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Abstract
This file contains a revised version of the proofs of Theorems 3 and 4 of the paper [1].
In particular, a more correct argument is employed to obtain the inequality (A11) from
(A10), provided that a stronger hypothesis on the sequence {εk} is included. The practical
implementation of the algorithm (Section 3) remains as it is and all the numerical experiments
(Section 4) are still valid since the stronger hypothesis on {εk} was already satisfied by the
selected setting of the hyperparameters.

Correction to:
Journal of Scientific Computing 94:23
https://doi.org/10.1007/s10915-022-02084-3

We restated both the statement and the proof of Theorem 3. We stress that the proof only
changes in obtaining the inequality (A11) from (A10), but for a better readability we report
all the arguments of the proof.

Theorem 3 Under the Assumptions 1 and 2, let {x (k)} be the sequence generated by the
iteration (7) with E(‖e(k)

g ‖2|Fk) ≤ εk where {εk} is a nonnegative non-increasing sequence
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such that
∑+∞

k=0
√

εk < +∞ and αk ∈ [αmin, αmax ]. Moreover, assume that condition (9)
holds and the function F is convex. Then the sequence {x (k)} converges to a solution of (1)
a.s.

Proof Let x∗ ∈ X∗. Since x (k) − x (k+1)

αk
− g(k) ∈ ∂R(x (k+1)), it holds that

R(y) ≥ R(x (k+1)) + 1

αk
(x (k) − x (k+1) − αkg

(k))T (y − x (k+1)), ∀y ∈ R
d .

It follows that, ∀y ∈ R
d ,

αk R(y) ≥ αk R(x (k+1)) + (x (k) − x (k+1) − αkg
(k))T (y − x (k+1))

= αk R(x (k+1)) + (x (k) − x (k+1))T (y − x (k+1)) − αkg
(k)T (y − x (k+1)),

and, hence, the following inequality holds

(x (k+1) − x (k))T (y − x (k+1)) ≥ αk

(
R(x (k+1)) − R(y) + g(k)T (x (k+1) − y)

)
. (A8)

For y = x∗ the previous inequality gives

(x (k+1) − x (k))T (x∗ − x (k) + x (k) − x (k+1)) ≥
≥αk

(
R(x (k+1)) − R(x∗) + g(k)T (x (k+1) − x (k) + x (k) − x∗)

)
.

As a consequence, we obtain the following relations:

(x (k+1) − x (k))T (x∗ − x (k)) ≥ αk

(
R(x (k+1)) − R(x∗) + g(k)T (x (k) − x∗)

)
+

− (x (k+1) − x (k))T (x (k) − x (k+1)) + αkg
(k)T (x (k+1) − x (k))

= αk

(
R(x (k+1)) − R(x∗) + (∇F(x (k)) + e(k)

g )T (x (k) − x∗)
)

+
+ (x (k+1) − x (k))T (x (k+1) − x (k)) + αk(∇F(x (k)) + e(k)

g )T (x (k+1) − x (k))

≥ αk

(
R(x (k+1)) − R(x∗) + F(x (k)) − F(x∗)

)
+ αke

(k)
g

T
(x (k) − x∗)+

+ ‖x (k+1) − x (k)‖2 + αk(∇F(x (k)) + e(k)
g )T (x (k+1) − x (k))

= αk

(
R(x (k+1)) + R(x (k)) − R(x (k)) + F(x (k)) − P(x∗)

)
+

+ ‖x (k+1) − x (k)‖2 + αke
(k)
g

T
(x (k) − x∗)+

+ αk(∇F(x (k)) + e(k)
g )T (x (k+1) − x (k))

= αk

(
R(x (k+1)) − R(x (k)) + P(x (k)) − P(x∗)

)
+ ‖x (k+1) − x (k)‖2+

+ αke
(k)
g

T
(x (k) − x∗) + αk(∇F(x (k)) + e(k)

g )T (x (k+1) − x (k))

≥ αk

(
R(x (k+1)) − R(x (k))

)
+ ‖x (k+1) − x (k)‖2 + αke

(k)
g

T
(x (k) − x∗)+

+ αk(∇F(x (k)) + e(k)
g )T (x (k+1) − x (k)), (A9)

where the second inequality follows from the convexity of F and the last inequality follows
from the fact that P(x (k)) − P(x∗) ≥ 0. From a basic property of the Euclidean norm1 we

1 ‖a − b‖2 + ‖b − c‖2 − ‖a − c‖2 = 2(a − b)T (c − b), ∀a, b, c ∈ R
d .
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can write

‖x (k+1) − x∗‖2 = ‖x (k+1) − x (k)‖2 + ‖x (k) − x∗‖2 − 2(x (k+1) − x (k))T (x∗ − x (k))

(A9)≤ ‖x (k+1) − x (k)‖2 + ‖x (k) − x∗‖2 − 2αk

(
R(x (k+1)) − R(x (k))

)
+

− 2‖x (k+1) − x (k)‖2+
− 2αke

(k)
g

T
(x (k) − x∗) − 2αk(∇F(x (k)) + e(k)

g )T (x (k+1) − x (k))

= ‖x (k) − x∗‖2 − ‖x (k+1) − x (k)‖2 − 2αk

(
R(x (k+1)) − R(x (k))

)
+

− 2αk∇F(x (k))T (x (k+1) − x (k)) − 2αke
(k)
g

T
(x (k) − x∗)+

− 2αke
(k)
g

T
(x (k+1) − x (k))

= ‖x (k) − x∗‖2 − 2αke
(k)
g

T
(x (k) − x∗) − 2αke

(k)
g

T
(x (k+1) − x (k))+

− 2αk

(
R(x (k+1)) − R(x (k)) + ∇F(x (k))T (x (k+1) − x (k)) +

+ 1

2αk
‖x (k+1) − x (k)‖2

)

= ‖x (k) − x∗‖2 − 2αk

(
hαk (x

(k+1); x (k)) + e(k)
g

T
(x (k+1) − x (k))

)
+

− 2αke
(k)
g

T
(x (k) − x∗)

≤ ‖x (k) − x∗‖2 − 2αmax

(
hαk (x

(k+1); x (k)) + e(k)
g

T
(x (k+1) − x (k))

)
+

− 2αke
(k)
g

T
(x (k) − x∗).

In view of the hypotheses on the sequence {εk}, it follows that

‖x (k+1) − x∗‖2 ≤ ‖x (k) − x∗‖2 − 2αmax

(
hαk (x

(k+1); x (k)) + e(k)
g

T
(x (k+1) − x (k))

)
+

+ αk
‖e(k)

g ‖2√
εk

+ αk
√

εk‖x (k) − x∗‖2

≤ ‖x (k) − x∗‖2 − 2αmax

(
hαk (x

(k+1); x (k)) + e(k)
g

T
(x (k+1) − x (k))

)
+

+ αmax
‖e(k)

g ‖2√
εk

+ αmax
√

εk‖x (k) − x∗‖2. (A10)

Taking the conditional expectation in (A10) with respect to the σ -algebra Fk , we obtain

E

(
‖x (k+1) − x∗‖2|Fk

)
≤ (1 + αmax

√
εk)‖x (k) − x∗‖2+

− 2αmaxE

(
hαk (x

(k+1); x (k)) + e(k)
g

T
(x (k+1) − x (k))|Fk

)
+αmax

√
εk (A11)

By combining (A11) and part i) of Theorem 1 together with Lemma 3, we can state that
the sequence {‖x (k) − x∗‖}k∈N converges a.s.

Next we prove the almost sure convergence of the sequence {x (k)} by following a strategy
similar to the one employed in [2, Theorem 2.1]. Let {x∗

i }i be a countable subset of the
relative interior ri(X∗) that is dense in X∗. From the almost sure convergence of ‖x (k) − x∗‖,
x∗ ∈ X∗, we have that for each i , the probability Prob({‖x (k) − x∗

i ‖} is not convergent) = 0.
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Therefore, we observe that

Prob(∀i ∃bi s.t. lim
k→+∞ ‖x (k) − x∗

i ‖ = bi ) = 1 − Prob({‖x (k) − x∗
i ‖} is not convergent)

≥ 1 −
∑

i

Prob({‖x (k) − x∗
i ‖} is not convergent) = 1,

where the inequality follows from the union bound, i.e. for each i , {‖x (k)−x∗
i ‖} is a convergent

sequence a.s. For a contradiction, suppose that there are convergent subsequences {uk j }k j
and {vk j }k j of {x (k)} which converge to their limiting points u∗ and v∗ respectively, with
‖u∗ −v∗‖ = r > 0. By Theorem 2, u∗ and v∗ are stationary; in particular, since P is convex,
they are minimum points, i.e. u∗, v∗ ∈ X∗. Since {x∗

i }i is dense in X∗, we may assume that
for all ε > 0, we have x∗

i1
and x∗

i2
are such that ‖x∗

i1
−u∗‖ < ε and ‖x∗

i2
−v∗‖ < ε. Therefore,

for all k j sufficiently large,

‖uk j − x∗
i1‖ ≤ ‖uk j − u∗‖ + ‖u∗ − x∗

i1‖ < ‖uk j − u∗‖ + ε.

On the other hand, for sufficiently large j , we have

‖vk j − x∗
i1‖ ≥ ‖v∗ − u∗‖ − ‖u∗ − x∗

i1‖ − ‖vk j − v∗‖ > r − ε − ‖vk j − v∗‖ > r − 2ε.

This contradicts with the fact that x (k) − x∗
i1
is convergent. Therefore, we must have u∗ = v∗,

hence there exists x̄ ∈ X∗ such that x (k) −→ x̄ . 
�

The same stronger assumption on the sequence {εk} included in Theorem 3must be added
also in Theorem 4. The proof of this theorem is revised since its starting point is inequality
(A11) which has been modified. We remark that the main arguments of the proof do not
change: indeed it is only different how to obtain (A13) from (A12).

Theorem 4 Under the Assumptions 1 and 2, let {x (k)} be the sequence generated by the
iteration (7) with E(‖e(k)

g ‖2|Fk) ≤ εk where {εk} is a nonnegative non-increasing sequence
such that

∑+∞
k=0

√
εk < +∞ and αk ∈ [αmin, αmax ]. Moreover, assume that condition (9)

holds, the function F is convex. Then, by denoting x (K ) = 1
K+1

∑K
k=0 x

(k), we have

E(P(x (K )) − P(x∗)) = O
(
1

K

)

. (10)

Furthermore, when E
(∑∞

k=0 kηk
)

< ∞, we have

E(P(x (k)) − P(x∗)) = O
(
1

k

)

. (11)

Proof If we do not neglect the term P(x (k)) − P(x∗) in (A9) and in all the subsequent
inequalities, instead of (A11) we obtain

E

(
‖x (k+1) − x∗‖2|Fk

)
≤ (1 + αmax

√
εk)‖x (k) − x∗‖2+

+ 2αmaxE

(
−hαk (x

(k+1); x (k)) − e(k)
g

T
(x (k+1) − x (k))|Fk

)
+

− 2αminE

(
P(x (k)) − P(x∗)|Fk

)
+ αmax

√
εk . (A12)
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Summing the previous inequality from 0 to K and taking the total expectation, we obtain

K∑

k=0

E

(
P(x (k)) − P(x∗)

)
≤ 1

2αmin

(
‖x (0) − x∗‖2 − E(‖x (K+1) − x∗‖2)

)
+

+ αmax

αmin
E

(
K∑

k=0

E

(
−hαk (x

(k+1); x (k)) − e(k)
g

T
(x (k+1) − x (k))|Fk

)
)

+ αmax

2αmin
E

(
K∑

k=0

√
εk‖x (k) − x∗‖2

)

+ αmax

K∑

k=0

√
εk

≤ 1

2αmin
‖x (0) − x∗‖2 + αmax

αmin

K∑

k=0

E

(
−hαk (x

(k+1); x (k)) − e(k)
g

T
(x (k+1) − x (k))

)
+

+ αmax

2αmin

K∑

k=0

√
εkE(‖x (k) − x∗‖2) + αmax

K∑

k=0

√
εk

where the second inequality follows by neglecting the term −E(‖x (K+1) − x∗‖2). Now, we
observe that, at the end of the proof of Theorem 1, we prove that

∑

k

E

(
−hαk (x

(k+1); x (k)) − e(k)
g

T
(x (k+1) − x (k))

)
< +∞. (*)

As a consequence,

K∑

k=0

E

(
−hαk (x

(k+1); x (k)) − e(k)
g

T
(x (k+1) − x (k))

)
≤ S.

Moreover, by considering the total expectation in (A11), Lemma 2 in Section 2.2.1 of [3]
together with (*) allows to state that E(‖x (k) − x∗‖2) converges and thus there exists M such
that E(‖x (k) − x∗‖2) < M . We can write

K∑

k=0

E

(
P(x (k)) − P(x∗)

)
≤ 1

2αmin
‖x (0) − x∗‖2 + αmax

αmin
S + αmax

2αmin
ε̄M+

+ αmax ε̄ (A13)

where we set ε̄ = ∑+∞
k=0

√
εk . Setting x (K ) = 1

K+1

∑K
k=0 x

(k), from the Jensen’s inequality,

we observe that E(P(x (K ))) ≤ 1
K+1

∑K
k=0 E(P(x (k))). Thus, by dividing (A13) by K + 1,

we can write

E

(
P(x (K )) − P(x∗)

)
≤ 1

K + 1

(
1

2αmin
‖x (0) − x∗‖2 + αmax

αmin
S

)

+

+ 1

K + 1

(
αmax

2αmin
ε̄M + αmax ε̄

)

(A14)

Thus, we obtain the O(1/K ) ergodic convergence rate of E
(
P(x (K )) − P(x∗)

)
.

Now, we assume
∑∞

k=0 kηk = �. In (A13) the term
∑K

k=0 E
(
P(x (k)) − P(x∗)

)
is equal to

E

(∑K
k=0 P(x (k))

)
− (K + 1)P(x∗). We observe that, since 0 ≤ P(x (0)) − P(x∗), we can

123
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write

E

(
K∑

k=1

P(x (k))

)

− K P(x∗) ≤ E

(
K∑

k=0

P(x (k))

)

− (K + 1)P(x∗)

≤ 1

2αmin
‖x (0) − x∗‖2 + αmax

αmin
S+

+ αmax

2αmin
ε̄M + αmax ε̄.

Now we determine a lower bound for E
(∑K

k=1 P(x (k))
)
. From the inequality (8), we have

that E
(
P(x (k)) − P(x (k+1))|Fk

) + ηk ≥ 0 and, hence, by considering the total expectation
we obtain E

(
P(x (k)) − P(x (k+1))

) + E(ηk) ≥ 0. Thus, we have

0 ≤
K∑

k=1

kE
(
P(x (k)) − P(x (k+1))

)
+

K∑

k=1

kE(ηk)

=
K∑

k=1

E(P(x (k))) − KE(P(x (K+1))) + E

(
K∑

k=1

kηk

)

.

(A15)

Then, we can write

KE(P(x (K+1))) − � ≤
K∑

k=1

E

(
P(x (k))

)
. (A16)

Consequently, we can conclude that

E(P(x (K+1)) − P(x∗)) ≤ 1

K

(
1

2αmin
‖x (0) − x∗‖2 + αmax

αmin
S

)

+

+ 1

K

(
αmax

2αmin
ε̄M + αmax ε̄ + �

)

.


�
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