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ON SECANT DIMENSIONS AND IDENTIFIABILITY OF FLAG VARIETIES

AGEU BARBOSA FREIRE, ALEX CASAROTTI, AND ALEX MASSARENTI

ABSTRACT. We investigate the secant dimensions and the identifiablity of flag varieties parametrizing flag of
sub vector spaces of a fixed vector space. We give numerical conditions ensuring that secant varieties of flag
varieties have the expected dimension, and that a general point on these secant varieties is identifiable.
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1. INTRODUCTION

In the most general contest, a flag variety is a projective variety homogeneous under a complex linear
algebraic group. Flag varieties play a central role in algebraic geometry, combinatorics, and representation
theory BL1S].

Fix a vector space V = C"*!, over an algebraically closed field K of characteristic zero, and integers

ki < ... < kq. Let G(kj,n) C PV, where N; = (;“:_11) — 1, be the Grassmannians of k;-dimensional linear

subspace of P(V') in its Pliicker embedding. We have an embedding of the product of these Grassmannians
G(k1,n) X -+ X G(kp,n) C PN x - x PN c PV
where N = ("+1) ("+1) —1.

k141 kr+1
The flag variety F(kq, ..., k.;n) is the set of flags, that is nested subspaces, Vi, C --- C V. C V. This is a

subvariety of the product of Grassmannian [[;_, G(k;,n). Hence, via a product of Pliicker embeddings followed
by a Segre embedding we can embed F(kq, ..., kq;n)

F(ky,..., kyn) = PNV x oo x PNr oy PV

Consider natural numbers a4, . .., a, such that ag, 41 =+ = ax,+1 = land a; =0foralli ¢ {ki+1,... k-+
1}. Then, F(k1,...,k-;n) generates the subspace

k1+1 kr+1
P(Ta,,....an) Q]P’</\ Ve --® /\ v) c pV

where T'y, . 4, is the irreducible representation of sl,,;1C with highest weight (a1 + -+ 4+ an)L1 + -+ + anLn,

and Lj + - -- 4 Lg is the highest weight of the irreducible representation /\k V. We will denote I'y, .. 4
by I'y. By the Weyl character formula we have that

dimP(T,) = ][] (@it tao)tizi_
b j—1
1<i<j<n+1

Furthermore, dimF(ky,...,ksn) = (k1 +1)(n — k1) + Z;ZQ(TL —kj)(kj —kj—1) and F(k1,..., kr;n) =PT,) N
IT—, G(ki,n) C PN.

simply

n
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The geometry of these varieties has been investigated mostly from the point of view of Schubert calculus
[Bri05] and dual defectivity [Tev05]. Secant varieties of small dimensional flag varieties have been studied in
[BD10] by taking advantage of the tropical approach to secant dimensions introduced by J. Draisma in [Dra0§].

The h-secant variety Sec,(X) of a non-degenerate n-dimensional variety X C PV is the Zariski closure of
the union of all linear spaces spanned by collections of h points of X. The expected dimension of Secy(X)
is expdim(Secy (X)) := min{nh + h — 1, N}. In general, the actual dimension of Secy(X) may be smaller
than the expected one. In this case, following [CCI0, Section 2] we say that X is h-defective and the number
0n(X) = expdim(Secy (X)) — dim(Secp, (X)) is called the h-secant defect of X.

We investigate secant defectivity of flag varieties following the machinery introduced in [MR19], which we
now outline. Given general points z1,...,x, € X C PV, consider the linear projection 7y, : X C PN --» PNr,
with center (T, X,..., Ty, X), where N, := N — 1 —dim({T, X, ..., T, X)). [CCO2, Proposition 3.5] yields
that if 7x 5, is generically finite then X is not (h+ 1)-defective. Given p1,...,p; € X general points, we consider
the linear projection I ky...y + X C PN ——s PNe1k with center the span <T§11X, . 7TZ§CLZX> of higher order

iy
osculating spaces. We can degenerate, under suitable conditions, the linear span of several tangent spaces T, X

into a subspace contained in a single osculating space TZfX . So the tangential projection 7x ; degenerates to

a linear projection with center contained in <T£11X, e ,T]fllX>. If TL ky....k, is generically finite, then 7x,5 is
Plse-sP]

generically finite as well, and we conclude that X is not (h + 1)-defective. In this paper we apply this strategy
to flag varieties. We would like to stress that this approach, as the one introduced in [Dra08|, depends heavily
on an explicit parametrization of X. This method was successfully applied to other classes of homogeneous
varieties such as Grassmannians [MRI9], Segre-Veronese varieties [AMR19], Lagrangian Grassmannians and
Spinor varieties [FMR18]. However, its application to flag varieties involves much more difficult computations
compared with the case of the Grassmannians, this is particularly reflected in Section @ where we introduce
submersions of flag varieties into product of Grassmannians in order to study the relation among their higher
osculating spaces.

Furthermore, our results on secant defectivity, combined with a recent result in [CM19], allow us to produce
a bound for identifiability of flag varieties. Recall that, given a non-degenerated variety X C PY, we say that
a point p € PV is h-identifiable if it lies on a unique (h — 1)-plane in PV that is h-secant to X. Especially
when PV can be interpreted as a tensor space, identifiablity and tensor decomposition algorithms are central in
applications for instance in biology, Blind Signal Separation, data compression algorithms, analysis of mixture
models psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical
analysis, neuroscience and graph analysis [DL13al], [DL13b], [DL15], [KAL11], [SB00], [BK09], [CGLMO0S],
[LO15], [MR13]. Our main results in Theorem 14 and Corollary can be summarized in the following
statement.

Theorem 1.1. Consider a flag variety F(k1, ..., ky;n). Assume that n > 2k;+ 1 for some index j and let | be
the maximum among these j’s. Then, for
U
< n+1 Ung(Z]‘:1 kj+1-1)]
“\k+1

F(k1,...,kr;n) is not (h + 1)-defective. Furthermore, under the same bound, the general point of the h-secant
variety of F(ki, ..., kr;n) is h-identifiable.

The paper is organized as follows: in Section 2] we study higher order osculating spaces of products of
Grassmannians and the linear projections from them, in Section Bl we apply the method introduced in [MR19]
to products of Grassmannians, in Section Ml we get bounds for non-secant defectivity and identifiablity of flag
varieties, and in Section [}l we investigate the variety of secant lines of spacial flag varieties of type F(0, k; n).

Acknowledgments. The first named author would like to thank FAPERJ and Massimiliano Mella (PRIN 2015,
Geometry of Algebraic Varieties, 2015EYPTSB-005) for the financial support, and the University of Ferrara for
the hospitality during the period in which the majority of this work was completed. The third named author
is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni of the
Istituto Nazionale di Alta Matematica F. Severi (GNSAGA-INDAM).

2. HIGHER OSCULATING BEHAVIOR OF PRODUCTS OF (GRASSMANNIANS

Consider the product G(ky,n) x --- x G(k,,n) C PN x ... x PN» C PV, and given a non-negative integer k
define
Ap={1cC{0,....n}||I|=k+1}
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For any I = {io,...,ix} € Ag let e; € G(k,n) be the point corresponding to e;, A -+~ Ae;, € AFTHCr L. We
will denote by Z; the Pliicker coordinates on P(A"! Cnt1).
From [MR19] we have a notion of distance in Ay given by

(2.1) d(I,J)=|I|-|INJ]|
for all I,J € Ay. More generally, we define
A:Ak1 X---XAkT

Given I = {I',...,I"} € A let er € [[;_, G(k;,n) be the point corresponding to ep ® -+~ ® eyr € PV, and by
Z; the corresponding homogeneous coordinate of PV. Furthermore, for all I,.J € A with I = {I',...,I"} and
J={J', ..., J"}, we define their distance as

d(I,J) = Z d(It,J%

where d(I?, J*) is the distance defined in (ZJ)).

From now on we will assume that n > 2k, + 1. Under this assumption A has diameter r + Z:Zl k; with
respect to this distance.

In the following, we give an explicit description of the osculating spaces of []._; G(k;, n) at coordinate points.

Proposition 2.2. For each s > 0
T (HG(/@,n)) ={ey;d(I,J)<s)={Z;=0;d(I,J)>s} CcPN
i=1

In particular, TF, ([T;_; G(ki,n)) =P for s >r+ > k.
Proof. Set I = {I*,...,I"} € A. We may assume that I* = {0,...,k;} for each 1 < i < r and consider the
following parametrization of [[;_; G(k;,n) in a neighborhood of e;:

e @ia)] o (T det(My) ey

=1,...,

(2.3)

where M i is the submatrix obtained from {I kit1s () o<i<k; | by considering the columns indexed by J*.
T ki+1<m<n
For each J € A, we will denote [];_, det(M ;) simply by det(M ). Note that each variable appears in degree
at most one in the coordinates of . Therefore, deriving two times with respect to the same variable always
gives zero. Furthermore, as det(M ;) has degree at most  + Y _._, k; all partial derivatives of order greater or
equal than 7+ Y _;_, k; are zero. Thus, it is enough to prove the claim for s <r+ >, k;.
Given J = {JY,...,J"} € A, let i, k, k' be integers such that 1 <i <r, k€ {0...,k;} and k' € {k;+1,...,n}.
Then .
8det(MJ) o i...det(MJifl)det(MJi7k7k/)det(MJi+1)... k’/ (S Jz
oxt 4, o 0 K ¢ .J
where M i i s is the submatrix obtained from M ;i by deleting the column indexed by £’ and the row indexed
by k.

More generally, let mq,...,m, be non-negative integers such that their sum is bigger than one. For each
i=1,...,r consider
Ki={ki,....kb, } C{0,....k;} and K/ ={k{,....kl\ } C {k;+1,....,n}
with |K;| = | K[| = m,;. Now, set m = my + --- + m, and

K={K,. K}, K ={K| . K.}

Therefore, denoting 890,1Cl w0k e simply by 0™ K, K’ we have
omdet(My) [ +£[[i=,det(Myi g, k) if K’ CJ andm <d(I,J) = deg(det(M,))
oMK K" 0 otherwise
for any J € A, where K’ C J means that {k{',... ks } C J',... {k[",.... ki } C J", and My k, Kk is the

submatrix obtained from M ;: deleting the columns indexed by K| and the rows indexed by K;. Thus,

9™ det(My) (0) = +1 if Ji=K/U{I*\ K;}) foreachi=1,...,r
OmK, K’ 1 0 otherwise
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Finally, let us denote by J = K’U{I\ K} the element in A for which J* = KU ({I*\ K;}) foreachi=1,...,r.
Then, we have that
oM
ok, o0 = Ferudngy

Note that d(I, K’ U{I \ K}) =m, and any J € A with d(I,J) = m may be written as K’ U {I \ K}. Thus, we
get that
am
( GO mss )= (sl <o
which proves the claim. O

Now, it is immediate to compute the dimension of the osculating spaces of H:Zl G(ki,n).

Corollary 2.4. For any point p € [[,_, G(k;,n) we have

dim T3 ([Ti_, G(ki,n)) = > (n ;kl) (kl;lr 1) o (n ;kT) (kTs:r 1)

i=1,...,r
0<s;<k;+1,
s1+-+s-<s

Jor any 0 <'s <r+ 37 ki while Tg ([Ti_ G(ki,n)) = PN for any s >r+ 31 k.

Proof. Since the general linear group GL(n + 1) acts transitively on [];_, G(k;,n) the statement follows from
Proposition O

2.4. Osculating Projections. For a general point p € [];_; G(k;,n), we will denote T}; ([T;_; G(k;,n)) simply
by T;. Now, take 0 < s < r + >, ki and I € A. By Proposition the linear projection of [];_, G(k;,n)
from T, is given by
HTeSI : H;’A:1 G(kl) - PN;
(Z1)gen v (Z1)sen|d1,1)>s
Moreover, given I' C {0,...,n} with |[I’| = m we have the linear projection
mp i PU oy prom
(i) = (Ti)icfo,...n)\1"
which in turns induces the linear projection
ny : G(kn) --+ Glk,n—m)
4 — (mr (V)
(Zs)sen, > (Z1)eny | inr=o
whenever k < n —m.

Finally, let us fix I = {I',...,I"} € A and take my, ..., m, integers such that m; < k;+1 foreachi = 1,...,7.
Then, given I't C I',... I'" C I", with |I"*| = m;, we have a projection

[T o I G(kin) - [Lis; Glkin —my)
Vix-oox Ve +— Hm(Vy) x-xUpe(V,) -

Note that a general fiber of [;_, I is isomorphic to [T,_, G(k;, ki+m;). Indeed, let z = []\_, I ((V;)i;) €
[T;—, G(ki,n — my) be a general point. Then, we have

r —1 r r .
(I )~ () = {(Wa)iy € Ty Glhisn) | Wi © (Viyeggovegs Dy i =1t}

Lemma 2.5. Let us fix [ ={I*,...,I"} € A. If0<s<r—2+> " k; and I"" C I" with |I"'| = m; for each
i=1,...,7, then the rational map HT% factors through H:Zl 11+ whenever 2:21 m; = s+ 1.

Proof. Since the diameter of A is r + > k; we have {J € A |d(I,J) < s} C A and then Iz; is well-defined.

On the other hand, if J = {J!,...,J"} € A is such that J*NI"" = @ for all i = 1,...,r, then d(I,J) >
>i_,m; > s which yields that the center of HTESI is contained in the center of [];_, II . |

Proposition 2.6. The rational map HTesI is birational for all0 < s <r—2+4 22:1 k;.
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Proof. Since T contains T:I_l it is enough to prove the statement for s = r — 2 4+ Y I k;. Let us fix
m € {1,...,r}. By Lemma [Z7] for each subset I'"™ C I"™ with |I"™| = k,, there is a rational map 7= that
makes the following diagram commutative.

(Hi#?nHI’i)XHI’m, S~

(H#m Gki,n — ki — 1)) % G (ks 1 — k)

Let o =TIz ({Vi}i_) be a general point and X C [],_, G(k;, n) be the fiber of Iy, over . Set xm = mm (),
and denote by Xpm C [[;_; G(k;,n) the fiber of (H#m Hp) X pm over xpm. Thus,

X C ﬂ Xpm
I/’V‘VL
where this intersection runs over all I'™ C I™ with |I'"™| = k,, and m = 1,...,r. Now, if (W;)7_; is a general
point in X then
Win C(€j1s---1 €4, > Vi) forany I' = {ej,,...,e;, }CI™
Therefore,
W C ﬂ<ej17" '7€jkm7Vm> =V
I/'m.

This implies W,,, = V,,, for every m = 1,...,r. Since we are working in characteristic zero, we conclude that
HTESI is birational. O

The next step is to study linear projections from the span of several osculating spaces. In particular, we
want to understand when such a projection is birational. First of all, note that the order of osculating spaces
can not exceed r — 2+ >_"_, k;. Furthermore, in order to carry out the computations, we need to consider just
the coordinates points of []._, G(k;,n) such that the corresponding linear subspaces are linearly independent
in C™*!, then we can use at most

) n+1
o= { - 1J

of them. Now, let us consider the points ey, ..., er, € [[;_; G(ki,n), where

L={Il={0,....,k1},....,IT ={0,...,k.}}
L={0={k-+1,.. ke +ki+1},..., 15 ={ko+1,... . k. + k + 1}}

(2.7) :
In={.., I\ ={(ks + D(a—1),..., (ks + D)(a—1) + k;},...}

Let s1,...,84 be integers such that 0 < s, < r —2+ Z;Zl k;. Denote the linear subspace (Tesll1 e ,Tjjz)
simply by Tj}l’;::jfg;m. Then, for m < « we have the linear projection

Hperem [Ti=, G(ki,n) --» PNerom

(Z71)sen = (Z7)Jeh | d(I1)>s1,esd(J,In) > 5m
Now, consider I1,..., I, as in @), and I} C I}, with [I/)| = s!, for each 1 <m < o and i = 1,...,r, where
st are non-negative integers. If I’ denotes the union J,_, I/}, then for each ¢ = 1,...,7 we have a linear
projection of P”
T o P __y PP Xm=15m

(zi)o<i<n +— (xi)ogign and i¢ I’
which in turns induces the following projection
i 2 G(ki,n)  --» G(ki,n—Y o0 _1sh)
Vv — <7TI/i (V))
(Z1)senr, = (Z1)seny, |anri=o
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whenever n — Y > k;. Finally, if n — >0

m=1 m
induce a projection

me1Sm = ki for each ¢ = 1,...,r, then the projections above

H::1HI”' : HZ:1G(kian) - Hz 1G(k/’u” Zm 13371)
Vi, V) = (I (Vh), .. e (V2)

Lemma 2.8. Let I1,...,I, be as in [277), m,s1,...,8m integers such that 1 < m < o and 0 < s; < r —
2430 ki. Now, consider I C If,..., I/} C I’ with |I”| = s, where s} is a non-negative integer for each
i=1,...;,rand 1 <j<m. Forj>mandi=1,...,r set I” :(7] CIZ Denote by I'* the union U] 1IJ” for

each i =1,...,7 and assume that
(i)an:J1 . > ki for eachi=1,...,7;

(ii)zzlj>sj+1f0reachj—1 ,m.

Then, the rational maps [],_; Upi and Iy, R are well-defined and the former factors through the latter.

,,,,,, ™

Proof. Note that I, s is well-defined if and only if {J € A |d(J, I1) > s1,...,d(J, L) > sm} # 0. From

,,,,,,

(i) we have that for each 1 <i<rtheset {0,...,n}\ ' has at least k; + 1 elements. Therefore, we have a set
J4C{0,...,n} \ I" of cardinality k; + 1 and taking J = {J!,...,J"} € A we have

d(1;,J) = Zd LI =) si=si+1>s;
i=1

for each 1 < j < m. Hence, HT:} ,,,,, sm is well-defined. Now, note that (i) yields that [];_; II: is well-defined.

..... Im

Furthermore, if J € A and J* NI = @ for all i = 1,...,7, then d(J, ;) > s1,...,d(J,I,) > 8y,. Thus, the

center of Mperom s contained in the center of []\_, Il . O
pe .
Proposition 2.9. Let I,...,Io—1 be as in (277) and s1,...,54—1 be integers such that 0 < s; < s=1r—2+
ZZ 1 ki. Then, the pm]ectzon I s e sa—1 1S birational.
Tery . er )

Proof. Fix m € {1,...,r}. Forany j =1,...,a — 1 consider I{™ C IJ" with |I}™| = ky, and I} = I} for i # m.
Set I = (J;2, I, then

— k.
and
(n—k.) nk, +n —nk, + k2 _ 2k, +1+k?

—(a—=Vkp>n— k, = L > = 2>k 1

n—(a=Dhn2n- T ko + 1 S i
Thus, our set of subsets I;" satisfies (i) in Lemma Furthermore, for each j =1,...,a —1

Z|l’l|_k + > (ki +1) _r—1+Zk—s+1
i#Em

Therefore, by Lemma there exists a rational map 7= that makes the following diagram commutative

IT7-1 Glkayn — Y2527 117)

Now, let @ =Tlr,« ...« ({Vi}i_;) be a general point in the image of Ilz, = .. = and X C [T;—; G(ki,n) be
1 -1 107 a—1

the fiber of Mz, L. over, Set xpm = mpm (2) and denote by Xpm C [[i_; G(k;, n) the fiber of [];_, I}

over xym. Therefore, X C ﬂ Xm where this intersection runs over all subsets I = U? 11 Ij’m with I’m C Im

Jrm

and |I}™| = kp,. In particular, if {W;}]_; € X is a general point, then we must have W, C (e; i € I"™; Vi)
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and hence W, C ﬂ(ei | i € I'"; V). Now, since |[/™| = k,, we have ﬂ(ei |i € I'") = 0 and then

I/m, I/TVL
Vin = ﬂ(ei |ieI'"™; V) which in turn yields W, = V,,,, for allm =1,...,r. O
I/m
Now, we want to understand what is the largest integer s’ for which oo is birational.
e, e

Proposition 2.10. Let I1,...,I, be as in (2.7) and s = r—2+>"._, k;. Consider s, = min{k;+1,n—a(k;+1)}
fori#r, s, =min{k,,n —ak, — 1}, and set s' =3 ;_, st —1 < s. Then,
i | is birational whenever a(k, +1) —1 <n < k2 + 3k, + 1;

eIy €ly_1¢Iq

- Tpsos . is birational whenever n > kf + 3k, + 1.
Proof. First, let us assume that s/ < k., that is n — ak, — 1 < k., or equivalently
(n+1)
k. +1

Now, fix a pair of indexes (I,m) € {1,...,a— 1} x {1,...,7} and consider subsets I} C I! with |I}'| = a;; for
eachi € {1,...,r} and j € {1,...a} such that

n—ak, <k.+1 & n-— kr <krd+1 e n<k®+3k +1

k; if i=m,j=lori=r j#l«a
S ki+1 if i=r+#m,j=101o0r i#£m,r or l #m,q;
AR A if j=a,i#m;

s,—1 if j=a,i=m.

Note that, since a(k, +1) —1 < n we have a;; > 0forall j € {1,...,a} and i € {1,...,r}. Moreover, if m # r
then

n—Z|I]’<m|:n—(a—Q)(km+1)—km—|I&m|2n—(a—1)(k3m—|—1)—(n—a(k:m—|—1)—1):kzm—i—2
j=1
andn—Z|IJ{T|:nf(ozfQ)kr—(errl)fHﬂ2n—(a—l)krfl—(n—akrfl):kr. If r = m we have
j=1

n=> [ =n—(a—=2k — (ke +1) = |I7| >n— (= Dk, — 1= (n— ok, —2) =k, + 1
j=1
Finally, for i # m,r we have
n—Z|I§i|:n—(a—l)(ki+1)—|lg|2n—(a—l)(kinLl)—(n—a(ki+1)):ki+1
j=1

This yields that (i) in Lemma 28lis satisfied by the sets I’'. Moreover, (ii) is satisfied as well. Then, by Lemma
2.8l there exists a rational map mrym m making the following diagram commutative

H:;l G(ki,n) --------- > ]P)Ng ,,,,, s

!
!
|
|
|
~ v

[izy Glkin = 3252, 7))

oo ({Vi}i=,1) be a general point in the image of IT, , .. s.r-1

1o ey _1¢Ia ery o Cly_1°%Ia

and X C []_, G(k;,n) be the fiber of I, o s over x. Set xpm pm = Tpm pm (z) and denote by

erys ery_1¢Ia

where I'" = (J]_, I}". Now, let z =TI

Xpm pm C [1i—y G(ki,n) the fiber of [;_; T+ over @pm pm. Therefore, X C ﬂ Xpm pm, where the
Il/m7IC/JTL

intersection runs over all pairs of sets I, and IJ" with |I]™*| = ky, and |IJ*| = s,, — 1, and for all pairs of

indexes (I,m) € {1,...,r} x {1,...,a — 1}. In particular, if {W;}/_; € X is a general point then for every

m € {1,...,r} we have W,,, C ﬂ (e |i € I'™; Vi), where the intersection runs over all pair of sets 1™ and

rmegr
Il 7Iam
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I™ with |I/™| = ky, and |IJ"| = s], — 1, and | € {1,...,a — 1}. Now, since |I]"*| = kp,, s), — 1 < ky, and
I €{l,...,a— 1}, we must have ﬂ {e;|i € I') = () and then V,, = ﬂ(ei |i e I'"™; V,,) which yields
™ om rm

Wpm=Vy,forallm=1,...,r.
Now, assume that n > k:?_ + k, + 1. In this case we have that

1 K +1) — Dk — (ky + 1
meak —15>po 0t ) -t Dk = (Bt 1)
k. +1 k. +1
and for ¢+ < r we have
(n+1) n—>Fk. _ k2+3k +1—k,
—alki+1) >n—alk) >n— Ky = > Or k1> k1
n-alki+ 1) zn=alk) zn = pmmke = 2 Fr t 1 e
Now, for each pair of indexes (I,m) € {1,...,a} x {1,...,r} we can consider subsets I} C I with |I}'| = a;;
for each i € {1,...,r} and j € {1,...a} such that
ke it i=m,j=lori=nr j#I
YGiT ki+1 if i=r#m,j=1or i£mr or #m.
Therefore, arguing as in the proof of the first claim we conclude that Ilps.-.s  is birational. 0

Iy T

2.10. Degenerating tangential projections to osculating projections. In this section we study how the
notion of osculating regularity introduced in [MRI9] behaves for products of Grassmannians. Let us recall
IMRI9, Definition 5.5, Assumption 5.2] and [AMR19, Definition 4.4].

Definition 2.11. Let X C P¥ be a projective variety. We say that X has m-osculating reqularity if the
following property holds: given general points pi,...,p, € X and an integer s > 0, there exists a smooth curve
C and morphisms v; : C — X, j = 2,...,m, such that v;(to) = p1, v7;(fs) = pj, and the flat limit Tp in the
Grassmannian of the family of linear spaces

T, = <T;l, S e ,T;m(t>>, te C\{to}

is contained in T;f“. We say that 7, ..., vm realize the m-osculating regularity of X for p1,...,pm.

We say that X has strong 2-osculating regularity if the following property holds: given general points p,q € X
and integers s1, o > 0, there exists a smooth curve v : C — X such that v(tg) = p, 7(tx) = ¢ and the flat limit
Ty in the Grassmannian of the family of linear spaces

T, = (T3, T30, ), t € C\{to}
is contained in T;1+32+1.

For a discussion on the notions of m-osculating regularity and strong 2-osculating regularity we refer to
[MRI9, Section 5] and [AMRI9] Section 4].

Proposition 2.12. The variety HLI G(ki,n) has strong 2-osculating regularity.

Proof. Let p,q € []._; G(ki,n) be general points. We may assume that p = e;, and ¢ = ey, with 1, I, as in
(20) and consider the degree r + ! k; rational normal curve given by

T

v(s :t) = [J(seo + tex,11) A+ A (sex, + tek, 1h,41)
=1

We work on the affine chart s = 1 and set t = (1 :¢) € P!. Now, consider the points
€, - - - ,en,eg =eg + ek +1,. .- ,e}ir = e, + tengJrl,e};Jrl = €k 41, - ,efl =e,
and, for each I = {1, ..., I"} € A, the corresponding points in et =el, ®el, @ ®éeh € T]_ G(k;, n) where,
setting I/ = {i1,...,4; }, ef; = efjl- A /\efi,'
J
Given integers s1, S > 0, let us consider the family of linear spaces
1
T, = (Tesjll,TeSj(t)>, t e P\ {0}

By Proposition we have
T, = {es | d(I1,J) < s1; €Y |d(Ia,J) < s2), t #0
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and
TSt — (er | d(Iy,J) < s 482+ 1) ={Z;=0]|d(I,J) > 51+ 52+ 1}

6[1

Now, let Ty be the flat limit of {7} };cp1\ {0}, we want to show that Ty C T;1+32+1. In order to do this it is enough

to exhibit, for each index I € A with d(I1,1) > s1 + s2 + 1, a hyperplane H; of type Z; +t Z fa®)Z;]1 =0
JAI
where f;(t) € C[t] for every J. We define, for each | > 0 and I = {I',... 1"} € A,

A1) = {{(Ij\Jj) U 4k + Dhejer | ) C P AT and S |7 = z} CA

Furthermore, for each [ > 0 we define
A(Ia _l) = {J | Ie A(Jal)}y

57 :x{?gm([,z) #0}€{0,...,> k;j+7}
sy :Igan{A(I,—l) #0} e {O,...,ij + 7}
ADT=aun= |J AU

0<l 0<i<s}
A~ =AU -n= |J AU -1
0<l1 0<i<sy
Now, let us write e} with d(I1,I) < sg, in the basis e; with J € A. For any I € A we have
eb = er+t Z sign(J)ey + - + 51 Z sign(J)ey
JEA(I,1) JEA(I,s])
n
St
= Z t Z sign(J)ey | = Z 2 Dsign(J)e .
1=0 JEA(,D) JeA()+

where sign(J) = +1. Note that sign(J) depends on J but not on I, then we can write e} = Z 1 De ;.
JeA(I)+
Therefore, we have

Tt<e1|d(h,1)§sl; > td<“’vf>eJ|d(11,I)§sz>

JeA(I)*
Finally, we define

A:={I: d(L,I) < s1}| U am*)ca
d([l,I)SSQ
Let I € A be an index such that d(I1,1) > s; +s2+ 1. If I ¢ A then T; C {Z; = 0} for any ¢ # 0 and we are
done.
Assume that I € A. For any e’ with non-zero coordinate Z; we have I € A(K)™, that is K € A(I)~. Now,
it is enough to find a hyperplane H; of type

F] = Z td(J’I)CJZJ =0
JeAa(I)-
with ¢; € C and ¢; # 0, and such that 7; C Hj for each ¢ 7 0. In the following, let us write s; ; = s. Now,

let us check what conditions we get by requiring 7y C {Fr = 0} for t # 0. Given K € A(I)~ we have that
d(I,K) < s;r( and

Fi(et) = Fy Z A E) g = Z 1D e, Z td(JK) e
JEA(K)+ JEA(I)~ JEA(K)+
_ td(J,I)er(.],K)CJ —  dIK) cy

JEA(I)~NA(K)+ JEA(I)~NA(K)+
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Therefore,
Fi(eh) =0Vt £0& > ;=0
JEA(D-NA(K)+
Note that this is a linear condition on the coefficients ¢, with J € A(I)~. Hence

(
=0 VK e A(
(

o F](eK) I)_ ﬂB[Il,Sl]
Lc{fp=0tfort#£0 < { Filet) =0 VK € A(I)~ 0 B[IL. 5]
(2.13) cie = 0 VK € A(I)~ N B[L, 1]

& > c;=0 VYK e A(I)" N B, s]
JeA(I)~-NA(K)+
where B[J,l] := {K € A|d(J,K) <1}. The number of conditions on the c¢; is then ¢ := |A(l)™ N B[I1, s1]| +
|A(T)~ N B[I4, s2]]-
The problem is now reduced to find a solution of the linear system given by the ¢ equations (ZI3) in the
|A(I)~| variables ¢j, J € A(I)~ such that ¢; # 0. Therefore, it is enough to find s + 1 complex numbers

cr =c¢o #0,c1,...,cs satisfying the following conditions
¢; =0 Vi=s...,d— 51
(2.14) AL

> 1AM NAE, Dlegrx)-m =0 YV K € AI)™ N B[, 51
m=0

where d = d(I1,I) > s1 + s2 + 1. Note that (2I4) can be written as

¢;j =0 Vi=s,...,d— 51
L
Z( )cmzo Viji=5...,d— 59
j—m
m=0
that is
cs =0 @)es + (Des—1 4+ (Zy)er+ (2o =0
(2.15) _ :
=0 d—so d—ss d—so d—so _
Cd—s1 = (“0) amse + (1) Camsam1 o (d—52—1)01 + (d—52)00 =0
Now, it is enough to show that the linear system (ZI5]) admits a solution with ¢g # 0. If, s < d — s9 then
the system (2.I5]) reduces to ¢s = -+ = ¢q—s; = 0 and then we can take ¢ = 1 and ¢; = -+ = ¢; = 0, since
d—s1>sy+1>1.
So, let us assume that s > d — s5. Since ¢ = -+ = ¢4—s, = 0 our problem is translated into checking that

the system (ZIH]) admits a solution involving the variables ¢q—s,—1,...,co with ¢y # 0. First of all, note that
the system (2I5]) can be rewritten as follows

(@) ca—si—1 + (g gy—0)) Cd=si—2 T+ (2 )er + (Jeo =0

. d—s d—s d—s d—s

(dfsgf(dfslfl))cd_sl_l + (d,SZ,(deI,Q))Cd—a—Q +oet (d752i1)01 + (dfsz)co =0
Thus, it is enough to check that the (s —d + s2 + 1) x (d — 51 — 1) matrix
(s—(d—ssl—l)) (s—(d—ssl—Q)) te (sil)
M = : : DU

d—s d—s d—s
(d*SQ*(dfslfl)) (d*Sz*(d*éSl*Q)) e (dfszil)

has maximal rank. Now, note that s < dand d > s;1 +s3+ 1 yield s —d+ss+1 < s—s; <d— s; and then
s—d+s2+1<d—s; —1. Therefore, we have to show that the (s —d 4 s + 1) X (s — d + s2 + 1) submatrix

(s—d—fsri-l) (S-;“"SZ) e (i)
M = . .
(i) (Laf2) o (59)

has non-zero determinant. Finally, since d — sa > s1 + 1 > 1 [GV85] Corollary 2] yields that det(M’) #£0. O

Proposition 2.16. Set a = U’JflJ . Then, the variety []._; G(k;,n) has a-osculating regularity.
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Proof. First of all, note that if &« = 2 then the statement follows form Proposition 2.121 Then we may assume
a > 3.

Let p1,...,pa € [i_; G(ki,n) be general points. We may assume that p; = ey, for j =1,..., . Each ey,
J > 2, is connected to ey, by the degree r + 2:21 k; rational normal curve defined by

T

(s 8) = [ [ (seo + teqr, 41)-1)) A=+ A (ser, + te(e, 41)(-1)4k,)
i=1
We work on the affine chart s = 1 and set ¢ = (1 : t). Now, given s > 0 we consider the family of linear

subspaces
Tt: <1_hS TSQ(i)""’T’ja(t)>’ tGPl\{O}

er; 0ty
Our goal is to show that the flat limit Ty of {Ti}sepr\ oy in G(dim(73), N) is contained in T25T. In order to
do this, let us consider the points

Jit _ Jt _ gt it
€05+ -3 Eny € = €0+ Le(k 1 1)(j—1)s -+ €. = Chp T EE(h41)j—15 €% 41 = Chptls- -+, €l = €n

and, foreach I = {I',... . I"} € Aand j = 2,..., q, the corresponding points in e]I-’t = e;’1t®e§§®~ . ~®e§’f e PV,
By Proposition we have

Tt: <el|d(117])Ss;e%t|d(ljﬂ1) SS,jZQ,-.-,OZ>, t#o

and
T2 = (ey | d(I1, J) < 25+ 1) = {Z; = 0| d(L1, ) > 25 + 1}

In order to show that Ty C T7°*!, it is enough to exhibit, for each index I € A with d(I;,I) > 2s+ 1, an
hyperplane H; of type Z; +t Z fi(t)Z; | =0 such that T, € {H; =0} for t # 0.

J£I
Foreach!>0,j=2,...,cand I = {I',... ,I"} € A we define

A(L1); = {{(Ik \ IR U+ (= Dk + Dhicper | JE C TP I and Y |74 = z} cA
where L + A = {i + A |i € L} is the translation of the set L by the integer \. For any [ > 0 we define
AL, -1); ={J|I€A(J1),}
s;jzrg%{Au;mj¢@}e{o““,§:kj+r}

;= Igé}g({A(I,—l)j #0} € {0,...,ij +r}
A = UA(I,l)j = U A(IL1),

St

)

0l oglgsfj
Ay =Jau,-n;= |J AU, -1,
0<i 0<I<sy
Note that for any [ we have
(2.17) JeA(,l); = d(J,I)=|l| and d(J,1) =d(I,I1)+1
We will write e} with d(I1,I) < s, in the basis e; with J € A. For any I € A we have
et = er +t Z sign(J)ey + -+ + e Z sign(J)es
JEA(I,1); JEA(IsT )
+
SI,j
= Z t! Z sign(J)ey | = Z 1 Dsign(J)ey.
1=0 JEA(ILL), JeAa(D)f

where sign(.J) = +1. Note that sign(.J) depends on .J but not on I, then we can write e* = Z 4 De ;.
JeADf
Therefore, we have

T, = <e1 LA, 1) <s; Y ¥ Desd(I, 1) <5, 2< 5 < a>
JeAD)F
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Finally we define

A={T:dn,n<stJl U Aadf|ca
d(I,,1)<s
2<j<a

Let I € A be an index such that d(Iy,1) > 2s+ 1. If I ¢ A, then T; C {Z; = 0} for any ¢ # 0 and we are done.
Now, assume that I € A. We will show that A(Kl);r1 ﬁA(Kg)}"2 = () whenever K1, Ky € A with d(Ky,1,),d(Ks, I5) <
s and 2 < j1,j2 < a with j; ;éjg
In fact, suppose that A(K1)), NA(K2)}, # 0, that is there exists I € A such that

I e A(Kl,ll)jl N A(KQ,ZQ)]‘Z for some ; and I

Now, consider the following sets

I = InL

It IN{K;+ (1 —1)(k-+1)}
I? IN{Ky+ (jo— 1)(ka + 1)}
o= I\(I°urtur?)

Since I € A(K1,11)j, N A(K2,l2)j, we have |I'| =1y and |I?| = l5. Set |I3| = u, then

aLh):h+b+u§h+b+ﬂu@gﬂﬂKLhy+ﬂKLh)g%
contradicting d(I;,I) > 2s + 1. Therefore we conclude that there is a unique j; for which
re | amj
d(I,1)<s
Now, let J € A such that d(J,I;) < sand I € A(J)jl. Note that
d(I, 1) —s(I);, <d(I,) —d(I,J)=d(J, 1) <s = s+1-D+s(l);, >0
where D = d(I,I;) > 2s+ 1. We define
() = > A(I,-1)j, CT

0<i<s+1—D+s(I )”

Our aim now is to find a hyperplane of the form

(2.18) Hy=S > t%Dc;2, =0
Jer(I)
such that T3 C H; and c; # 0. First, note that
(2.19) Jer( =J¢ |J AE)f
d(I,K)<s
2<j<a; j#Jr

In fact, suppose that J € A(I, —1);, NA(K,m);, for some K € A with d(K, 1) < s,and 0 < j < s+1-D+s(I);,
with j # jr. Then, since J € A(I,—1);, we have

Il =[INL|-1>s();, -1>D-k—-1>s
On the other hand, since J € A(K, m); with j # j; we have
[JNI,|=|KNIlj| <dK,L)<s
which is a contradiction. Now, note that if K € A is such that d(K,I;) < s and K € I'(I), then
d(K, L) =d(I,I;) —d(I,K)>2s+1—(s+1-D+s(I);) >s+D—s(l); >s
Thus (Z.19) yields that the hyperplane H; given by (Z.I8) is such that

<€K|d(Il,K)§S; Z td(J’K)€J|d(Il,K)§S,2§j§a;j7éj]>CH[,t7éO
JEA(K)T
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Therefore
T, CH, t#0 & < > 1B, d(1, K) < s> CH,t#0
JeA(K)jI
Now, arguing as in the proof of Proposition we get
(2.20) T, CH, t#0 < > c; =0, VK € A(I);, N B[I,s]
JeA(K)jI nr(I)
So, the problem is reduced to find a solution (c)ser(r) for the linear system (Z20) such that c; # 0. We set

cj = cq(1,7) and reduce, as in the proof of Proposition 212} to the linear system

s+1+D—s(I);,

(2.21) 3 <DD_1Z z) a, D—S(I);, <i<k
=0

We have s+2+ D —s(I);, variables co,...,c 1 p_

used in the last part of the proof of Proposition .12l shows that the linear system (Z2I)) admits a solution with
Co 75 0. O

s(I)T and s+1+D— s(I)j: equations. Finally, the argument
ar

3. ON SECANT DEFECTIVITY OF PRODUCTS OF (GRASSMANNIANS

Let X C PV be an irreducible non-degenerate variety of dimension n and let
(X)X x---xXxG(h—-1,N)

where h < N, be the closure of the graph of the rational map a: X x --- x X --» G(h — 1, N) taking h general
points to their linear span {(x1,...,2). Observe that I',(X) is irreducible and reduced of dimension hn.

Let g : T'p(X) — G(h — 1, N) be the natural projection, and S,(X) := m2(I'y (X)) C G(h —1,N). Again
Sh(X) is irreducible and reduced of dimension hn. Finally, consider

Ty = {(z,A) |z € A} C PV xG(h—1,N)

with natural projections m; and v, onto the factors.

The abstract h-secant variety is the irreducible variety Secy,(X) := (¢5) 71 (Sp(X)) C Zp. The h-secant variety
is Secy, (X) := 7, (Secy (X)) C PN, Then Secy,(X) is an (hn + h — 1)-dimensional variety.

The number 65(X) = min{hn + h — 1, N} — dim Sec; (X) is called the h-secant defect of X. We say that X
is h-defective if §,(X) > 0. We refer to [Rus03] for a comprehensive survey on the subject.

Determining secant defectivity is a classical problem in algebraic geometry. A new strategy to determine the
non secant defectivity was introduced in [MR19, Theorem 5.3], the method is based on degenerating the span
of several tangent spaces 13, X in a single osculating space 70, X.

To state the criterion for non secant defectivity in [MRI9] we introduce a function A, : N>g — N> counting
how many tangent spaces can be degenerated into a higher order osculating space.

Definition 3.1. Given an integer m > 0 we define a function
hm : N> — Nxo
as follows: for h,,(0) = 0 and for any k > 0 write
E+1=2%42% ... 42N 4¢
where A\; > Ay > ---> X\, > 1 and ¢ € {0,1}, then
ho(k) = mM~1 £ mAa=1 Nt

Theorem 3.2. [MR19, Theorem 5.3] Let X C PV be a projective variety having m-osculating regularity and
strong 2-osculating reqularity. Let sq,...,s, > 1 integers such that the general osculating projection I35t is
generically finite. If

!
h<Y  hun(s))
j=1
then X is not (h + 1)-defective.

Now, we are ready to prove our main result on non-defectivity of product of Grassmannians. We follow the
notation introduced in the previous sections.
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n+1
o= L{ . 1J
and let hy be as in Definition[31l. Assume that
- either n > k? + 3k, + 1 and h < aha(zzzl ki+r—2) or
-alky+1)—1<n<k?+3k-+1and h < (a—1ho(Xi_ ki+7r—2)+ hao(s)
where s =Y _._, si — 2 with s; = min{k; + 1,n — a(k; + 1)} for i # r and s, = min{k,,n — ak, — 1}. Then
IT;_, G(ki,n) is not (h + 1)-defective.

Theorem 3.3. Assume that n > 2k, + 1. Set

Proof. We have shown in Propositions 216, 212 that [];_, G(k;,n) has respectively a-osculating regularity for

,ZflJ , and strong 2-osculating regularity. The statement then follows immediately from Proposition 210l

and Theorem 0O

-]

n+1 ) [logo (30 kj+r—1)]

Corollary 3.4. The variety [[;_, G(k;,n) is not (h+ 1)-defective for h < (k 1

Proof. We may write

(3.5) D kidr—1=2M 420 4.2y
i=1

with Ay > Ag >---> X\ >1and € € {0,1}. Then ha(Z::1 ki+r—2)=aM" 4ot 4. oML

The first bound in Theorem B3] gives h < o + --- 4+ a*. Furthermore, considering just the first summand
in the second bound in Theorem B3 we get that [[,_, G(k;, n) is not (h + 1)-defective for h < (o —1)(a™ =1 +
akg—l + . + akl—l)-

Finally, from [B1) we get that Ay = |logy(r —1+ > k;)|. Hence, asymptotically we have ho (3" kj +1—2) ~

n-+1 [logy (32 kj+r—1)]

O[LlogZ(rflJrZ ki)J717 and by TheoremB:S] if h < <k/’ n 1)

(h + 1)-defective. O

then the variety []'_, G(k;,n) is not

4. ON SECANT DEFECTIVITY OF FLAG VARIETIES

Our goal is to compute the higher osculating spaces of F(ky,...,k;n). In order to do this, we will use the
following notion introduced in [FMRIS8], Definition 3.2].

Definition 4.1. Let X C PV be an irreducible variety and Y = P* N X be a linear section of X. We say that
Y is osculating well-behaved if for each smooth point p € Y we have

s _ mk s
Y =P"NT X
for every s > 0.

Let us denote by M; the following (k; + 1) x (n + 1) matrix

1
Dyt1 e " (@n)  0<i<hy
9 ki+1<m<n
U S (7 1) by +1<1<ks
Mi — ko+1<m<n
0 T Ty —; s (z;,m)kifﬁrlﬁlﬁki
ki+1<m<n

and consider the map
E Hlle cUt)(n—k)+35 5 (n—kj)(kj—kj—1) __, pN
(Ml,...,MT) — (H;A:l det(MJi))J:{J1,___7JT}eA

where M ;: is the submatrix obtained from M; by considering only the columns indexed by J°.
For each 2 < i < r and m < ki, let us take xlim = 0 in M;. Then ¢’ becomes the parametrization ¢ of

[T, G(ki,n) in 23).
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Now, set x}lym =], in M; foreachi=1,...,7r—1and 1 </ <m < n. Hence p becomes the parametrization
of F(k1,...,k;n) given by
7 ki) (n—k)+ 3 o (n—kj)(kj—kj—1) o P(Ty) C PN
MT — QO(M17---7MT)
where M, is the submatrix obtained from M, by considering only the first k; + 1 rows.

. i Lot T " Gk a|f|(‘0/
emma 4.2. Let TZ, (ITi=1 G(kisn)) == <8ZE|1|

respect to '. Then T3, (I[;=; G(ki,n)) = T* ([[;=, G(ki,n)) for every s <r+371_, ki. In particular,

0) 1] < s> be the s-osculating space of []._; G(k;,n) with

85(,0/ 0 a\J\(p
Oz~ Oy

(0)

for some J with |J| < |I].

. . i ) 8%y’ _ allly
Proof. First, note that if for any z;,,, € x| we have m > k;, then D (0) = omr (0) and we are done.

. . L. 111,/ ) )
Now, let 2 < ¢ < r and consider a derivative %z‘f‘ (0) such that xim € T with m < k;. Therefore, to

prove the statement it is enough to show that this partial derivative can be written in terms of another partial
17|

/
Z(0) with @, & @, m < k; and |J| < [1].

derivative
L1

Fix 2 <i < randlet @ s @, s Tl imig g o Llyym, € @1) sUch that mq < k; for every a = 1,..,h

and b < k; + 1.
b, 1
If 50 gxf —5-—(0) # 0 consider the minor M : of M; such that the monomial
ly,my lpomp " lpgp1,mp g Ly, my
Tiy,ma - Pl my, Pl magn - Tlyymy,
. . X . . l Z
appears in the expression of .det(MJI). Then, there exist variables T (U)o (masn)? 0 Lo ()0 yi (my) such
i . o o :

that ZEU )i mnan) T (U)o (ma) 1S also a monomial in det(M;), where o is a permutation on the

indexes such that o7 (mg) > k; for all h+1 <a <b.
This shows that

am(pl am(pl
i <0zt Oxt .- Ot (0)= ort or? ()
l1,m1 Inymp 2 g1, mpg ly,my 0 3i (lht1)50 yi(Mp41)’ 0 770 1 (1p),0 5i (Mmp)
We have thus decreased the number of variables with respect we differentiate and thus lowered the order of
the derivatives. Finally, since 6ff (0) = aif (0) for m > k; we are done. O
l,m l,m

Lemma 4.3. Since @ is a sub-parametrization of ©' by the chain rule we have

0°p
O =
8:L'|[| ( ) Zazuq Zaz|J|

s—

0 .
zfl (0) # 0 with |I| = s such that for each zj,, € x|1 we have that

where |K| = |I| = s and |J| < |I|. Let

S

0°p
||

m > k;. Then, in the above decomposition there is at least a vector (0) with |J] = s.
Proof. For any x}'m € z)7) let h(m) be the maximum index in {1,...,7} such that m > kj(,). Since for each

j,, € 7| we have that m > k; and 22(0) # 0, we get that any j,, € x|7| appears at most h(m) times in

amm
| 1)- -
Now, for any s < h(m), the chain rule expression of (afiiw)s(O) contains the factor
l,m
aS(p/ aS(p
h(m) (O) h(m) (0)
oz} ,,0x7, .07 oxj ,,0x7, .07,

Repeating this argument for all indexes z} € x| we conclude. g
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Proposition 4.4. The flag variety is osculating well-behaved, that is

T3F(ky, ... kein) = Ty [ [ G(ki,n) NP(T,)
i=1
for any p € F(kq,...,k-;n) and non-negative integer s.
Proof. We may assume that p = ey where I = {I',...,I"} and I' = {0,...,k} for each 1 <1 < r. Let us
first assume that s =+ Y77, k;. Note that s is the smallest integer for which T3 F(k1, ..., ky;n) = P(I';) and
T3 11—, G(ki,n) = PV, in this case TSF (k1. .., ky;n) = P(Ty) = P(T) NPN = P(T,) N T [T;_; G(ki, n) and
we are done. Now, assume s <r+ Y., k;. Let

B oy
(4.5) v=Y oy oz (0)

1]<s—1

be a general vector in T3~ [[;_; G(k;,n), and assume that
v e T3 [Ti_, G(ki,n) NP(Ta) C T3 TT;; G(ki,n) NP(Ly) = TiF(ky, ..., kpin)

this yields that v can be written as

oz Mz
(4.6) v = Z ﬂ|1|7am;‘i‘ (0) + Z ﬂ\f\a|1|zi| (0)

[T]<s—1 |I|=s

Now, recall that for any I such that there are variables zf,m € x|y with m < k; we can find another set J for
which |J| < |I]| and

aswl 0) = 8“”(,0 0

695‘1‘ al'u‘
Therefore, we can assume that any set I in the second summand of (L) is such that m > k; for any :I:fﬁm € xq)-
Thus, by Lemma 3] we will have an equality in (£3) and (&G) if and only if 3;; = 0 for any set I such that
m > k; for all € x;). Hence v € Ty 'F(ky, ..., kpin). O

4.6. Osculating Projections. Let si,...,s, be integers such that 0 < s, < r —2 + 2221 k;. Denote
T F(k1, ..., ky;n) simply by T5F and the linear subspace (TeSIllIF, o, T F) by T F. Then, for m < «

we have the linear projection

My o1 s smp Bk, oo kpyn) ——» PNoom

ery e €Im

Proposition 4.7. Let I1,...,1, be as in (27) and s =r —2+>_._, k;. Then,

- ILps,oos F s birational;
S er,
- HT:I’“"S 7 is birational whenever n > k2 + 3k, + 1.
o .

Proof. Since HT:}M,S . factors trough HT:}M,S ., Fsitis enough to show that the restriction of Ilps.....s
i er, S .

to F(kq,..., k) is birational.
For any i # r and 1 < j < a — 1 consider I]’-i = I]Z: and I} C I] of cardinality k.. Since n > 2k, 4+ 1 and
k, > k; we must have

a—1
n=>Y I}l = n—(a=Dki+1)=n— (0= Dk >k +1<ki+1
j=1

Now, let us denote by I'* the union U?;ll I ]” Then, by Lemma 2.8 there exists a rational map 7~ making the
following diagram commutative

T,
F(ki,...,kpsn) --------- > PNVL

!
!
|
|
|
A v

[Tizy Glkin = 325, [I7))
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Now, let = ({V;}i_,) be a general point in the image of HTs ,,,,, ., and X CF(ki,...,k;n) be the fiber of
a—1

HT:}M,S . over z. Set xy» = wpr(2) and denote by Xy C IF(kl, ..., kp;n) the fiber of [T;_, I over .
e,
Therefore, X C ﬂ X7, where the intersection runs over all sets I'" = (J;_ 11 I with I[7 C IT and |[I]7] = k,
Ir

forl<j<a-1.
Now, note that if {Wi}j_, € X is a general point, then we must have W; C (e, | m € Uj_, I} ; V;) for any
choice of J_, I}". Hence,

(4.8) wCﬂemmer.

I/'I‘
In particular, W, C ﬂ (em |m € U I Vi.). Now, since |I]"| < k, we must have ﬂ em |m € U Iy =0 and
I j=1 I j=1
then V, = ﬂ em |m € U ; Vi) which yields W, = V.
I/’V‘
a—1
Now, set i < r—1. Since {V;};ck is general in F(kq, ..., k.;n) and nfz |I]’-Z| > k.41 we have V,.N{e,, |m €
J=1

Uj—1 I;) = 0. On the other hand W; C W, = V. for all i <r — 1, then W; N (e, | m € Jj_, I}) = 0. Hence, by
[#8) we must have W; =V, for any i <r — 1.
Now, assume that n > k2 + 3k, + 1 then

1 1) — 1
n—oalk+1)>n—ak, > (n + )k _ nlkr +1) = (n+ Dhr

_kr+12T_ k.41
n—ky _ K243k +1—k

— > Fr — k41
et 1= kol *

Then, arguing as in the proof of the first case, for any choice of subsets Ij’»i C I;, I]'?' = I} with 4 # r and
1 <j<a-1,1I C I of cardinality k. we get, by Lemma 2.8 a rational map 77~ making the following
diagram commutative

F(ki, ... kpin) ----—---- » PN
~ o |
BN l
~ | 7TI/’V
[Tiz: Oy AN I
-, G(ku n— 3252 117)
where I = U 1 I]”, 1 =1,...,r. Now, to conclude it is enough to follow the same argument used in the end
of the proof of the first cla1m O

4.8. Non-Secant defectivity of flag varieties. We recall [FMR18, Proposition 4.4] which describes how the
notion of osculating regularity behaves under linear sections.

Proposition 4.9. Let X C PV be an irreducible projective variety and Y = P* N X a linear section of X
that is osculating well-behaved. Assume that given general points p1,...,pm € Y one can find smooth curves
vt C = X,j=2,...,m, realizing the m-osculating regularity of X for p1,...,pm such that v;(C) C Y. Then
Y has m-osculating reqularity as well. Furthermore, the analogous statement for strong 2-osculating reqularity
holds as well.

Proposition 4.10. The flag variety F(kq,. .., k-;n) has strong 2-osculating regularity and a-osculating regu-

larity, where o := ngﬁ}lJ )

Proof. The statement follows immediately from Propositions 2.12, .16 [4.9] O
Now, we are ready to prove our main result on non-defectivity of flags varieties.

Theorem 4.11. Assume that n > 2k, + 1. Set

n+1
o=
k.+1
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and let hy, be as in Definition 31l If either
-n>k:2+3k-+1and h < ahy(3kj+7r—2) or
-n<k+3k.-+1andh<(a—1)h(> kj+r—2).
Then, F(ki,...,k.;n) is not (h + 1)-defective. In particular, if

n+1 [logy (3= kj+r—1)]
h <
“ \k-+1

then F(ki,...,kr;n) is not (h + 1)-defective.

Proof. The first part is an immediately consequence of Propositions [£9 L7 and Theorem For the last
claim note that if we write

(4.12) S hitr—1=2M42%2 4. 42N 4.
with Ay > Ag >---> X\ > 1and € € {0,1}. Then
ha(z ki+r—2)= oMol 4 it
Therefore, the first bound in Theorem [A.17] yields
h<a™+a*+... ot
Furthermore, by the second bound in Theorem ETT] we get that F(kq,...,k.;n) is not (h + 1)-defective for
h<(a—1M ! 4o ... pah )

Finally, by (£12]) we get that Ay = [log,(D_ k; + 7 — 1)]. Hence, asymptotically we have ho(> kj +7—2) ~
ot 1 ) [108a(5 ky+r—1)

kr+1

alleg2 (ki +r=1] " and by Theorem BT for h < allos2(Cki+r—1] < ( the flag variety

F(ki,...,kr;n) is not (h + 1)-defective.
Remark 4.13. Now, given a flag F(k1, ..., k,;n) with n < 2k, + 1. Assume that n > 2k; + 1 for some index j
and let [ be the maximum among these j’s. Then we have a natural projection

7 F(ki,...,ksn) — Flky,..., k;n)
{Viti=1,..r — {Vili=1,.u

The fiber of 7 over a general point in F(ky, ..., k;;n) is isomorphic to F(kjy1 —ki—1,... k. —ki—L;n—k —1).
Now let p1,...,pn € F(k1, ..., ki;n) be general points, and T}, F(kq, ..., k;;n) be the tangent space at p;. Then,
we have

Tﬂpfl(pi)IF(kl, .. .,kr;n) = <TpiIF(k1, .. .,kl;n),Tﬂ—l(pi)F(kl+1 — kl, ey kr — kl;n - kl)>
and TpiF(/{Zl, ey kl;n) N Tﬂ‘*l(pi)F(kl-‘rl — ki ke —kiyn — kl) = 0.
Now, observe that if Ty—1¢, \F(k1, ..., kr;n) N Tre1py\F(k1, ... krin) # 0 then
dim <T,r71(p].)IF(k1, conkem)s =1, .,h> < hdimF(ky,...,ksn)+h—2
Since Tr—1(pF(kiy1 — ki —1,..., k. — ki — 1;m — ky — 1) is contracted by « for any j = 1,...,h we have that
dimn(T) < hdimF(ky,...,k;n)+h—2—hdimF(ki1 — ki, ... ke —ki;n—kp)
= hdimF(ky,...,k;n)+h—2

where T' = <T,r71(pi)F(k:1, cokmn)si=1,... ,h>.
In particular, by Terracini’s lemma [Ter12] we have that if F(kq, ..., ki;n) is not h-defective, then F(kq, ..., k.;n)
is not h-defective.

Theorem 4.14. Consider a flag variety F(k1,. .., ky;n) with n < 2k, + 1. Assume that n > 2k; + 1 for some
index j and let | be the mazimum among these j’s. Then, for

n 1\ loga(Zjmy ky+i-1)]
h <
N (kl + 1)

F(ki,...,kr;n) is not (h + 1)-defective.
Proof. Tt is an immediate consequence of Theorem 11l and Remark [£.13] |
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4.14. On identifiability of products of Grassmannians and flag varieties. Let X C PV be an irreducible
non-degenerated variety. A point p € PV is said to be h-identifiable, with respect to X, if it lies on a unique
(h — 1)-plane h-secant to X. Furthermore, X is said to be h-identifiable if a general point of Secy(X) is
h-identifiable.

Now, we combine our bounds on non-secant defectivity of products of Grassmannians and flag varieties and
[CM19, Theorem 3] to get the following.

Corollary 4.15. Consider the product of Grassmannians [[,_; G(k;,n). Assume that 2[[;_, (ki +1)(n—k;) —
g1 | Hogz (X kitr—1)] - , , , g1 | Hogz (X kitr=—1)]
1< (kTJrl) . Then, [[;_; G(k;i,n) is h-identifiable for h < (kTJrl) .
Furthermore, let us suppose that n > 2k; 4+ 1 for some index j and consider | the mazimum among these j’s.

' llog, (35—, kj+1—1)]
Assume that 2((k1Jrl)(nfkl)JrZ;:Q(nfkj)(kj7]%_71))71 < (1?1111) 1 ki
) loga (5 ky-+i-1)]

. Then F(ky, ..., kr;n)

is h-identifiable for h < (,;3—111

Proof. Tt is enough to apply Corollary B.4] Theorem [£14 and [CM19, Theorem 3]. |

5. ON THE CHORDAL VARIETY OF F(0, k;n)
In this section we consider particularly flag varieties parametrizing chains of type p € H* c P".

Proposition 5.1. Let us consider the flag variety F(0,k;n) C P(I') € PV, where 0 < k < n. Then,
SecoF(0, k;n) has always the expected dimension except when k = n— 1, in this case F(0,n — 1;n) is 2-defective
with 2-defect d2(F(0,n — 1;n)) = 1.

Proof. Let p,q € F(0, k;n) be two general points, without lose the generality we can assume that p = €0,{0,....k} =
€0,I, and q = €n {n—k,.,n} = €n,I-

Now, Proposition 4] yields that

Teo 1, F(0,k5m) = (e |d((3,1),(0,1p)) < 1) NP(T)
and

Te,  F(0,k;n) = (eir|d((i,1),(n, I,)) < 1) NP(T)
Note that d((4,1),(0,Iy)) = 1 if and only if either ¢ # 0 and I = Iy or ¢ = 0 and |I N Iy| = k. Similarly,
d((i,I),(n,I;)) =1 if and only if either ¢ #n and I = I or i = n and |I N I;| = k. Therefore, since n # 0 and
Iy # Iy we have that e; ; € {e; 1| d((3,1),(0,10)) <1} N{eir|d((i,I),(n,I1)) <1} if and only if either I = Iy
andi=norI=1; and i = 0.

Now, assume that I = Iy and i = n, this is ;1 € Te,,, F(0,k;n) N T, ; F(0,k;n), in particular we have
[INI| = |IpNIi| =k and hence {1,...,k} C I; once 0 ¢ I;. So we must have k = n — 1. Similarly, if
I =11 and i = 0 we conclude that £k =n — 1.

Therefore, if kK <n —1, we get

{eir [d((i,1),(0,1o)) < 1} n{eir [ d((i, 1), (n, 1)) <1} =0
and hence
{eir|d((i,1),(0,10)) < 1} N{ess [d((i,1), (n, [1)) < 1} NPI) =0
which implies that
dim (T, , F(0, k;n), Te, ; F(0,k;n)) = 2dim F(0, ks n) 4 1
So, Terracini’s lemma [Ter12] yields that SecoF(0, k;n) has the expected dimension whenever k < n — 1.
Now, assume that k =n — 1. In this case we have
{eir 1d((i,1),(0,1o)) <1} N{eir|d((i, 1), (n, 1)) <1} ={eo (1,...n}>€n,{0,...n—1} }
Furthermore, F(0,n — 1;n) is the hypersurface cutting out in P™ x P™* by

n

Y (1) Zi gy =0

i=0
where I, = {0,...,n}.
Therefore, we get that Te, , F(0,n — 1;n) = (e; r | d((i, 1), (0, Ip)) < 1) NP(T') is given by

n41 . . . 0,{1,...,71}
(et + 0 0oy 0 |G D. 0. 0) < Tamd 17 2 { o)
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and T, , F(0,n —1;n) = (e; 1 [ d((i,I), (n, 1)) < 1) NP(T) is given by

n . . 0, 1, 1
<607{1,...,n} + (_1) +1en,{0,...,n71} y €41 | d((la I)a (TL, Il)) S 1 and 2, I 7é { n,JJ((:l’ . .,TL}* 1} >
Therefore,

dim <Teo,lo

F(0,n —1;n),T,

€n, Iq

F(0,n —1;n)) = 2dimF(0,n — 1;n) < expdim SecsF(0,n — 1;n)

Finally, since expdim SecoF(0,k;n) = 2dimF(0,n — 1;n) + 1 we have that F(0,n — 1,n) is 2-defective with
2-defect 02(F(0,n — 1;n)) = 1. O
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