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1. Introduction

Approximation theory plays a fundamental role in complex analysis, holomorphic
dynamics, the theory of minimal surfaces in Euclidean spaces and in many other
related fields of mathematics. In this paper, our goal is to study quaternionic
analogs of the classical complex Runge theory, in particular analogs of the classical
topological characterization of domains in the complex plane on which holomorphic
functionsmay be approximated by entire functions. We recall that the classical theory
of holomorphic approximation started in 19th century with the amazing results of
Runge andWeierstrass (1885) and continued in the 20th century with the work of Oka
and Weil, Mergelyan, Vituskin and others: here we prove the analog of Behnke and
Stein theorem in the more modern quaternionic setting, hoping that this paper will
bring a new stimulus for future developments in this important area of mathematics.
Throughout this paper the integers, real, complex and quaternionic numbers are

denoted by Z, R, C, and H respectively. We recall that H is a skew field, a four-
dimensional associative R-algebra with basis 1; I; J;K subject to the rules

I 2 D J 2 D K2 D �1; IJ C JI D IK CKI D KJ C JK D 0; IJK D �1:

The set of imaginary units S D fq 2 H W q2 D �1g is a real two-dimensional
sphere, because

S D fxI C yJ C zK W x2 C y2 C z2 D 1g:

�Both authors were partially supported by GNSAGA of INdAM. C. Bisi was also partially supported
by PRIN Varietá reali e complesse: geometria, topologia e analisi armonica.
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Our goal is to study (slice) regular functions on domains in H which are the
analog of holomorphic functions on C.

Definition 1.1. Let� be an open subset ofHwith�\R ¤ f g. A real differentiable
function f W�! H is said to be (slice) regular if, 8 I 2 S its restriction fI to the
complex line CI D R C RI passing through the origin and containing 1 and I is
holomorphic on � \CI .

This notion was introduced by Gentili and Struppa [16, 17].
For a ball in H centered at the origin regularity is the same as the condition that

the function can be represented by a convergent power series

f .q/ D

1X
kD0

qkak :

In the last decade the theory of slice regular functions has been investigated in
many directions, see, as samples, the papers [1, 2, 4–11].
In this article, we call an open subset D � C symmetric if it is invariant under

complex conjugation. An open subset � � H is called axially symmetric if it
is invariant under all R-algebra automorphisms of H. This is equivalent to the
condition that for any x; y 2 R, I; J 2 S the condition x C yI 2 � holds if and
only if x C yJ 2 �.
There is a one-to-one correspondence between symmetric open subsets D � C

and axially symmetric open subsets �D � H which may described as follows.
Given an axially symmetric open subset � � H, we may choose an element

I 2 S and defineD � C as

D D fx C yi W x C yI 2 �; x; y 2 Rg:

Conversely, given a symmetric open subset D � C, we define the corresponding
axially symmetric subset � � H (which we often denote as �D) via

� D fx C yI W I 2 S; x; y 2 R; x C yi 2 Dg:

Let D be a symmetric open subset of C. Then a “stem function” on D is a
holomorphic function F WD ! H˝R C such that F.xz/ D F.z/ for all z 2 D. Here
“holomorphic” is to be understood with respect to the complex structure onH˝R C
induced by the complex structure on the second factor of the tensor product.
Given a symmetric open subset D � C with D \ R ¤ f g and its associated

axially symmetric open subset �D we have a one-to-one correspondence between
slice regular functions on �D and “stem functions onD”.
Given a stem function F WD ! H˝R C, we write F as

F.z/ D F1.z/˝ 1C F2.z/˝ �
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with Fi WD ! H and define

f .x C yI / D F1.x C yi/C IF2.x C yi/ .x; y 2 R; I 2 S/

Conversely, given f W�! H, we fix an element I 2 S and define

F1.x C yi/ D
1

2

�
f .x C yI /C f .x � yI /

�
;

F2.x C yi/ D �I
1

2

�
f .x C yI / � f .x � yI /

�
:

It can be shown (using the “representation formula”) that the Fi are independent of
the choice of I , see [18].
For arbitrary axially symmetric domains inH (for which the intersection with the

real axis may be empty) we use the definition below.
Definition 1.2. Let D be a symmetric domain in C and let �D be its associated
axially symmetric domain inH, i.e.,

�D D fx C yJ W x; y 2 R; J 2 S; x C yi 2 Dg

A function f W�D ! H is regular if it is induced by a holomorphic stem function
F WD ! H˝R C.
Our main result is the following:

Theorem 1.3. Let D � D1 be symmetric open subsets of C and let �D � �D1

be the corresponding axially symmetric open subsets in H. Then the following are
equivalent:
(i) D � D1 is a Runge pair, i.e., every holomorphic function on D can be

approximated by holomorphic functions on D1 (uniformly on compact sets),
(ii) �D is Runge in �D1

in the sense that every regular function on �D can be
approximated (uniformly on compact sets) by regular functions on �D1

.
(iii) i�WH1.D/! H1.D1/ is injective, where i� denotes the homology group hom-

omorphism induced by the inclusion map i WD ! D1.
(iv) i�WHk.�D/ ! Hk.�D1

/ is injective for k 2 f1; 3g where i� is the homomor-
phism induced by the inclusion map i W�D ! �D1

.
(v) Every bounded connected component of C nD intersects C nD1.
(vi) Every bounded connected component of H n�D intersects H n�D1

.
The equivalences .i/ ” .iii/ ” .v/ are classical (see Proposition 2.1

below). The implication .vi/) .ii/ has been proven before by Colombo, Sabadini,
and Struppa [12, Theorem 4.13].
The equivalence .i/” .ii/ is Proposition 2.4. The equivalence .iii/” .iv/

is Proposition 2.15.
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The equivalence .v/ ” .vi/ is an easy consequence of the fact that each
bounded connected component C of D; resp. D1; corresponds to a bounded
connected component �C of �D; resp. �D1

; via

�C D fx C yI I x; y;2 R; x C yi 2 C; I 2 Sg:

In the context of proving our results on Runge pairs we obtain a precise description
of the homology of �D in terms of the topology ofD; see Proposition 2.5.

1.1. Examples.
Example 1.4. C� is a symmetric domain with corresponding axially symmetric
domainH�. H� is simply-connected, but not Runge inH, because

i�WH3.H
�/ ' Z! H3.H/ D f0g

is not injective.
Example 1.5. C n R is a symmetric domain with corresponding axially symmetric
domain � D H n R. The domain � is homotopic to the 2-sphere, thus simply-
connected but not contractible. However, � is Runge in H: H1.�/ and H3.�/
vanish both, hence Hk.�/ ! Hk.H/ is injective for k D 1; 3. Thus we have a
Runge pair although

Z ' H2.�/! H2.H/ D f0g

is not injective.
Example 1.6. Let

D D fz 2 C W jzj > 1g and D1 D D [ fz 2 C W �1=2 < =m.z/ < 1=2g:

Then �D is Runge in �D1
.

Evidently �D is the complement of the closed unit ball in H and therefore
homotopic to the 3-sphere. Now D1 ¤ C, hence 9 p 62 �D1

and we have inclusion
maps

�D
i
,! �D1

j
,! H n fpg:

Since the composition map j ı i is a homotopy equivalence, all the homology group
homomorphisms i� induced by i must be injective. Hence our results imply that D
is Runge inD1.

2. Runge

2.1. The complex situation. In the complex case one has the following well known
result.
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Proposition 2.1. Let D � D1 be open subsets of C. Then the following properties
are equivalent:
(i) The inclusion map induces an injective group homomorphismH1.D/!H1.D1/.
(ii) Every bounded connected component of C nD intersects C nD1.
(iii) For every holomorphic function f onD, every � > 0 and every compact subset

K � D there exists a holomorphic function F on D1 with

sup
p2K

jf .p/ � F.p/j < �:

If one (hence all) of these properties are fulfilled, then D � D1 is called a Runge
pair, or we say that D is Runge in D1.
See [3] and [20, §13.2.1].

2.2. Symmetric complex situation. We recall (see §1) that a subsetD � C is “sym-
metric” if it is invariant under complex conjugation.
Lemma 2.2. Let D � D1 be symmetric open subsets of C.

Then the following are equivalent:
(i) Every holomorphic function f onD can be approximated (locally uniformly) by

holomorphic functions on D1 (i.e., D � D1 is a Runge pair).
(ii) Every holomorphic function f on D which is symmetric,i.e., for which f .z/ D

f .xz/ holds, can be approximated (locally uniformly) by symmetric holomorphic
functions on D1.

Proof. .i/ H) .ii/. Assume that D is Runge in D1 and that f WD ! C is
holomorphic with f .z/ D f .xz/. If fn is a sequence of holomorphic functions
onD1 converging to f , then also

gn.z/ D
1

2

�
fn.z/C fn.xz/

�
converges to f and in addition fulfills gn.z/ D gn.xz/.

.ii/ H) .i/. Let f WD ! C be an arbitrary holomorphic function. We define

g.z/ D
1

2

�
f .z/C f .xz/

�
h.z/ D

1

2i

�
f .z/ � f .xz/

�
Then g and h are both symmetric holomorphic functions and f .z/ D g.z/C ih.z/.
By assumption the functions g and hmay be approximated by holomorphic functions
onD1. It follows that f D g C ih can be approximated, too.
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2.3. Passing from D to �D . Let a symmetric open subset D � C be given. The
associated axially symmetric subset �D inH has been defined in �1 as:

�D D fx C yI W x; y 2 R; I 2 S; x C yi 2 Dg

(with S D fq 2 H W q2 D �1g).
This construction may be reformulated as follows. Define

DC D D \ fz 2 C W =m.z/ � 0g; DR D D \R:

Let Z D DC � S. Then �D ' Z=� where .p; I / � .q; J / iff p D q and one of
the following conditions is fulfilled:
(i) I D J , or
(ii) p D q 2 R.
In other words, for each p 2 DR, the subset fpg � S of Z is collapsed to one point.

2.4. Quaternionic situation.
Lemma 2.3. Let f WH! H be a slice function induced by a stem function F . Then

1
p
2
kF.x C yi/k � max

˚
jf .x C yI /j; jf .x � yI /j

	
�
p
2kF.x C yi/k

for every x; y 2 R, I 2 S.

Proof. From f .x C yI / D F1.x C yi/C IF2.x C yi/ one deduces

jf .x C yI /j � kF1.x C yi/k C kF2.x C yi/k

H) jf .x C yI /j2 �
�
kF1.x C yi/k C kF2.x C yi/k

�2
H) jf .x C yI /j2 � kF.x C yi/k2 C 2kF1.x C yi/k � kF2.x C yi/k

� 2kF.x C yi/k2

H) jf .x C yI /j �
p
2kF.x C yik:

On the other hand,

F1.x C yi/ D
1

2

�
f .x C yI /C f .x � yI /

�
implying that

kF1.x C yi/k � max
˚
jf .x C yI /j; jf .x � yI /j

	
:

Similarly: kF2.xCyi/k � maxfjf .xCyI /j; jf .x�yI /jg. Combining these bounds
we obtain:

kF.x C yi/k2 � 2max
˚
kf .x C yI /k2; kf .x � yI /k2

	
which implies the first inequality of the lemma.



On Runge pairs and topology of axially symmetric domains 719

Proposition 2.4. LetD � D1 be a symmetric open subsets of C with corresponding
axially symmetric open subsets �D � �D1

in H. Then every regular function
on �D may be approximated locally uniformly by regular functions on �D1

if and
only if D is Runge in D1.

Proof. For any symmetric subset C � D the corresponding subset

�C D fx C yI W 9 x C yi 2 C; I 2 Sg

of H is compact if and only if C is compact. We measure the size of a function by
using the sup-norm. From the euclidean scalar product on C ' R2 andH ' R4 we
deduce a scalar product on H˝ C ' R8. The norm induced by this scalar product
is denoted by k k. From the preceding lemma we deduce that

1
p
2
kF kC � kf k�C

�
p
2kF kC

for any compact symmetric subset C � D (where kF kC D supz2C kF.z/k.)
Therefore the space of slice functions on �D is isomorphic as a topological vector
space to the space of stem functions on D (both spaces endowed with topology of
locally uniform convergence). This implies the assertion.

2.5. Homology of axially symmetric domains. In this section we show that (and
how) the homology of an axially symmetric domain inH is determined by that of the
corresponding symmetric open set inC. We will study the topology of this procedure
aided by the Mayer–Vietoris sequence.
We introduce some notation which we will keep throughout this section.

Convention. Let D be a symmetric open subset of C (i.e. a domain such that
z 2 D” xz 2 D),

DC D fz 2 D W =m.z/ � 0g; D� D fz 2 D W =m.z/ � 0g;

DR D D \R; D� D DC nR:

For any subset A � C a subset �A ofH is defined as

�A D fx C yI W x; y 2 R; x C yi 2 A; I 2 Sg:

Let the boundary of D in C be denoted by @D. Define a real positive function h
onDR by

h.x/ D dist.x; @D/ D inf
z2@D
jz � xj:

Using the triangle inequality, it is easy to check that h is continuous. Furthermore,
we define

W D fx C yi 2 C W x 2 DR W 0 � y < h.x/g; W � D W nDR:
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We observe that

W D fx C rh.x/i W x 2 DR; r 2 Œ0; 1Œ g;

W � D fx C rh.x/i W x 2 DR; r 2�0; 1Œ g;

DR D fx C rh.x/i W x 2 DR; r D 0g:

Since Œ0; 1Œ , �0; 1Œ , and f0g are all contractible, it is clear that the natural inclusion
maps W � ! W and DR ! W are homotopy equivalences. The inclusion map
D� ! DC is likewise a homotopy equivalence.
We recall the definition of zH0: An element ˛ inH0.X/ is a formal finiteZ-linear

combination of points ˛ D
P
nifpig (pi 2 X ) and therefore admits a natural degree

function by deg.˛/ D
P
ni . The “reduced homology group” zH0 is defined as the

kernel of the degree mapH0 ! Z.
Proposition 2.5. LetD be a symmetric open subset of C. We assume that the corre-
sponding axially symmetric set �D is connected. Then H2.�D/Df0g if DR¤f g

and H2.�D/ ' Z if DR is empty.
There are natural exact sequences

0! H1.D
C/! H3.�D/! zH0.DR/! 0 (2.1)

and
0! H1.D

C/! H1.�D/! 0: (2.2)

Proof. Observe that �D D �D� [ �W and �D� \ �W D �W � . This yields a
Mayer–Vietoris sequence for homology:

� � � ! HkC1.�D/! Hk.�W �/! Hk.�D�/˚Hk.�W /! Hk.�D/! � � �

We claim that there are homotopy equivalences

�W � � S �DR; �W � DR; �D� � S �D� � S �DC:

The first of these homotopy equivalences holds because

�W � D fx C yI W x 2 DR; 0 < y < h.x/; I 2 Sg:

We observe thatDR is a deformation retract of �W . Indeed

�W D fx C yI W x 2 DR; 0 � y < h.x/; I 2 Sg

may be retracted toDR via

ˆsW .x C yI / 7! .x C syI / .0 � s � 1/:

Thus, �W is homotopy equivalent toDR.
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Finally, �D� � S �DC follows from

�D� D fx C yI; x C yi 2 D
�; I 2 Sg ' D� � S

and the fact that DC and D� are homotopy equivalent. Thus our Mayer–Vietoris
sequence yields this exact sequence:

� � � ! HkC1.�D/! Hk.S�DR/! Hk.S�D
C/˚Hk.DR/! Hk.�D/! � � �

Since the homology groups of the sphere S are torsion-free, the Künneth formula
tells us that

H�.S �X/ ' H�.S/˝Z H�.X/

' .H0.S/˝Z H�.X//˚ .H2.S/˝Z H�.X//

' H�.X/˚ ŒS� �H�.X/;

where ŒS� 2 H2.S/ is the fundamental class. Hence

� � � ! HkC1.�D/! .H0.S/˝Hk.DR//˚ .H2.S/˝Hk�2.DR//

!
�
H0.S/˝Hk.D

C/
�
˚
�
H2.S/˝Hk�2.D

C/
�
˚Hk.DR/

! Hk.�D/! � � �

We know thatHk.DR/ D f0g for k > 0 andHk.DC/ D f0g for k > 1 for dimension
reasons. Therefore our long exact Mayer–Vietoris sequences yield the following two
exact sequences:

0! H2.S/˝H1.D
C/! H3.�D/

! H2.S/˝H0.DR/! H2.S/˝H0.D
C/! H2.�D/! 0 (2.3)

and

0! H0.S/˝H1.D
C/! H1.�D/

! H0.DR/! H0.D
C/˚H0.DR/! H0.�D/! 0 (2.4)

Case (1). Assume now thatDR is not empty. Then inclusion map fromDR intoDC
yields a surjective group homomorphism H0.DR/ ! H0.D

C/ with zH0.DR/ as
kernel. Let ˛ denote the homomorphism H2.S/˝H0.DR/! H2.S/˝H0.DC/
in (2.3). Then the exact sequence (2.3) can be split into two parts

0! H2.S/˝H1.D
C/! H3.�D/! ker˛ ! 0 (2.5)

and
0! .H2.S/˝H0.DR// = ker˛

˛
! H2.S/˝H0.D

C/! H2.�D/! 0: (2.6)

Since ker˛ ' zH0.DR/, (2.5) now implies (2.1). Furthermore (2.6) implies that
H2.�D/ is zero, because ˛ is surjective.
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Case (2). Now let us discuss the case whereDR is empty. ThenH0.DR/ D f0g and
consequently from (2.3) we obtain two sequences

0! H2.S/˝H1.DR/! H3.�D/! 0 D H2.S/˝H0.DR/

and
0 D H2.S/˝H0.DR/! Z ' H2.S/˝H0.D

C/! H2.�D/! 0:

UsingH2.S/ ' Z ' H0.S/ we get (2.1) andH2.�D/ D fZg.
It remains to show (2.2). For this purpose we return to (2.4). The map

H0.DR/! H0.D
C/˚H0.DR/

in (2.4) is obviously injective, therefore (due to exactness of the sequence) the
preceding map is zero and H1.�D/ is isomorphic to H0.S/˝H1.DC/. However,
H0.S/ ' Z and therefore

H0.S/˝H1.D
�/ ' H1.D

�/:

Hence
H1.�D/ ' H1.D

�/:

Corollary 2.6. Assume in addition that D is a bounded domain with smooth
boundary. Then all the homology groups are finitely generated and Proposition 2.5
implies the following description of the Betti numbers bk D dimRHk. ;Z/˝Z R:
Let r D b0.DR/ � 1 if DR is not empty and set r D 0 if DR is empty. Then

b1.�D/ D
1

2

�
b1.D/ � r

�
b3.�D/ D

1

2

�
b1.D/C r

�
and

b2.�D/ D

(
1 if DR is empty;
0 if DR is not empty:

Corollary 2.7. LetD be a symmetric open subset and let�D denote the correspond-
ing axially symmetric set (not necessarily connected). Then H2.�D/'Zk where k
denote the number of connected components of DC which do not intersect R.

Let yH0.DR/ denote the kernel of the homomorphism i�WH0.DR/ ! H0.D
C/.

There are natural exact sequences

0! H1.D
C/! H3.�D/! yH0.DR/! 0 (2.7)

and
0! H1.D

C/! H1.�D/! 0: (2.8)
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Proof. This is an easy consequence of Proposition 2.5, since the homology of a
disconnected space is isomorphic to the direct sum of the homology of its connected
components.

Corollary 2.8. For an axially symmetric open subset � � H all homology groups
are torsion-free.

Proof. First observe that there is no loss in generality in assuming that �D is
connected, because the homology groups of�D are isomorphic to the direct sum of
the homology groups of its connected components.
For connected�D the assertion follows from the preceding proposition, because

the homology groups of open sets in R and R2 are known to be always torsion-free
andDR, resp.D�, is an open subset in R resp. R2.

We now explain the geometric meaning of the short exact sequence (2.1). Given
an element ˛ 2 H1.DC/we may represent ˛ as a finite formalZ-linear combination
of closed curves j WS1 ! DC. Each such curve j defines a map � from S1 � S
to �D via

�.t; I / D <e.j .t//C I =m.j .t//:

The fundamental class of the real three-dimensional manifold S1 � S then defines
the corresponding element inH3.�D/.
An element ˇ 2 H0.DR/ may be represented as a formal Z-linear combination

of points
P
nifpig. Assume that ˇ is in the kernel of the natural map to Z which is

given by X
nifpig 7!

X
ni :

Then ˇ is the sum of elements of the form C1fpig � 1fqig. Given such an element,
we choose a curve  W Œ0; 1� ! DC with .0/ D pi , .1/ D qi , .t/ 2 DC n R
for 0 < t < 1. Then�.Œ0;1�/ is a 3-sphere defining an element inH3.�D/. Note that
this construction depends on the choice of the curve  . Therefore the sequence (2.1)
has no natural splitting.
Lemma 2.9. Let D � C be a symmetric open subset. With DC, DR and yH0.DR/

defined as in Corollary 2.7 there is natural exact sequence

0! H1.D
C/˚H1.D

�/! H1.D/! yH0.DR/! 0: (2.9)

Proof. Let W be as above in the proof of Proposition 2.5 and define

V D fz 2 C W z 2 W or xz 2 W g;
UC D DC [ V; U� D D� [ V:

Observe that we have homotopy equivalences

UC � DC; U� � D�; .UC \ U�/ D V � DR:
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We use the Mayer–Vietoris sequence associated toD D UC [ U�:

� � � ! HkC1.D/! Hk.DR/! Hk.D
C/˚Hk.D

�/! Hk.D/! � � �

The details (whichwe omit) are verymuch similar to the proof of Proposition 2.5.

Corollary 2.10. Let D � D1 be symmetric open subsets in C. Assume that
H1.D/! H1.D1/ is injective. Then H1.DC/! H1.D1

C/ is injective, too.

Proof. The inclusion map from D to D1 combined with (2.9) yields the following
commutative diagram

0 �! H1.D
C/˚H1.D

�/ �! H1.D/ �! yH0.DR/ �! 0??y ??y ??y ??y ??y
0 �! H1.D1

C/˚H1.D1
�/ �! H1.D1/ �! yH0.D1;R/ �! 0

Now the assertion follows from the snake lemma (see e.g. [19, III.§9]).

Proposition 2.11. Let D be a symmetric open subset of C. Then there is a natural
exact sequence

0 ����! H1.D
C/

˛
����! H1.D/

ˇ
����! H3.�D/ ����! 0: (2.10)

Here ˛, ˇ are as follows: Let � WC ! C denote complex conjugation on C and let
�WD � S! �D be the map given by

�.x C yi; J / D x C yJ:

Then ˛./ D  � �� and ˇ./ D ��. � ŒS�/, where ŒS� 2 H2.S/ denotes the
fundamental class.

Proof. There is no loss in generality in assuming that DC is connected (and
therefore�D , too). We coverDC by the two open subsetsD� andW as in the proof
of Proposition 2.5. This induces corresponding coverings ofD,D � S and �D:

D D .D nDR/ [ V with V D fz 2 C W z 2 W or xz 2 W g;
D � S D ..D nDR/ � S/ [ .V � S/;

�D D �D� [ �W :

For each of these coverings we obtain a Mayer–Vietoris sequence for homology.
We utilize the map �WD � S! �D given by

.x C yi IJ / 7! x C yJ:
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This yields a morphism between the respective Mayer–Vietoris sequences:

� � � �! Hk..V nDR/ � S/ �! Hk..D nDR/ � S/˚Hk.V � S/ �! Hk.D � S/ �! � � �??y ??y ??y
� � � �! Hk.�W �/ �! Hk.�D�/˚Hk.�W / �! Hk.�D/ �! � � �

In particular, we get

H3..V nDR/ � S/ �! H3..D nDR/ � S/˚H3.V � S/ �! H3.D � S/ �! C �! 0??y ??y ??y ??y ??y
H3.�W �/ �! H3.�D�/˚H3.�W / �! H3.�D/ �! C 0 �! 0

with

C D ker
�
H2..V nDR/ � S/! H2..D nDR/ � S/˚H2.V � S/

�
and

C 0 D ker
�
H2.�W �/! H2.�D�/˚H2.�W /

�
:

Recall that H3.M � S/ ' H1.M/ and H2.M � S/ ' H0.M/ for anyM � C
due to Künneth formula and dimension reasons. Observe also that V n DR is the
disjoint union of two open subsets (namely DC \ .V nDR/ and D� \ .V nDR/)
both of which are homotopic to DR. Recall moreover that V and DR are homotopy
equivalent. Hence

C ' ker
�
H0.V nDR/! H0.D nDR/˚H0.V /

�
and consequently

H0.DR/ � ker
�
H0.V nDR/! H0.V /

�
;

where the isomorphism may be describe as

H0.DR/ 3 � D
X
J

nj fpj g

7!

X
J

nj
�
fpj � �g � fpj C �g

�
2 ker

�
H0.V nDR/! H0.V /

�
.pj 2 DR/

for a sufficiently small �.
Let

� D
X
J

nj
�
fpj � �g � fpj C �g

�
2 ker

�
H0.V nDR/! H0.V /

�
:
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Then the homomorphism toH0.D nDR/ may be described as

� 7!
�X

J

nj ;�
X
J

nj

�
2 Z2 ' H0.D nDR/:

It follows that
C ' zH0.DR/:

Now

C 0 D ker
�
H2.�W �/! H2.�D�/˚H2.�W /

�
' ker

�
H2.DR � S/! H2.D

C
� S/˚H2.DR/

�
due to the homotopy equivalences (whichwere verified in the proof of Proposition 2.5)

�W � ' DR � S; �D� ' D
C
� S; �W ' DR:

It follows that

C 0 ' ker
�
H0.DR/! H0.D

C/˚ f0g
�
' ker

�
H0.DR/! H0.D

C/
�
' zH0.DR/:

The aforementioned homotopy equivalences also imply H3.�D�/ ' H1.D
C/

and H3.�W / D f0g. Combining all these facts, the above commutative diagram
turns into the following commutative diagram:

0 ����! H1.D
C/˚H1.D

�/
�1
����! H1.D/

�2
����! zH0.DR/ ����! 0??y �1

??y �2

??y ??y�3Did
??y

0 ����! H1.D
C/

�1
����! H3.�D/

�2
����! zH0.DR/ ����! 0

The homomorphism �1 is induced by the embedding

D nDR D D
C
[D� �! �D�

and
H3.�D�/ ' H3.D

C
� S/ ' H1.D

C/:

Hence �1.c1; c2/ D c1 C ��c2 if c1 is a 1-cycle in DC and c2 a 1-cycle in D�. In
particular, �1 is surjective with kernel

ker �1 D f.c;���c/ W c 2 H1.DC/g

�2 is defined by

H1.D/ ' H3.D � S/
��
�! H3.�D/:
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We set ˇ D �2 and define ˛ via ˛.c/ D �1.c;���c/. Injectivity of ˛ is implied
by injectivity of �1. To check surjectivity of ˇ, let s 2 H3.�D/. Since �3 is an
isomorphism, we find an element c 2 H1.D/ with �2.c/ D �2.s/. Then

s � �2.c/ 2 ker�2 D image.�1/:

Now �1 is surjective. Therefore there exists a 2 H1.DC/˚H1.D�/ with

s � �2.c/ D �1.�1.a// D �2.�1.a//) s D �2.c C �1.a//:

Let us check that ˇ ı ˛ D 0:

ˇ.˛.c// D �2.˛.c// D �2.�1.c;���c// D �1.�1.c;���c// D �1.0/ D 0:

Finally, assume b 2 kerˇ. We have to show that b is in the image of ˛. Now ˇ.b/ D
�2.b/ D 0 implies

�2.�2.b// D �3.�2.b// D �2.b/ D 0:

Thus
b 2 ker.�2/ D image.�1/;

i.e., there is an element .c0; c00/ 2 H1.DC/˚H1.D�/with �1.c0; c00/ D b. Since�1
is injective, and �2.b/ D 0, we know that

0 D �1.c
0; c00/ D c0 C ��c

00:

Hence c00 D ���c0. It follows that b D ˛.c0/.

Corollary 2.12. LetD � D1 be symmetric open subsets in C such thatH1.�D/!
H1.�D1

/ and H3.�D/ ! H3.�D1
/ are both injective. Then H1.D/ ! H1.D1/

is injective, too.

Proof. First recall that H1.�D/ ' H1.D
C/ (and H1.�D1

/ ' H1.D1
C/) due

to (2.2).
Second, we consider the following commutative diagram induced from (2.10) via

the mapD ,! D1

0 ����! H1.D
C/ ����! H1.D/ ����! H3.�D/ ����! 0??y ??y ??y ??y ??y

0 ����! H1.D1
C/ ����! H1.D1/ ����! H3.�D1

/ ����! 0:

Now the snake lemma (see e.g. [19, III.§9]) yields the statement.



728 C. Bisi and J. Winkelmann

Lemma 2.13. Let P be a symmetric compact connected subset of C such that P \R
is non-empty and connected. Let P 0 be a non-empty symmetric closed subset of P
and define

D D C n P;

D1 D C n P 0:

Then H3.�D/! H3.�D1
/ is injective.

Proof. By construction we have

H1.D/ ' Z; zH0.DR/ ' Z:

Using (2.9) it follows that H1.DC/ D f0g. Then we may apply (2.1) to conclude
thatH3.�D/ ' Z.
Let R > maxfjzj W z 2 P g. Regard the 3-sphere S with center 0 and radius R

in H. Because P is contained in the interior of the sphere, S defines a non-trivial
homology class in H3.�D/. Since P 0 is also non-empty and in the interior of
the sphere, the homology class of S in H3.�D1

/ is likewise non-zero. Thus the
homomorphism

i�WH3.�D/! H3.�D1
/

maps a non-trivial element of H3.�D/ to a non-trivial element of H3.�D1
/. This

implies the statement becauseH3.�D/ ' Z.

Proposition 2.14. LetD � D1 be symmetric open subsets of C such that the natural
homomorphism H1.D/ ! H1.D1/ is injective. Then H3.�D/ ! H3.�D1

/ is
injective, too.

Proof. Assume the contrary. Let

˛ 2 ker
�
H3.�D/! H3.�D1

/
�
; ˛ ¤ 0:

The injectivity ofH1.D/! H1.D1/ implies thatH1.DC/! H1.D1
C/ is injective

too (Corollary 2.10). The inclusion map D ! D1 applied to (2.1) yields the
following commutative diagram

0 ����! H1.D
C/ ����! H3.�D/ ����! yH0.DR/ ����! 0??y ??y ??y ??y ??y

0 ����! H1.D1
C/ ����! H3.�D1

/ ����! yH0.D1;R/ ����! 0:

Let ˛0 denote the image of ˛ in yH0.DR/. First, we claim that ˛0 can not vanish.
Indeed, if ˛0 D 0, then ˛ is induced by an element ˇ 2 H1.DC/. Evidently ˛ ¤ 0
implies ˇ ¤ 0. But now we obtain a contradiction, since H1.DC/ ! H1.D1

C/
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andH1.D1C/! H3.�D1
/ are both injective, but ˛ is mapped to zero inH3.�D1

/.
Hence ˛0 ¤ 0.
Second, by assumption the image of ˛ in H3.�D1

/ vanishes, implying that the
image in yH0.D1;R/ also vanishes. Thus ˛0 is in the kernel of yH0.DR/! yH0.D1;R/.
Let ˛0 be represented by the formal Z-linear combination

P
x2I nxfxg where I is a

finite subset of DR. Since ˛0 ¤ 0, but
P
nk D 0 ( because ˛ is in the kernel of the

morphism fromH0.DR/ toH0.D/), we can find a point q 2 R nD such thatX
p2I Ip>q

np ¤ 0:

Fix such a point q. Let B denote the connected component of Dc D C n D
containing q. Fix p1; p2 2 I with p1 < q < p2 and such that I\ �p1; p2ŒD f g.
Note that˛0 ismapped onto zero in yH0.D1;R/which implies that Œp1; p2� is contained
inD1;R.
Because ˛ is mapped to zero inH0.DC/, we know that p1 and p2 are contained

in the same connected component of DC. Therefore p1 and p2 can be connected
by a path  in DC. This path, combined with its image under conjugation, yields
a closed curve inside D which surrounds q. Therefore B must be bounded, and
B \R � �p1; p2Œ .
Combining the latter fact with Œp1; p2� � D1;R implies that

R \ .B nD1/ D f g:

Since we assumed thatH1.D/! H1.D1/ is injective, boundedness of B implies

B \D1
c
¤ f g:

We choose a path �W Œ0; 1� ! B such that �.0/ D q, �.1/ 62 D1 and �.t/ 62 R
for t > 0. Define

P D fz 2 C W 9 t 2 Œ0; 1�; z D �.t/ or �.t/g:

Observe that P \R D fqg.
Now we consider the following diagram of inclusion maps

D ����! D1??y ??y
C n P ����! C n .P \D1

c/:

From Lemma 2.13 we obtain injectivity of

H3.�CnP /! H3.�Cn.P\D1
c//
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p1 q p2

B

�

D

D1



Figure 1.

which leads to a contradiction: First, by construction ˛0 is mapped to a non-zero
element of zH0.RnP /. Due to (2.1) it follows that ˛ is mapped to a non-zero element
of H3.�CnP /. Second, its image in H3.�D1

/ is zero, which forces its image in
H3.�Cn.P\D1

c// to be zero, becauseD1 � C n .P \D1
c/.

Proposition 2.15. LetD � D1 be symmetric open subsets of C with corresponding
axially symmetric subsets �D � �D1

in H. Then H1.D/! H1.D1/ is injective if
and only if both H1.�D/! H1.�D1

/ and H3.�D/! H3.�D1
/ are injective.

Proof. First we recall that the homology of a disjoint union X D A [ B is simply
the direct sum of the homology of A and B . For this reason there is no loss in
generality in assuming that �D is connected. If both H1.�D/ ! H1.�D1

/ and
H3.�D/! H3.�D1

/ are injective, injectivity of H1.D/! H1.D1/ follows from
Corollary 2.12.
Now assume H1.D/ ! H1.D1/ is injective. Then H3.�D/ ! H3.�D1

/ is
injective due to Proposition 2.14. Furthermore injectivity of H1.�D/! H1.�D1

/

follows from Corollary 2.10 combined with (2.2).

3. Appendix

3.1. Some planar topology. Here we show that for a pair of domains G � H in C
the group homomorphism i�WH1.G/ ! H1.H/ induced by the inclusion map i
is injective if and only if every bounded connected component of Gc D C n G
hits a bounded connected component of H c . This is well known, but we provide
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a new proof based on an identification of H1.G/ with a certain function space,
namely Cc.G

c ;Z/.
Proposition 3.1. Let G be an open subset of C and denote its complement by Gc .
Then there is a natural isomorphism � between H1.G;Z/ and Cc.G

c ;Z/ (i.e. the
space of Z-valued continuous (locally constant) functions with compact support
on Gc).

Proof. A cycle  2 H1.G;Z/ defines a function n on C n supp./ by the winding
number

n .z/ D

Z


dw

w � z
:

Thewinding numbern is locally constant onCnj j, thereforen is continuous onGc .
It is compactly supported, becausen .z/ D 0 for all zwith jzj > maxfjwj W w 2 j jg.
Now assume that  is in the kernel of this map �W  7! n . For each k 2 Z

let Zk denote the cycle defined by the open set fz 2 G W n .z/ D kg. Then
the homology class of  in H1.G;Z/ vanishes, because  D @

�P
k kZk

�
(here @

denotes the boundary operator in homology). This proves injectivity of the group
homomorphism �WH1.G;Z/! Cc.G

c ;Z/.
Conversely let f 2 Cc.G

c ;Z/. Since f has compact support and takes values
in Z, f is a finite sum of functions ˙fi with fi 2 Cc.G

c ;Z/ and fi .z/ 2 f0; 1g for
all z; i . We may therefore without loss of generality assume that f .Gc/ D f0; 1g.
Let R > supfjzj W f .z/ ¤ 0g. Now we define a function g on Gc [ fz W jzj � Rg as
follows

g.z/ D

(
f .z/ if z 2 Gc ;
0 if jzj � R:

We extend g to a (real-valued) smooth functionF defined on all ofC. Sard’s theorem
implies that fz W F.z/ D cg is a smooth submanifold of C for almost all c 2�0; 1Œ.
Each level set fz W F.z/ D cg (0 < c < 1) is compact, because F.z/ D 0 if jzj � R.
Therefore, almost every c 2�0; 1Œ defines a finite union of disjoint closed smooth real
curves in C which circumscribe F D 1. The homology class of this curve defines
the element ofH1.G;Z/ corresponding to the function f .

Lemma 3.2. Let A be a closed subset of C and let B be a bounded connected
component of A. Assume that B ¤ A and let q 2 AnB . Then there exists a function
f 2 Cc.A;Z/ which is identically 1 on B such that f .q/ D 0.

Proof. Connected components are closed. Hence B is compact. Let R > maxfjzj W
z 2 Bg. Define C D fz 2 A W jzj D Rg and for each w 2 C choose disjoint open
subsets Uw ; Vw of A with A D Uw [ Vw , B � Uw and w 2 Vw . Define fw as the
indicator function of Uw , i.e.,

fw.z/ D

(
1 if z 2 Uw ;
0 if z 2 A n Uw D Vw .
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Now C is a compact set covered by the open sets Vw (w 2 C ). Hence there is a finite
set S � C with

C � [w2SVw :

We define
g.z/ D …w2Sfw.z/

observing that g � 1 on B and g � 0 on C .
We choose a continuous function hWA ! f0; 1g such that h equals 1 on B and

h.q/ D 0 (which is possible, since q lies in a connected component of A different
from B). Now we can define the function f we are looking for as

f .z/ D

(
g.z/h.z/ if z 2 A and jzj � R;
0 if z 2 A and jzj > R.

The function f is continuous on A, because g.z/ D 0 for all z 2 A with jzj D R,
which implies that g.z/h.z/ D 0 for jzj D R. By construction its support is
contained in the closed disc of radius R (and therefore compact) and we have f � 1
on B and f .q/ D 0.

Proposition 3.3. Let G � H � C be open subsets. Then the following properties
are equivalent:
(i) H c D C nH intersects each bounded connected component of Gc .
(ii) The restriction map from Cc.G

c ;Z/ to Cc.H
c ;Z/ is injective.

(iii) H1.G;Z/! H1.H;Z/ is injective.

Proof. The equivalence of properties .ii/ and .iii/ has been shown above.
Weprove the equivalence of .i/ and .ii/. LetB be a bounded connected component

of Gc with B � H . Let f 2 Cc.G
c ;Z/ be a function which equals 1 on B and

assumes only 0 and 1 as values. (Such a function exists due to Lemma 3.2). Let

K D supp.f / D fz W f .z/ ¤ 0g

be its support and define C D K n H . For every x 2 C we choose a function
gx 2 Cc.G

c ;Z/ with gx.x/ D 0 and gx � 1 on B . (This is possible by Lemma 3.2,
since B is compact). Due to compactness of C we may choose a finite subset S of C
such that

C � [x2Sfz 2 G
c
W gx.z/ D 0g:

Define
g.z/ D f .z/ �…x2Sgx.z/:

Theng equals one onB and vanishes identically onC . Since supp.g/�supp.f /�K,
C D K nH and gjC � 0, it is clear that g vanishes identically on H c . Thus, we
have found a non-zero function g 2 Cc.G

c ; f0; 1g/ whose restriction to H c is zero.
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Therefore, the existence of a bounded connected component B of Gc with B � H
implies that the restriction homomorphismCc.G

c ;Z/! Cc.H
c ;Z/ is not injective.

To prove the opposite direction, let us assume that B \ H c ¤ f g for every
bounded connected component B of Gc . Let f 2 Cc.G

c ;Z/. Since f is locally
constant and has compact support, it must vanish identically on every unbounded
connected component of Gc . Thus, if f 6� 0, there must be a bounded connected
component B of Gc on which f is not zero. Since by assumption B \ H c is not
empty, it follows that the restriction of f toH c is not everywhere zero. This proves
injectivity.
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