ON SECANT DIMENSIONS AND IDENTIFIABILITY OF FLAG VARIETIES

AGEU BARBOSA FREIRE, ALEX CASAROTTI, AND ALEX MASSARENTI

ABSTRACT. We investigate the secant dimensions and the identifiablity of flag varieties parametrizing flag of sub vector spaces of a fixed vector space. We give numerical conditions ensuring that secant varieties of flag varieties have the expected dimension, and that a general point on these secant varieties is identifiable.

Contents

1.	Introduction	1
2.	Higher osculating behavior of products of Grassmannians	2
3.	On secant defectivity of products of Grassmannians	13
4.	On secant defectivity of flag varieties	14
5.	On the chordal variety of $\mathbb{F}(0,k;n)$	19
References		20

1. Introduction

In the most general contest, a flag variety is a projective variety homogeneous under a complex linear algebraic group. Flag varieties play a central role in algebraic geometry, combinatorics, and representation theory [Bri05, BL18].

Fix a vector space $V \cong \mathbb{C}^{n+1}$, over an algebraically closed field K of characteristic zero, and integers $k_1 \leq \ldots \leq k_r$. Let $\mathbb{G}(k_i, n) \subset \mathbb{P}^{N_i}$, where $N_i = \binom{n+1}{k_i+1} - 1$, be the Grassmannians of k_i -dimensional linear subspace of $\mathbb{P}(V)$ in its Plücker embedding. We have an embedding of the product of these Grassmannians

$$\mathbb{G}(k_1,n)\times\cdots\times\mathbb{G}(k_r,n)\subset\mathbb{P}^{N_1}\times\cdots\times\mathbb{P}^{N_r}\subset\mathbb{P}^N$$

where $N = \binom{n+1}{k_1+1} \cdots \binom{n+1}{k_r+1} - 1$. The flag variety $\mathbb{F}(k_1, \dots, k_r; n)$ is the set of flags, that is nested subspaces, $V_{k_1} \subset \cdots \subset V_{k_r} \subsetneq V$. This is a subvariety of the product of Grassmannian $\prod_{i=1}^r \mathbb{G}(k_i, n)$. Hence, via a product of Plücker embeddings followed by a Segre embedding we can embed $\mathbb{F}(k_1,\ldots,k_r;n)$

$$\mathbb{F}(k_1,\ldots,k_r;n)\hookrightarrow \mathbb{P}^{N_1}\times\cdots\times\mathbb{P}^{N_r}\hookrightarrow\mathbb{P}^N$$

Consider natural numbers a_1,\ldots,a_n such that $a_{k_1+1}=\cdots=a_{k_r+1}=1$ and $a_i=0$ for all $i\notin\{k_1+1,\ldots,k_r+1\}$ 1}. Then, $\mathbb{F}(k_1,\ldots,k_r;n)$ generates the subspace

$$\mathbb{P}(\Gamma_{a_1,\dots,a_n}) \subseteq \mathbb{P}\left(\bigwedge^{k_1+1} V \otimes \dots \otimes \bigwedge^{k_r+1} V\right) \subseteq \mathbb{P}^N$$

where $\Gamma_{a_1,...,a_n}$ is the irreducible representation of $\mathfrak{sl}_{n+1}\mathbb{C}$ with highest weight $(a_1+\cdots+a_n)L_1+\cdots+a_nL_n$, and $L_1 + \cdots + L_k$ is the highest weight of the irreducible representation $\bigwedge^k V$. We will denote Γ_{a_1,\ldots,a_n} simply by Γ_a . By the Weyl character formula we have that

$$\dim \mathbb{P}(\Gamma_a) = \prod_{1 \le i < j \le n+1} \frac{(a_i + \dots + a_{j-1}) + j - i}{j - i} - 1$$

Furthermore, dim $\mathbb{F}(k_1, \dots, k_r; n) = (k_1 + 1)(n - k_1) + \sum_{j=2}^{i} (n - k_j)(k_j - k_{j-1})$ and $\mathbb{F}(k_1, \dots, k_r; n) = \mathbb{P}(\Gamma_a) \cap \mathbb{F}(k_1, \dots, k_r; n) = \mathbb{P}(k_1, \dots, k_r; n$ $\prod_{i=1}^r \mathbb{G}(k_i, n) \subset \mathbb{P}^N.$

Date: December 3, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 14N05, 14N15, 14M15; Secondary 14E05, 15A69, 15A75. Key words and phrases. Flag varieties, secant varieties, identifiability.

The geometry of these varieties has been investigated mostly from the point of view of Schubert calculus [Bri05] and dual defectivity [Tev05]. Secant varieties of small dimensional flag varieties have been studied in [BD10] by taking advantage of the tropical approach to secant dimensions introduced by J. Draisma in [Dra08].

The h-secant variety $\mathbb{S}ec_h(X)$ of a non-degenerate n-dimensional variety $X \subset \mathbb{P}^N$ is the Zariski closure of the union of all linear spaces spanned by collections of h points of X. The expected dimension of $\mathbb{S}ec_h(X)$ is $\operatorname{expdim}(\mathbb{S}ec_h(X)) := \min\{nh + h - 1, N\}$. In general, the actual dimension of $\mathbb{S}ec_h(X)$ may be smaller than the expected one. In this case, following [CC10, Section 2] we say that X is h-defective and the number $\delta_h(X) = \operatorname{expdim}(\mathbb{S}ec_h(X)) - \dim(\mathbb{S}ec_h(X))$ is called the h-secant defect of X.

We investigate secant defectivity of flag varieties following the machinery introduced in [MR19], which we now outline. Given general points $x_1, \ldots, x_h \in X \subset \mathbb{P}^N$, consider the linear projection $\tau_{X,h}: X \subseteq \mathbb{P}^N \dashrightarrow \mathbb{P}^{N_h}$, with center $\langle T_{x_1}X, \ldots, T_{x_h}X \rangle$, where $N_h:=N-1-\dim(\langle T_{x_1}X,\ldots,T_{x_h}X \rangle)$. [CC02, Proposition 3.5] yields that if $\tau_{X,h}$ is generically finite then X is not (h+1)-defective. Given $p_1,\ldots,p_l\in X$ general points, we consider the linear projection $\Pi_{T_{p_1,\ldots,p_l}^{k_1,\ldots,k_l}}: X\subset \mathbb{P}^N \dashrightarrow \mathbb{P}^{N_{k_1,\ldots,k_l}}$ with center the span $\langle T_{p_1}^{k_1}X,\ldots,T_{p_l}^{k_l}X \rangle$ of higher order osculating spaces. We can degenerate, under suitable conditions, the linear span of several tangent spaces T_x into a subspace contained in a single osculating space $T_p^k X$. So the tangential projection $\tau_{X,h}$ degenerates to a linear projection with center contained in $\langle T_{p_1}^{k_1}X,\ldots,T_{p_l}^{k_l}X \rangle$. If $\Pi_{T_{p_1,\ldots,p_l}^{k_1,\ldots,k_l}}$ is generically finite, then $\tau_{X,h}$ is generically finite as well, and we conclude that X is not (h+1)-defective. In this paper we apply this strategy to flag varieties. We would like to stress that this approach, as the one introduced in [Dra08], depends heavily on an explicit parametrization of X. This method was successfully applied to other classes of homogeneous varieties such as Grassmannians [MR19], Segre-Veronese varieties [AMR19], Lagrangian Grassmannians and Spinor varieties [FMR18]. However, its application to flag varieties involves much more difficult computations compared with the case of the Grassmannians, this is particularly reflected in Section 4 where we introduce submersions of flag varieties into product of Grassmannians in order to study the relation among their higher osculating spaces.

Furthermore, our results on secant defectivity, combined with a recent result in [CM19], allow us to produce a bound for identifiability of flag varieties. Recall that, given a non-degenerated variety $X \subset \mathbb{P}^N$, we say that a point $p \in \mathbb{P}^N$ is h-identifiable if it lies on a unique (h-1)-plane in \mathbb{P}^N that is h-secant to X. Especially when \mathbb{P}^N can be interpreted as a tensor space, identifiablity and tensor decomposition algorithms are central in applications for instance in biology, Blind Signal Separation, data compression algorithms, analysis of mixture models psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, neuroscience and graph analysis [DL13a], [DL13b], [DL15], [KAL11], [SB00], [BK09], [CGLM08], [LO15], [MR13]. Our main results in Theorem 4.14 and Corollary 4.15 can be summarized in the following statement.

Theorem 1.1. Consider a flag variety $\mathbb{F}(k_1,\ldots,k_r;n)$. Assume that $n \geq 2k_j + 1$ for some index j and let l be the maximum among these j's. Then, for

$$h \le \left(\frac{n+1}{k_l+1}\right)^{\lfloor \log_2(\sum_{j=1}^l k_j + l - 1) \rfloor}$$

 $\mathbb{F}(k_1,\ldots,k_r;n)$ is not (h+1)-defective. Furthermore, under the same bound, the general point of the h-secant variety of $\mathbb{F}(k_1,\ldots,k_r;n)$ is h-identifiable.

The paper is organized as follows: in Section 2 we study higher order osculating spaces of products of Grassmannians and the linear projections from them, in Section 3 we apply the method introduced in [MR19] to products of Grassmannians, in Section 4 we get bounds for non-secant defectivity and identifiablity of flag varieties, and in Section 5 we investigate the variety of secant lines of spacial flag varieties of type $\mathbb{F}(0, k; n)$.

Acknowledgments. The first named author would like to thank FAPERJ and Massimiliano Mella (PRIN 2015, Geometry of Algebraic Varieties, 2015EYPTSB-005) for the financial support, and the University of Ferrara for the hospitality during the period in which the majority of this work was completed. The third named author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica F. Severi (GNSAGA-INDAM).

2. Higher osculating behavior of products of Grassmannians

Consider the product $\mathbb{G}(k_1, n) \times \cdots \times \mathbb{G}(k_r, n) \subset \mathbb{P}^{N_1} \times \cdots \times \mathbb{P}^{N_r} \subset \mathbb{P}^N$, and given a non-negative integer k define

$$\Lambda_k = \{I \subset \{0,\ldots,n\} \mid |I| = k+1\}$$

For any $I = \{i_0, \dots, i_k\} \in \Lambda_k$ let $e_I \in \mathbb{G}(k, n)$ be the point corresponding to $e_{i_0} \wedge \dots \wedge e_{i_k} \in \bigwedge^{k+1} \mathbb{C}^{n+1}$. We will denote by Z_I the Plücker coordinates on $\mathbb{P}(\bigwedge^{k+1} \mathbb{C}^{n+1})$.

From [MR19] we have a notion of distance in Λ_k given by

(2.1)
$$d(I,J) = |I| - |I \cap J|$$

for all $I, J \in \Lambda_k$. More generally, we define

$$\Lambda = \Lambda_{k_1} \times \cdots \times \Lambda_{k_r}$$

Given $I = \{I^1, \ldots, I^r\} \in \Lambda$ let $e_I \in \prod_{i=1}^r \mathbb{G}(k_i, n)$ be the point corresponding to $e_{I^1} \otimes \cdots \otimes e_{I^r} \in \mathbb{P}^N$, and by Z_I the corresponding homogeneous coordinate of \mathbb{P}^N . Furthermore, for all $I, J \in \Lambda$ with $I = \{I^1, \ldots, I^r\}$ and $J = \{J^1, \dots, J^r\}$, we define their distance as

$$d(I,J) = \sum_{i=1}^{r} d(I^{i}, J^{i})$$

where $d(I^i, J^i)$ is the distance defined in (2.1).

From now on we will assume that $n \geq 2k_r + 1$. Under this assumption Λ has diameter $r + \sum_{i=1}^r k_i$ with respect to this distance.

In the following, we give an explicit description of the osculating spaces of $\prod_{i=1}^r \mathbb{G}(k_i, n)$ at coordinate points.

Proposition 2.2. For each $s \ge 0$

$$T_{e_I}^s \left(\prod_{i=1}^r \mathbb{G}(k_i, n) \right) = \langle e_J \; ; \; d(I, J) \leq s \rangle = \{ Z_J = 0 \; ; \; d(I, J) > s \} \subset \mathbb{P}^N$$

In particular, $T_{e_I}^s(\prod_{i=1}^r \mathbb{G}(k_i, n)) = \mathbb{P}^N$ for $s \geq r + \sum_{i=1}^r k_i$.

Proof. Set $I = \{I^1, \ldots, I^r\} \in \Lambda$. We may assume that $I^i = \{0, \ldots, k_i\}$ for each $1 \leq i \leq r$ and consider the following parametrization of $\prod_{i=1}^r \mathbb{G}(k_i, n)$ in a neighborhood of e_I :

(2.3)
$$\varphi : \prod_{i=1}^{r} \mathbb{C}^{(k_i+1)(n-k_i)} \longrightarrow \mathbb{P}^{N} \\ \left[I_{k_i+1} \ (x_{l,m}^i)\right]_{i=1,\dots,r} \longmapsto (\prod_{i=1}^{r} \det(M_{J^i}))_{J=\{J^1,\dots,J^r\} \in \Lambda}$$

where M_{J^i} is the submatrix obtained from $\left[I_{k_i+1}, (x_{l,m}^i)_{\substack{0 \le l \le k_i \\ k_i+1 \le m \le n}}\right]$ by considering the columns indexed by J^i .

For each $J \in \Lambda$, we will denote $\prod_{i=1}^r \det(M_{J^i})$ simply by $\det(M_J)$. Note that each variable appears in degree at most one in the coordinates of φ . Therefore, deriving two times with respect to the same variable always gives zero. Furthermore, as $\det(M_J)$ has degree at most $r + \sum_{i=1}^r k_i$ all partial derivatives of order greater or equal than $r + \sum_{i=1}^r k_i$ are zero. Thus, it is enough to prove the claim for $s \le r + \sum_{i=1}^r k_i$. Given $J = \{J^1, \ldots, J^r\} \in \Lambda$, let i, k, k' be integers such that $1 \le i \le r, k \in \{0, \ldots, k_i\}$ and $k' \in \{k_i + 1, \ldots, n\}$.

Then

$$\frac{\partial \det(M_J)}{\partial x_{k k'}^i} = \begin{cases} \pm \dots \det(M_{J^{i-1}}) \det(M_{J^i,k,k'}) \det(M_{J^{i+1}}) \dots & k' \in J^i \\ 0 & k' \notin J^i \end{cases}$$

where $M_{J^i,k,k'}$ is the submatrix obtained from M_{J^i} by deleting the column indexed by k' and the row indexed by k.

More generally, let m_1, \ldots, m_r be non-negative integers such that their sum is bigger than one. For each $i=1,\ldots,r$ consider

$$K_i = \{k_1^i, \dots, k_{m_i}^i\} \subset \{0, \dots, k_i\} \text{ and } K_i' = \{k_1'^i, \dots, k_{m_i}'^i\} \subset \{k_i + 1, \dots, n\}$$

with $|K_i| = |K_i'| = m_i$. Now, set $m = m_1 + \cdots + m_r$ and

$$K = \{K_1, \dots, K_r\}, K' = \{K'_1, \dots, K'_r\}$$

Therefore, denoting $\partial x^1_{k_1^1,k_1'^1}\cdots\partial x^r_{k_{m_r}^r,k_{m_r}'^r}$ simply by $\partial^m K,K'$ we have

$$\frac{\partial^m \det(M_J)}{\partial^m K, K'} = \left\{ \begin{array}{cc} \pm \prod_{i=1}^r \det(M_{J^i, K_i, K_i'}) & \text{ if } K' \subset J \text{ and } m \leq d(I, J) = \deg(\det(M_J)) \\ 0 & \text{ otherwise} \end{array} \right.$$

for any $J \in \Lambda$, where $K' \subset J$ means that $\{k_1'^1, \ldots, k_{m_1}'^1\} \subset J^1, \ldots, \{k_1'^r, \ldots, k_{m_r}'^r\} \subset J^r$, and $M_{J^i, K_i, K_i'}$ is the submatrix obtained from M_{J^i} deleting the columns indexed by K_i' and the rows indexed by K_i . Thus,

$$\frac{\partial^m \det(M_J)}{\partial^m K, K'}(0) = \left\{ \begin{array}{ll} \pm 1 & \text{ if } J^i = K_i' \cup (\{I^i \setminus K_i\}) \text{ for each } i = 1, \dots, r \\ 0 & \text{ otherwise} \end{array} \right.$$

Finally, let us denote by $J = K' \cup \{I \setminus K\}$ the element in Λ for which $J^i = K'_i \cup (\{I^i \setminus K_i\})$ for each $i = 1, \ldots, r$. Then, we have that

$$\frac{\partial^m \varphi}{\partial^m K, K'}(0) = \pm e_{K' \cup (\{I \backslash K\})}$$

Note that $d(I, K' \cup \{I \setminus K\}) = m$, and any $J \in \Lambda$ with d(I, J) = m may be written as $K' \cup \{I \setminus K\}$. Thus, we get that

$$\left\langle \frac{\partial^m \varphi}{\partial^m K, K'}(0) \mid m \le s \right\rangle = \left\langle e_J \mid d(I, J) \le s \right\rangle$$

which proves the claim.

Now, it is immediate to compute the dimension of the osculating spaces of $\prod_{i=1}^r \mathbb{G}(k_i, n)$.

Corollary 2.4. For any point $p \in \prod_{i=1}^r \mathbb{G}(k_i, n)$ we have

$$\dim T_p^s(\prod_{i=1}^r \mathbb{G}(k_i, n)) = \sum_{\substack{i=1, \dots, r \\ 0 \le s_i \le k_i + 1, \\ s_1 + \dots + s_r < s}} \binom{n - k_1}{s_1} \binom{k_1 + 1}{s_1} \cdots \binom{n - k_r}{s_r} \binom{k_r + 1}{s_r}$$

for any $0 \le s < r + \sum_{i=1}^r k_i$ while $T_p^s\left(\prod_{i=1}^r \mathbb{G}(k_i, n)\right) = \mathbb{P}^N$ for any $s \ge r + \sum_{i=1}^r k_i$.

Proof. Since the general linear group GL(n+1) acts transitively on $\prod_{i=1}^r \mathbb{G}(k_i,n)$ the statement follows from Proposition 2.2.

2.4. Osculating Projections. For a general point $p \in \prod_{i=1}^r \mathbb{G}(k_i, n)$, we will denote $T_p^s (\prod_{i=1}^r \mathbb{G}(k_i, n))$ simply by T_p^s . Now, take $0 \le s \le r + \sum_{i=1}^r k_i$ and $I \in \Lambda$. By Proposition 2.2 the linear projection of $\prod_{i=1}^r \mathbb{G}(k_i, n)$ from $T_{e_I}^s$ is given by

$$\Pi_{T_{e_I}^s}: \quad \prod_{i=1}^r \mathbb{G}(k_i) \quad \dashrightarrow \quad \mathbb{P}^{N_s'}$$

$$(Z_J)_{J \in \Lambda} \quad \longmapsto \quad (Z_J)_{J \in \Lambda \mid d(I,J) > s}$$

Moreover, given $I' \subset \{0, \dots, n\}$ with |I'| = m we have the linear projection

which in turns induces the linear projection

$$\Pi_{I'} : \mathbb{G}(k,n) \longrightarrow \mathbb{G}(k,n-m)$$

$$V \longmapsto \langle \pi_{I'}(V) \rangle$$

$$(Z_J)_{J \in \Lambda_k} \longmapsto (Z_J)_{J \in \Lambda_k \mid J \cap I' = \emptyset}$$

whenever k < n - m.

Finally, let us fix $I = \{I^1, \dots, I^r\} \in \Lambda$ and take m_1, \dots, m_r integers such that $m_i \leq k_i + 1$ for each $i = 1, \dots, r$. Then, given $I'^1 \subset I^1, \dots, I'^r \subset I^r$, with $|I'^i| = m_i$, we have a projection

$$\prod_{i=1}^{r} \Pi_{I'^{i}} : \prod_{i=1}^{r} \mathbb{G}(k_{i}, n) \longrightarrow \prod_{i=1}^{r} \mathbb{G}(k_{i}, n - m_{i})
V_{1} \times \cdots \times V_{r} \longmapsto \Pi_{I'^{1}}(V_{1}) \times \cdots \times \Pi_{I'^{r}}(V_{r})$$

Note that a general fiber of $\prod_{i=1}^r \Pi_{I'^i}$ is isomorphic to $\prod_{i=1}^r \mathbb{G}(k_i, k_i + m_i)$. Indeed, let $x = \prod_{i=1}^r \Pi_{I'^i} ((V_i)_{i=1}^r) \in \prod_{i=1}^r \mathbb{G}(k_i, n - m_l)$ be a general point. Then, we have

$$\overline{\left(\prod_{i=1}^{r} \Pi_{I^{\prime i}}\right)^{-1}(x)} = \left\{ (W_i)_{i=1}^{r} \in \prod_{i=1}^{r} \mathbb{G}(k_i, n) \mid W_i \subset \langle V_i, e_{j_1^i}, \dots, e_{j_{m_i}^i} \rangle, \ i = 1, \dots, r \right\}.$$

Lemma 2.5. Let us fix $I = \{I^1, \ldots, I^r\} \in \Lambda$. If $0 \le s \le r - 2 + \sum_{i=1}^r k_i$ and $I'^i \subset I^i$ with $|I'^i| = m_i$ for each $i = 1, \ldots, r$, then the rational map $\prod_{r=1}^r factors$ through $\prod_{i=1}^r \prod_{I'^i} whenever \sum_{i=1}^r m_i = s + 1$.

Proof. Since the diameter of Λ is $r+\sum k_i$ we have $\{J\in\Lambda\mid d(I,J)\leq s\}\subsetneq\Lambda$ and then $\Pi_{T^s_{e_I}}$ is well-defined. On the other hand, if $J=\{J^1,\ldots,J^r\}\in\Lambda$ is such that $J^i\cap I'^i=\emptyset$ for all $i=1,\ldots,r$, then $d(I,J)\geq\sum_{i=1}^r m_i>s$ which yields that the center of $\Pi_{T^s_{e_I}}$ is contained in the center of $\prod_{i=1}^r \Pi_{I'^i}$.

Proposition 2.6. The rational map $\Pi_{T_{e_{r}}^{s}}$ is birational for all $0 \leq s \leq r - 2 + \sum_{i=1}^{r} k_{i}$.

Proof. Since $T_{e_I}^s$ contains $T_{e_I}^{s-1}$ it is enough to prove the statement for $s=r-2+\sum_{i=1}^r k_i$. Let us fix $m\in\{1,\ldots,r\}$. By Lemma 2.5, for each subset $I'^m\subset I^m$ with $|I'^m|=k_m$ there is a rational map $\pi_{I'^m}$ that makes the following diagram commutative.

$$\prod_{i=1}^{r} \mathbb{G}(k_{i}, n) \xrightarrow{\Pi_{T_{e_{I}}^{s}}} \mathbb{P}^{N_{s}'}
(\prod_{i \neq m} \Pi_{I^{i}}) \times \Pi_{I'm}
\left(\prod_{i \neq m} \mathbb{G}(k_{i}, n - k_{i} - 1)\right) \times \mathbb{G}(k_{m}, n - k_{m})$$

Let $x = \Pi_{T_{e_I}^s}(\{V_i\}_{i=1}^r)$ be a general point and $X \subset \prod_{i=1}^r \mathbb{G}(k_i, n)$ be the fiber of $\Pi_{T_{e_I}^s}$ over x. Set $x_{I'^m} = \pi_{I'^m}(x)$, and denote by $X_{I'^m} \subset \prod_{i=1}^r \mathbb{G}(k_i, n)$ the fiber of $\left(\prod_{i \neq m} \Pi_{I^i}\right) \times \Pi_{I'^m}$ over $x_{I'^m}$. Thus,

$$X \subset \bigcap_{I'^m} X_{I'^m}$$

where this intersection runs over all $I'^m \subset I^m$ with $|I'^m| = k_m$ and m = 1, ..., r. Now, if $(W_i)_{i=1}^r$ is a general point in X then

$$W_m \subset \langle e_{j_1}, \dots, e_{j_{k_m}}, V_m \rangle$$
 for any $I'^m = \{e_{j_1}, \dots, e_{j_{k_m}}\} \subset I^m$

Therefore.

$$W_m \subset \bigcap_{Um} \langle e_{j_1}, \dots, e_{j_{k_m}}, V_m \rangle = V_m$$

This implies $W_m = V_m$ for every m = 1, ..., r. Since we are working in characteristic zero, we conclude that $\prod_{T_{e_I}^s}$ is birational.

The next step is to study linear projections from the span of several osculating spaces. In particular, we want to understand when such a projection is birational. First of all, note that the order of osculating spaces can not exceed $r-2+\sum_{i=1}^{r}k_i$. Furthermore, in order to carry out the computations, we need to consider just the coordinates points of $\prod_{i=1}^{r}\mathbb{G}(k_i,n)$ such that the corresponding linear subspaces are linearly independent in \mathbb{C}^{n+1} , then we can use at most

$$\alpha := \left| \frac{n+1}{k_r + 1} \right|$$

of them. Now, let us consider the points $e_{I_1}, \ldots, e_{I_{\alpha}} \in \prod_{i=1}^r \mathbb{G}(k_i, n)$, where

(2.7)
$$I_{1} = \{I_{1}^{1} = \{0, \dots, k_{1}\}, \dots, I_{1}^{r} = \{0, \dots, k_{r}\}\}$$

$$I_{2} = \{I_{2}^{1} = \{k_{r} + 1, \dots, k_{r} + k_{1} + 1\}, \dots, I_{2}^{r} = \{k_{r} + 1, \dots, k_{r} + k_{r} + 1\}\}$$

$$\vdots$$

$$I_{\alpha} = \{\dots, I_{\alpha}^{i} = \{(k_{r} + 1)(\alpha - 1), \dots, (k_{r} + 1)(\alpha - 1) + k_{i}\}, \dots\}$$

Let s_1, \ldots, s_{α} be integers such that $0 \leq s_m \leq r - 2 + \sum_{i=1}^r k_i$. Denote the linear subspace $\langle T_{e_{I_1}}^{s_1}, \ldots, T_{e_{I_m}}^{s_m} \rangle$ simply by $T_{e_{I_1}, \ldots, e_{I_m}}^{s_1, \ldots, s_m}$. Then, for $m \leq \alpha$ we have the linear projection

$$\Pi_{T_{e_{I_{1}},...,e_{I_{m}}}^{s_{1},...,s_{m}}} : \Pi_{i=1}^{r} \mathbb{G}(k_{i},n) \longrightarrow \mathbb{P}^{N'_{s_{1},...,s_{m}}}$$

$$(Z_{J})_{J \in \Lambda} \longmapsto (Z_{J})_{J \in \Lambda \mid d(J,I_{1}) > s_{1},...,d(J,I_{m}) > s_{m}}$$

Now, consider I_1, \ldots, I_{α} as in (2.7), and $I_m'^i \subset I_m^i$ with $|I_m'^i| = s_m^i$ for each $1 \leq m \leq \alpha$ and $i = 1, \ldots, r$, where s_m^i are non-negative integers. If I'^i denotes the union $\bigcup_{m=1}^{\alpha} I_m'^i$, then for each $i = 1, \ldots, r$ we have a linear projection of \mathbb{P}^n

which in turns induces the following projection

whenever $n - \sum_{m=1}^{\alpha} s_m^i \ge k_i$. Finally, if $n - \sum_{m=1}^{\alpha} s_m^i \ge k_i$ for each i = 1, ..., r, then the projections above induce a projection

$$\Pi_{i=1}^{r} \Pi_{I'^{i}} : \prod_{i=1}^{r} \mathbb{G}(k_{i}, n) \longrightarrow \prod_{i=1}^{r} \mathbb{G}(k_{i}, n - \sum_{m=1}^{\alpha} s_{m}^{i}) \\
(V_{1}, \dots, V_{r}) \longmapsto (\Pi_{I'^{1}}(V_{1}), \dots, \Pi_{I'^{r}}(V_{r}))$$

Lemma 2.8. Let I_1, \ldots, I_{α} be as in (2.7), m, s_1, \ldots, s_m integers such that $1 < m \le \alpha$ and $0 \le s_i \le r - 2 + \sum_{i=1}^r k_i$. Now, consider $I_1'^i \subset I_1^i, \ldots, I_m'^i \subset I_m^i$ with $|I_j'^i| = s_j^i$, where s_j^i is a non-negative integer for each $i = 1, \ldots, r$ and $1 \le j \le m$. For j > m and $i = 1, \ldots, r$ set $I_j'^i = \emptyset \subset I_j^i$. Denote by I'^i the union $\bigcup_{j=1}^{\alpha} I_j'^i$ for each i = 1, ..., r and assume that

- (i) $n \sum_{j=1}^{m} s_j^i \ge k_i$ for each i = 1, ..., r; (ii) $\sum_{i=1}^{r} s_j^i \ge s_j + 1$ for each j = 1, ..., m.

Then, the rational maps $\prod_{i=1}^r \prod_{I'^i}$ and $\prod_{T_{e_{I_1},\dots,e_{I_r}}^{s_1,\dots,s_m}}$ are well-defined and the former factors through the latter.

Proof. Note that $\Pi_{T_{e_{I_1},\ldots,e_{I_m}}^{s_1,\ldots,s_m}}$ is well-defined if and only if $\{J\in\Lambda\mid d(J,I_1)>s_1,\ldots,d(J,I_m)>s_m\}\neq\emptyset$. From (i) we have that for each $1 \le i \le r$ the set $\{0, \ldots, n\} \setminus I^{\prime i}$ has at least $k_i + 1$ elements. Therefore, we have a set $J^i \subset \{0,\ldots,n\} \setminus I'^i$ of cardinality k_i+1 and taking $J=\{J^1,\ldots,J^r\} \in \Lambda$ we have

$$d(I_j, J) = \sum_{i=1}^r d(I_j^i, J^i) \ge \sum_{i=1}^r s_j^i = s_j + 1 > s_j$$

for each $1 \leq j \leq m$. Hence, $\Pi_{T^{s_1,\dots,s_m}_{e_{I_1},\dots,e_{I_m}}}$ is well-defined. Now, note that (i) yields that $\prod_{i=1}^r \Pi_{I'^i}$ is well-defined. Furthermore, if $J \in \Lambda$ and $J^i \cap I'^i = \emptyset$ for all i = 1, ..., r, then $d(J, I_1) > s_1, ..., d(J, I_m) > s_m$. Thus, the center of $\Pi_{T_{e_{I_1},\ldots,e_{I_m}}^{e_1,\ldots,e_{I_m}}}$ is contained in the center of $\prod_{i=1}^r \Pi_{I'i}$.

Proposition 2.9. Let $I_1, \ldots, I_{\alpha-1}$ be as in (2.7) and $s_1, \ldots, s_{\alpha-1}$ be integers such that $0 \le s_j \le s = r-2+1$ $\sum_{i=1}^{r} k_i$. Then, the projection $\Pi_{T_{e_{I_1},\dots,e_{I_{\alpha-1}}}}^{s_1,\dots,s_{\alpha-1}}$ is birational.

Proof. Fix $m \in \{1, \ldots, r\}$. For any $j = 1, \ldots, \alpha - 1$ consider $I_j^{\prime m} \subset I_j^m$ with $|I_j^{\prime m}| = k_m$ and $I_j^{\prime i} = I_j^i$ for $i \neq m$. Set $I'^i = \bigcup_{i=1}^{\alpha-1} I'^i_i$, then

$$n - (\alpha - 1)(k_i + 1) \ge n - (\alpha - 1)(k_r + 1) \ge n - \frac{(n - k_r)}{k_r + 1}(k_r + 1) \ge k_r \ge k_i$$

and

$$n - (\alpha - 1)k_m \ge n - \frac{(n - k_r)}{k_r + 1}k_r = \frac{nk_r + n - nk_r + k_r^2}{k_r + 1} \ge \frac{2k_r + 1 + k_r^2}{k_r + 1} \ge k_m + 1$$

Thus, our set of subsets $I_i^{\prime i}$ satisfies (i) in Lemma 2.8. Furthermore, for each $j=1,\ldots,\alpha-1$

$$\sum_{i=1}^{r} |I_j'^l| = k_m + \sum_{i \neq m} (k_i + 1) = r - 1 + \sum_{i=1}^{r} k_i = s + 1$$

Therefore, by Lemma 2.8 there exists a rational map $\pi_{I^{\prime m}}$ that makes the following diagram commutative

$$\prod_{i=1}^{r} \mathbb{G}(k_i, n) \xrightarrow{\Pi_{Te_{I_1}, \dots, e_{I_{\alpha-1}}}} \mathbb{P}^{N'_{s, \dots, s}}$$

$$\prod_{i=1}^{r} \Pi_{I'i} \xrightarrow{\prod_{i=1}^{r} \mathbb{G}(k_i, n - \sum_{j=1}^{\alpha-1} |I'_{j}^{i}|)}$$

Now, let $x = \prod_{T_{e_{I_1},\dots,e_{I_{\alpha-1}}}} (\{V_i\}_{i=1}^r)$ be a general point in the image of $\prod_{T_{e_{I_1},\dots,e_{I_{\alpha-1}}}}$, and $X \subset \prod_{i=1}^r \mathbb{G}(k_i,n)$ be the fiber of $\prod_{T_{e_{I_1},\dots,e_{I_{\alpha-1}}}}$ over x. Set $x_{I'^m} = \pi_{I'^m}(x)$ and denote by $X_{I'^m} \subset \prod_{i=1}^r \mathbb{G}(k_i,n)$ the fiber of $\prod_{i=1}^r \prod_{I'^i} \mathbb{G}(k_i,n)$ over $x_{I'^m}$. Therefore, $X \subset \bigcap X_{I'^m}$ where this intersection runs over all subsets $I'^m = \bigcup_{j=1}^{\alpha-1} I_j'^m$ with $I_j'^m \subset I_j^m$ and $|I_j'^m| = k_m$. In particular, if $\{W_i\}_{i=1}^r \in X$ is a general point, then we must have $W_m \subset \langle e_i \mid i \in I'^m ; V_m \rangle$

and hence $W_m \subset \bigcap_{I'^m} \langle e_i \mid i \in I'^m; V_m \rangle$. Now, since $|I_j'^m| = k_m$ we have $\bigcap_{I'^m} \langle e_i \mid i \in I'^m \rangle = \emptyset$ and then $V_m = \bigcap_{I'^m} \langle e_i \mid i \in I'^m; V_m \rangle$ which in turn yields $W_m = V_m$, for all $m = 1, \dots, r$.

Now, we want to understand what is the largest integer s' for which $\Pi_{T^s,\ldots,s,s'}_{e_{I_1},\ldots,e_{I_{\alpha-1}},e_{I_{\alpha}}}$ is birational.

Proposition 2.10. Let $I_1, ..., I_{\alpha}$ be as in (2.7) and $s = r - 2 + \sum_{i=1}^{r} k_i$. Consider $s_i' = \min\{k_i + 1, n - \alpha(k_i + 1)\}$ for $i \neq r, s_r' = \min\{k_r, n - \alpha k_r - 1\}$, and set $s' = \sum_{i=1}^{r} s_i' - 1 \leq s$. Then,

- $\prod_{\substack{T_{e_{I_1}, ..., e_{I_{\alpha-1}}, e_{I_{\alpha}} \\ I_{I_{\alpha-1}, e_{I_{\alpha}}}}}$ is birational whenever $\alpha(k_r + 1) - 1 < n < k_r^2 + 3k_r + 1$;

- $\prod_{T_{e_{I_1}, ..., e_{I_{\alpha}}}}$ is birational whenever $n \geq k_r^2 + 3k_r + 1$.

Proof. First, let us assume that $s'_r < k_r$, that is $n - \alpha k_r - 1 < k_r$, or equivalently

$$n - \alpha k_r < k_r + 1 \Leftrightarrow n - \frac{(n+1)}{k_r + 1} k_r < k_r + 1 \Leftrightarrow n < k_r^2 + 3k_r + 1$$

Now, fix a pair of indexes $(l,m) \in \{1,\ldots,\alpha-1\} \times \{1,\ldots,r\}$ and consider subsets $I_j'^i \subseteq I_j^i$ with $|I_j'^i| = a_{j,i}$ for each $i \in \{1, ..., r\}$ and $j \in \{1, ..., \alpha\}$ such that

$$a_{j,i} = \begin{cases} k_i & \text{if} \quad i = m, \ j = l \ \text{or} \ i = r, \ j \neq l, \alpha; \\ k_i + 1 & \text{if} \quad i = r \neq m, \ j = l \ \text{or} \ i \neq m, r \ \text{or} \ l \neq m, \alpha; \\ s'_i & \text{if} \quad j = \alpha, \ i \neq m; \\ s'_m - 1 & \text{if} \quad j = \alpha, \ i = m. \end{cases}$$

Note that, since $\alpha(k_r+1)-1 < n$ we have $a_{j,i} \ge 0$ for all $j \in \{1, \dots, \alpha\}$ and $i \in \{1, \dots, r\}$. Moreover, if $m \ne r$

$$n - \sum_{j=1}^{\alpha} |I_j'^m| = n - (\alpha - 2)(k_m + 1) - k_m - |I_\alpha'^m| \ge n - (\alpha - 1)(k_m + 1) - (n - \alpha(k_m + 1) - 1) = k_m + 2$$

and
$$n - \sum_{j=1}^{\alpha} |I_j'^r| = n - (\alpha - 2)k_r - (k_r + 1) - |I_{\alpha}'^r| \ge n - (\alpha - 1)k_r - 1 - (n - \alpha k_r - 1) = k_r$$
. If $r = m$ we have

$$n - \sum_{j=1}^{\alpha} |I_j^{\prime r}| = n - (\alpha - 2)k_r - (k_r + 1) - |I_{\alpha}^{\prime r}| \ge n - (\alpha - 1)k_r - 1 - (n - \alpha k_r - 2) = k_r + 1$$

Finally, for $i \neq m, r$ we have

$$n - \sum_{j=1}^{\alpha} |I_j^{\prime i}| = n - (\alpha - 1)(k_i + 1) - |I_{\alpha}^{\prime i}| \ge n - (\alpha - 1)(k_i + 1) - (n - \alpha(k_i + 1)) = k_i + 1$$

This yields that (i) in Lemma 2.8 is satisfied by the sets $I_j^{\prime i}$. Moreover, (ii) is satisfied as well. Then, by Lemma 2.8 there exists a rational map $\pi_{I_l^{\prime m},I_{\alpha}^{\prime m}}$ making the following diagram commutative

$$\prod_{i=1}^{r} \mathbb{G}(k_{i}, n) \xrightarrow{\prod_{t=1}^{r} \dots, e_{I^{\alpha}-1}} \mathbb{P}^{N'_{s}, \dots, s'}$$

$$\prod_{i=1}^{r} \prod_{l'i} \mathbb{G}(k_{i}, n - \sum_{j=1}^{\alpha} |I_{j}^{\prime i}|)$$

where $I'^i = \bigcup_{j=1}^{\alpha} I'^i_j$. Now, let $x = \prod_{T_{e_{I_1},\dots,e_{I_{\alpha-1}},e_{I_{\alpha}}}} (\{V_i\}_{i=1}^r)$ be a general point in the image of $\prod_{T_{e_{I_1},\dots,e_{I_{\alpha-1}},e_{I_{\alpha}}},e_{I_{\alpha}}} (\{V_i\}_{i=1}^r)$ and $X \subset \prod_{i=1}^r \mathbb{G}(k_i,n)$ be the fiber of $\prod_{T_{e_{I_1},\dots,e_{I_{\alpha-1}},e_{I_{\alpha}}}} (\{V_i\}_{i=1}^r)$ over x. Set $x_{I'^m,I'^m_\alpha} = \pi_{I'^m,I'^m_\alpha}(x)$ and denote by $X_{I_l'^m,I_{\alpha}'^m} \subset \prod_{i=1}^r \mathbb{G}(k_i,n)$ the fiber of $\prod_{i=1}^r \prod_{I'^i}$ over $x_{I_l'^m,I_{\alpha}'^m}$. Therefore, $X \subset \bigcap_{I_l'^m,I_{\alpha}'^m} X_{I_l'^m,I_{\alpha}'^m}$, where the intersection runs over all pairs of sets $I_l^{\prime m}$ and $I_{\alpha}^{\prime m}$ with $|I_l^{\prime m}| = k_m$ and $|I_{\alpha}^{\prime m}| = s_m^{\prime} - 1$, and for all pairs of indexes $(l,m) \in \{1,\ldots,r\} \times \{1,\ldots,\alpha-1\}$. In particular, if $\{W_i\}_{i=1}^r \in X$ is a general point then for every

 $m \in \{1, \ldots, r\}$ we have $W_m \subset \bigcap_{I_l^{\prime m}, I_{\alpha}^{\prime m}} \langle e_i \mid i \in I^{\prime m}; V_m \rangle$, where the intersection runs over all pair of sets $I_l^{\prime m}$ and

 $I_{\alpha}^{\prime m}$ with $|I_{l}^{\prime m}|=k_{m}$ and $|I_{\alpha}^{\prime m}|=s_{m}^{\prime}-1$, and $l\in\{1,\ldots,\alpha-1\}$. Now, since $|I_{l}^{\prime m}|=k_{m}$, $s_{m}^{\prime}-1\leq k_{m}$ and $l\in\{1,\ldots,\alpha-1\}$, we must have $\bigcap_{I_{l}^{\prime m},I_{\alpha}^{\prime m}}\langle e_{i}\mid i\in I^{\prime m}\rangle=\emptyset$ and then $V_{m}=\bigcap_{I^{\prime m}}\langle e_{i}\mid i\in I^{\prime m}\;;\;V_{m}\rangle$ which yields

 $W_m = V_m$, for all $m = 1, \ldots, r$.

Now, assume that $n \ge k_r^2 + k_r + 1$. In this case we have that

$$n - \alpha k_r - 1 \ge n - \frac{(n+1)}{k_r + 1} k_r - 1 = \frac{n(k_r + 1) - (n+1)k_r - (k_r + 1)}{k_r + 1} \ge k_r$$

and for i < r we have

$$n - \alpha(k_i + 1) \ge n - \alpha(k_r) \ge n - \frac{(n+1)}{k_r + 1} k_r = \frac{n - k_r}{k_r + 1} \ge \frac{k_r^2 + 3k_r + 1 - k_r}{k_r + 1} = k_r + 1 > k_i + 1$$

Now, for each pair of indexes $(l,m) \in \{1,\ldots,\alpha\} \times \{1,\ldots,r\}$ we can consider subsets $I_j^{i} \subseteq I_j^i$ with $|I_j^{i}| = a_{j,i}$ for each $i \in \{1,\ldots,r\}$ and $j \in \{1,\ldots,\alpha\}$ such that

$$a_{j,i} = \begin{cases} k_i & \text{if} \quad i = m, \ j = l \text{ or } i = r, \ j \neq l; \\ k_i + 1 & \text{if} \quad i = r \neq m, \ j = l \text{ or } i \neq m, r \text{ or } l \neq m. \end{cases}$$

Therefore, arguing as in the proof of the first claim we conclude that $\Pi_{T^{s,...,s}_{e_{I_{1}},...,e_{I_{\alpha}}}}$ is birational.

2.10. **Degenerating tangential projections to osculating projections.** In this section we study how the notion of osculating regularity introduced in [MR19] behaves for products of Grassmannians. Let us recall [MR19, Definition 5.5, Assumption 5.2] and [AMR19, Definition 4.4].

Definition 2.11. Let $X \subset \mathbb{P}^N$ be a projective variety. We say that X has m-osculating regularity if the following property holds: given general points $p_1, \ldots, p_m \in X$ and an integer $s \geq 0$, there exists a smooth curve C and morphisms $\gamma_j : C \to X$, $j = 2, \ldots, m$, such that $\gamma_j(t_0) = p_1$, $\gamma_j(t_\infty) = p_j$, and the flat limit T_0 in the Grassmannian of the family of linear spaces

$$T_t = \left\langle T_{p_1}^s, T_{\gamma_2(t)}^s, \dots, T_{\gamma_m(t)}^s \right\rangle, t \in C \setminus \{t_0\}$$

is contained in $T_{p_1}^{2s+1}$. We say that $\gamma_2, \ldots, \gamma_m$ realize the m-osculating regularity of X for p_1, \ldots, p_m .

We say that X has strong 2-osculating regularity if the following property holds: given general points $p, q \in X$ and integers $s_1, s_2 \geq 0$, there exists a smooth curve $\gamma: C \to X$ such that $\gamma(t_0) = p, \gamma(t_\infty) = q$ and the flat limit T_0 in the Grassmannian of the family of linear spaces

$$T_t = \left\langle T_p^{s_1}, T_{\gamma(t)}^{s_2} \right\rangle, \ t \in C \setminus \{t_0\}$$

is contained in $T_p^{s_1+s_2+1}$.

For a discussion on the notions of m-osculating regularity and strong 2-osculating regularity we refer to [MR19, Section 5] and [AMR19, Section 4].

Proposition 2.12. The variety $\prod_{i=1}^r \mathbb{G}(k_i,n)$ has strong 2-osculating regularity.

Proof. Let $p, q \in \prod_{i=1}^r \mathbb{G}(k_i, n)$ be general points. We may assume that $p = e_{I_1}$ and $q = e_{I_2}$ with I_1, I_2 as in (2.7) and consider the degree $r + \sum_{i=1}^r k_i$ rational normal curve given by

$$\gamma(s:t) = \prod_{i=1}^{r} (se_0 + te_{k_r+1}) \wedge \dots \wedge (se_{k_i} + te_{k_r+k_i+1})$$

We work on the affine chart s=1 and set $t=(1:t)\in\mathbb{P}^1$. Now, consider the points

$$e_0, \dots, e_n, e_0^t = e_0 + te_{k_r+1}, \dots, e_{k_r}^t = e_{k_r} + te_{2k_r+1}, e_{k_r+1}^t = e_{k_r+1}, \dots, e_n^t = e_n$$

and, for each $I = \{I^1, \ldots, I^r\} \in \Lambda$, the corresponding points in $e_I^t = e_{I^1}^t \otimes e_{I^2}^t \otimes \cdots \otimes e_{I^r}^t \in \prod_{i=1}^r \mathbb{G}(k_i, n)$ where, setting $I^j = \{i_1^j, \ldots, i_{k_j}^j\}$, $e_{I^j}^t = e_{i_1^j}^t \wedge \cdots \wedge e_{i_{k_j}^j}^t$.

Given integers $s_1, s_2 \geq 0$, let us consider the family of linear spaces

$$T_t = \langle T_{e_{I_1}}^{s_1}, T_{e_{\gamma(t)}}^{s_2} \rangle, \ t \in \mathbb{P}^1 \setminus \{0\}$$

By Proposition 2.2 we have

$$T_t = \langle e_J \mid d(I_1, J) \leq s_1 \; ; \; e_J^t \mid d(I_2, J) \leq s_2 \rangle, \; t \neq 0$$

and

$$T_{e_{I_1}}^{s_1+s_2+1} = \langle e_J \mid d(I_1, J) \leq s_1 + s_2 + 1 \rangle = \{ Z_J = 0 \mid d(I_1, J) > s_1 + s_2 + 1 \}$$

Now, let T_0 be the flat limit of $\{T_t\}_{t\in\mathbb{P}^1\setminus\{0\}}$, we want to show that $T_0\subset T_p^{s_1+s_2+1}$. In order to do this it is enough

to exhibit, for each index $I \in \Lambda$ with $d(I_1, I) > s_1 + s_2 + 1$, a hyperplane H_I of type $Z_I + t \left(\sum_{J \neq I} f_J(t) Z_J \right) = 0$

where $f_J(t) \in \mathbb{C}[t]$ for every J. We define, for each $l \geq 0$ and $I = \{I^1, \dots, I^r\} \in \Lambda$,

$$\Delta(I,l) = \left\{ \{ (I^j \setminus J^j) \cup (J^j + k_r + 1) \}_{1 \le j \le r} \mid J^j \subset I^j \cap I^j_1 \text{ and } \sum |J^j| = l \right\} \subset \Lambda$$

Furthermore, for each l > 0 we define

$$\Delta(I, -l) = \{J \mid I \in \Delta(J, l)\};$$

$$s_I^+ = \max_{l \ge 0} \{\Delta(I, l) \ne \emptyset\} \in \{0, \dots, \sum k_j + r\}$$

$$s_I^- = \max_{l > 0} \{\Delta(I, -l) \ne \emptyset\} \in \{0, \dots, \sum k_j + r\}$$

$$\Delta(I)^+ = \bigcup_{0 \le l} \Delta(I, l) = \bigcup_{0 \le l \le s_I^+} \Delta(I, l)$$

$$\Delta(I)^- = \bigcup_{0 \le l} \Delta(I, -l) = \bigcup_{0 \le l \le s_I^-} \Delta(I, -l)$$

Now, let us write e_I^t with $d(I_1, I) \leq s_2$, in the basis e_J with $J \in \Lambda$. For any $I \in \Lambda$ we have

$$e_I^t = e_I + t \sum_{J \in \Delta(I,1)} \operatorname{sign}(J) e_J + \dots + t^{s_I^+} \sum_{J \in \Delta(I,s_I^+)} \operatorname{sign}(J) e_J$$
$$= \sum_{l=0}^{s_I^+} \left(t^l \sum_{J \in \Delta(I,l)} \operatorname{sign}(J) e_J \right) = \sum_{J \in \Delta(I)^+} t^{d(J,I)} \operatorname{sign}(J) e_J.$$

where $\operatorname{sign}(J) = \pm 1$. Note that $\operatorname{sign}(J)$ depends on J but not on I, then we can write $e_I^t = \sum_{J \in \Delta(I)^+} t^{d(J,I)} e_J$.

Therefore, we have

$$T_t = \left\langle e_I \mid d(I_1, I) \le s_1 ; \sum_{J \in \Delta(I)^+} t^{d(J, I)} e_J \mid d(I_1, I) \le s_2 \right\rangle$$

Finally, we define

$$\Delta := \{I : d(I_1, I) \le s_1\} \bigcup \left(\bigcup_{d(I_1, I) \le s_2} \Delta(I)^+ \right) \subset \Lambda$$

Let $I \in \Lambda$ be an index such that $d(I_1, I) > s_1 + s_2 + 1$. If $I \notin \Delta$ then $T_t \subset \{Z_I = 0\}$ for any $t \neq 0$ and we are done

Assume that $I \in \Delta$. For any e_K^t with non-zero coordinate Z_I we have $I \in \Delta(K)^+$, that is $K \in \Delta(I)^-$. Now, it is enough to find a hyperplane H_I of type

$$F_I = \sum_{J \in \Delta(I)^-} t^{d(J,I)} c_J Z_J = 0$$

with $c_J \in \mathbb{C}$ and $c_I \neq 0$, and such that $T_t \subset H_I$ for each $t \neq 0$. In the following, let us write $s_{i,I}^- = s$. Now, let us check what conditions we get by requiring $T_t \subset \{F_I = 0\}$ for $t \neq 0$. Given $K \in \Delta(I)^-$ we have that $d(I,K) \leq s_K^+$ and

$$F_{I}(e_{K}^{t}) = F_{I}\left(\sum_{J \in \Delta(K)^{+}} t^{d(J,K)} e_{J}\right) = \sum_{J \in \Delta(I)^{-}} t^{d(J,I)} c_{J}\left(\sum_{J \in \Delta(K)^{+}} t^{d(J,K)} e_{J}\right)$$

$$= \sum_{J \in \Delta(I)^{-} \cap \Delta(K)^{+}} t^{d(J,I) + d(J,K)} c_{J} = t^{d(I,K)} \left[\sum_{J \in \Delta(I)^{-} \cap \Delta(K)^{+}} c_{J}\right]$$

Therefore.

$$F_I(e_K^t) = 0 \ \forall t \neq 0 \Leftrightarrow \sum_{J \in \Delta(I)^- \cap \Delta(K)^+} c_J = 0$$

Note that this is a linear condition on the coefficients c_J , with $J \in \Delta(I)^-$. Hence

Note that this is a linear condition on the coefficients
$$c_J$$
, with $J \in \Delta(I)$. Hence
$$T_t \subset \{F_I = 0\} \text{ for } t \neq 0 \quad \Leftrightarrow \quad \begin{cases} F_I(e_K) = 0 & \forall K \in \Delta(I)^- \cap B[I_1, s_1] \\ F_I(e_K^t) = 0 & \forall K \in \Delta(I)^- \cap B[I_1, s_2] \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} c_K = 0 & \forall K \in \Delta(I)^- \cap B[I_1, s_1] \\ \sum_{J \in \Delta(I)^- \cap \Delta(K)^+} c_J = 0 & \forall K \in \Delta(I)^- \cap B[I_1, s_2] \end{cases}$$

where $B[J, l] := \{K \in \Lambda \mid d(J, K) \le l\}$. The number of conditions on the $|\Delta(I)^- \cap B[I_1, s_2]|$.

The problem is now reduced to find a solution of the linear system given by the c equations (2.13) in the $|\Delta(I)^-|$ variables c_J , $J \in \Delta(I)^-$ such that $c_I \neq 0$. Therefore, it is enough to find s+1 complex numbers $c_I = c_0 \neq 0, c_1, \dots, c_s$ satisfying the following conditions

(2.14)
$$\begin{cases} c_{j} = 0 & \forall j = s, \dots, d - s_{1} \\ \sum_{m=0}^{d(I,K)} |\Delta(I)^{-} \cap \Delta(K,l)| c_{d(I,K)-m} = 0 & \forall K \in \Delta(I)^{-} \cap B[I_{1}, s_{2}] \end{cases}$$

where $d = d(I_1, I) > s_1 + s_2 + 1$. Note that (2.14) can be written as

$$\begin{cases} c_j = 0 & \forall j = s, \dots, d - s_1 \\ \sum_{m=0}^{j} {j \choose j-m} c_m = 0 & \forall j = s, \dots, d - s_2 \end{cases}$$

that is

$$\begin{cases}
c_s = 0 \\
\vdots \\
c_{d-s_1} = 0
\end{cases}
\begin{cases}
\binom{s}{0}c_s + \binom{s}{1}c_{s-1} + \dots + \binom{s}{s-1}c_1 + \binom{s}{s}c_0 = 0 \\
\vdots \\
\binom{d-s_2}{0}c_{d-s_2} + \binom{d-s_2}{1}c_{d-s_2-1} + \dots + \binom{d-s_2}{d-s_2-1}c_1 + \binom{d-s_2}{d-s_2}c_0 = 0
\end{cases}$$

Now, it is enough to show that the linear system (2.15) admits a solution with $c_0 \neq 0$. If, $s < d - s_2$ then the system (2.15) reduces to $c_s = \cdots = c_{d-s_1} = 0$ and then we can take $c_0 = 1$ and $c_1 = \cdots = c_s = 0$, since $d - s_1 > s_2 + 1 > 1$.

So, let us assume that $s \ge d - s_2$. Since $c_s = \cdots = c_{d-s_1} = 0$ our problem is translated into checking that the system (2.15) admits a solution involving the variables c_{d-s_1-1},\ldots,c_0 with $c_0\neq 0$. First of all, note that

$$\begin{cases} \binom{s}{s-(d-s_1-1)}c_{d-s_1-1} + \binom{s}{s-(d-s_2-2)}c_{d-s_1-2} + \dots + \binom{s}{s-1}c_1 + \binom{s}{s}c_0 = 0 \\ \vdots \\ \binom{d-s_2}{(d-s_2-(d-s_1-1)})c_{d-s_1-1} + \binom{d-s_2}{(d-s_2-(d-s_1-2)}c_{d-s_1-2} + \dots + \binom{d-s_2}{(d-s_2-1)}c_1 + \binom{d-s_2}{(d-s_2)}c_0 = 0 \end{cases}$$

$$M = \begin{pmatrix} \binom{s}{s - (d - s_1 - 1)} & \binom{s}{s - (d - s_1 - 2)} & \dots & \binom{s}{s - 1} \\ \vdots & \vdots & \ddots & \vdots \\ \binom{d - s_2}{d - s_2 - (d - s_1 - 1)} & \binom{d - s_2}{d - s_2 - (d - s_1 - 2)} & \dots & \binom{d - s_2}{d - s_2 - 1} \end{pmatrix}$$

has maximal rank. Now, note that $s \leq d$ and $d > s_1 + s_2 + 1$ yield $s - d + s_2 + 1 < s - s_1 \leq d - s_1$ and then $s-d+s_2+1 \le d-s_1-1$. Therefore, we have to show that the $(s-d+s_2+1) \times (s-d+s_2+1)$ submatrix

$$M' = \begin{pmatrix} \binom{s}{s-d+s_2+1} & \binom{s}{s-d+s_2} & \dots & \binom{s}{1} \\ \vdots & \vdots & \ddots & \vdots \\ \binom{d-s_2}{s-d+s_2+1} & \binom{d-s_2}{s-d+s_2} & \dots & \binom{d-s_2}{1} \end{pmatrix}$$

has non-zero determinant. Finally, since $d - s_2 > s_1 + 1 \ge 1$ [GV85, Corollary 2] yields that $\det(M') \ne 0$.

Proposition 2.16. Set $\alpha = \left\lfloor \frac{n+1}{k_r+1} \right\rfloor$. Then, the variety $\prod_{i=1}^r \mathbb{G}(k_i, n)$ has α -osculating regularity.

Proof. First of all, note that if $\alpha = 2$ then the statement follows form Proposition 2.12. Then we may assume

Let $p_1, \ldots, p_{\alpha} \in \prod_{i=1}^r \mathbb{G}(k_i, n)$ be general points. We may assume that $p_j = e_{I_j}$ for $j = 1, \ldots, \alpha$. Each e_{I_j} , $j \geq 2$, is connected to e_{I_1} by the degree $r + \sum_{i=1}^r k_i$ rational normal curve defined by

$$\gamma_j(s:t) = \prod_{i=1}^r (se_0 + te_{(k_r+1)(j-1)}) \wedge \dots \wedge (se_{k_i} + te_{(k_r+1)(j-1)+k_i})$$

We work on the affine chart s=1 and set t=(1:t). Now, given $s\geq 0$ we consider the family of linear subspaces

$$T_t = \langle T_{e_{I_1}}^s, T_{\gamma_2(t)}^s, \dots, T_{\gamma_{\alpha}(t)}^s \rangle, \ t \in \mathbb{P}^1 \setminus \{0\}$$

Our goal is to show that the flat limit T_0 of $\{T_t\}_{t\in\mathbb{P}^1\setminus\{0\}}$ in $\mathbb{G}(\dim(T_t),N)$ is contained in $T_{e_{I_1}}^{2s+1}$. In order to do this, let us consider the points

$$e_0, \dots, e_n, e_0^{j,t} = e_0 + te_{(k_r+1)(j-1)}, \dots, e_{k_r}^{j,t} = e_{k_r} + te_{(k_r+1)j-1}, e_{k_r+1}^{j,t} = e_{k_r+1}, \dots, e_n^{j,t} = e_n$$

and, for each $I = \{I^1, \dots, I^r\} \in \Lambda$ and $j = 2, \dots, \alpha$, the corresponding points in $e_I^{j,t} = e_{I^1}^{j,t} \otimes e_{I^2}^{j,t} \otimes \cdots \otimes e_{I^r}^{j,t} \in \mathbb{P}^N$. By Proposition 2.2 we have

$$T_t = \langle e_I | d(I_1, I) \leq s; e_I^{j,t} | d(I_j, I) \leq s, \ j = 2, \dots, \alpha \rangle, \ t \neq 0$$

and

$$T_{e_{I_1}}^{2s+1} = \langle e_J \mid d(I_1, J) \leq 2s+1 \rangle = \{ Z_J = 0 \mid d(I_1, J) > 2s+1 \}$$

 $T_{e_{I_1}}^{2s+1} = \langle e_J \mid d(I_1,J) \leq 2s+1 \rangle = \{Z_J = 0 \mid d(I_1,J) > 2s+1 \}$ In order to show that $T_0 \subset T_p^{2s+1}$, it is enough to exhibit, for each index $I \in \Lambda$ with $d(I_1,I) > 2s+1$, an

hyperplane
$$H_I$$
 of type $Z_I + t\left(\sum_{J \neq I} f_J(t)Z_J\right) = 0$ such that $T_t \subset \{H_i = 0\}$ for $t \neq 0$.

For each $l \geq 0, j = 2, \dots, \alpha$ and $I = \{I^1, \dots, I^r\} \in \Lambda$ we define

$$\Delta(I,l)_j = \left\{ \{(I^k \setminus J^k) \cup (J^k + (j-1)(k_r+1)\}_{1 \leq k \leq r} \mid J^k \subset I^k \cap I_1^k \text{ and } \sum |J^k| = l \right\} \subset \Lambda$$

where $L + \lambda = \{i + \lambda \mid i \in L\}$ is the translation of the set L by the integer λ . For any l > 0 we define

$$\Delta(I, -l)_j = \{J \mid I \in \Delta(J, l)_j\}$$

$$s_{I,j}^+ = \max_{l \ge 0} \{\Delta(I, l)_j \ne \emptyset\} \in \{0, \dots, \sum k_j + r\}$$

$$s_{I,j}^- = \max_{l > 0} \{\Delta(I, -l)_j \ne \emptyset\} \in \{0, \dots, \sum k_j + r\}$$

$$\Delta(I)_j^+ = \bigcup_{0 \le l} \Delta(I, l)_j = \bigcup_{0 \le l \le s_{I,j}^+} \Delta(I, l)_j$$

$$\Delta(I)_j^- = \bigcup_{0 \le l} \Delta(I, -l)_j = \bigcup_{0 \le l \le s_{I,j}^-} \Delta(I, -l)_j$$

Note that for any l we have

(2.17)
$$J \in \Delta(I, l)_j \Rightarrow d(J, I) = |l| \text{ and } d(J, I_1) = d(I, I_1) + l$$

We will write e_I^t with $d(I_1, I) \leq s$, in the basis e_J with $J \in \Lambda$. For any $I \in \Lambda$ we have

$$e_{I}^{j,t} = e_{I} + t \sum_{J \in \Delta(I,1)_{j}} \operatorname{sign}(J) e_{J} + \dots + t^{s_{I,j}^{+}} \sum_{J \in \Delta(I,s_{I,j}^{+})} \operatorname{sign}(J) e_{J}$$

$$= \sum_{l=0}^{s_{I,j}^{+}} \left(t^{l} \sum_{J \in \Delta(I,l)_{j}} \operatorname{sign}(J) e_{J} \right) = \sum_{J \in \Delta(I)^{+}} t^{d(J,I)} \operatorname{sign}(J) e_{J}.$$

where $\operatorname{sign}(J) = \pm 1$. Note that $\operatorname{sign}(J)$ depends on J but not on I, then we can write $e_I^{j,t} = \sum_{J \in \Delta(I)_i^+} t^{d(J,I)} e_J$.

Therefore, we have

$$T_{t} = \left\langle e_{I} \mid d(I_{1}, I) \leq s \; ; \; \sum_{J \in \Delta(I)_{i}^{+}} t^{d(J, I)} e_{J} \mid d(I_{1}, I) \leq s, \; 2 \leq j \leq \alpha \right\rangle$$

Finally we define

$$\Delta := \{I : d(I_1, I) \le s\} \bigcup \left(\bigcup_{\substack{d(I_1, I) \le s \\ 2 \le j \le \alpha}} \Delta(I)_j^+ \right) \subset \Lambda$$

Let $I \in \Lambda$ be an index such that $d(I_1, I) > 2s + 1$. If $I \notin \Delta$, then $T_t \subset \{Z_I = 0\}$ for any $t \neq 0$ and we are done. Now, assume that $I \in \Delta$. We will show that $\Delta(K_1)_{j_1}^+ \cap \Delta(K_2)_{j_2}^+ = \emptyset$ whenever $K_1, K_2 \in \Lambda$ with $d(K_1, I_1), d(K_2, I_2) \leq s$ and $2 \leq j_1, j_2 \leq \alpha$ with $j_1 \neq j_2$.

In fact, suppose that $\Delta(K_1)_{j_1}^+ \cap \Delta(K_2)_{j_2}^+ \neq \emptyset$, that is there exists $I \in \Lambda$ such that

$$I \in \Delta(K_1, l_1)_{j_1} \cap \Delta(K_2, l_2)_{j_2}$$
 for some l_1 and l_2

Now, consider the following sets

$$I^{0} := I \cap I_{1}$$

$$I^{1} := I \cap \{K_{1} + (j_{1} - 1)(k_{r} + 1)\}$$

$$I^{2} := I \cap \{K_{2} + (j_{2} - 1)(k_{2} + 1)\}$$

$$I^{3} := I \setminus (I^{0} \cup I^{1} \cup I^{2})$$

Since $I \in \Delta(K_1, l_1)_{j_1} \cap \Delta(K_2, l_2)_{j_2}$ we have $|I^1| = l_1$ and $|I^2| = l_2$. Set $|I^3| = u$, then

$$d(I, I_1) = l_1 + l_2 + u \le l_1 + l_2 + 2u \stackrel{(2.17)}{=} d(K_1, I_1) + d(K_1, I_1) \le 2s$$

contradicting $d(I_1, I) > 2s + 1$. Therefore we conclude that there is a unique j_I for which

$$I \in \bigcup_{d(I_1,I) \le s} \Delta(I)_{j_I}^+$$

Now, let $J \in \Lambda$ such that $d(J, I_1) \leq s$ and $I \in \Delta(J)_{i_I}^+$. Note that

$$d(I,I_1) - s(I)_{j_I}^- \le d(I,I_1) - d(I,J) = d(J,I_1) \le s \ \Rightarrow \ s+1 - D + s(I)_{j_I}^- > 0$$

where $D = d(I, I_1) > 2s + 1$. We define

$$\Gamma(I) = \sum_{0 \leq l \leq s+1-D+s(I)_{j_I}^-} \Delta(I,-l)_{j_I} \subset \Gamma$$

Our aim now is to find a hyperplane of the form

(2.18)
$$H_I = \left\{ \sum_{J \in \Gamma(I)} t^{d(J,I)} c_J Z_J = 0 \right\}$$

such that $T_t \subset H_I$ and $c_I \neq 0$. First, note that

(2.19)
$$J \in \Gamma(I) \Rightarrow J \notin \bigcup_{\substack{d(I_1, K) \le s \\ 2 \le j \le \alpha \; ; \; j \ne j_I}} \Delta(K)_j^+$$

In fact, suppose that $J \in \Delta(I, -l)_{j_I} \cap \Delta(K, m)_j$, for some $K \in \Lambda$ with $d(K, I_1) \leq s$, and $0 \leq j \leq s+1-D+s(I)_{j_I}^-$ with $j \neq j_I$. Then, since $J \in \Delta(I, -l)_{j_I}$ we have

$$|J \cap I_{j_I}| = |I \cap I_{j_I}| - l \ge s(I)_{j_I}^- - l \ge D - k - 1 > s$$

On the other hand, since $J \in \Delta(K, m)_j$ with $j \neq j_I$ we have

$$|J \cap I_{i_I}| = |K \cap I_{i_I}| \le d(K, I_1) \le s$$

which is a contradiction. Now, note that if $K \in \Lambda$ is such that $d(K, I_1) \leq s$ and $K \in \Gamma(I)$, then

$$d(K, I_1) = d(I, I_1) - d(I, K) > 2s + 1 - (s + 1 - D + s(I)_{j_I}^-) > s + D - s(I)_{j_I}^- > s$$

Thus (2.19) yields that the hyperplane H_I given by (2.18) is such that

$$\left\langle e_K \mid d(I_1, K) \leq s \; ; \; \sum_{J \in \Delta(K)_j^+} t^{d(J, K)} e_J \mid d(I_1, K) \leq s, \; 2 \leq j \leq \alpha \; ; \; j \neq j_I \right\rangle \subset H_I, \; t \neq 0$$

Therefore

$$T_t \subset H_I, \ t \neq 0 \Leftrightarrow \left\langle \sum_{J \in \Delta(K)_{j_I}^+} t^{d(J,K)} e_J \mid d(I_1,K) \leq s \right\rangle \subset H_I, \ t \neq 0$$

Now, arguing as in the proof of Proposition 2.12 we get

$$(2.20) T_t \subset H_I, \ t \neq 0 \Leftrightarrow \sum_{J \in \Delta(K)_{j_I}^+ \cap \Gamma(I)} c_J = 0, \ \forall K \in \Delta(I)_{j_I}^- \cap B[I_1, s]$$

So, the problem is reduced to find a solution $(c_J)_{J\in\Gamma(I)}$ for the linear system (2.20) such that $c_I\neq 0$. We set $c_J=c_{d(I,J)}$ and reduce, as in the proof of Proposition 2.12, to the linear system

(2.21)
$$\sum_{l=0}^{s+1+D-s(I)_{j_I}^-} {D-i \choose D-i-l} c_l, \ D-S(I)_{j_I}^- \le i \le k$$

We have $s+2+D-s(I)_{j_I}^-$ variables $c_0,\ldots,c_{s+1+D-s(I)_{j_I}^-}$ and $s+1+D-s(I)_{j_I}^-$ equations. Finally, the argument used in the last part of the proof of Proposition 2.12 shows that the linear system (2.21) admits a solution with $c_0 \neq 0$.

3. On secant defectivity of products of Grassmannians

Let $X \subset \mathbb{P}^N$ be an irreducible non-degenerate variety of dimension n and let

$$\Gamma_h(X) \subset X \times \cdots \times X \times \mathbb{G}(h-1,N)$$

where $h \leq N$, be the closure of the graph of the rational map $\alpha: X \times \cdots \times X \dashrightarrow \mathbb{G}(h-1,N)$ taking h general points to their linear span $\langle x_1, \ldots, x_h \rangle$. Observe that $\Gamma_h(X)$ is irreducible and reduced of dimension hn.

Let $\pi_2: \Gamma_h(X) \to \mathbb{G}(h-1,N)$ be the natural projection, and $\mathcal{S}_h(X) := \pi_2(\Gamma_h(X)) \subset \mathbb{G}(h-1,N)$. Again $\mathcal{S}_h(X)$ is irreducible and reduced of dimension hn. Finally, consider

$$\mathcal{I}_h = \{(x,\Lambda) \mid x \in \Lambda\} \subset \mathbb{P}^N \times \mathbb{G}(h-1,N)$$

with natural projections π_h and ψ_h onto the factors.

The abstract h-secant variety is the irreducible variety $\operatorname{Sec}_h(X) := (\psi_h)^{-1}(\mathcal{S}_h(X)) \subset \mathcal{I}_h$. The h-secant variety is $\operatorname{Sec}_h(X) := \pi_h(\operatorname{Sec}_h(X)) \subset \mathbb{P}^N$. Then $\operatorname{Sec}_h(X)$ is an (hn + h - 1)-dimensional variety.

The number $\delta_h(X) = \min\{hn + h - 1, N\} - \dim \mathbb{S}ec_h(X)$ is called the h-secant defect of X. We say that X is h-defective if $\delta_h(X) > 0$. We refer to [Rus03] for a comprehensive survey on the subject.

Determining secant defectivity is a classical problem in algebraic geometry. A new strategy to determine the non secant defectivity was introduced in [MR19, Theorem 5.3], the method is based on degenerating the span of several tangent spaces $T_{xi}X$ in a single osculating space T_x^sX .

To state the criterion for non secant defectivity in [MR19] we introduce a function $h_m : \mathbb{N}_{\geq 0} \longrightarrow \mathbb{N}_{\geq 0}$ counting how many tangent spaces can be degenerated into a higher order osculating space.

Definition 3.1. Given an integer $m \geq 0$ we define a function

$$h_m: \mathbb{N}_{>0} \longrightarrow \mathbb{N}_{>0}$$

as follows: for $h_m(0) = 0$ and for any k > 0 write

$$k+1=2^{\lambda_1}+2^{\lambda_2}+\dots+2^{\lambda_l}+\varepsilon$$

where $\lambda_1 > \lambda_2 > \cdots > \lambda_l \geq 1$ and $\varepsilon \in \{0,1\}$, then

$$h_m(k) = m^{\lambda_1 - 1} + m^{\lambda_2 - 1} + \dots + m^{\lambda_l - 1}$$

Theorem 3.2. [MR19, Theorem 5.3] Let $X \subset \mathbb{P}^N$ be a projective variety having m-osculating regularity and strong 2-osculating regularity. Let $s_1, \ldots, s_l \geq 1$ integers such that the general osculating projection $\Pi_{p_1, \ldots, p_l}^{s_1, \ldots, s_l}$ is generically finite. If

$$h \le \sum_{j=1}^{l} h_m(s_j)$$

then X is not (h+1)-defective.

Now, we are ready to prove our main result on non-defectivity of product of Grassmannians. We follow the notation introduced in the previous sections.

Theorem 3.3. Assume that $n \geq 2k_r + 1$. Set

$$\alpha := \left\lfloor \frac{n+1}{k_r + 1} \right\rfloor$$

and let h_{α} be as in Definition 3.1. Assume that

- either $n \ge k_r^2 + 3k_r + 1$ and $h \le \alpha h_\alpha(\sum_{i=1}^r k_i + r 2)$ or $\alpha(k_r + 1) 1 < n < k_r^2 + 3k_r + 1$ and $h \le (\alpha 1)h_\alpha(\sum_{i=1}^r k_i + r 2) + h_\alpha(s')$

where $s' = \sum_{i=1}^{r} s_i - 2$ with $s'_i = \min\{k_i + 1, n - \alpha(k_i + 1)\}$ for $i \neq r$ and $s'_r = \min\{k_r, n - \alpha k_r - 1\}$. Then $\prod_{i=1}^{r} \mathbb{G}(k_i, n)$ is not (h+1)-defective.

Proof. We have shown in Propositions 2.16, 2.12 that $\prod_{i=1}^r \mathbb{G}(k_i, n)$ has respectively α -osculating regularity for $\alpha := \left\lfloor \frac{n+1}{k_r+1} \right\rfloor$, and strong 2-osculating regularity. The statement then follows immediately from Proposition 2.10 and Theorem 3.2.

Corollary 3.4. The variety $\prod_{i=1}^r \mathbb{G}(k_i, n)$ is not (h+1)-defective for $h \leq \left(\frac{n+1}{k_r+1}\right)^{\lfloor \log_2(\sum k_j+r-1)\rfloor}$.

Proof. We may write

(3.5)
$$\sum_{i=1}^{r} k_i + r - 1 = 2^{\lambda_1} + 2^{\lambda_2} + \dots + 2^{\lambda_l} + \varepsilon$$

with $\lambda_1 > \lambda_2 > \dots > \lambda_l \ge 1$ and $\varepsilon \in \{0,1\}$. Then $h_{\alpha}(\sum_{i=1}^r k_i + r - 2) = \alpha^{\lambda_1 - 1} + \alpha^{\lambda_2 - 1} + \dots + \alpha^{\lambda_l - 1}$. The first bound in Theorem 3.3 gives $h \le \alpha^{\lambda_1} + \dots + \alpha^{\lambda_l}$. Furthermore, considering just the first summand in the second bound in Theorem 3.3 we get that $\prod_{i=1}^r \mathbb{G}(k_i,n)$ is not (h+1)-defective for $h \leq (\alpha-1)(\alpha^{\lambda_1-1}+1)$ $\alpha^{\lambda_2-1} + \cdots + \alpha^{\lambda_l-1}$).

Finally, from (3.5) we get that $\lambda_1 = \lfloor \log_2(r-1+\sum k_i) \rfloor$. Hence, asymptotically we have $h_{\alpha}(\sum k_j + r - 2) \sim \alpha^{\lfloor \log_2(r-1+\sum k_i) \rfloor - 1}$, and by Theorem 3.3 if $h \leq \left(\frac{n+1}{k_r+1}\right)^{\lfloor \log_2(\sum k_j + r - 1) \rfloor}$ then the variety $\prod_{i=1}^r \mathbb{G}(k_i, n)$ is not (h+1)-defective.

4. On secant defectivity of flag varieties

Our goal is to compute the higher osculating spaces of $\mathbb{F}(k_1,\ldots,k_r;n)$. In order to do this, we will use the following notion introduced in [FMR18, Definition 3.2].

Definition 4.1. Let $X \subset \mathbb{P}^N$ be an irreducible variety and $Y = \mathbb{P}^k \cap X$ be a linear section of X. We say that Y is osculating well-behaved if for each smooth point $p \in Y$ we have

$$T_p^s Y = \mathbb{P}^k \cap T_p^s X$$

for every $s \geq 0$.

Let us denote by M_i the following $(k_i + 1) \times (n + 1)$ matrix

$$M_i = \begin{bmatrix} I_{k_1+1} & \dots & \dots & (x_{l,m}^1) \underset{k_1+1 \le m \le n}{0 \le l \le k_1} \\ 0 & I_{k_2-k_1} & \dots & (x_{l,m}^2) \underset{k_1+1 \le l \le k_2}{k_1+1 \le m \le n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & I_{k_i-k_{i-1}} & (x_{l,m}^i) \underset{k_{i-1}+1 \le l \le k_i}{k_i+1 \le m \le n} \end{bmatrix}$$

and consider the map

$$\varphi': \prod_{i=1}^r \mathbb{C}^{(k_1+1)(n-k_1)+\sum_{j=2}^i (n-k_j)(k_j-k_{j-1})} \longrightarrow \mathbb{P}^N$$

$$(M_1, \dots, M_r) \longmapsto (\prod_{i=1}^r \det(M_{J^i}))_{J=\{J^1, \dots, J^r\} \in \Lambda}$$

where M_{J^i} is the submatrix obtained from M_i by considering only the columns indexed by J^i .

For each $2 \leq i \leq r$ and $m \leq k_l$, let us take $x_{l,m}^i = 0$ in M_i . Then φ' becomes the parametrization φ of $\prod_{i=1}^r \mathbb{G}(k_i, n) \text{ in } (2.3).$

Now, set $x_{l,m}^i = x_{l,m}^r$ in M_i for each $i = 1, \ldots, r-1$ and $1 \le l < m \le n$. Hence φ becomes the parametrization of $\mathbb{F}(k_1,\ldots,k_r;n)$ given by

$$\overline{\varphi}: \quad \mathbb{C}^{(k_1+1)(n-k_1)+\sum_{j=2}^r (n-k_j)(k_j-k_{j-1})} \quad \longrightarrow \quad \mathbb{P}(\Gamma_a) \subset \mathbb{P}^N \\ M_r \qquad \qquad \longmapsto \quad \varphi\left(\overline{M}_1, \dots, \overline{M}_r\right)$$

where \overline{M}_i is the submatrix obtained from M_r by considering only the first $k_i + 1$ rows.

Lemma 4.2. Let $T_{\varphi'}^s\left(\prod_{i=1}^r \mathbb{G}(k_i,n)\right) := \left\langle \frac{\partial^{|I|}\varphi'}{\partial x_{|I|}}(0) \mid |I| \leq s \right\rangle$ be the s-osculating space of $\prod_{i=1}^r \mathbb{G}(k_i,n)$ with respect to φ' . Then $T_{\varphi'}^s\left(\prod_{i=1}^r \mathbb{G}(k_i,n)\right) = T^s\left(\prod_{i=1}^r \mathbb{G}(k_i,n)\right)$ for every $s \leq r + \sum_{i=1}^r k_i$. In particular,

$$\frac{\partial^{s} \varphi'}{\partial x_{|I|}}(0) = \frac{\partial^{|J|} \varphi}{\partial x_{|J|}}(0)$$

for some J with $|J| \leq |I|$.

Proof. First, note that if for any $x_{l,m}^i \in x_{|I|}$ we have $m > k_i$, then $\frac{\partial^s \varphi'}{\partial x_{|I|}}(0) = \frac{\partial^{|I|} \varphi}{\partial x_{|I|}}(0)$ and we are done.

Now, let $2 \leq i \leq r$ and consider a derivative $\frac{\partial^{|I|}\varphi'}{\partial x_{|I|}}(0)$ such that $x_{l,m}^i \in x_{|I|}$ with $m \leq k_i$. Therefore, to prove the statement it is enough to show that this partial derivative can be written in terms of another partial derivative $\frac{\partial^{|J|} \varphi'}{\partial x_{|J|}}(0)$ with $x_{l,m}^i \notin x_{|J|}, m \leq k_i$ and |J| < |I|. Fix $2 \leq i \leq r$ and let $x_{l_1,m_1}^i, ..., x_{l_h,m_h}^i, x_{l_{h+1},m_{h+1}}^i, ..., x_{l_b,m_b}^i \in x_{|I|}$ such that $m_a \leq k_i$ for every a = 1, ..., h

and $b \leq k_i + 1$.

If $\frac{\partial^b \varphi'}{\partial x_{l_1, m_1}^i \cdots \partial x_{l_h, m_h}^i \partial x_{l_{h+1}, m_{h+1}}^i \cdots \partial x_{l_h, m_h}^i}(0) \neq 0$ consider the minor M_{J^i} of M_i such that the monomial

$$x_{l_1,m_1}^i \dots x_{l_h,m_h}^i x_{l_{h+1},m_{h+1}}^i \dots x_{l_b,m_b}^i$$

appears in the expression of $\det(M_{J^i})$. Then, there exist variables $x^i_{\sigma_{J^i}(l_{h+1}),\sigma_{J^i}(m_{h+1})},...,x^i_{\sigma_{J^i}(l_b),\sigma_{J^i}(m_b)}$ such that $x^i_{\sigma_{J^i}(l_{h+1}),\sigma_{J^i}(m_{h+1})} \cdots x^i_{\sigma_{J^i}(l_b),\sigma_{J^i}(m_b)}$ is also a monomial in $\det(M_J)$, where σ_{J^i} is a permutation on the indexes such that $\sigma_{J^i}(m_a) > k_i$ for all $h+1 \le a \le b$.

This shows that

$$\frac{\partial^m \varphi'}{\partial x^i_{l_1,m_1} \cdots \partial x^i_{l_h,m_h} \partial x^i_{l_{h+1},m_{h+1}} \cdots \partial x^i_{l_b,m_b}}(0) = \frac{\partial^m \varphi'}{\partial x^i_{\sigma_{J^i}(l_{h+1}),\sigma_{J^i}(m_{h+1})}, \dots, \partial x^i_{\sigma_{J^i}(l_b),\sigma_{J^i}(m_b)}}(0)$$

We have thus decreased the number of variables with respect we differentiate and thus lowered the order of the derivatives. Finally, since $\frac{\partial \varphi}{\partial x_{l,m}^i}(0) = \frac{\partial \varphi'}{\partial x_{l,m}^i}(0)$ for $m > k_i$ we are done.

Lemma 4.3. Since $\overline{\varphi}$ is a sub-parametrization of φ' by the chain rule we have

$$\frac{\partial^s \overline{\varphi}}{\partial x_{|I|}}(0) = \sum_{|K|} \frac{\partial^s \varphi'}{\partial x_{|K|}}(0) = \sum_{|J|} \frac{\partial^s \varphi}{\partial x_{|J|}}(0)$$

where |K| = |I| = s and $|J| \le |I|$. Let $\frac{\partial^s \overline{\varphi}}{\partial x_{|I|}}(0) \ne 0$ with |I| = s such that for each $x_{l,m}^i \in x_{|I|}$ we have that

 $m > k_i$. Then, in the above decomposition there is at least a vector $\frac{\partial^s \varphi}{\partial x_{i+1}}(0)$ with |J| = s.

Proof. For any $x_{l,m}^i \in x_{|I|}$ let h(m) be the maximum index in $\{1,...,r\}$ such that $m > k_{h(m)}$. Since for each $x_{l,m}^i \in x_{|I|}$ we have that $m > k_i$ and $\frac{\partial^s \overline{\varphi}}{\partial x_{|I|}}(0) \neq 0$, we get that any $x_{l,m}^i \in x_{|I|}$ appears at most h(m) times in

Now, for any $s \leq h(m)$, the chain rule expression of $\frac{\partial^s \overline{\varphi}}{(\partial x_{i,m}^{\dagger})^s}(0)$ contains the factor

$$\frac{\partial^s \varphi'}{\partial x_{l,m}^1 \partial x_{l,m}^2 ... \partial x_{l,m}^{h(m)}}(0) = \frac{\partial^s \varphi}{\partial x_{l,m}^1 \partial x_{l,m}^2 ... \partial x_{l,m}^{h(m)}}(0)$$

Repeating this argument for all indexes $x_{l,m}^i \in x_{|I|}$ we conclude.

Proposition 4.4. The flag variety is osculating well-behaved, that is

$$T_p^s \mathbb{F}(k_1, \dots, k_r; n) = T_p^s \prod_{i=1}^r \mathbb{G}(k_i, n) \cap \mathbb{P}(\Gamma_a)$$

for any $p \in \mathbb{F}(k_1, \dots, k_r; n)$ and non-negative integer s.

Proof. We may assume that $p = e_I$ where $I = \{I^1, \ldots, I^r\}$ and $I^l = \{0, \ldots, k_l\}$ for each $1 \leq l \leq r$. Let us first assume that $s = r + \sum_{i=1}^r k_i$. Note that s is the smallest integer for which $T_p^s \mathbb{F}(k_1, \ldots, k_r; n) = \mathbb{P}(\Gamma_a)$ and $T_p^s \prod_{i=1}^s \mathbb{G}(k_i, n) = \mathbb{P}^N$, in this case $T_p^s \mathbb{F}(k_1, \ldots, k_r; n) = \mathbb{P}(\Gamma_a) = \mathbb{P}(\Gamma_a) \cap \mathbb{P}^N = \mathbb{P}(\Gamma_a) \cap T_p^s \prod_{i=1}^s \mathbb{G}(k_i, n)$ and we are done. Now, assume $s < r + \sum_{i=1}^r k_i$. Let

(4.5)
$$v = \sum_{|I| \le s-1} \alpha_{|I|} \frac{\partial^{|I|} \varphi}{\partial x_{|I|}} (0)$$

be a general vector in $T_p^{s-1}\prod_{i=1}^r\mathbb{G}(k_i,n)$, and assume that

$$v \in T_p^{s-1} \prod_{i=1}^r \mathbb{G}(k_i,n) \cap \mathbb{P}(\Gamma_a) \subset T_p^s \prod_{i=1}^r \mathbb{G}(k_i,n) \cap \mathbb{P}(\Gamma_a) = T_p^s \mathbb{F}(k_1,\ldots,k_r;n)$$

this yields that v can be written as

$$(4.6) v = \sum_{|I| \le s-1} \beta_{|I|} \frac{\partial^{|I|} \overline{\varphi}}{\partial^{|I|} x_{|I|}} (0) + \sum_{|I|=s} \beta_{|I|} \frac{\partial^{|I|} \overline{\varphi}}{\partial^{|I|} x_{|I|}} (0)$$

Now, recall that for any I such that there are variables $x_{l,m}^i \in x_{|I|}$ with $m \leq k_i$ we can find another set J for which |J| < |I| and

$$\frac{\partial^s \varphi'}{\partial x_{|I|}}(0) = \frac{\partial^{|J|} \varphi}{\partial x_{|J|}}(0)$$

Therefore, we can assume that any set I in the second summand of (4.6) is such that $m > k_i$ for any $x_{l,m}^i \in x_{|I|}$. Thus, by Lemma 4.3, we will have an equality in (4.5) and (4.6) if and only if $\beta_{|I|} = 0$ for any set I such that $m > k_i$ for all $x_{l,m}^i \in x_{|I|}$. Hence $v \in T_p^{s-1}\mathbb{F}(k_1,\ldots,k_r;n)$.

4.6. Osculating Projections. Let s_1, \ldots, s_{α} be integers such that $0 \leq s_m \leq r-2 + \sum_{i=1}^r k_i$. Denote $T_p^s \mathbb{F}(k_1, \ldots, k_r; n)$ simply by $T_p^s \mathbb{F}$ and the linear subspace $\langle T_{e_{I_1}}^{s_1} \mathbb{F}, \ldots, T_{e_{I_m}}^{s_m} \mathbb{F} \rangle$ by $T_{e_{I_1}, \ldots, e_{I_m}}^{s_1, \ldots, s_m} \mathbb{F}$. Then, for $m \leq \alpha$ we have the linear projection

$$\Pi_{T_{e_{I_1},\ldots,e_{I_m}}^{s_1}\mathbb{F}}:\mathbb{F}(k_1,\ldots,k_r;n) \dashrightarrow \mathbb{P}^{N_{s_1,\ldots,s_m}}$$

Proposition 4.7. Let I_1, \ldots, I_{α} be as in (2.7) and $s = r - 2 + \sum_{i=1}^{r} k_i$. Then,

- $\Pi_{T^{s,...,s}_{e_{I_{\alpha-1}},...,e_{I_{\alpha-1}}},\mathbb{F}}$ is birational;
- $\Pi_{T_{e_{I_1},\dots,e_{I_r}}^{s,\dots,s}}$ is birational whenever $n \geq k_r^2 + 3k_r + 1$.

Proof. Since $\Pi_{T^{s,...,s}_{e_{I_{1}},...,e_{I_{\alpha-1}}}}$ factors trough $\Pi_{T^{s,...,s}_{e_{I_{1}},...,e_{I_{\alpha-1}}}}\mathbb{F}$, it is enough to show that the restriction of $\Pi_{T^{s,...,s}_{e_{I_{\alpha-1}}}}$ to $\mathbb{F}(k_{1},\ldots,k_{r})$ is birational.

For any $i \neq r$ and $1 \leq j \leq \alpha - 1$ consider $I_j^{\prime i} = I_j^i$ and $I_j^{\prime r} \subset I_j^r$ of cardinality k_r . Since $n \geq 2k_r + 1$ and $k_r \geq k_i$ we must have

$$n - \sum_{j=1}^{\alpha - 1} |I_j^{\prime i}| = n - (\alpha - 1)(k_i + 1) \ge n - (\alpha - 1)k_r \ge k_r + 1 \le k_i + 1$$

Now, let us denote by I'^i the union $\bigcup_{j=1}^{\alpha-1} I_j'^i$. Then, by Lemma 2.8 there exists a rational map $\pi_{I'^r}$ making the following diagram commutative

$$\mathbb{F}(k_1,\ldots,k_r;n) \xrightarrow{T_{e_{I_1},\ldots,e_{I_{\alpha-1}},e_{I_{\alpha}}}} \mathbb{P}^{N'_{s,\ldots,s}}$$

$$\Pi^r_{i=1}\Pi_{I'i} \xrightarrow{\prod_{i=1}^r} \mathbb{G}(k_i,n-\sum_{j=1}^\alpha |I'_j{}^i|)$$

Now, let $x=(\{V_i\}_{i=1}^r)$ be a general point in the image of $\Pi_{T_{e_{I_1},\ldots,e_{I_{\alpha-1}}}^{s,\ldots,s}}$ and $X\subset\mathbb{F}(k_1,\ldots,k_r;n)$ be the fiber of $\Pi_{T_{e_{I_1},\ldots,e_{I_{\alpha-1}}}^{s,\ldots,s}}$ over x. Set $x_{I'^r}=\pi_{I'^r}(x)$ and denote by $X_{I'^r}\subset\mathbb{F}(k_1,\ldots,k_r;n)$ the fiber of $\prod_{i=1}^r\Pi_{I'^i}$ over $x_{I'^r}$.

Therefore, $X \subset \bigcap_{I'^r} X_{I'^r}$, where the intersection runs over all sets $I'^r = \bigcup_{j=1}^{\alpha-1} I_j'^r$ with $I_j'^r \subset I_j^r$ and $|I_j'^r| = k_r$ for $1 \leq j \leq \alpha - 1$.

Now, note that if $\{W_i\}_{i=1}^r \in X$ is a general point, then we must have $W_i \subset \langle e_m \mid m \in \bigcup_{j=1}^{\alpha} I_j'^i; V_i \rangle$ for any choice of $\bigcup_{i=1}^{\alpha} I_i'^i$. Hence,

$$(4.8) W_i \subset \bigcap_{I'^r} \langle e_m \mid m \in \bigcup_{j=1}^{\alpha} I_j'^i ; V_i \rangle$$

In particular, $W_r \subset \bigcap_{I'^r} \langle e_m \mid m \in \bigcup_{j=1}^{\alpha} I_j'^r; V_r \rangle$. Now, since $|I_j'^r| \leq k_r$ we must have $\bigcap_{I'^r} \langle e_m \mid m \in \bigcup_{j=1}^{\alpha} I_j'^r \rangle = \emptyset$ and

then
$$V_r = \bigcap_{I'^r} \langle e_m \mid m \in \bigcup_{j=1}^{\alpha} I_j'^r \; ; \; V_r \rangle$$
 which yields $W_r = V_r$.

Now, set $i \leq r-1$. Since $\{V_i\}_{i \in K}$ is general in $\mathbb{F}(k_1, \dots, k_r; n)$ and $n - \sum_{j=1}^{\alpha-1} |I_j'^i| \geq k_r + 1$ we have $V_r \cap \langle e_m | m \in I_j''$

 $\bigcup_{j=1}^{\alpha} I_j^i \rangle = \emptyset. \text{ On the other hand } W_i \subset W_r = V_r \text{ for all } i \leq r-1, \text{ then } W_i \cap \langle e_m \mid m \in \bigcup_{j=1}^{\alpha} I_j^i \rangle = \emptyset. \text{ Hence, by } (4.8) \text{ we must have } W_i = V_i \text{ for any } i \leq r-1.$

Now, assume that $n \ge k_r^2 + 3k_r + 1$ then

$$n - \alpha(k_i + 1) \ge n - \alpha k_r \ge n - \frac{(n+1)}{k_r + 1} k_r = \frac{n(k_r + 1) - (n+1)k_r}{k_r + 1}$$
$$= \frac{n - k_r}{k_r + 1} \ge \frac{k_r^2 + 3k_r + 1 - k_r}{k_r + 1} = k_r + 1$$

Then, arguing as in the proof of the first case, for any choice of subsets $I_j'^i \subset I_j^i$, $I_j'^i = I_j^i$ with $i \neq r$ and $1 \leq j \leq \alpha - 1$, $I_j'^r \subsetneq I_j^r$ of cardinality k_r we get, by Lemma 2.8, a rational map $\pi_{I'^r}$ making the following diagram commutative

$$\mathbb{F}(k_1,\ldots,k_r;n) \xrightarrow{\Pi_{T_{e_{I_1}},\ldots,e_{I_{\alpha}}}} \mathbb{P}^{N'_{s,\ldots,s}}$$

$$\Pi^r_{i=1}\Pi_{I'^i} \xrightarrow{\Pi^r_{i=1}} \mathbb{G}(k_i,n-\sum_{j=1}^{\alpha}|I'^i_j|)$$

where $I'^i = \bigcup_{j=1}^{\alpha} I_j'^i$, i = 1, ..., r. Now, to conclude it is enough to follow the same argument used in the end of the proof of the first claim.

4.8. Non-Secant defectivity of flag varieties. We recall [FMR18, Proposition 4.4] which describes how the notion of osculating regularity behaves under linear sections.

Proposition 4.9. Let $X \subset \mathbb{P}^N$ be an irreducible projective variety and $Y = \mathbb{P}^k \cap X$ a linear section of X that is osculating well-behaved. Assume that given general points $p_1, \ldots, p_m \in Y$ one can find smooth curves $\gamma_j : C \to X, j = 2, \ldots, m$, realizing the m-osculating regularity of X for p_1, \ldots, p_m such that $\gamma_j(C) \subset Y$. Then Y has m-osculating regularity as well. Furthermore, the analogous statement for strong 2-osculating regularity holds as well.

Proposition 4.10. The flag variety $\mathbb{F}(k_1,\ldots,k_r;n)$ has strong 2-osculating regularity and α -osculating regularity, where $\alpha := \left\lfloor \frac{n+1}{k_r+1} \right\rfloor$.

Proof. The statement follows immediately from Propositions 2.12, 2.16, 4.9.

Now, we are ready to prove our main result on non-defectivity of flags varieties.

Theorem 4.11. Assume that $n \geq 2k_r + 1$. Set

$$\alpha := \left| \frac{n+1}{k_r + 1} \right|$$

and let h_{α} be as in Definition 3.1. If either

-
$$n \ge k_r^2 + 3k_r + 1$$
 and $h \le \alpha h_\alpha(\sum k_j + r - 2)$ or
- $n < k_r^2 + 3k_r + 1$ and $h \le (\alpha - 1)h_\alpha(\sum k_j + r - 2)$.

Then, $\mathbb{F}(k_1,\ldots,k_r;n)$ is not (h+1)-defective. In particular, if

$$h \le \left(\frac{n+1}{k_r+1}\right)^{\lfloor \log_2(\sum k_j + r - 1) \rfloor}$$

then $\mathbb{F}(k_1,\ldots,k_r;n)$ is not (h+1)-defective.

Proof. The first part is an immediately consequence of Propositions 4.9, 4.7 and Theorem 3.2. For the last claim note that if we write

(4.12)
$$\sum k_j + r - 1 = 2^{\lambda_1} + 2^{\lambda_2} + \dots + 2^{\lambda_l} + \varepsilon$$

with $\lambda_1 > \lambda_2 > \cdots > \lambda_l \ge 1$ and $\varepsilon \in \{0,1\}$. Then

$$h_{\alpha}(\sum k_j + r - 2) = \alpha^{\lambda_1 - 1} + \alpha^{\lambda_2 - 1} + \dots + \alpha^{\lambda_l - 1}$$

Therefore, the first bound in Theorem 4.11 yields

$$h \le \alpha^{\lambda_1} + \alpha^{\lambda_2} + \dots + \alpha^{\lambda_l}$$

Furthermore, by the second bound in Theorem 4.11 we get that $\mathbb{F}(k_1,\ldots,k_r;n)$ is not (h+1)-defective for

$$h \le (\alpha - 1)(\alpha^{\lambda_1 - 1} + \alpha^{\lambda_2 - 1} + \dots + \alpha^{\lambda_l - 1})$$

Finally, by (4.12) we get that $\lambda_1 = \lfloor \log_2(\sum k_j + r - 1) \rfloor$. Hence, asymptotically we have $h_{\alpha}(\sum k_j + r - 2) \sim \alpha^{\lfloor \log_2(\sum k_j + r - 1) \rfloor}$, and by Theorem 4.11 for $h \leq \alpha^{\lfloor \log_2(\sum k_j + r - 1) \rfloor} \leq \left(\frac{n+1}{k_r+1}\right)^{\lfloor \log_2(\sum k_j + r - 1) \rfloor}$ the flag variety $\mathbb{F}(k_1,\ldots,k_r;n)$ is not (h+1)-defective.

Remark 4.13. Now, given a flag $\mathbb{F}(k_1,\ldots,k_r;n)$ with $n<2k_r+1$. Assume that $n\geq 2k_j+1$ for some index jand let l be the maximum among these j's. Then we have a natural projection

$$\pi : \mathbb{F}(k_1, \dots, k_r; n) \longrightarrow \mathbb{F}(k_1, \dots, k_l; n)$$
$$\{V_i\}_{i=1,\dots,r} \longmapsto \{V_i\}_{i=1,\dots,l}$$

The fiber of π over a general point in $\mathbb{F}(k_1,\ldots,k_l;n)$ is isomorphic to $\mathbb{F}(k_{l+1}-k_l-1,\ldots,k_r-k_l-1;n-k_l-1)$. Now let $p_1, \ldots, p_h \in \mathbb{F}(k_1, \ldots, k_l; n)$ be general points, and $T_{p_i}\mathbb{F}(k_1, \ldots, k_l; n)$ be the tangent space at p_i . Then, we have

$$T_{\pi^{-1}(p_i)}\mathbb{F}(k_1,\ldots,k_r;n) = \langle T_{p_i}\mathbb{F}(k_1,\ldots,k_l;n), T_{\pi^{-1}(p_i)}\mathbb{F}(k_{l+1}-k_l,\ldots,k_r-k_l;n-k_l) \rangle$$

and $T_{p_i}\mathbb{F}(k_1,\ldots,k_l;n)\cap T_{\pi^{-1}(p_i)}\mathbb{F}(k_{l+1}-k_l,\ldots,k_r-k_l;n-k_l)=\emptyset$. Now, observe that if $T_{\pi^{-1}(p_i)}\mathbb{F}(k_1,\ldots,k_r;n)\cap T_{\pi^{-1}(p_j)}\mathbb{F}(k_1,\ldots,k_r;n)\neq\emptyset$ then

$$\dim \langle T_{\pi^{-1}(p_i)} \mathbb{F}(k_1, \dots, k_r; n) ; j = 1, \dots, h \rangle \leq h \dim \mathbb{F}(k_1, \dots, k_l; n) + h - 2$$

Since $T_{\pi^{-1}(p_i)}\mathbb{F}(k_{l+1}-k_l-1,\ldots,k_r-k_l-1;n-k_l-1)$ is contracted by π for any $j=1,\ldots,h$ we have that

$$\dim \pi(T) \leq h \dim \mathbb{F}(k_1, \dots, k_r; n) + h - 2 - h \dim \mathbb{F}(k_{l+1} - k_l, \dots, k_r - k_l; n - k_l)$$

= $h \dim \mathbb{F}(k_1, \dots, k_l; n) + h - 2$

where $T = \langle T_{\pi^{-1}(p_i)} \mathbb{F}(k_1, \dots, k_r; n) \; ; \; i = 1, \dots, h \rangle$.

In particular, by Terracini's lemma [Ter12] we have that if $\mathbb{F}(k_1,\ldots,k_l;n)$ is not h-defective, then $\mathbb{F}(k_1,\ldots,k_r;n)$ is not h-defective.

Theorem 4.14. Consider a flag variety $\mathbb{F}(k_1,\ldots,k_r;n)$ with $n<2k_r+1$. Assume that $n\geq 2k_j+1$ for some index j and let l be the maximum among these j's. Then, for

$$h \le \left(\frac{n+1}{k_l+1}\right)^{\lfloor \log_2(\sum_{j=1}^l k_j + l - 1) \rfloor}$$

 $\mathbb{F}(k_1,\ldots,k_r;n)$ is not (h+1)-defective.

Proof. It is an immediate consequence of Theorem 4.11 and Remark 4.13.

4.14. On identifiability of products of Grassmannians and flag varieties. Let $X \subset \mathbb{P}^N$ be an irreducible non-degenerated variety. A point $p \in \mathbb{P}^N$ is said to be h-identifiable, with respect to X, if it lies on a unique (h-1)-plane h-secant to X. Furthermore, X is said to be h-identifiable if a general point of $\mathbb{S}ec_h(X)$ is h-identifiable.

Now, we combine our bounds on non-secant defectivity of products of Grassmannians and flag varieties and [CM19, Theorem 3] to get the following.

Corollary 4.15. Consider the product of Grassmannians
$$\prod_{i=1}^r \mathbb{G}(k_i,n)$$
. Assume that $2\prod_{i=1}^r (k_i+1)(n-k_i)-1 \le \left(\frac{n+1}{k_r+1}\right)^{\lfloor \log_2(\sum k_i+r-1)\rfloor}$. Then, $\prod_{i=1}^r \mathbb{G}(k_i,n)$ is h-identifiable for $h \le \left(\frac{n+1}{k_r+1}\right)^{\lfloor \log_2(\sum k_i+r-1)\rfloor}$. Furthermore, let us suppose that $n \ge 2k_j+1$ for some index j and consider l the maximum among these j 's. Assume that $2((k_1+1)(n-k_1)+\sum_{j=2}^i (n-k_j)(k_j-k_{j-1}))-1 \le \left(\frac{n+1}{k_l+1}\right)^{\lfloor \log_2(\sum_{j=1}^l k_j+l-1)\rfloor}$. Then $\mathbb{F}(k_1,\ldots,k_r;n)$ is h-identifiable for $h \le \left(\frac{n+1}{k_l+1}\right)^{\lfloor \log_2(\sum_{j=1}^l k_j+l-1)\rfloor}$.

Proof. It is enough to apply Corollary 3.4, Theorem 4.14 and [CM19, Theorem 3].

5. On the chordal variety of $\mathbb{F}(0,k;n)$

In this section we consider particularly flag varieties parametrizing chains of type $p \in H^k \subset \mathbb{P}^n$.

Proposition 5.1. Let us consider the flag variety $\mathbb{F}(0,k;n) \subset \mathbb{P}(\Gamma) \subset \mathbb{P}^N$, where 0 < k < n. Then, $\operatorname{Sec}_2\mathbb{F}(0,k;n)$ has always the expected dimension except when k=n-1, in this case $\mathbb{F}(0,n-1;n)$ is 2-defective with 2-defect $\delta_2(\mathbb{F}(0, n-1; n)) = 1$.

Proof. Let $p, q \in \mathbb{F}(0, k; n)$ be two general points, without lose the generality we can assume that $p = e_{0,\{0,\dots,k\}} = e_{0,\{0,\dots,k\}}$ e_{0,I_0} and $q = e_{n,\{n-k,\dots,n\}} = e_{n,I_1}$.

Now, Proposition 4.4 yields that

$$T_{e_{0,I_0}}\mathbb{F}(0,k;n) = \langle e_{i,I} | d((i,I),(0,I_0)) \leq 1 \rangle \cap \mathbb{P}(\Gamma)$$

and

$$T_{e_{n,I_1}}\mathbb{F}(0,k;n) = \langle e_{i,I} \mid d((i,I),(n,I_n)) \leq 1 \rangle \cap \mathbb{P}(\Gamma)$$

Note that $d((i,I),(0,I_0))=1$ if and only if either $i\neq 0$ and $I=I_0$ or i=0 and $|I\cap I_0|=k$. Similarly, $d((i,I),(n,I_1))=1$ if and only if either $i\neq n$ and $I=I_1$ or i=n and $|I\cap I_1|=k$. Therefore, since $n\neq 0$ and $I_1 \neq I_0$ we have that $e_{i,I} \in \{e_{i,I} \mid d((i,I),(0,I_0)) \leq 1\} \cap \{e_{i,I} \mid d((i,I),(n,I_1)) \leq 1\}$ if and only if either $I = I_0$ and i = n or $I = I_1$ and i = 0.

Now, assume that $I=I_0$ and i=n, this is $e_{i,I}\in T_{e_{0,I_0}}\mathbb{F}(0,k;n)\cap T_{e_{n,I_1}}\mathbb{F}(0,k;n),$ in particular we have $|I \cap I_1| = |I_0 \cap I_1| = k$ and hence $\{1, \ldots, k\} \subset I_1$ once $0 \notin I_1$. So we must have k = n - 1. Similarly, if $I = I_1$ and i = 0 we conclude that k = n - 1.

Therefore, if k < n - 1, we get

$$\{e_{i,I} \mid d((i,I),(0,I_0)) \le 1\} \cap \{e_{i,I} \mid d((i,I),(n,I_1)) \le 1\} = \emptyset$$

and hence

$$\{e_{i,I} \mid d((i,I),(0,I_0)) \leq 1\} \cap \{e_{i,I} \mid d((i,I),(n,I_1)) \leq 1\} \cap \mathbb{P}(\Gamma) = \emptyset$$

which implies that

$$\dim \left\langle T_{e_{0,I_0}} \mathbb{F}(0,k;n), T_{e_{n,I_1}} \mathbb{F}(0,k;n) \right\rangle = 2 \dim \mathbb{F}(0,k;n) + 1$$

So, Terracini's lemma [Ter12] yields that $\mathbb{S}ec_2\mathbb{F}(0,k;n)$ has the expected dimension whenever k < n-1. Now, assume that k = n - 1. In this case we have

$$\{e_{i,I} \mid d((i,I),(0,I_0)) \le 1\} \cap \{e_{i,I} \mid d((i,I),(n,I_1)) \le 1\} = \{e_{0,\{1,\dots,n\}},e_{n,\{0,\dots,n-1\}}\}$$

Furthermore, $\mathbb{F}(0, n-1; n)$ is the hypersurface cutting out in $\mathbb{P}^n \times \mathbb{P}^{n*}$ by

$$\sum_{i=0}^{n} (-1)^{i} Z_{i,I_n \setminus \{i\}} = 0$$

where $I_n = \{0, ..., n\}$.

Therefore, we get that $T_{e_{0,I_0}}\mathbb{F}(0,n-1;n) = \langle e_{i,I} | d((i,I),(0,I_0)) \leq 1 \rangle \cap \mathbb{P}(\Gamma)$ is given by

$$\left\langle e_{0,\{1,...,n\}} + (-1)^{n+1} e_{n,\{0,...,n-1\}} \; ; \; e_{i,I} \mid d((i,I),(0,I_0)) \leq 1 \text{ and } i,I \neq \left\{ \begin{array}{l} 0,\{1,\ldots,n\} \\ n,\{1,\ldots,n-1\} \end{array} \right. \right\rangle$$

and $T_{e_{n,I_1}}\mathbb{F}(0,n-1;n)=\langle e_{i,I}\mid d((i,I),(n,I_1))\leq 1\rangle\cap\mathbb{P}(\Gamma)$ is given by

$$\left\langle e_{0,\{1,\ldots,n\}} + (-1)^{n+1} e_{n,\{0,\ldots,n-1\}} ; e_{i,I} \mid d((i,I),(n,I_1)) \le 1 \text{ and } i,I \ne \left\{ \begin{array}{l} 0,\{1,\ldots,n\} \\ n,\{1,\ldots,n-1\} \end{array} \right. \right\rangle$$

Therefore,

$$\dim \left\langle T_{e_{0,I_0}} \mathbb{F}(0,n-1;n), T_{e_{n,I_1}} \mathbb{F}(0,n-1;n) \right\rangle = 2 \dim \mathbb{F}(0,n-1;n) < \operatorname{expdim} \mathbb{S}ec_2 \mathbb{F}(0,n-1;n)$$

Finally, since expdim $\mathbb{S}ec_2\mathbb{F}(0,k;n)=2\dim\mathbb{F}(0,n-1;n)+1$ we have that $\mathbb{F}(0,n-1,n)$ is 2-defective with 2-defect $\delta_2(\mathbb{F}(0,n-1;n))=1$.

References

- [AMR19] C. Araujo, A. Massarenti, and R. Rischter, On non-secant defectivity of Segre-Veronese varieties, Transactions of the American Mathematical Society 371 (2019), no. 4, 2255–2278.
- [BD10] K. Baur and J. Draisma, Secant dimensions of low-dimensional homogeneous varieties, Adv. Geom. 10 (2010), no. 1, 1–29. MR 2603719
- [BK09] W. B. Brett and T. G. Kolda, Tensor decompositions and applications, SIAM Rev. 51 (2009), no. 3, 455–500. MR 2535056
- [BL18] J. Brown and V. Lakshmibai, Flag varieties, Texts and Readings in Mathematics, vol. 53, Hindustan Book Agency, Delhi, 2018, An interplay of geometry, combinatorics, and representation theory, Second edition of [MR2474907]. MR 3890042
- [Bri05] M. Brion, Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, 2005, pp. 33–85. MR 2143072
- [CC02] L. Chiantini and C. Ciliberto, Weakly defective varieties, Trans. Amer. Math. Soc. 354 (2002), no. 1, 151–178. MR 1859030
- [CC10] _____, On the dimension of secant varieties, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1267–1291. MR 2677616
- [CGLM08] P. Comon, G. Golub, L-H Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1254–1279. MR 2447451
- [CM19] A. Casarotti and M. Mella, From non defectivity to identifiability, https://arxiv.org/abs/1911.00780, 2019.
- [DL13a] I. Domanov and L. De Lathauwer, On the uniqueness of the canonical polyadic decomposition of third-order tensors— Part I: Basic results and uniqueness of one factor matrix, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 855–875. MR 3072760
- [DL13b] _____, On the uniqueness of the canonical polyadic decomposition of third-order tensors—Part II: Uniqueness of the overall decomposition, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 876–903. MR 3072761
- [DL15] _____, Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM J. Matrix Anal. Appl. 36 (2015), no. 4, 1567–1589. MR 3421620
- [Dra
08] J. Draisma, A tropical approach to secant dimensions, J. Pure Appl. Algebra
 212 (2008), no. 2, 349–363. MR 2357337
- [FMR18] A. Barbosa Freire, A. Massarenti, and R. Rischter, Projective aspects of the geometry of lagrangian grassmannians and spinor varieties, https://arxiv.org/abs/1812.07474, 2018.
- [GV85] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), no. 3, 300–321. MR 815360
- [KAL11] A. Karfoul, L. Albera, and L. De Lathauwer, Iterative methods for the canonical decomposition of multi-way arrays:

 Application to blind underdetermined mixture identification, Signal Processing 91 (2011), no. 8, 1789–1802.
- [LO15] J. M. Landsberg and G. Ottaviani, New lower bounds for the border rank of matrix multiplication, Theory Comput. 11 (2015), 285–298. MR 3376667
- [MR13] A. Massarenti and E. Raviolo, The rank of $n \times n$ matrix multiplication is at least $3n^2 2\sqrt{2}n^{\frac{3}{2}} 3n$, Linear Algebra Appl. 438 (2013), no. 11, 4500–4509. MR 3034546
- [MR19] A. Massarenti and R. Rischter, Non-secant defectivity via osculating projections, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, XIX (2019), 1–34.
- [Rus03] F. Russo, Tangents and secants of algebraic varieties: notes of a course, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2003, 240 Colóquio Brasileiro de Matemática. [24th Brazilian Mathematics Colloquium]. MR 2028046
- [SB00] N. D. Sidiropoulos and R. Bro, On the uniqueness of multilinear decomposition of N-way arrays, Journal of Chemometrics 14 (2000), no. 3, 229–239.
- [Ter12] A. Terracini, Sulle V_k che rappresentano più di $\frac{k(k-1)}{2}$ equazioni di laplace linearmente indipendenti, Rend. Circ. Mat. Palermo 33 (1912), 176186.
- [Tev05] E. A. Tevelev, Projective duality and homogeneous spaces, Encyclopaedia of Mathematical Sciences, vol. 133, Springer-Verlag, Berlin, 2005, Invariant Theory and Algebraic Transformation Groups, IV. MR 2113135

AGEU BARBOSA FREIRE, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE FEDERAL FLUMINENSE, CAMPUS GRAGOATÁ, RUA ALEXANDRE MOURA 8 - SÃO DOMINGOS, 24210-200 NITERÓI, RIO DE JANEIRO, BRAZIL

 $E ext{-}mail\ address: ageufreire@id.uff.br}$

ALEX CASAROTTI, DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DI FERRARA, VIA MACHIAVELLI 30, 44121 FERRARA, ITALY

 $E\text{-}mail\ address{:}\ \mathtt{csrlxa@unife.it}$

ALEX MASSARENTI, DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DI FERRARA, VIA MACHIAVELLI 30, 44121 FERRARA, ITALY

 $E\text{-}mail\ address: \verb| alex.massarenti@unife.it|$