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Abstract

We propose a novel numerical method for the solution of the shallow water equations in different regimes of the
Froude number making use of general polygonal meshes. The fluxes of the governing equations are split such that
advection and acoustic-gravity sub-systems are derived, hence separating slow and fast phenomena. This splitting
allows the nonlinear convective fluxes to be discretized explicitly in time, while retaining an implicit time marching
for the acoustic-gravity terms. Consequently, the novel schemes are particularly well suited in the low Froude limit of
the model, since no numerical viscosity is added in the implicit solver. Besides, stability follows from a milder CFL
condition which is based only on the advection speed and not on the celerity. High order time accuracy is achieved
using the family of semi-implicit IMEX Runge-Kutta schemes, while high order in space is granted relying on two
discretizations: (i) a cell-centered finite volume (FV) scheme for the nonlinear convective contribution on the polyg-
onal cells; (ii) a staggered discontinuous Galerkin (DG) scheme for the solution of the linear system associated to
the implicit discretization of the pressure sub-system. Therefore, three different meshes are used, namely a polygonal
Voronoi mesh, a triangular subgrid and a staggered quadrilateral subgrid. The novel schemes are proved to be Asymp-
totic Preserving (AP), hence a consistent discretization of the limit model is retrieved for vanishing Froude numbers,
which is the given by the so-called ”lake at rest” equations. Furthermore, the novel methods are well-balanced by
construction, and this property is also demonstrated. Accuracy and robustness are then validated against a set of
benchmark test cases with Froude numbers ranging in the interval Fr ≈ [10−6; 5], hence showing that multiple time
scales can be handled by the novel methods.

Keywords: IMEX schemes, Finite volume and discontinuous Galerkin methods, High order in space and time,
Asymptotic Preserving, Shallow water equations, All Froude flows.

1. Introduction

Shallow water equations are extensively used in modeling physical processes that affect environmental and geo-
physical phenomena [22, 38, 47, 69, 75, 53]. They are designed to describe the dynamics of shallow incompressible
and inviscid fluid flows. Scenarios of storm surges, tsunami wave propagation-inundation, dam breaks and river floods
as well as atmospheric processes are some of the most challenging cases. All these physical applications involve
the description of multiscale phenomena where advection and acoustic-gravity waves coexist. The Froude number
Fr = 𝑢/

√︁
𝑔ℎ, which measures the ratio between convective velocity and pressure wave speed, is typically used to

represent the time scale of the flow under consideration. In order to properly solve the shallow water equations, nu-
merical schemes are designed to accurately and efficiently compute the solution of the hyperbolic governing equations
[4]. However, due to the multiscale nature of the physical process, this goal is still a very challenging problem [73].
For example, in a tsunami case, the advection process describes the motion of a fluid parcel at small finite velocity
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while the acoustic-gravity wave travels proportionally to the square root of gravity times water depth which can be in
the order of 100-800 kilometers an hour in open sea.

Therefore, to deal with multiple time scales, numerical methods must be designed and constructed with the so-
called Asymptotic Preserving (AP) property, meaning that the numerical schemes can capture the behavior of the
governing equations in the asymptotic limits of the model, i.e. when Fr → 0 [45, 46]. Explicit Godunov-type solvers
[39, 42, 49, 59] are very popular and behave quite well for high Froude number flows. Shock-capturing schemes for
the shallow water equations have been reviewed in [69]. In the low Froude regime, explicit schemes are inaccurate
and do not satisfy the AP property because of the severe CFL-type stability condition which is based on the acoustic-
gravity wave speed that becomes dominant. Indeed, in [32] the effect of numerical viscosity on the slow waves
introduced by upwind-type schemes is proven to degrade the accuracy. As a consequence, in low Froude regimes,
explicit numerical methods are forced to perform a huge number of small time steps to keep tracking of acoustic
waves while the fluid barely moves. On the other hand, when fully implicit time step schemes are used, larger time
steps can be employed without losing significant information and preserving the quality of the numerical solution.
The major drawback of fully implicit time stepping techniques is given by the need of solving a system which might
become strongly nonlinear due to the presence of the convective fluxes in the governing equations.

To overcome this problem, a class of semi-implicit discretizations has started to gain visibility in the last decades
[63, 48, 27, 28, 8, 10, 12, 31, 30]. In this context, advection is discretized explicitly while pressure is taken implicitly,
thus the resulting stability condition is only constrained by the main flow speed, which in the low Froude limit
vanishes. Thus, semi-implicit schemes are much more efficient compared to explicit methods in the low Froude limit,
and they also exhibit less numerical viscosity and accurate resolution because the implicit terms do not need any
numerical stabilization. Furthermore, in the semi-implicit context, the resulting system for the unknown pressure
typically results to be linear or mildly nonlinear [35, 15], hence avoiding the solution of strongly nonlinear algebraic
systems. The idea of separating the slow and fast time scale has been effectively interpreted as a splitting of the fluxes,
see [71]. Following this approach, a lot of research has been carried out to devise numerical methods able to deal
with multiple time scales [34, 13, 23, 44, 54, 5, 19], which are often referred to as all Mach solvers, recalling the
hydrodynamic analogy. Another strategy to deal with multiple time scales is given by the class of implicit-explicit
(IMEX) methods [1, 9, 11, 62] or, more in general, by the so-called partitioned schemes [60]. In [8], semi-implicit
and IMEX time stepping techniques have been unified in a single framework leading to efficient all Mach solvers
[15, 18, 10] with linearly implicit algebraic systems.

An important aspect regarding shallow water models for variable bottom topography is the balance between fluxes
and the geometrical source, where extensive research has been developed. If the numerical scheme preserves this
balance it is called well-balanced or preserving the C-property [6, 50, 64]. Without this preserving equilibrium
capability a numerical scheme is not useful as for example in tsunami propagation scenarios [26]. A rather general
approach to design well-balanced algorithms relies in the family of path-conservative schemes [56, 55], that was
originally proposed for the definition of weak solutions in the context of non-conservative hyperbolic systems [58, 57].

If the physical process that needs to be modeled and simulated is related to long distance and time wave prop-
agation, a very accurate numerical method is mandatory in order to preserve the information that is propagated by
the numerical scheme. Such methods need to comply with space and time accuracy in the form of high order spatial
and time discretization of the numerical solution [25, 74, 72]. High order semi-implicit discontinuous Galerkin (DG)
schemes for the shallow water equations have been recently forwarded in [34, 66], while high order IMEX finite
volume schemes for hydrodynamics can be found for instance in [15, 18].

The aim of this work is to design a high order implicit-explicit scheme for the shallow water equations that can
capture the flow behavior at all Froude numbers while respecting the well-balanced property. To achieve high order
of accuracy in space, a CWENO reconstruction technique is employed on general polygonal grid, differently from
what has been recently presented in [43] where a WENO finite difference scheme was designed on Cartesian meshes.
Moreover, in our approach a robust finite volume method is used which can deal with very general control volumes.
An asymptotic preserving scheme for the shallow water system with Coriolis forces has been derived in [54], which
applies to low Froude flows and achieves up to second order of accuracy. Here, we will show higher accurate time
stepping techniques based on the usage of semi-implicit IMEX schemes. Instead of using a finite element paradigm
for the solution of the implicit part of the governing system [23], we design a discontinuous Galerkin solver applied
to a staggered triangular subgrid. In this way, high order spatial accuracy can be easily achieved on polygonal grids
using a compact stencil. Data are transferred between different meshes and discretizations by means of high order 𝐿2-
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projection operators that will be specifically designed. The new algorithms do not require any orthogonality property
of the computational mesh, therefore they can be applied to any unstructured conforming mesh.

This article is organized as follows. In Section 2 the governing two-dimensional shallow water equations are
presented, studying the multiscale nature of the equation by deriving the dimensionless form, followed by splitting
the system into an advection and pressure sub-system and studying the asymptotic behavior in the low Froude limit.
In Section 3 the new numerical scheme is presented considering the discretization in both space and time. Section
4 is devoted to show a set of numerical results which demonstrate the accuracy and robustness of the novel scheme
considering different flow regimes with Froude number ranging from Fr = 10−6 up to Fr = 5.73. Finally, Section 5
finalizes this article by summarizing the work and giving an outlook to future investigations.

2. Governing equations

Let us consider a two-dimensional bounded domain Ω ∈ R2, which is defined by the space coordinates x = (𝑥, 𝑦),
and a time interval with the time coordinate 𝑡 ∈ R+

0 . The frictionless shallow water system is described by the
following set of partial differential equations (PDE):

𝜕𝜂

𝜕𝑡
+ ∇ · q = 0, (1a)

𝜕q
𝜕𝑡

+ ∇ · (v ⊗ q) + 𝑔𝐻∇𝜂 = 0, (1b)

𝜕𝑏

𝜕𝑡
= 0, (1c)

where 𝜂(x, 𝑡) ≥ 0 is the free surface elevation, 𝑏(x) is a prescribed bottom bathymetry, 𝐻 (x, 𝑡) = 𝜂(x, 𝑡) − 𝑏(x) ≥ 0
represents the total water depth and 𝑔 is gravity acceleration. The velocity of the water is described by the vector field
v(x, 𝑡) = (𝑢, 𝑣), while q(x, 𝑡) = 𝐻 (x, 𝑡)v(x, 𝑡) denotes the flow discharge, which is the corresponding conservative
variable. A schematic of the domain and the notation of the governing PDE is shown in Figure 1.

Figure 1: Schematic of the computational domain and the notation used for the shallow water equations over a fixed bottom.

2.1. Scaling of the shallow water equations
To analyze the multiscale nature of the governing equations, it is convenient to derive the corresponding dimen-

sionless form [54, 13, 15]. Therefore, the governing PDE (1) can be rescaled and represented in dimensionless form
by considering the rescaled variables:

x̃ = x/𝐿0, 𝑡 = 𝑡/𝑇0, 𝜂 = 𝜂/𝐻0, �̃� = 𝐻/𝐻0, ṽ = v/𝑈0, �̃� = 𝑏/𝐻0, (2)
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where 𝐿0, 𝑇0, 𝐻0, 𝑈0 are the characteristic length, time, depth and velocity, respectively. Substitution of (2) into
system (1), dropping the tilde superscripts to ease notation, yields the rescaled shallow water equations:

Sr · 𝜕𝜂
𝜕𝑡

+ ∇ · q = 0, (3a)

Sr · 𝜕q
𝜕𝑡

+ ∇ · (v ⊗ q) + 𝐻

Fr2 ∇𝜂 = 0, (3b)

𝜕𝑏

𝜕𝑡
= 0, (3c)

with the Strouhal number Sr and the Froude number Fr defined as

Sr =
𝐿0

𝑇0 𝑈0
, Fr =

𝑈0√
𝑔 𝐻0

. (4)

Without loss of generality, we assume that the characteristic time results to be 𝑇0 = 𝐿0/𝑈0, hence leading to a
convective time scale with Sr = 1. Furthermore, a reference Froude number Fr = 𝜀 is considered, with 𝜀 representing
the asymptotic expansion parameter which will be used to study the asymptotic limit of the governing equations.
Consequently, the rescaled system (3) can be rewritten as

𝜕𝜂

𝜕𝑡
+ ∇ · q = 0, (5a)

𝜕q
𝜕𝑡

+ ∇ · (v ⊗ q) + 𝐻

𝜀2 ∇𝜂 = 0, (5b)

𝜕𝑏

𝜕𝑡
= 0. (5c)

The rescaled shallow water system is hyperbolic and its eigenvalues 𝝀 = (𝜆1, 𝜆2, 𝜆3, 𝜆4) in the normal direction
n = (𝑛𝑥 , 𝑛𝑦) are given by

𝜆1 = v · n − 𝑎/𝜀, 𝜆2 = 0, 𝜆3 = v · n, 𝜆4 = v · n + 𝑎/𝜀, (6)

with the rescaled celerity 𝑎 =
√
𝐻 (the dimensional celerity is 𝑎 =

√
𝑔𝐻).

2.2. Flux splitting

We can make some considerations about the eigenstructure (6) of the rescaled system. The zero eigenvalue 𝜆2
is related to the bottom jump, while the transport of the transverse velocity corresponds to the eigenvalue 𝜆3. The
eigenvalues 𝜆1 and 𝜆4 carry information about the propagation of acoustic-gravity waves and they are responsible of
a severe time step restriction if fully explicit numerical schemes are used to discretize the governing PDE. Indeed, the
stability condition on the time step Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 is given by

Δ𝑡 ≤ CFL min
Ω

ℎ

|v · n ± 𝑎/𝜀 | , (7)

where ℎ represents the characteristic mesh size of the computational cell and the CFL number must be chosen such
that CFL < 1/2 on two-dimensional unstructured grids to ensure stability. Let us notice that the time step Δ𝑡 is of
order 𝜀, thus the time step goes to zero when 𝜀 → 0, which is the so-called asymptotic limit of the system. Apart from
being extremely inefficient in the asymptotic limit due to vanishing time steps, explicit schemes are also not able to
correctly capture the asymptotic regime as discussed in [41, 40, 32].

Therefore, we proceed adopting a flux splitting technique, that has been widely used in the literature for the shallow
water equations [27, 29, 71, 66, 23] but also for the compressible Euler and Navier-Stokes equations [35, 68, 13, 15]
as well as for incompressible fluids [67, 19]. Specifically, the shallow water system is divided into a convective and
a pressure sub-system, which will be discretized explicitly and implicitly in time, respectively. The two sub-systems
write as follows.
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• Convective sub-system: 
𝜕𝑡𝜂 = 0

𝜕𝑡q + ∇ · (v ⊗ q) = 0

𝜕𝑡𝑏 = 0

, 𝝀𝑐 = (0, 0, v · n, 2v · n) . (8)

• Pressure sub-system 
𝜕𝑡𝜂 + ∇ · q = 0

𝜕𝑡q + 𝐻

𝜀2 ∇𝜂 = 0

𝜕𝑡𝑏 = 0

, 𝝀𝑝 = (−𝑎/𝜀, 0, 0, 𝑎/𝜀) . (9)

It is clear that the eigenvalues of the convective sub-system (8) do not contain the celerity 𝑎, which is indeed
present in the eigenvalues of the pressure sub-system (9). However, since the pressure sub-system will be discretized
implicitly, those terms will no longer appear in the stability condition (7), making the resulting numerical method
extremely efficient. Furthermore, the absence of the free surface wave speed 𝑎 in the convective eigenstructure leads
to numerical schemes which are particularly well suited for applications in the asymptotic regime, i.e. when 𝜀 → 0,
because the numerical dissipation will be drastically reduced since it is only proportional to the (very low) water
speed. For example, low Froude flows take place in tidal motions, or in river flows across flat lands, or even mud and
debris floods produced by landslides when bed load transport is included in the model.

2.3. Low Froude limit of the shallow water equations
To investigate the asymptotic limit of the PDE system (5), let us assume the computational domain Ω(x) to be

assigned with periodic boundary conditions on 𝜕Ω and let us introduce the 𝑘-th order Chapman-Enskog expansion of
a generic variable 𝜙(x, 𝑡) in powers of the non-dimensional stiffness parameter 𝜀, that reads

𝜙(x, 𝑡) = 𝜙 (0) (x, 𝑡) + 𝜀𝜙 (1) (x, 𝑡) + 𝜀2𝜙 (2) (x, 𝑡) + . . . + O(𝜀𝑘 ). (10)

Notice that the bottom elevation 𝑏(x) is time-independent, therefore it is not affected by the asymptotic expansion and
it only contributes to zeroth order terms in the definition of the total water depth, namely

𝐻 (x, 𝑡) = 𝜂 (0) (x, 𝑡) − 𝑏(x) + 𝜀𝜂 (1) (x, 𝑡) + 𝜀2𝜂 (2) (x, 𝑡) + . . . + O(𝜀𝑘 ). (11)

Application of the expansion (10) to the rescaled governing PDE (5) and collection of the like powers of 𝜀 yields the
following 𝑘-th leading order equations for 𝑘 ∈ {0,−1,−2}:

• O(𝜀0)

𝜕𝑡𝜂 (0) + ∇ · ((𝜂0 − 𝑏) v0) = 0, (12a)
𝜕𝑡q(0) + ∇ ·

(
v(0) ⊗ q(0)

)
+ 𝜂 (2)∇𝜂 (0) + 𝜂 (1)∇𝜂 (1) +

(
𝜂 (0) − 𝑏

)
∇𝜂 (2) = 0, (12b)

• O(𝜀−1)
𝜂 (1)∇𝜂 (0) +

(
𝜂 (0) − 𝑏

)
∇𝜂 (1) = 0, (13)

• O(𝜀−2) (
𝜂 (0) − 𝑏

)
∇𝜂 (0) = 0. (14)

From (14) we immediately get that
𝜂 (0) ≡ 𝜂 (0) (𝑡), (15)

hence the free surface elevation is constant in space. Using this information in (13) and assuming no dry area in the
domain, namely 𝐻 (x, 𝑡) > 0, allows us to conclude that

𝜂 (1) ≡ 𝜂 (1) (𝑡), (16)
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because the quantity
(
𝜂 (0) − 𝑏

)
≠ 0 is constant in space as well. From (12) it follows that

𝜕𝑡𝜂 (0) + ∇ · ((𝜂0 − 𝑏) v0) = 0, (17a)
𝜕𝑡q(0) + ∇ ·

(
v(0) ⊗ q(0)

)
+

(
𝜂 (0) − 𝑏

)
∇𝜂 (2) = 0. (17b)

Integration of the mass equation (17a) over the computational domain and application of Gauss theorem leads to

𝜕𝑡𝜂 (0) = − 1
|Ω|

∫
Ω

∇ · ((𝜂0 − 𝑏) v0) 𝑑x = − 1
|Ω|

∫
𝜕Ω

(𝜂0 − 𝑏) v0 · n 𝑑𝑆, (18)

where n is the outward pointing unit normal vector defined on the domain boundary 𝜕Ω. Since we have assumed
periodic boundaries, the right hand side of (18) vanishes, implying that 𝜂 (0) is constant both in space and time, hence
the total water depth as well (𝐻 (x, 𝑡) = 𝑐𝑜𝑛𝑠𝑡). The low Froude shallow water system then writes

∇ · ((𝜂0 − 𝑏) v0) = 0, (19a)
𝜕𝑡q(0) + ∇ ·

(
v(0) ⊗ q(0)

)
+

(
𝜂 (0) − 𝑏

)
∇𝜂 (2) = 0. (19b)

3. Numerical scheme

3.1. Discretization of the space-time computational domain

Let us fix some notation related to the space and time computational domains.

Time computational domain. The time coordinate is defined in the interval [0; 𝑡 𝑓 ], which is approximated by a
sequence of discrete points 𝑡𝑛. Thus the time computational domain is discretized such that

𝑡 = 𝑡𝑛 + 𝛼Δ𝑡, 𝛼 ∈ [0, 1], (20)

with the time step Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. Because of the implicit discretization of the pressure sub-system (9), the time step is
limited by a classical CFL stability condition which is only based on the maximum convective eigenvalue (8), that is

Δ𝑡 ≤ CFL min
Ω

ℎ

|v · n| , (21)

hence yielding a milder stability restriction compared to (7), especially in the asymptotic regime when 𝜀 → 0.

Space computational domain. The computational domain is discretized by a set of non-overlapping unstructured
control volumes 𝑃𝑖 with boundary 𝜕𝑃𝑖 , that are given by arbitrary shaped polygons. We will use Voronoi tessellations
[37], even though the orthogonality property of the grid is not necessary in our framework, differently from [27, 29,
14, 16, 12]. The total number of cells is 𝑁𝑃 , thus 𝑖 = 1, . . . , 𝑁𝑃 , and the union of all elements is called the tessellation
DΩ of the domain

DΩ =

𝑁𝑃⋃
𝑖=1

𝑃𝑖 . (22)

The surface of each polygon 𝑃𝑖 is denoted with |𝑃𝑖 |, while 𝑃 𝑗 represents the Neumann neighbor of 𝑃𝑖 which shares
the edge 𝜕𝑃𝑖 𝑗 of length |𝜕𝑃𝑖 𝑗 |. The outward pointing normal vector on the edge 𝜕𝑃𝑖 𝑗 is addressed with n𝑖 𝑗 , and the
characteristic mesh size of each element is measured by ℎ𝑖 =

√︁
|𝑃𝑖 |. The element 𝑃𝑖 counts a total number of vertexes

𝑁𝑣𝑖 , which also corresponds to the total number of edges. The center of mass x𝑖 is computed as

x𝑖 =
1
|𝑃𝑖 |

∫
𝑃𝑖

x 𝑑x. (23)

Starting from the Voronoi tessellation, a triangular subgrid is introduced, by connecting the center of mass with all
the vertexes of each cell. Each sub-triangle of 𝑃𝑖 is labeled with 𝑇𝑚(𝑖 𝑗) , meaning that it covers the area |𝑇𝑚(𝑖 𝑗) | defined
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by the center of mass connecting the two vertexes of the edge 𝜕𝑃𝑖 𝑗 . The mono-index 𝑚 counts the global number
of the subcells over the entire mesh, and it can be used to ease the notation, thus simply writing 𝑇𝑚 to address a

generic subcell. Therefore, the computational domain is covered by a total number of 𝑁𝑇 =
𝑁𝑃∑
𝑖=1

𝑁𝑣𝑖 sub-triangles with

𝑚 = 1, . . . , 𝑁𝑇 . The center of mass of each sub-triangle is consequently defined as

x𝑚 =
1

|𝑇𝑚 |

∫
𝑇𝑚

x 𝑑x. (24)

The total number of edges (without repetition) of the sub-triangulation is 𝑁𝑒, with Γ𝑒 denoting the 𝑒-th edge and |Γ𝑒 |
its length. Let us define for each edge Γ𝑒 a standard normal vector n𝑒 that points from the arbitrarily chosen left ℓ(𝑒)
and right 𝑟 (𝑒) sub-triangle sharing the common edge Γ𝑒. Therefore, a sub-triangle 𝑇𝑚 which shares the edge Γ𝑒 could
be either the right or the left neighbor with respect to that edge. This sub-triangulation will be used to numerically
integrate any quantity inside the cell 𝑃𝑖 as well as for the implicit discretization of the pressure sub-system.

Finally, let us define a staggered quadrilateral subgrid which is built upon the sub-triangulation. More precisely,
the dual cell 𝑄𝑒 is constructed by connecting the center of mass x𝑚ℓ (𝑒) to the two vertexes of the edge Γ𝑒 and then to
the center of mass x𝑚𝑟 (𝑒) of the neighbor sub-triangle. Obviously, the total number of staggered sub-elements is 𝑁𝑒.
For every sub-triangle 𝑚 ∈ 𝑁𝑇 we denote the set of edges of 𝑇𝑚 as 𝑆𝑚. A sketch of the used notation as well as the
complete mesh is reported in Figure 2.

Figure 2: Left: mesh notation. Right: example of the computational meshes used for the numerical discretization of the shallow water equations:
Voronoi tessellation (solid black lines), sub-triangulation (solid red lines) and staggered sub-triangulation (dashed blue lines).

3.2. Basis functions and projection operators

The solution of the shallow water equations will be numerically approximated as an expansion using a polynomial
basis. We consider a polynomial space Vℎ up to degree 𝑀 with a total number of degrees of freedom M = 1

2 (𝑀 +
1) (𝑀 + 2). Because of the different nature of the three grids which are employed, namely the Voronoi tessellation, the
triangular subgrid and the staggered quadrilateral subgrid, we need to define the associated basis functions as well as
a set of projection operators to transfer data from one mesh to another.

On the Voronoi mesh, a set of conservative Taylor functions are employed as modal basis functions 𝛽𝑙 , which are
given by a truncated Taylor series of degree 𝑀 around the center of mass x𝑖 of the physical element 𝑃𝑖:

𝛽
(𝑖)
𝑙

(x) := 𝛽𝑙 (x) |𝑃𝑖
=

(𝑥 − 𝑥𝑖)𝑟𝑙
ℎ
𝑟𝑙
𝑖

(𝑦 − 𝑦𝑖)𝑞𝑙
ℎ
𝑞𝑙
𝑖

− 1
|𝑃𝑖 |

∫
𝑃𝑖

(𝑥 − 𝑥𝑖)𝑟𝑙
ℎ
𝑟𝑙
𝑖

(𝑦 − 𝑦𝑖)𝑞𝑙
ℎ
𝑞𝑙
𝑖

𝑑𝑥, 0 ≤ 𝑟𝑙 + 𝑞𝑙 ≤ 𝑀, (25)
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where 𝑙 = 1, . . . ,M represents a mono-index that counts the total degrees of freedom of the expansion. The basis
functions are also normalized by the characteristic length ℎ𝑖 to avoid ill-conditioned approximations induced by low
quality polygonal cells that might occur on unstructured meshes. We remark that the conservation property of the
basis functions (25) means that

1
|𝑃𝑖 |

∫
𝑃𝑖

M∑︁
𝑙=1

𝛽𝑙
(𝑖) (x) 𝑑x = 1, (26)

thus the first degree of freedom of each element 𝑃𝑖 (i.e. the one identified by 𝑙 = 1) represents the cell average value,
in the finite volume sense. To make notation easier, the subscript referring to 𝑃𝑖 will be dropped, bearing in mind that
the modal basis (25) are defined in the physical space and therefore they are element-dependent, hence we compactly
write 𝛽

(𝑖)
𝑙

. The total number of the modal basis functions is then 𝑁𝛽 = M, thus {𝛽𝑙}𝑙∈[1,𝑁𝛽 ] .
The sub-triangulation allows the definition of nodal basis functions. Each sub-triangle can be easily mapped to

the reference triangular element 𝑇𝑠𝑡𝑑 in the reference coordinate system 𝝃 = (𝜉1, 𝜉2) defined as 𝑇𝑠𝑡𝑑 = {𝝃 ∈ R2 : 0 ≤
𝜉1 ≤ 1, 0 ≤ 𝜉2 ≤ 1 − 𝜉1}. The transformation between physical x and reference 𝝃 coordinates of the subcell 𝑇𝑚 is
given by the following linear mapping:

x := x(𝑇𝑚, 𝝃) = x1,𝑚 + (x2,𝑚 − x1,𝑚) 𝜉1 + (x3,𝑚 − x1,𝑚) 𝜉2, (27)

with x𝑝,𝑚 (𝑝 = {1, 2, 3}) being the vector of physical spatial coordinates of the 𝑝-th vertex of the sub-triangle with
counterclockwise orientation. We denote with 𝝃 (𝑇𝑚, x) : 𝑇𝑚 → 𝑇𝑠𝑡𝑑 the inverse mapping. The coordinates of the
nodes associated with the basis functions are defined on 𝑇𝑠𝑡𝑑 as

𝝃𝑘 =

(
𝑙1

𝑀
,
𝑙2

𝑀

)
, 0 ≤ 𝑙1 ≤ 𝑀, 0 ≤ 𝑙2 ≤ 𝑀 − 𝑙1, (28)

with the multi-index 𝑙 = (𝑙1, 𝑙2) = 1, . . . ,M already used in the definition of the modal basis (25). The nodal basis is
then constructed by means of the Lagrange interpolation polynomials, hence imposing the interpolation condition

𝜙𝑘 (𝝃𝑙) = 𝛿𝑘𝑙 , (29)

where 𝛿𝑘𝑙 denotes the Kronecker symbol, thus obtaining 𝑁𝜙 = M basis functions {𝜙𝑘 }𝑘∈[1,𝑁𝜙 ] .
Likewise, another set of nodal basis functions is defined on the staggered quadrilateral subgrid, where the reference

element 𝑄𝑠𝑡𝑑 is now given by the unit square, that is 𝑄𝑠𝑡𝑑 = {𝝃 ∈ R2 : 0 ≤ 𝜉1 ≤ 1, 0 ≤ 𝜉2 ≤ 1}. The following
transformation can be used to map the physical element 𝑄𝑒 from the reference square 𝑄𝑠𝑡𝑑:

x := x(𝑄𝑒, 𝝃) = (1 − 𝜉1) (1 − 𝜉2) x1,𝑚 + 𝜉1 (1 − 𝜉2) x2,𝑚 + 𝜉1𝜉2 x3,𝑚 + (1 − 𝜉1)𝜉2 x4,𝑚, (30)

with x𝑝,𝑚 (𝑝 = {1, 2, 3, 4}) being the vector of physical spatial coordinates of the 𝑝-th vertex of the quadrilateral
subcell with counterclockwise orientation. In analogy, 𝝃 (𝑄𝑒, x) : 𝑄𝑒 → 𝑄𝑠𝑡𝑑 will indicate the inverse mapping. The
coordinates of the degrees of freedom are again computed using (28), but with the index ranges given by 0 ≤ 𝑙1 ≤
𝑀, 0 ≤ 𝑙2 ≤ 𝑀 . Therefore, a set of 𝑁𝜓 = (𝑀 + 1)2 nodal basis functions {𝜓𝑘 }𝑘∈[1,𝑁𝜓 ] are obtained. Notice that
the nodal points defined by (28) correspond to the one-dimensional Newton-Cotes quadrature points (see [65]), thus
the nodal basis on 𝑄𝑠𝑡𝑑 is constructed by a tensor product of the one-dimensional basis made of (𝑀 + 1) nodes. From
the basis functions {𝜙𝑘 }𝑘 and {𝜓𝑘 }𝑘 defined on the reference space, it is easy to obtain the basis functions on the
physical space using the element-based transformations defined above:

𝜙
(𝑚)
𝑘

(x) = 𝜙𝑘 (𝝃 (𝑇𝑚, x)), 𝜓
(𝑒)
𝑘

(x) = 𝜓𝑘 (𝝃 (𝑄𝑒, x)). (31)

To transfer numerical data from one basis to another we make use of 𝐿2-projection operators. Let 𝜸𝑖 be a generic
quantity which is numerically represented by the Taylor modal basis functions (25) on the Voronoi cell 𝑃𝑖:

𝜸𝑖 =

M∑︁
𝑙=1

𝛽
(𝑖)
𝑙

(x) �̂�𝑙 := 𝛽
(𝑖)
𝑙

�̂�𝑙,𝑖 , (32)
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where �̂�𝑙,𝑖 are the expansion coefficients, i.e. the degrees of freedom, and Einstein summation convention is assumed
over repeated indexes. The evaluation of the corresponding degrees of freedom on the sub-triangulation, that is the
projection of the quantity 𝜸𝑖 from the Voronoi element 𝑃𝑖 to the subcell 𝑇𝑚, relies on the following projection operator
𝕋(𝜸𝑖):

�̂�𝑚 =


©«
∫
𝑇𝑚

𝜙
(𝑚)
𝑘

𝜙
(𝑚)
𝑙

𝑑x
ª®®¬
−1 ∫

𝑇𝑚

𝜙
(𝑚)
𝑘

𝛽
(𝑖)
𝑙

𝑑x

 �̂�𝑙,𝑖 := 𝕋(𝜸𝑖), ∀𝑖 ∀𝑚 = 𝑚(𝑖 𝑗) ∈ 𝑃𝑖 , (33)

with �̂�𝑚 = (�̂�1,𝑚, . . . �̂�M,𝑚) being the sought degrees of freedom of the nodal basis defined on the subcell 𝑇𝑚. The
quantity 𝜸𝑚 can be expressed in the nodal basis on the sub-triangle as

𝜸𝑚 = 𝜙
(𝑚)
𝑙

�̂�𝑙,𝑚. (34)

Similarly, we now want to detail the projection operator 𝕍({𝜸𝑚}𝑚) from a sub-triangle 𝑇𝑚 to a Voronoi cell 𝑃𝑖 ,
that must retrieve the starting expansion coefficients �̂�𝑙,𝑖 used in (32). To that aim, all the subcells belonging to 𝑃𝑖

must be considered, that is {𝑇𝑚 : 𝑚(𝑖 𝑗) ∈ 𝑃𝑖}, hence involving a total number of 𝑁𝑣𝑖 sub-triangles for the associated
cell 𝑃𝑖 . This 𝐿2-operator writes

�̂�𝑖 =
©«
∑︁
𝑚∈𝑃𝑖

∫
𝑇𝑚

𝛽
(𝑖)
𝑘

𝛽
(𝑖)
𝑙

𝑑x
ª®®¬
−1 ∑︁

𝑚∈𝑃𝑖

∫
𝑇𝑚

𝛽
(𝑖)
𝑘

𝜙
(𝑚)
𝑙

�̂�𝑙,𝑚 𝑑x := 𝕍({𝜸𝑚}𝑚). (35)

The summation over all subcells 𝑇𝑚 with 𝑚 ∈ 𝑃𝑖 implies that each subcell must be associated to its expansion
coefficients �̂�𝑙,𝑚, thus they can not be collected outside the rightmost integral in (35). The first term on the right hand
side of (35) is nothing but the modal mass matrix of element 𝑃𝑖 , which can be computed only once and saved for all
elements 𝑃𝑖∈[1,𝑁𝑃 ] at the price of some memory consumption. Let us remark that the operator 𝕍 can be seen as a
high order average of the sub-triangular elements of 𝑃𝑖 , hence requiring all the values {𝜸𝑚}𝑚 for 𝑚 ∈ 𝑃𝑖 .

Finally, the last projection operators �̄�({𝜸𝑚}𝑚) and 𝕊({𝜸𝑒}𝑒) are introduced, which are used to transfer data from
the subcell 𝑇𝑚 to the staggered quadrilateral element 𝑄𝑒 and viceversa, respectively. Also in this case, the starting
sub-triangles must be the neighbor elements of the edge Γ𝑒, which indeed contain the staggered cell 𝑄𝑒 (see Figure
2). Therefore, one has 𝑚 = {ℓ(𝑒), 𝑟 (𝑒)}, and the first operator is defined as

�̂�𝑒 =
©«
∫
𝑄𝑒

𝜓
(𝑒)
𝑘

𝜓
(𝑒)
𝑙

𝑑x
ª®®¬
−1 ©«

∫
𝑇ℓ (𝑒) ,𝑒

𝜓
(𝑒)
𝑘

𝜙
(ℓ (𝑒))
𝑙

𝑑x �̂�𝑙,ℓ (𝑒) +
∫

𝑇𝑟 (𝑒) ,𝑒

𝜓
(𝑒)
𝑘

𝜙
(𝑟 (𝑒))
𝑙

𝑑x �̂�𝑙,𝑟 (𝑒)
ª®®¬ := �̄�({𝜸𝑚}𝑚). (36)

where 𝑇𝑚,𝑒 := 𝑇𝑚 ∩ 𝑄𝑒 is the intersection triangle between 𝑇𝑚 and 𝑇𝑒 with 𝑒 ∈ 𝑆𝑚. The inverse map, that gives the
second operator, is simply defined as

�̂�𝑚 =
©«
∫
𝑇𝑚

𝜙
(𝑚)
𝑘

𝜙
(𝑚)
𝑙

𝑑x
ª®®¬
−1 ∑︁

𝑒∈𝑆𝑚

∫
𝑇𝑚,𝑒

𝜙
(𝑚)
𝑘

𝜓
(𝑒)
𝑙

𝑑x �̂�𝑙,𝑒 := 𝕊({𝜸𝑒}𝑒). (37)

3.3. First order semi-discrete scheme in time
The time discretization is based on the class of semi-implicit IMEX schemes proposed in [8], which have been

recently used in all Mach solvers for compressible flows [15, 18, 10]. Let us consider the following first order in time
semi-discrete scheme for the shallow water system (1):

𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
+ ∇ · q𝑛+1 = 0, (38a)

q𝑛+1 − q𝑛

Δ𝑡
+ ∇ · (v𝑛 ⊗ q𝑛) + 𝑔𝐻𝑛∇𝜂𝑛+1 = 0, (38b)
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where the equation for the bottom elevation (1c) has been neglected since 𝑏(x) is time-independent. We can easily
observe that the semi-discrete scheme (38) is concerned with an implicit discretization of the pressure sub-system (9)
and an explicit treatment of the convective sub-system (8). According to [27], system (38) is solved by substitution.
Indeed, inserting the discharge equation (38b) into the mass equation (38a) leads to the following wave equation where
the only unknown is the free surface elevation 𝜂𝑛+1:

𝜂𝑛+1 + Δ𝑡2 𝑔 ∇ ·
(
𝐻𝑛 ∇𝜂𝑛+1

)
= 𝜂𝑛 − Δ𝑡∇ · q∗, q∗ = q𝑛 − Δ𝑡∇ · (v𝑛 ⊗ q𝑛) , (39)

where the contribution of the nonlinear convective terms is compactly written with the abbreviation q∗. Once the
linear system (39) is solved, the new free surface elevation 𝜂𝑛+1 is used to update the flow discharge from (38b), hence

q𝑛+1 = q∗ − Δ𝑡𝑔𝐻𝑛∇𝜂𝑛+1. (40)

Theorem 1. (Well-balance property). Assuming periodic boundary conditions on 𝜕Ω ∈ R and assuming the following
initial condition

𝜂(x, 0) = 𝜂0, v(x, 0) = 0, 𝑏(x) ≠ 0, (41)

the semi-discrete scheme (39)-(40) is well-balanced in the sense of [50].

Proof. From the initial condition it follows that 𝜂𝑛 = 𝜂0 and v𝑛 = 0, thus q𝑛 = 0. Therefore, the nonlinear convective
contribution vanishes as well, i.e. q∗ = 0, since the numerical solution does not present any discontinuity. Indeed,
the numerical dissipation associated to the numerical flux of the convective term ∇ · (v𝑛 ⊗ q𝑛) is exactly zero for any
constant state, included q𝑛 = 0. Consequently, the wave equation (39) reduces to

𝜂𝑛+1 − Δ𝑡2 𝑔 ∇ ·
(
𝐻𝑛 ∇𝜂𝑛+1

)
= 𝜂𝑛, q∗ = 0, (42)

which admits the solution 𝜂𝑛+1 = 𝜂𝑛 = 𝜂0, implying that ∇𝜂𝑛+1 = 0. The discharge equation is then updated according
to (40), thus obtaining

q𝑛+1 = 0 − Δ𝑡𝑔𝐻𝑛 · 0 = 0. (43)

Therefore, the semi-discrete scheme (39)-(40) can preserve stationary solutions of the shallow water system of the
form given by (41) with arbitrary bathymetry. �

Theorem 2. (Asymptotic Preserving property). Assuming periodic boundary conditions on 𝜕Ω ∈ R, the semi-discrete
scheme (39)-(40) is a consistent approximation of the low Froude shallow water system (19) at the leading order
asymptotic expansion in the asymptotic limit (𝜀 → 0).

Proof. Using the rescaled variables (2) and the expansions (10), the semi-discrete scheme (38) in non-dimensional
form writes

𝜂𝑛+1 − 𝜂𝑛

Δ𝑡
+ ∇ · q𝑛+1 = 0, (44a)

q𝑛+1 − q𝑛

Δ𝑡
+ ∇ · (v𝑛 ⊗ q𝑛) + 𝐻𝑛

𝜀2 ∇𝜂𝑛+1 = 0. (44b)

Let us assume that the following expansions hold true for the discrete variables at any generic time 𝑡𝑛:

𝜂𝑛 (x) = 𝜂𝑛(0) (x) + 𝜀2𝜂𝑛(2) (x), v𝑛 (x) = v𝑛(0) (x) + 𝜀v𝑛(1) (x), (45)

where 𝜂𝑛(0) (x) = 𝜂 (0) is constant in space and time because periodic boundaries are assumed (see Section 2.3), and
𝜀2𝜂𝑛(2) (x) is a perturbation of the free surface level, thus the total water depth at zeroth order is given by 𝐻𝑛

(0) (x) =

𝜂 (0) (x) − 𝑏(x), which is also constant. Inserting (45) into the semi-discrete scheme (44) and retaining only zeroth
order terms of the expansions lead to

∇ ·
(
𝐻(0)v(0)

)𝑛+1
= 0, (46a)(

𝐻(0)v(0)
)𝑛+1 −

(
𝐻(0)v(0)

)𝑛
Δ𝑡

+ ∇ ·
(
v𝑛 ⊗ (𝐻(0)v(0) )𝑛

)
+ 𝐻𝑛

(0)∇𝜂
𝑛+1
(2) = 0, (46b)
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that is a consistent discretization at first order in time of the low Froude shallow water system (19). Formal substitution
of (46b) into (46a) gives the the corresponding rescaled version of (39)-(40) in the asymptotic limit, namely

𝐻(0) ∇ · ∇𝜂𝑛+1
(2) = ∇ ·

(
𝐻(0)v(0)

)∗
,

(
𝐻(0)v(0)

)∗
=

(
𝐻(0)v(0)

)𝑛 − Δ𝑡∇ ·
(
v𝑛 ⊗ (𝐻(0)v(0) )𝑛

)
(47a)(

𝐻(0)v(0)
)𝑛+1

=
(
𝐻(0)v(0)

)∗ − Δ𝑡𝐻𝑛
(0)∇𝜂

𝑛+1
(2) , (47b)

which can be equivalently obtained by inserting the expansions (45) into the rescaled scheme (46a)-(46b). �

3.4. High order time discretization
Once the first order in time semi-discrete scheme (38) is designed, its extension to high order of accuracy in time

is carried out adopting the semi-implicit IMEX time integrators firstly introduced in [8]. The governing equations can
be cast in the form of an autonomous system

𝜕U
𝜕𝑡

= H (U𝐸 (𝑡),U𝐼 (𝑡)) , U0 = U(𝑡 = 0), (48)

where the vector of conserved variables is U = (𝜂, 𝐻𝑢, 𝐻𝑣, 𝑏) according to (1). The function H represents any spatial
approximation of the remaining terms of the shallow water system, which will be detailed in the next sections. The
first argument of H denoted with U𝐸 is discretized explicitly, and the second argument referred to as U𝐼 is taken
implicitly, thus obtaining a partitioned system. Looking at the semi-discrete scheme (38), the right hand side of (48)
results to be

H (U𝐸 ,U𝐼 ) =
{

−∇ℎ · q𝐼

−∇ℎ · (v ⊗ q)𝐸 − 𝑔𝐻𝐸∇ℎ𝜂𝐼
, (49)

with the discrete divergence operator ∇ℎ that will be presented in the next section. The class of implicit-explicit
(IMEX) Runge-Kutta schemes [62] allows high order in time to be reached by performing a total number 𝑠 of stages
which depend on the desired order of accuracy and other constraints on the asymptotic preserving property of the
scheme. In this work, we use the semi-implicit IMEX schemes up to third order detailed in [15] (see Appendix A),
which are proven to be asymptotic preserving and asymptotic accurate. Consequently, since the first order in time
semi-discrete scheme is asymptotic preserving as demonstrated by Theorem 2, its high order extension maintains the
Asymptotic Preserving property, see [8] for a detailed proof. Let us also remark that the duplication of the unknowns
U𝐸 and U𝐼 in (49) does not take place if judicious choices of the IMEX scheme are considered [8].

For practical implementation, the IMEX schemes are typically represented with the double Butcher tableau:

𝑐 �̃�

�̃�>
𝑐 𝐴

𝑏>
, (50)

with the matrices ( �̃�, 𝐴) ∈ R𝑠×𝑠 and the vectors (𝑐, 𝑐, �̃�, 𝑏) ∈ R𝑠 . The tilde symbol refers to the explicit scheme
and matrix �̃� = (�̃�𝑖 𝑗 ) is a lower triangular matrix with zero elements on the diagonal, while 𝐴 = (𝑎𝑖 𝑗 ) is a triangular
matrix which accounts for the implicit scheme, thus having non-zero elements on the diagonal. A semi-implicit IMEX
Runge-Kutta method is obtained as follows. Let us first set U𝑛

𝐸
= U𝑛

𝐼
= U𝑛, then the stage fluxes for 𝑖 = 1, . . . , 𝑠 are

calculated as

U𝑖
𝐸 = U𝑛

𝐸 + Δ𝑡

𝑖−1∑︁
𝑗=1

�̃�𝑖 𝑗 𝑘 𝑗 , 2 ≤ 𝑖 ≤ 𝑠, (51a)

Ũ𝑖
𝐼 = U𝑛

𝐸 + Δ𝑡

𝑖−1∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 , 2 ≤ 𝑖 ≤ 𝑠, (51b)

𝑘𝑖 = H
(
U𝑖

𝐸 , Ũ
𝑖
𝐼 + Δ𝑡 𝑎𝑖𝑖 𝑘𝑖

)
, 1 ≤ 𝑖 ≤ 𝑠. (51c)

Finally, the numerical solution is updated with

U𝑛+1 = U𝑛 + Δ𝑡

𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 . (52)
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3.5. Spatial discretization of the explicit terms

The vector of conserved variables U = (𝜂, 𝐻𝑢, 𝐻𝑣, 𝑏) is stored for every time level 𝑡𝑛 within each Voronoi cell as
typically done in finite volume schemes:

U𝑛
𝑖 :=

1
|𝑃𝑖 |

∫
𝑃𝑖

U(x, 𝑡𝑛) 𝑑x. (53)

The spatial discretization is composed of two main steps: (i) a high order nonlinear reconstruction, and (ii) a finite
volume scheme on unstructured Voronoi meshes.

CWENO reconstruction on Voronoi meshes. Starting from the known cell averages (53), a reconstruction polynomial
w(x, 𝑡𝑛) of arbitrary degree 𝑀 is computed relying on the CWENO strategy originally forwarded in [51, 52] and
subsequently used also in the context of unstructured meshes [17, 33, 37, 20, 21]. The reconstruction polynomial
w(x, 𝑡𝑛) is expressed for each cell 𝑃𝑖 by means of the Taylor basis (25), that is

w(x, 𝑡𝑛) |𝑃𝑖
:= w𝑛

𝑖 = 𝛽
(𝑖)
𝑙

(x) ŵ𝑛
𝑙,𝑖 . (54)

Because of the conservative modal basis, the conservation property (26) implies ŵ𝑛
1,𝑖 = U𝑖 . The reconstruction

procedure is then compactly written by defining the following operator ℝ:

ŵ𝑛
𝑙,𝑖 = ℝ(U𝑛), (55)

and the explicit definition of ℝ, thus the details of the CWENO reconstruction algorithm, can be found in Appendix
B. We underline that the reconstruction strategy is of arbitrary order of accuracy, thus any polynomial degree 𝑀 can be
chosen. The higher is the accuracy, the most expensive is the computational effort and the larger is the reconstruction
stencil, hence making finite volume reconstruction schemes less efficient for parallelization purposes.

Finite volume scheme. Once the CWENO reconstruction procedure is carried out for all the Voronoi elements, a finite
volume scheme is used to discretize the nonlinear convective operators in (38). Therefore, shock capturing properties
and conservation are ensured by construction for the convective sub-system (8). Integration of the discharge equation
in (8) over the control volume 𝑃𝑖 and application of Gauss theorem yields

𝜕𝑡

∫
𝑃𝑖

q𝑖 𝑑x = −
∫
𝜕𝑃𝑖

(v ⊗ q)𝑖 · n 𝑑𝑆, (56)

which is numerically approximated using a finite volume scheme:

q𝑛+1
𝑖 = q𝑛

𝑖 −
Δ𝑡

|𝑃𝑖 |

𝑁𝑣𝑖∑︁
𝑖=1

∫
𝜕𝑃𝑖 𝑗

F (w𝑛
𝑖 ,w

𝑛
𝑗 , n𝑖 𝑗 ) 𝑑𝑆 := q∗

𝑖 . (57)

The numerical flux function F is fed by high order extrapolated values at the boundary 𝜕𝑃𝑖 𝑗 which come from the
CWENO reconstruction. We choose to use a robust Rusanov–type numerical flux, hence defining

F (w𝑛
𝑖 ,w

𝑛
𝑗 , n𝑖 𝑗 ) =

1
2

(
ℝ(v𝑛𝑖 ) ⊗ ℝ(q𝑛

𝑖 ) +ℝ(v𝑛𝑗 ) ⊗ ℝ(q𝑛
𝑗 )

)
· n𝑖 𝑗 −

1
2
|𝑠max |

(
ℝ(q𝑛

𝑗 ) −ℝ(q𝑛
𝑖 )

)
, (58)

where the numerical dissipation 𝑠max is given by the maximum eigenvalue of the convective sub-system (8), thus it
is proportional to the flow velocity and not to the acoustic-gravity wave speed. In the low Froude asymptotic limit
this is very important since numerical dissipation automatically tends to zero for 𝜀 → 0 in (5). Furthermore, for any
constant solution q = q0, the numerical flux contribution vanishes because of Gauss theorem (56), giving evidence
that the convective term maintains the well-balance solution proved in Theorem 1. Let us notice that the right hand

12



side of the finite volume scheme (57) corresponds exactly to the spatial discretization of the term q∗ in (39), which is
referred to as q∗

𝑖
. The discrete explicit fluxes H(U𝐸 ) in (49) are then given by

H (U𝐸 ) =


0

− Δ𝑡
|𝑃𝑖 |

𝑁𝑣𝑖∑
𝑖=1

∫
𝜕𝑃𝑖 𝑗

F (w𝑛
𝑖
,w𝑛

𝑗
, n𝑖 𝑗 ) 𝑑𝑆 . (59)

The result of the finite volume scheme is therefore q∗
𝑖
, which formally provides a cell average of the type (53).

The implicit solver for the free surface elevation, which will be described in the next section, is based on a discontin-
uous Galerkin representation of the numerical solution. Consequently, to make the convective numerical solution q∗

𝑖

suitable for a DG method, we need to perform a reconstruction of q∗
𝑖
. The resulting CWENO polynomial is then inter-

preted as a discontinuous Galerkin numerical solution within each computational cell, which has been very recently
proposed in the context of IMEX solvers for the incompressible Navier-Stokes equations [19]. Therefore, a CWENO
reconstruction is performed after the convective terms have been updated, hence obtaining high order reconstruction
polynomials on the Voronoi cells for the following quantities:

𝜂𝑛𝑙,𝑖 = ℝ(𝜂𝑛), q̂∗
𝑙,𝑖 = ℝ(q∗), �̂�𝑛

𝑙,𝑖 = ℝ(𝐻𝑛), 𝑖 = 1, . . . , 𝑁𝑃 . (60)

3.6. Spatial discretization of the implicit terms

The implicit discretization makes use of a discontinuous Galerkin approximation on the triangular subcells and the
associated staggered quadrilateral subgrid. Therefore, the free surface elevation as well as flow discharge and water
depth must comply with the DG data structure. Specifically, the free surface elevation 𝜂 has a high order representation
on each sub-triangle while the total water depth 𝐻 and flow discharge q can be represented by a high order polynomial
on the staggered elements 𝑄𝑒. This is computed starting from the high order polynomials (60) defined on the Voronoi
cells and relying on the projections described in Section 3.2, that is

{𝜂𝑛𝑚}𝑚 = 𝕋({𝜂𝑛𝑖 }𝑖), {q̂∗
𝑒}𝑒 = �̄�

(
𝕋

(
{q∗

𝑖 }𝑖
) )
, {�̂�𝑛

𝑒 }𝑒 = �̄�
(
𝕋({𝐻𝑛

𝑖 }𝑖)
)
. (61)

We remark that the input data in the above projections are given by the CWENO polynomials (60). As a consequence,
the discrete variables obtained using (61) are explicitly approximated as follows:

𝜂(x) |x∈𝑇𝑚 =
∑︁
𝑘

𝜙
(𝑚)
𝑘

(x) 𝜂𝑚,𝑘 = 𝜙𝑘 𝜂𝑚

𝐻 (x) |x∈𝑄𝑒
=

∑︁
𝑘

𝜓
(𝑒)
𝑘

(x) �̂�𝑒,𝑘 = 𝜓𝑘 �̂�𝑒,

q(x) |x∈𝑄𝑒
=

∑︁
𝑘

𝜓
(𝑒)
𝑘

(x) q̂𝑒,𝑘 = 𝜓𝑘 q̂𝑒, (62)

where we introduce a lighter notation, i.e. we simply use 𝜂𝑚 for all 𝑚 = 1, . . . , 𝑁𝑚 and (�̂�𝑒, q̂𝑒) for all 𝑒 = 1, . . . , 𝑁𝑒.
We can now consider the implicit contributions in the semi-discrete scheme (38):

𝜂𝑛+1 + Δ𝑡∇ · q𝑛+1 = 𝜂𝑛, (63a)

q𝑛+1 + Δ𝑡𝑔𝐻𝑛∇𝜂𝑛+1 = q∗. (63b)

A weak formulation of the momentum and continuity equation is derived following the approach presented in [66].
Multiplying the mass equation (63a) by a test function 𝜙𝑘 , integrating it over the control volume 𝑇𝑚 and inserting the
ansatz (62) yields

�̄�𝑚𝜂
𝑛+1
𝑚 + Δ𝑡

∑︁
𝑒∈𝑆𝑚

D𝑚,𝑒q̂𝑛+1
𝑒 = �̄�𝑚𝜂

𝑛
𝑚, (64)
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where

�̄�𝑚 =

∫
𝑇𝑚

𝜙
(𝑚)
𝑘

(x) 𝜙 (𝑚)
𝑙

(x) 𝑑x,

D𝑚,𝑒 =

∫
Γ𝑒

𝜙
(𝑚)
𝑘

(𝑠) 𝜓 (𝑒)
𝑙

(𝑠) n𝑒 𝜎𝑚𝑒 𝑑𝑠 −
∫

𝑇𝑚,𝑒

∇𝜙 (𝑚)
𝑘

(x) 𝜓 (𝑒)
𝑙

(x) 𝑑x,

𝜎𝑚𝑒 =
𝑟 (𝑒) − 2𝑚 + ℓ(𝑒)

𝑟 (𝑒) − ℓ(𝑒) . (65)

In analogy, a weak formulation of the momentum equation may be obtained after multiplication of Equation (63b) by
a test function 𝜓𝑘 and integration over the staggered subcell 𝑄𝑒:

𝑀𝑒q̂𝑛+1
𝑒 + Δ𝑡𝑔

(
Qℓ (𝑒) ,𝑒�̂�

𝑛
𝑒 𝜂

𝑛+1
ℓ (𝑒) + Q𝑟 (𝑒) ,𝑒�̂�

𝑛
𝑒 𝜂

𝑛+1
𝑟 (𝑒)

)
= 𝑀𝑒q̂∗

𝑒, (66)

where

𝑀𝑒 =

∫
𝑄𝑒

𝜓
(𝑒)
𝑘

(x) 𝜓 (𝑒)
𝑙

(x) 𝑑x,

Q𝑚,𝑒 = −
∫
Γ𝑒

𝜓
(𝑒)
𝑘

(𝑠) 𝜓 (𝑒)
𝑙

(𝑠) 𝜙 (𝑚)
𝑟 (𝑠) n𝑒 𝜎𝑚𝑒 𝑑𝑠 +

∫
𝑇𝑚,𝑒

𝜓
(𝑒)
𝑘

(x) 𝜓 (𝑒)
𝑙

(x) ∇𝜙 (𝑚)
𝑟 (x) 𝑑x. (67)

Mimicking what done at the semi-discrete level, substitution of the weak momentum into the weak continuity equation
leads to a linear system for the only unknowns 𝜂𝑛+1, thus

�̄�𝑚𝜂
𝑛+1
𝑚 + 𝑔Δ𝑡2

∑︁
𝑒∈𝑆𝑚

D𝑚,𝑒

(
Qℓ (𝑒) ,𝑒�̂�

𝑛
𝑒 𝜂

𝑛+1
ℓ (𝑒) + Q𝑟 (𝑒) ,𝑒�̂�

𝑛
𝑒 𝜂

𝑛+1
𝑟 (𝑒)

)
= �̄�𝑚𝜂

𝑛
𝑚 + Δ𝑡

∑︁
𝑒∈𝑆𝑚

D𝑚,𝑒q̂∗
𝑒 = 𝑏𝑛𝑚, (68)

which is the fully discrete wave equation (39). The system can be solved using the GMRES algorithm, see [66]. Once
the new free surface is computed, the momentum can readily be updated with (66) obtaining q̂𝑛+1

𝑒 .
The conservative variables U are defined on the Voronoi tessellation and are given as cell averages in the finite

volume framework according to (53). Consequently, the new DG solution is projected back to the Voronoi grid using
the operator (35):

𝜂𝑛+1
𝑖 = 𝕍

(
{𝜂𝑛+1

𝑚 }𝑚
)
, q̂𝑛+1

𝑖 = 𝕍

({
𝕊{q̂𝑛+1

𝑒 }𝑒
}
𝑚

)
. (69)

Next, the first degree of freedom of each quantity provides the sought cell averages according to the conservation
property (26), thus

𝜂𝑛+1
𝑖 = 𝜂1,𝑖 , q𝑛+1

𝑖 = q̂𝑛+1
1,𝑖 . (70)

Finally, to comply with the time discretization , the discrete implicit fluxes in (49) are simply computed by

H (U𝐼 ) =


𝜂𝑛+1
𝑖

−𝜂𝑖
𝐴𝑠𝑠 Δ𝑡

q𝑛+1
𝑖

−q∗
𝑖

𝐴𝑠𝑠 Δ𝑡

, (71)

where 𝐴𝑠𝑠 is the diagonally implicit coefficient of the Butcher tableau (50), which is never zero (see Appendix A).

4. Numerical results

We present a suite of test cases that aim at assessing the robustness and the accuracy of the novel numerical method
presented in this work. The label SI-FVDG (Semi-Implicit Finite Volume/Discontinuous Galerkin) is used, and the
third order version of the scheme (𝑀 = 2) is adopted by default in both space and time. The CFL number is set to
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CFL = 0.9 and the time step size is determined according to the stability condition (21), thus it is independent of the
acoustic-gravity wave speed. If the initial fluid velocity is set to zero, which would yield to a time step approaching
infinity, the first time step is computed using the eigenvalues of the full system, so that after one time step an initial
amount of momentum can take place in the flow that allows the condition (21) to be used again. Different fluid
regimes are simulated with Froude numbers ranging from Fr = 10−6 up to Fr = 5.73, demonstrating the ability of the
SI-FVDG method to deal with multiscale flow conditions.

4.1. Convergence rates study

The numerical convergence of the new SI-FVDG schemes is studied by considering the steady shallow water
vortex firstly proposed in [14]. The computational domain is the square Ω = [−5; 5] × [−5; 5] with flat bottom (𝑏 = 0)
and periodic boundaries, while the initial condition, which also corresponds to the exact solution, is given by

𝜂(x) = 𝐻0 −
1

2𝑔
𝑒−(𝑟

2−1) , v(x) = (𝑢(x), 𝑣(x)) = (−𝑢𝛼 sin(𝛼), 𝑢𝛼 cos(𝛼)) , (72)

with polar coordinates (𝛼, 𝑟) defined as

tan(𝛼) = 𝑦

𝑥
, 𝑟2 = 𝑥2 + 𝑦2. (73)

The angular velocity 𝑢𝛼 = 𝑟 𝑒−
1
2 (𝑟

2−1) is prescribed, so that the momentum equation in radial direction gives rise to a
balance between centrifugal and pressure forces:

𝜕𝜂

𝜕𝑟
=
𝑢𝛼

𝑔𝑟
. (74)

Different regimes of the Froude number can be taken into account by modifying the constant 𝐻0 in the definition of
the free surface elevation (72), thus permitting to numerically verify the asymptotic preserving property of the novel
schemes. To ease the computation of the Froude number, in this test case we set 𝑔 = 10.

This test is run on a series of successfully refined computational meshes until the final time 𝑡 𝑓 = 0.1 with four
different Froude numbers Fr = {0.32, 10−2, 10−4, 10−6}. For the chosen values of the Froude number the associated
values of the free surface constant are given by 𝐻0 = {100, 103, 107, 1011}, hence making necessary the adoption of
quadruple precision arithmetic for the computations, as already observed in [23]. The errors are measured in 𝐿2 norm
for the free surface elevation and the horizontal velocity component, that is

𝐿2 (𝜂) =

√︄∫
Ω

(𝜂ℎ (x) − 𝜂𝑒 (x))2 𝑑x, 𝐿2 (𝑢) =

√︄∫
Ω

(𝑢ℎ (x) − 𝑢𝑒 (x))2 𝑑x, (75)

where 𝜂ℎ (x), 𝑢ℎ (x) is the numerical solution expressed in terms of the CWENO reconstruction polynomials, whereas
the exact solution 𝜂𝑒 (x), 𝑢𝑒 (x) is given by (72). The results are reported in Table 1 for second and third order
schemes in space and time, where the characteristic mesh size of each computational mesh is simply evaluated as
ℎ(Ω) = max

𝑖

√︁
|𝑃𝑖 |. The formal order of accuracy is obtained for both approximation degrees (𝑁 = [1, 2]) and for

all the Froude numbers, confirming that the SI-FVDG schemes are asymptotic preserving and asymptotic accurate,
meaning that the achieved order of accuracy is independent of the Froude number, as expected. Figure 3 shows the
magnitude of the velocity field at Froude number Fr = 0.32 and Fr = 10−6, where no visible differences can be noticed
despite the jump of about ten orders of magnitude related to the free surface elevation.

4.2. Well-balance test

To numerically verify the well-balance property of the SI-FVDG schemes proved in Theorem 1, which is also
referred to as C-property, we consider the benchmark devised in [50]. The setting of this test allows to assess whether
a numerical scheme is able to preserve stationary equilibrium solutions of the governing equations up to machine pre-
cision. Specifically, equilibrium solutions of the shallow water equations are characterized by a constant free surface
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Table 1: Numerical convergence results of the SI-FVDG scheme with second and third order of accuracy in space and time using the steady
shallow water vortex problem on Voronoi meshes. The errors are measured in 𝐿2 norm and refer to the free surface elevation 𝜂 and velocity
component 𝑢 at time 𝑡 = 0.1. The asymptotic preserving (AP) property of the schemes is studied by considering different Froude numbers
Fr = {0.32, 10−2, 10−4, 10−6 } with the corresponding values of the water depth 𝐻0.

SI-FVDG O(2) SI-FVDG O(3)
ℎ(Ω) 𝐿2 (𝜂) O(𝜂) 𝐿2 (𝑢) O(𝑢) 𝐿2 (𝜂) O(𝜂) 𝐿2 (𝑢) O(𝑢)

Fr = 0.32, 𝐻0 = 100 (double precision)
4.6405E-01 4.6695E-03 - 4.2797E-02 - 5.2378E-03 - 3.9573E-02 -
2.4889E-01 8.9159E-04 2.66 8.8269E-03 2.53 7.8042E-04 3.06 5.4838E-03 3.17
1.6631E-01 3.7358E-04 2.16 3.7142E-03 2.15 2.1356E-04 3.21 1.6362E-03 3.00
1.2765E-01 2.0589E-04 2.25 2.0544E-03 2.24 8.4528E-05 3.50 6.7377E-04 3.35

Fr = 10−2, 𝐻0 = 103 (quadruple precision)
4.6405E-01 4.4898E-03 - 4.4870E-02 - 5.7524E-03 - 4.1907E-02 -
2.4889E-01 1.1112E-03 2.24 9.1796E-03 2.55 7.9515E-04 3.18 5.9539E-03 3.13
1.6631E-01 4.5253E-04 2.23 3.8537E-03 2.15 2.1886E-04 3.20 1.7490E-03 3.04
1.2765E-01 2.5926E-04 2.11 2.1324E-03 2.24 8.5740E-05 3.54 7.2117E-04 3.35

Fr = 10−4, 𝐻0 = 107 (quadruple precision)
4.6405E-01 4.4782E-03 - 4.4604E-02 - 5.7562E-03 - 4.1909E-02 -
2.4889E-01 1.1180E-03 2.23 9.3643E-03 2.51 7.9785E-04 3.17 5.9544E-03 3.13
1.6631E-01 4.8607E-04 2.07 3.9086E-03 2.17 2.1972E-04 3.20 1.7491E-03 3.04
1.2765E-01 2.6381E-04 2.31 2.1140E-03 2.32 8.5924E-05 3.55 7.2122E-04 3.35

Fr = 10−6, 𝐻0 = 1011 (quadruple precision)
4.6405E-01 4.4782E-03 - 4.4604E-02 - 5.7562E-03 - 4.1909E-02 -
2.4889E-01 1.1180E-03 2.23 9.3643E-03 2.51 7.9785E-04 3.17 5.9544E-03 3.13
1.6631E-01 4.8607E-04 2.07 3.9086E-03 2.17 2.1972E-04 3.20 1.7491E-03 3.04
1.2765E-01 2.6381E-04 2.31 2.1140E-03 2.32 8.5924E-05 3.55 7.2122E-04 3.35

Figure 3: Steady shallow water vortex problem at 𝑡 𝑓 = 0.1 with a Voronoi mesh of characteristic size ℎ ≈ 1/2. Magnitude of the velocity field
obtained with 𝐹𝑟 = 0.32 (left) and 𝐹𝑟 = 10−6 (right) using quadruple precision arithmetic for the computations.
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elevation 𝜂(x, 𝑡) = 0 and zero fluid velocity, i.e. v(x, 𝑡) = 0, while prescribing an arbitrary bottom topography differ-
ent from the trivial profile 𝑏(x) = 0. Following [50], we consider a computational domain Ω = [−2; 1] × [−0.5; 0.5]
with Dirichlet boundary conditions in 𝑥−direction and periodic boundaries in 𝑦−direction, which is discretized with a
mesh size of ℎ = 1/50, hence resulting in a total number of 𝑁𝑃 = 8633 Voronoi cells. The bathymetry and the initial
free surface elevation are then given by

𝑏(x) = 0.5 · 𝑒−5 (𝑥+0.1)2−50𝑦2
, 𝜂(x, 0) =

{
1 + 𝛿 if − 0.95 ≤ 𝑥 ≤ −0.85
1 elsewhere . (76)

The fluid is initially at rest and we set the perturbation amplitude 𝛿 = 0. The simulation is run until the final time
𝑡 𝑓 = 0.1 using double and quadruple finite arithmetic, and the errors with respect to the initial condition are reported
in Table 2. One can notice that the novel SI-FVDG scheme are well-balanced up to machine accuracy.

Table 2: Well-balance test with double and quadruple finite arithmetic precision. Errors measured in 𝐿2 and 𝐿∞ norms for the free surface elevation
𝜂 and velocity component 𝑢 at the final time 𝑡 𝑓 = 0.1.

Precision 𝐿2 (𝜂) 𝐿∞ (𝜂) 𝐿2 (𝑢) 𝐿∞ (𝑢)
Double 1.3933E-15 3.8857E-15 3.4734E-14 8.1454E-13

Quadruple 1.0690E-33 3.9481E-33 3.3339E-32 7.3247E-31

Next, as proposed in [50], a small perturbation is put in the free surface elevation, namely we set 𝛿 = 10−2 in
(76). Here, a fixed time step of Δ𝑡 = 0.01 is adopted in order to properly follow the wave propagation. The results are
depicted in Figure 4 at different output times, showing that no spurious oscillations are generated by the presence of
the bottom bump. The flow structure is qualitatively in excellent agreement with the results available in the literature
[66, 24, 23].
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Figure 4: Well-balance test with small perturbation of the free surface (𝛿 = 10−2). 80 equidistant contour lines in the interval 𝜂 = [0.993; 1.008]
are shown at output times 𝑡 = 0.12, 𝑡 = 0.24, 𝑡 = 0.36 and 𝑡 = 0.48 (from top left to bottom right panel).
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4.3. Circular dambreak
In order to simulate 2D problems with shock waves, let us consider the circular dambreak problem over a bottom

step forwarded in [66, 34]. The computational domain is given by the circle Ω = {x ∈ R2 | 𝑟 = |x| ≤ 2} with Dirichlet
boundary conditions everywhere. The computational grid counts a total number of 𝑁𝑃 = 34477 with characteristic
mesh size ℎ = 1/50, and the following initial condition is considered:

𝜂(x, 0) =
{

1.0 if 𝑟 ≤ 1
0.5 if 𝑟 > 1 , 𝑏(x) =

{
0.2 if 𝑟 ≤ 1
0.0 if 𝑟 > 1 , v(x, 0) = 0. (77)

The final time of the simulation is 𝑡 𝑓 = 0.2, at which the solution exhibits a contact wave traveling towards the
center of the domain, as well as a shock wave that is heading the outer boundary. Furthermore, due to the presence
of the bottom step, an additional discontinuity is present in the flow at 𝑟 = 1. The results are depicted in Figure 5
together with a comparison against the reference solution, which has been computed by solving the one-dimensional
shallow water equations in radial direction with geometric reaction source terms, using a classical shock capturing
MUSCL-TVD finite volume scheme with 10000 cells [70]. Overall one can appreciate a very good matching between
numerical and reference solution, and no spurious oscillations occur in the plateau between the two shocks. We
underline that numerical dissipation is only present in the CWENO finite volume solver for the convective terms and
not in the pressure Poisson solver as needed in [23].

4.4. Riemann problems
The SI-FVDG schemes are validated against a set of Riemann problems which take into account flat and variable

bottom topography. The exact solution is computed relying on the Riemann solver presented in [69] and [7] for
flat and variable bottom, respectively. The initial condition is given in terms of two states Q𝐿 = (𝜂𝐿 , 𝑢𝐿 , 𝑏𝐿) and
Q𝑅 = (𝜂𝑅, 𝑢𝑅, 𝑏𝑅) separated by a discontinuity located at position 𝑥 = 𝑥𝑑:

Q(x, 0) =
{

Q𝐿 if 𝑥 ≤ 𝑥𝑑
Q𝑅 if 𝑥 > 𝑥𝑑

. (78)

Table 3 summarizes the extension of the computational domain as well as the initial condition for free surface eleva-
tion, horizontal velocity and bottom elevation for four Riemann problems.

Table 3: Initialization of Riemann problems. Initial states left (L) and right (R) are reported as well as the final time of the simulation 𝑡 𝑓 , the
computational domain [𝑥𝐿 ; 𝑥𝑅 ], the position of the initial discontinuity 𝑥𝑑 and the characteristic mesh size ℎ.

Test 𝜂𝐿 𝑢𝐿 𝑏𝐿 𝜂𝑅 𝑢𝑅 𝑏𝑅 𝑥𝐿 𝑥𝑅 𝑥𝑑 ℎ 𝑡 𝑓
RP1 [69] 1 0 0 2 0 0 -0.5 0.5 0 1/200 0.075
RP2 103 0 0 1 0 0 -15 15 0 1/200 0.09
RP3 [7] 1 0 0.2 0.5 0 0 -5 5 0 1/200 1
RP4 [7] 1.46184 0 0 0.30873 0 0.2 -0.5 0.5 0 1/200 1

Despite the one-dimensional setup of these test cases, the computational domain is given by Ω = [𝑥𝐿; 𝑥𝑅] ×
[𝑥𝐿/10; 𝑥𝑅/10] and it is discretized with an unstructured Voronoi mesh of size ℎ, hence making the computation
intrinsically multidimensional. The results are depicted in Figure 6 where the numerical solution is compared against
the reference solution through a one-dimensional cut of 200 equidistant points along the 𝑥−axis of the computational
domain at 𝑦 = 0. The first two Riemann problems (RP1 and RP2) assume a constant flat bathymetry, and deal with
shock and rarefaction waves. The remaining Riemann problems (RP3 and RP4) deal with a jump in the bottom
elevation of height Δ𝑏 = 0.2, which is responsible of the generation of shock waves. Overall an excellent agreement
can be noticed, demonstrating that the novel SI-FVDG schemes can also handle supercritical flows with Froude
numbers greater than one, namely for RP2 the maximum Froude number is Fr = 5.73. This is achieved thanks to
the very robust CWENO finite volume scheme for the discretization of the nonlinear convective terms. The implicit
treatment of the free surface elevation is enough to guarantee a stable scheme for all the four Riemann problems. The
moving shocks are correctly captured as well as the values of the plateau between two discontinuities, confirming
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Figure 5: Circular dambreak problem at time 𝑡 𝑓 = 0.2. Top: three-dimensional view of the free surface elevation. Bottom: one-dimensional cut
along the line 𝑦 = 0 of the numerical solution compared against the reference solution for the free surface and bottom profile (left) as well as for
the horizontal velocity component (right).
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that the SI-FVDG schemes are conservative by construction. Finally, the one-dimensional symmetry of the problem
is perfectly retrieved even in the context of arbitrary shaped polygonal cells, as confirmed by the three-dimensional
views of the free surface elevation in Figure 6.

4.5. Smooth surface wave propagation
Here, a wave propagation of the free surface elevation is considered following the setup presented in [34]. The

computational domain is the square Ω = [−1; 1]2 with Dirichlet boundary conditions imposed everywhere, which
is discretized with a total number of 𝑁𝑃 = 15717 Voronoi cells with characteristic mesh size ℎ = 1/50. The initial
condition is given by

𝜂(x, 0) = 1 + 𝑒−
1
2 (𝑟

2/𝜎2) , v(x, 0) = 0, 𝑏(x) = 0, (79)

with 𝜎 = 0.1. The time step is fixed to Δ𝑡 = 0.001 and the final time of the simulation is 𝑡 𝑓 = 0.15, so that the
wave profile becomes stiff and a shock wave starts. Figure 7 depicts a three-dimensional view of the free surface
elevation at different output times, highlighting the capability of the SI-FVDG schemes of maintaining the symmetry
of the solution despite the unstructured computational grid. As already done for the circular dambreak problem,
the reference solution is computed relying on a one-dimensional MUSCL-TVD scheme on a very fine mesh, and a
comparison against the numerical solution for the free surface elevation and the horizontal velocity component is plot
in Figure 8. An overall good agreement can be observed, especially until time 𝑡 = 0.1, when the flow is still smooth.
At time 𝑡 = 0.15, the shock is smeared by the CWENO reconstruction technique and the SI-FVDG scheme is stable
and does not present spurious oscillations.

4.6. Low Froude number flow around a circular cylinder
As a last test case we propose to simulate a low Froude flow with Fr = 3.19 · 10−3 that passes around a circular

cylinder of radius 𝑟𝑐 = 1 [23, 3]. The computational domain is Ω = [−16; 16]2\x ∈ R2 |𝑟 ≤ 𝑟𝑐 , with the generic radial
coordinate given by 𝑟 =

√︁
𝑥2 + 𝑦2, and the bottom is assumed to be flat (𝑏 = 0). The mesh counts a total number

of 𝑁𝑃 = 15516 and it is made of Voronoi cells with characteristic mesh size of ℎ = 1/20 close to the border of the
cylinder which regularly increase their diameter until ℎ = 1/2 on the domain boundaries, see Figure 9. This is needed
in order to properly approximate the geometry of the cylinder without resorting to an isoparametric description of the
physical boundaries as forwarded in [66].

The analytical solution for this test problem can be derived both for the velocity field in terms of polar coordinates
(𝑟, 𝜃) as well as for the free surface elevation:

𝑣𝑟 = 𝑣𝑚

(
1 − 𝑟2

𝑐

𝑟2

)
cos(𝜃), 𝑣 𝜃 = −𝑣𝑚

(
1 + 𝑟2

𝑐

𝑟2

)
sin(𝜃), 𝜂 = 𝜂0 +

1
2
𝑣2
𝑚𝑔

(
2
𝑟2
𝑐

𝑟2 cos(2𝜃) − 𝑟4
𝑐

𝑟2

)
, (80)

where we set 𝜂0 = 1 and 𝑣𝑚 = 10−2. In order to avoid the generation of strong initial transient waves we impose as
initial condition the exact velocity field, but a flat free surface, namely 𝜂(x, 0) = 𝜂0. The exact solution is imposed on
all boundaries, apart from the rightmost side of the domain (𝑥 = 16) where an outflow condition is set. The simulation
is run until the final time 𝑡 𝑓 = 10, so that the stationary state has been reached. To enhance the advantages of the high
order discretization proposed in this work, we run the SI-FVDG scheme using the second and the fourth order version
in space, while keeping a first order time discretization for the sake of comparison. Figure 9 shows the computational
mesh around the cylinder as well as the magnitude of the velocity field with the associated streamlines at the final
time. A comparison against the reference solution is plot in Figure 10 along the circumference of radius 𝑟 = 1.01
centered at the origin, where the fourth order accurate scheme retrieves much better the exact profile of the free surface
elevation. The velocity field is resolved rather well by both schemes because the initial condition already provides the
exact solution according to (80).

5. Conclusions

In this work we presented a high order all Froude regime IMEX well-balanced scheme for the two-dimensional
shallow water model on unstructured polygonal meshes. In order to implement an accurate and efficient numerical
scheme we combined a flux splitting formulation with an implicit-explicit discretization for the acoustic and advection
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Figure 6: Riemann problems RP1, RP2, RP3 and RP4 (from top to bottom row). Three-dimensional view of the free surface elevation with the
Voronoi computational mesh (left) and comparison against the reference solution for the variables 𝜂 (middle) and 𝑢 (right).
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Figure 7: Smooth surface wave propagation problem. Three-dimensional view of the free surface elevation and Voronoi computational mesh at
output times 𝑡 = 0, 𝑡 = 0.05, 𝑡 = 0.1 and 𝑡 = 0.15 (from top left to bottom right panel).
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Figure 8: Smooth surface wave propagation problem. Comparison between numerical (dashed lines) and reference (solid lines) solution at output
times 𝑡 = 0.05, 𝑡 = 0.1 and 𝑡 = 0.15 for the free surface elevation 𝜂 (left) and the horizontal velocity component 𝑢 (right).

22



Figure 9: Flow around a circular cylinder. Left: Voronoi computational mesh around the cylinder. Right: contours of the magnitude of the velocity
field with associated streamtraces computed with the fourth order accurate SI-FVDG scheme.

waves, respectively. A high order numerical solution in space and time is obtained by a CWENO spatial reconstruction
and a IMEX Runge-Kutta time integrator. Well-balanced and asymptotic preserving properties of the first order semi-
discrete scheme have been demonstrated. The accuracy and robustness of the new proposed numerical scheme have
been validated by solving six test problems. The first test problem deals with a convergence study where second and
third order accuracy was reached considering four Froude regimes (Fr = 0.32, Fr = 10−2, Fr = 10−4 and Fr = 10−6).
The second test problem considered two scenarios, the first one testing the well-balanced property with a variable
bathymetry and a lake at rest condition. This test shows that the scheme is capable to preserve the initial condition up
to machine accuracy. The second scenario introduced a perturbation of the free surface producing a wave traveling
over a variable bathymetry without generating any spurious artifact. The third numerical test problem simulates a
circular dambreak case with a step on the bathymetry. The numerical solution agrees well with the reference solution.
The fourth test problem deals with four Riemann problems and exact numerical solution, all of them solved accurately.
The fifth one is a two-dimensional wave propagation initiated by a smooth perturbation of the free surface. In this test
we observe that the third order numerical method is in very good agreement with the reference solution. Finally, in
the sixth test problem we see a low Froude flow across a cylinder and the second and fourth order numerical solution
matching the exact solution in an unstructured grid.

In the future we plan to apply and extend the novel schemes to the incompressible Navier-Stokes (INS) equations,
since the wave equation for the pressure would look very similar to the one solved for the shallow water model, with
the only difference lying in the metric term 𝐻 that will simply become a unity constant for the INS equations [67].
Further investigations will be devoted to treat also compressible viscous flows along the lines of [18], including an
implicit discretization of the viscous terms. Finally, the inclusion of a mobile bottom bathymetry would require the
coupling of the shallow water equations with the Exner equation, that also represents an interesting research direction.
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Appendix A. IMEX schemes

The Butcher tableau for the IMEX schemes used in this work are reported hereafter. They have been derived in
[62, 61] and each IMEX scheme is described with a triplet (𝑠, 𝑠, 𝑝) which characterizes the number 𝑠 of stages of the
implicit method, the number 𝑠 of stages of the explicit method and the order 𝑝 of the resulting scheme. The acronym
SA stands for Stiffly Accurate, while DIRK refers to Diagonally Implicit Runge-Kutta schemes.

• SP(1,1,1)

0 0
1

1 1
1

(A.1)

• LSDIRK2(2,2,2) 𝛾 = 1 − 1/
√

2, 𝛽 = 1/(2𝛾)

0 0 0
𝛽 𝛽 0

1 − 𝛾 𝛾

𝛾 𝛾 0
1 1 − 𝛾 𝛾

1 − 𝛾 𝛾

(A.2)

• SA DIRK (3,4,3) 𝛾 = 0.435866

0 0 0 0 0
𝛾 𝛾 0 0 0

0.717933 1.437745 −0.719812 0 0
1 0.916993 1/2 −0.416993 0

0 1.208496 −0.644363 𝛾

𝛾 𝛾 0 0 0
𝛾 0 𝛾 0 0

0.717933 0 0.282066 𝛾 0
1 0 1.208496 −0.644363 𝛾

0 1.208496 −0.644363 𝛾

(A.3)

Appendix B. CWENO reconstruction

The piecewise reconstruction polynomials of degree 𝑀 have a total number of unknown degrees of freedom
M = (𝑀 + 1) (𝑀 + 2)/2 which are determined for each variable of the state vector U starting from the known cell
averages U𝑛

𝑖
. Let us consider a central reconstruction stencil S𝑐

𝑖
that is composed by the cell under consideration and

by all the associated Neumann neighbors, hence

S𝑐
𝑖 =

𝑛𝑒⋃
𝑙=1

𝑃 𝑗 (𝑙) , (B.1)

where 𝑗 = 𝑗 (𝑙) denotes a mapping from the set of integers 𝑙 ∈ [1, 𝑛𝑒] to the global indexes 𝑗 used to sort the cells
in the mesh. We assume that 𝑗 (1) = 𝑖 so that the first cell in the stencil is always the element for which we are
computing the reconstruction. To avoid ill-conditioning of the resulting reconstruction matrices, the stencil contains
a total number of elements 𝑛𝑒 that is greater than the smallest number M needed to reach the formal second order of
accuracy (see [2]).

The reconstruction polynomial w𝑜𝑝𝑡

𝑖
(x) for the central stencil S𝑐

𝑖
is called optimal polynomial and is expressed

through the following conservative expansion

w𝑜𝑝𝑡

𝑖
(x) =

M∑︁
𝑙=1

𝛽
(𝑖)
𝑙

(x) ŵ𝑜𝑝𝑡

𝑙,𝑖
, (B.2)

with ŵ𝑜𝑝𝑡

𝑙,𝑖
representing the unknown expansion coefficients and the basis functions given by (25). The reconstruction

procedure is built upon conservation on each element 𝑃 𝑗 ∈ S𝑐
𝑖

, hence yielding an overdetermined linear system that
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is solved with a least-squares approach [36], which reads

w𝑜𝑝𝑡

𝑖
= argmin

w𝑖 ∈W𝑖

∑︁
𝑃𝑗 ∈S𝑖

(
U𝑛

𝑗 −
1

|𝑃 𝑗 |

∫
𝑃𝑗

wi (x) 𝑑x

)2

, (B.3)

where W𝑖 is the set of all polynomials P𝑀 satisfying

W𝑖 =

{
w𝑖 ∈ P𝑀 : Ū𝑛

𝑗 =
1
|𝑃𝑖 |

∫
𝑃𝑖

wi (x) 𝑑x
}
⊂ P𝑀 . (B.4)

The optimal polynomial w𝑜𝑝𝑡

𝑖
is chosen among all the possible polynomials of degree 𝑀 so that it exhibits the property

of sharing the same cell average of the finite volume data U𝑛
𝑖

in the cell 𝑃𝑖 while being close in the least-square sense
to the other cell averages in the stencil S𝑖 .

The polynomial w𝑜𝑝𝑡

𝑖
is generated from a linear arbitrary high order reconstruction procedure, thus it needs to be

stabilized by a nonlinear operator, which will be done following the CWENO approach. A set of 𝑁𝑆𝑖 interpolating
polynomials of degree one are also computed in order to make a nonlinear hybridization among the resulting poly-
nomials. These are called lateral reconstruction polynomials w𝐿

𝑖
that are obtained by considering one-sided stencils

S𝐿
𝑖

always composed by three elements, namely the element itself 𝑃𝑖 , one direct neighbor 𝑃 𝑗 and the other Neumann
neighbor that is a direct neighbor of both 𝑃𝑖 and 𝑃 𝑗 . For each stencil S𝐿

𝑖
with 𝐿 = 1, . . . , 𝑁𝑆𝑖 , the linear polynomial

w𝐿
𝑖

is obtained through the unique solution of the system

w𝐿
𝑖 ∈ P1 s.t. ∀𝑃 𝑗 ∈ S𝐿

𝑖 : Ū𝑛
𝑗 =

1
|𝑃 𝑗 |

∫
𝑃𝑗

w𝐿
𝑖 (x) 𝑑x, (B.5)

where 𝑗 indicates the mesh element belonging to the stencil S𝐿
𝑖

and the polynomial w𝐿
𝑖

is defined again relying on
the same conservative Taylor expansion (25). The central polynomial corresponding to 𝐿 = 0 is then derived on the
basis of conservation principles as

w0
𝑖 =

1
𝛿0

w𝑜𝑝𝑡

𝑖
−

𝑁𝑆𝑖∑︁
𝐿=1

𝛿0

𝛿𝐿
w𝐿
𝑖 ∈ P1, (B.6)

where 𝛿0, . . . , 𝛿𝑁𝑆𝑖
are positive coefficients such that

𝑁𝑆𝑖∑︁
𝑠=0

𝛿𝑠 = 1. (B.7)

A linear combination of the polynomials w0
𝑖
, . . . ,w𝑁𝑆𝑖

𝑖
with the linear weights 𝛿0, . . . , 𝛿𝑁𝑆𝑖

yields the optimal polyno-
mial w𝑜𝑝𝑡

𝑖
. In this way the accuracy of the CWENO reconstruction does not depend on the choice of the coefficients,

which must only represent a normalization that sums up to unity. In order to achieve essentially non-oscillatory prop-
erties, the final CWENO reconstruction polynomial is computed from the reconstruction polynomials obtained on
each single stencil. Therefore, the following oscillation indicators 𝜎𝑠 are introduced

𝜎𝑠 =

M∑︁
𝑙=2

(
ŵ𝑠
𝑙,𝑖

)2
, (B.8)

where ŵ𝑠
𝑙,𝑖

denote the expansion coefficients (B.2) of the polynomial defined on stencil 𝑠. The nonlinear weights 𝜔𝑠

are then given by

𝜔𝑠 =
�̃�𝑠

𝑁𝑆𝑖∑
𝑠=0

�̃�𝑠

, with �̃�𝑠 =
𝛿𝑠

(𝜎𝑠 + 𝜖)𝑟 , (B.9)
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where 𝜖 = 10−14 and 𝑟 = 4 are chosen according to [36]. Furthermore, we set 𝛿0 = 200/𝛿𝑠𝑢𝑚 and 𝛿𝐿 = 1/𝛿𝑠𝑢𝑚
with 𝛿𝑠𝑢𝑚 = 200 + 𝑁𝑆𝑖 for the definition of the positive coefficients. The final nonlinear CWENO reconstruction
polynomial and its coefficients are then given by

w(x, 𝑡𝑛) =

𝑁𝑆𝑖∑︁
𝑠=0

𝜔𝑠w𝑠
𝑖 (x)

= 𝛽
(𝑖)
𝑙

ŵ𝑛
𝑙,𝑖 . (B.10)

The reconstruction operator ℝ given by (55) carries out the CWENO procedure detailed above and provides the sought
high order expansion coefficients ŵ𝑛

𝑙,𝑖
. Further details can be found in [37, 20].
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