figure 7.5: SDT (a) vs. MDT (b): ODTE for di↵erent Td values.

every five seconds. Figure 7.5a shows the kernel density estimation of the ODTE

for several values of Td. The ODTE mean was 0.44±0.10, 0.64±0.11, 0.68±0.06,

and 0.99±0.03 for Td of 1 s, 2.5 s, 5 s, and 10 s, respectively. These results confirm

a positive correlation between Td and the ODTE and indicate that the SDT was

successfully entangled only when Td was set to 10 s, which is a relatively high

value. However, it is worth remarking that the performance within the cloud may

fluctuate significantly and may be influenced by a wide variety of factors, such as

the type of subscription, the quality of resources, and the resource quotas, among

others.
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The second deployment (Figure 7.4-bottom) addresses the limited performance

observed in the cloud-only deployment. In this case, there was also an MDT run-

ning on edge on-premises, thus closer to the PT. Figure 7.5b shows the kernel

density estimation of the ODTE confirming the positive correlation observed for

the SDT. However, due to proximity to the PT and the simplicity of the imple-

mentation compared to the SDT, Td could be set an order of magnitude lower than

in the previous case.

This experiment shows how di↵erent implementations of the same DT can co-

exist along the cloud-to-edge continuum. Indeed, both the SDT and the MDT

implement (in di↵erent ways) the architecture described in Figure 6.4. From the

perspective of the applications, it makes no di↵erence whether to interact with

the SDT or the MDT. The choice between the two can be based only on perfor-

mance or economic factors. Generally, cloud-based implementations provide lower

performance (i.e., worse ODTE measures) in exchange of more cost-e↵ective and

scalable deployments compared to edge implementations.

7.3.2 Entanglement-Aware Digital Twin Ecosystem:

Overhead

Figure 7.6 describes the phases of the experiments to assess the entanglement-

aware DT ecosystem overhead: i) initial deployment (left); ii) context variation

(centre); and iii) deployment adaptation (right). Each phase is described and

detailed in the following paragraphs.

Initial Deployment The initial deployment phase describes a typical industrial

setting in a steady state. As illustrated in Figure 7.6, we distinguish three logical

layers: physical, digital twin, and application. The physical level is on the shop

floor and comprises three IIoT devices that publish their status information on

a MQTT message broker, i.e., the so-called IIoT Devices Broker. Such a broker

may be defined as a physical broker to refer to its responsibility to exchange

data with physical devices. In contrast, the digital level spreads from the control

room to the shop floor. Here, three elementary DTs consume the information

published on the physical broker to clone the IIoT devices (i.e., PT) into software
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Figure 7.6: Phases of the experiments for overhead assessment.

counterparts. Each PT handles three sub-resources (energy consumption, battery

level, and temperature) and publishes on independent topics with a configurable

message rate (ranging from 10 ms to 100 ms) and an average payload size for each

sensor information of 100 bytes.

Each DT is responsible to digitalize a target IIoT device managing incoming

packets to: i) process and adapt received payloads to the standard Sensor Mea-

surement Lists (SenML) [200] data format; ii) evaluate and maintain the internal

status; and iii) handle possible incoming commands and re-configuration requests

sent by applications. Such elementary DTs publish their status variation (always

using SenML) to a dedicated MQTT message broker, i.e., the so called Digital

Twins Broker. Such a broker may be defined as a digital broker to identify its

responsibility to handle only packets from DTs and applications.

According to the design patterns presented in Section 5.2, each DT was struc-

tured as a pod where the core engine container is put side by side with a sidecar

to support communication proxy functionalities and an ambassador to handle a

uniform and fine-grained metric collection. The Composed Digital Twin (CDT) is

responsible for periodically aggregating information and statuses from other active

DTs and exposing the new computed representation to applications and services

interested in having an aggregate representation. The CDT directly observes the

variations of connected DTs, reading data from the digital broker and publishing

its new status on the same broker but on a di↵erent topic.

The application level is about industrial applications, i.e., those applications

built on top (and by means) of the abstractions provided by the digital twin level.

A telemetry observer and a real-time telemetry observer are the industrial appli-
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cations part of this illustrative scenario. It is worth noting that such observers

di↵er in the entanglement they demand. Specifically, the real-time telemetry ob-

server demands that the observed DTs are strongly entangled with their PT. This

means that the information dispatched among PTs and DTs must flow upward

and downward as close to real-time as possible.

Context Variation The context variation phase is the result of a drop in net-

work performance that slows the information circulation between DTs executed

in the control room and IIoT devices active on the shop floor. As a result, DTs

can no longer guarantee a strong entanglement with their PT. Note that the ac-

ceptable misalignment between DT and PT states is strongly associated with the

nature of applications and services, and di↵erent tolerance levels may coexist in

the same deployment. In this setup, only the real-time observer is a↵ected by a

misalignment between PTs and DTs, while the telemetry observer is used only for

reporting purposes.

Thanks to the possibility of e↵ectively monitoring every aspect of the involved

entities (e.g., through ambassadors in each DT adapting and collecting metrics),

we may have multiple decision points able to detect the context variation and react

to it by adapting the deployment to restore the target working conditions. In the

conducted experiments, this responsibility was delegated to the control room, since

it has global awareness of the deployment and thus can determine how and when

it should take management actions.

Deployment Adaptation The context variation phase triggers the deployment

adaptation phase, which ends in a steady state. The objective of the deployment

adaptation phase is to properly react to meet target conditions. In the context of

these experiments, the objective is to dynamically re-configure DTs and applica-

tions to meet the demanded level of entanglement through a migration of target

components directly on edge nodes in the shop floor.

This adaptation requires to: i) deploy a new MQTT digital broker at the edge

and configure it to work in bridged mode with the other one already running in the

control room to automatically synchronize target topics; ii) migrate DTs and the

real-time telemetry observer on the edge to be physically close to the IIoT devices;
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(b) Adaptive deployment.

Figure 7.7: Tra�c flows at the digital and application level.

and iii) re-configure DTs and the observer to work in the new environment with

the correct brokers.

The performance results detail i) the overhead introduced by the technology

stack used to enable an entanglement-aware DT ecosystem and ii) how the whole

system behaves while adapting to triggering events. The discussion about the

performance results revolves around the steady and transitory states the ecosyste

goes through while performing the phases described. In particular, we measured

both resource (i.e., CPU and memory) and network consumption. We extracted

the performance results from Prometheus with a per-pod granularity.

Steady State The steady state (i.e., a stable configuration over a period) oc-

curs twice: throughout the initial deployment phase (up to the context variation

phase) and in the adaptive deployment phase once the new configuration occurs.

Figure 7.7 details the pods for the digital and application levels during the steady

states of the initial (left side) and adaptive (right side) deployment.

Table 7.2 shows the average resource consumption in a steady state of the fol-

lowing components: Kubernetes, Istio, monitoring addons, and DTs. Kubernetes

consumed the majority of resources overall. Specifically, it took 265.75 milliCPU,

2.02 GB (memory), 450.23 KB (tra�c in), and 516.06 KB (tra�c out). Although

the highest in this comparison, the resources allocated for Kubernetes are still
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Table 7.2: Averaged performance metrics collected at steady state

Metric Unit Component AVG STD
CPU milliCPU Kubernetes 265.75 8.05

CPU milliCPU Istio 12.00 0.78

CPU milliCPU Monitoring Addons 4.51 0.78

CPU milliCPU Digital Twins 43.31 4.38

Memory GB Kubernetes 2.02 0.01

Memory GB Istio 0.13 0.01

Memory GB Monitoring Addons 0.23 0.001

Memory GB Digital Twins 0.48 0.003

Tra�c In KB Kubernetes 450.23 18.01

Tra�c In KB Istio 2.62 0.44

Tra�c In KB Monitoring Addons 70.67 7.40

Tra�c In KB Digital Twins 4.74 1.56

Tra�c Out KB Kubernetes 516.06 19.31

Tra�c Out KB Istio 27.47 4.52

Tra�c Out KB Monitoring Addons 7.02 0.82

Tra�c Out KB Digital Twins 15.26 0.75

minimal. This makes Kubernetes suitable for typical devices within industrial

environments. In addition, note that there are also Kubernetes distributions de-

signed explicitly for resource-constrained scenarios. Such distributions may repre-

sent a reasonable option for those environments that cannot a↵ord the overhead

introduced by vanilla Kubernetes or need to support specific use cases (e.g., semi-

autonomous edge nodes).

An important outcome of the above performance results is that the MDT im-

plementation is extremely frugal. It is worth noting that the item ”Digital Twins”

in Table 7.2 regards the DTs themselves and also sidecars and ambassadors (de-

ployed as containers within the same pod). In particular, the DTs altogether

consumed 43.31 milliCPU, 0.48 GB (memory), 4.74 KB (tra�c in), and 15.26 KB

(tra�c out). The overhead introduced by sidecars and ambassadors is negligible.

This notable result fosters the use of design patterns whose benefits go far beyond

their costs.

Transitory State A transitory state occurs while moving from one configuration

to another, and its analysis allows us to quantify the overhead of a given transition.
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Table 7.3: Average execution time for involved migration steps

Id Action Entity Location Exec. [ms]
1 CREATE Edge Digital Broker on Edge 7.34

2 CREATE Digital Twin 1 on Edge 8.19

3 CREATE Digital Twin 2 on Edge 8.13

4 CREATE Digital Twin 3 on Edge 8.28

5 CREATE Real-Time Observer on Edge 7.36

6 DELETE Digital Twin 1 from Control Room 3.34

7 DELETE Digital Twin 2 from Control Room 3.23

8 DELETE Digital Twin 3 from Control Room 3.20

9 DELETE Real-Time Observer from Control Room 2.40

Table 7.4: Average execution time for involved rollback steps

Id Action Entity Location Exec. [ms]
1 CREATE Digital Twin 1 on Control Room 8.19

2 CREATE Digital Twin 2 on Control Room 8.18

3 CREATE Digital Twin 3 on Control Room 8.32

4 CREATE Real-Time Observer on Control Room 7.31

5 DELETE Digital Twin 1 from Edge 3.42

6 DELETE Digital Twin 2 from Edge 3.22

7 DELETE Digital Twin 3 from Edge 3.28

8 DELETE Real-Time Observer from Edge 2.39

9 DELETE Edge Digital Broker from Edge 2.46

Typically, a transition is triggered by a context variation, which forces the system

to move towards a new configuration. The transition is from the initial deployment

to the adaptive deployment. Such a transition occurs because the configuration

in the initial deployment phase no longer meets the entanglement demanded by

the real-time telemetry observer. The proposed ecosystem can deal with context

variation, moving to a new configuration, i.e., the adaptive deployment.

For completeness, we experimentally assessed both the transition from initial

deployment (Figure 7.7(a)) to adaptive deployment (Figure 7.7(b)) and vice versa

to roll back to the initial configuration of the deployment. Table 7.3 itemizes the

steps to move from the initial deployment to the adaptive deployment and Table 7.4

presents the opposite. It is worth mentioning that the container images are pre-

pulled on the nodes. Therefore, a CREATE step does not require downloading the

related container image from a repository. Also, we executed the steps sequentially,
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Figure 7.8: CPU and memory consumption overhead (migration and rollback).

Figure 7.9: Received and transmitted KB (migration and rollback).

which means that the total time of a given transition is the sum of every single step.

Note that some steps may be executed concurrently to speed up the transition. As

a result (without parallel step execution), on average the overall migration time was

around 55 s and the rollback procedure required about 50 s. Such time intervals

include the reported action steps, the execution time required by the container to

start internal modules, connect to brokers, and start processing incoming data.

Figures 7.8 and 7.9 depict the resource consumption during the above-mentioned

transitory states. The first peak regards the transition from the initial deployment

to the adaptive deployment, whereas the second one is the rollback. The peak

went over a steady-state resource consumption of around 500 milliCPU, 360 MB
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(a) CPU Consumption [milliCPU]. (b) Memory Consumption [MB]

Figure 7.10: DT CPU and memory overhead (migration and rollback).

(memory), 1600 KB (tra�c in), and 1800 KB (tra�c out). Graphs in Figure 7.10

report instead the distribution of CPU and memory consumption of the DT pods

considering both the migration and the rollback procedures. As expected, reported

values confirm the trends illustrated in the previous timeline analysis, i.e., the over-

all limited resource consumption of DT pods and their small variation during the

transitions. The CDT kept the same value distribution since it was not directly

involved in the migration procedures while DTs increased CPU and memory load

only during the transitory period. In both analysis, it is important to stress that

the memory occupied by removed containers was released by the virtualization

system only after a specific time period (around 5 minutes). For this reason, in

Figure 7.8 the occupied memory does not decrease immediately after the transi-

tion peak and in Figure 7.10 there are two main density areas associated to the

memory (which also takes into account the allocation of removed pods).

7.3.3 Entanglement-Aware Digital Twin Orchestration

We designed an experiment comprising three phases to demonstrate the e↵ective-

ness of the entanglement-aware middleware in maintaining the desired quality of

entanglement over time. This experiment was carried out in a cloud-to-edge con-
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Figure 7.11: Cyber-physical application deployment over time.

tinuum scenario. The network slowdown phase introduced a bottleneck between

the physical broker (where PTs publish their status updates) and the two DTs

running in the cloud. We used Chaos Mesh to set 750 ms of latency, an equivalent

jitter, and a correlation of 25% between consecutive packets to simulate a real-

world event. The CDT reconfiguration phase simulated a re-configuration of the

CDT replacing the internal model with an alternative one requiring more compu-

tational resources (we forced the DT to calculate the first 100000 prime numbers

while performing state transitions). Lastly, the baseline phase did not introduce

any e↵ect to undermine the quality of entanglement. The experiment, lasting 25

minutes overall, consisted of the previous phases executed sequentially, with the

baseline phase occurring before and after any of the other phases.

Figures 7.11, 7.12, and 7.13 show the evolution and performance of the cyber-

physical application over time. More specifically, Figure 7.11 shows the deployment

location, Figure 7.12 shows the ODTE measure, the DT life cycle state, and CPU

consumption, and Figure 7.13 shows the amount of network tra�c generated within

the cloud-to-edge continuum (i.e., edge on-premises, MEC, and cloud).

All DTs were initially deployed in the cloud as specified in the application con-

figuration. The first 5 minutes represent the baseline phase. As Figure 7.12 shows,

both ODTE and life cycle state values remained stable at 1.0 and 5 (meaning En-

tangled), respectively (see Figure 6.3 for more details about the life cycle).

The second five minutes represent the network slowdown phase. In this case,

the ODTE measure fell well below the 0.9 thresholds for each deployed DT, thus

making the DTs switch life cycle state to 4 (Disentangled). This, in turn, triggered

the middleware, which enforced a di↵erent deployment. Specifically, the middle-

ware migrated the CDT to the MEC and the two DTs to the edge, succeeding in
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Figure 7.12: ODTE values, life cycle states, and CPU consumption.

making them Entangled again. Note that this would not be possible without the

successful implementation of cloud-to-edge mobility, entanglement awareness, life

cycle, and declarative application description (see Chapter 3). In fact, the DTs

accurately quantified the quality of entanglement over time. Because the network

slowdown phase caused a violation of the cyber-physical application requirements

(i.e., ODTE fell below the 0.9 thresholds), a state transition occurred—from En-

tangled to Disentangled. This was promptly recognized by the middleware, which

migrated the DTs along the cloud-to-edge continuum, physically closer to their

PTs. The container migration required minimal networking resources as shown in

Figure 7.13.

The third five minutes represent the baseline phase again. Since no e↵ects were

injected, the quality of entanglement remained stable at 1.0 for all DTs.

The fourth five minute represent the CDT reconfiguration phase in which we

simulated an update of the CDT model to a version more CPU-hungry, thus forcing

the migration of the CDT from the MEC to the cloud, which is usually richer in

resources. As shown in Figure 7.12, the CDT reconfiguration phase caused a peak

in CPU consumption, saturating the resources available for the CDT, which, in

turn, impacted the time needed for updating the DT state, thus causing a drop in
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Figure 7.13: Received and transmitted network tra�c along the continuum.

the ODTE measure. As soon as the DT life cycle state moved to 4 (Disentangled,

see the second gray area in Figure 7.12, the container was migrated back to the

cloud where the CDT could find enough resources to run a CPU-intensive model.

In this case, having a variable load resilience ecosystem (see Chapter 3) revealed

to be fundamental.

Finally, another baseline phase occurred. As Figure 7.12 shows, the entan-

glement remained unchanged, leading to no changes in the deployment strategies

until the end of the experiment.

Lastly, Figure 7.14 elaborates on Entanglement Recovery Time—a measure of

the time required by the middleware to restore the desired cyber-physical entan-

glement—over ten experiment runs. It is worth noting that the Entanglement

Recovery Time depends on several configuration factors, such as how frequently

Kubernetes monitors the cluster, how frequently Prometheus scrapes metrics, how

frequently the Orchestrator queries Prometheus to get the current DT states, etc.

Depending on the use case, these factors may be fine-tuned to make the middleware

(and the overall system in general) more, or less, responsive. The Entanglement

Recovery Time is noticeably longer for the CDT due to its complex structure com-

prising two underlying DTs. In fact, when one of the two DTs gets Disentangled,
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Figure 7.14: Entanglement recovery time.

the CDT follows, and the CDT becomes Entangled again if and only if both the

underlying DTs gets Entangled.

7.4 Chapter Summary

This chapter discussed the implementation of the proposed entanglement-aware

DT ecosystem and demonstrated its e↵ectiveness through experimentation.

Section 7.1 provided insights on the realized microservices and serverless imple-

mentations of the entanglement-aware DT ecosystem. In the microservices setup,

the entanglement-aware DTs were implemented using the WLDT library. The mid-

dleware was developed using open source technologies such as Etcd, Kubernetes,

and Prometheus. Its primary objective is to maintain the quality of entanglement

within the cyber-physical application constraints. The serverless implementation,

on the other hand, relied on the serverless framework provided by Microsoft Azure.

In this context, DTs were Function Apps.

Section 7.2 elaborated on the testbed used for experimentation. It was au-

tomatically configured in a reproducible manner using Ansible. The project is

publicly available on GitHub [199].

Section 7.3 discussed the experiments and their results. First, Section 7.3.1 not
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only demonstrated that ODTE is e↵ective in measuring the quality of entangle-

ment in IIoT scenarios of practical interest, but also the advantages and drawbacks

of the entanglement-aware DTs implemented as microservices and serverless func-

tions. Then, Section 7.3.2 quantified the overhead of the proposed entanglement-

aware DT ecosystem, detailing the impact of the entire technology stack. Lastly,

Section 7.3.3 demonstrated the middleware’s orchestration capabilities along the

cloud-to-edge continuum in enforcing the desired quality of entanglement of a

cyber-physical application in spite of failures.
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Chapter 8

Conclusion and Future Work

This work proposed a vision of DTs that revolves around the concept of entangle-

ment. According to this vision, a DT is a virtual entity entangled with an object,

whether tangible or intangible, of which the DT provides a (augmented) represen-

tation in the virtual space, thus decoupling the object from the observer in space

and time.

Given the limitations of existing platforms and metrics, this work engineered,

implemented, and experimentally evaluated an entanglement-aware DT ecosystem.

This involved:

• A metric to measure the entanglement. In this regard, the original contribu-

tion was ODTE—a concise yet expressive metric to measure entanglement.

The e↵ectiveness of the ODTE metric was evaluated experimentally in sce-

narios of practical interest.

• Entanglement-aware DTs. This work originally discussed how to apply soft-

ware design patterns for building DTs as microservices and a methodology

for building DTs with serverless functions. The proposed architecture for

entanglement-aware DTs is event-driven in nature, making it suitable regard-

less of the specific implementation strategy, be it microservices or serverless.

The MDT implementation was extremely frugal in terms of resource con-

sumption, with negligible overhead introduced by sidecars and ambassadors.

This notable result encourages the use of design patterns whose benefits far

outweigh their costs. On the other hand, the SDT implementation provided
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lower performance (i.e., worse ODTE measures) in exchange for more cost-

e↵ective and scalable deployments.

• Entanglement-aware middleware. The resource overhead for the technology

stack required by the entanglement-aware middleware was fairly limited. The

middleware orchestration capabilities were demonstrated experimentally in

a cloud-to-edge continuum scenario. The implemented entanglement-aware

middleware successfully enforced the desired quality of entanglement of a

cyber-physical application, even in the presence of failures.

Future work may extend this research in several directions. An in-depth assess-

ment of the scalability and performance limits of the proposed ecosystem would

be crucial. This assessment could unravel the challenges arising from the exponen-

tial growth in the number of DTs, exploring optimization strategies and potential

bottlenecks in the system performance. In this regard, further investigation into

serverless solutions at the edge on-premises could provide insights into their suit-

ability to accommodate demanding entanglement requirements while still benefit-

ing from the serverless approach. This exploration aims to leverage the advantages

of serverless computing in a localized setting, o↵ering a nuanced perspective on the

integration of edge computing and serverless solutions within the entanglement-

aware DT ecosystem.

Another important avenue for future research would involve a comprehensive

evaluation of the ODTE metric while measuring the entanglement within ensem-

bles or hierarchies of DTs. This exploration could provide a better understanding

of how entanglement dynamics propagate in complex systems. Not only would

this further validate the scalability of the ODTE metric from individual DTs to

a web of DTs, but also its sensitivity in dealing with the propagation of subtle

entanglement changes across the hierarchy.

Lastly, an exploration of the concept of trustworthiness in the context of DTs

emerges as a crucial area for future investigation. This would require understand-

ing how users perceive and establish trust in the information provided and con-

sumed by DTs, especially in mission-critical cyber-physical applications. In this

regard, a potential approach towards trustworthiness could be the following. On

one hand, DTs should shoulder the responsibility of verifying the trustworthiness
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of the environment where they are deployed. On the other hand, the orchestration

middleware should ensure the verification of the deployed DTs for trustworthi-

ness. Therefore, trustworthiness would be conceived as an ongoing process where

the involved parties continuously verify each other.

In summary, future research directions would encompass a multifaceted explo-

ration of scalability, performance, entanglement, and trustworthiness within the

realm of DTs.
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