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Abstract In this survey we report some recent results in the mathematical modeling
of epidemic phenomena through the use of kinetic equations. We initially consider
models of interaction between agents in which social characteristics play a key role
in the spread of an epidemic, such as the age of individuals, the number of social
contacts, and their economic wealth. Subsequently, for such models, we discuss the
possibility of containing the epidemic through an appropriate optimal control for-
mulation based on the policy maker’s perception of the progress of the epidemic.
The role of uncertainty in the data is also discussed and addressed. Finally, the
kinetic modeling is extended to spatially dependent settings using multiscale trans-
port models that can characterize the impact of movement dynamics on epidemic
advancement on both one-dimensional networks and realistic two-dimensional geo-
graphic settings.

1 Introduction

The recent COVID-19 pandemic has brought mathematical models in epidemiology
to unprecedented scientific exposure. Several research groups in all parts of the
planet have ventured into the construction and use of mathematical models capable
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of correctly describing the progress of the epidemic. Such predictive mathematical
models are considered critical to understanding the course of the epidemic and
planning effective control strategies. Most of the proposed models stem from the
compartmental approach originally proposed by Kermack and McKendrick [65,78],
i.e., the classic SIR model based on partitioning the population into susceptible,
infected, and recovered.
In compartmental models, the population is divided into groups, where each

group or compartment represents a stage of progression in the individual’s disease
or health. The resulting mathematical model is typically based on a deterministic
system of ordinary differential equations (ODEs) that characterizes the transition
rates from one compartment to another. The choice of which compartments to
include in a model depends on the characteristics of the particular disease being
modeled and the purpose of the model. Recently, numerous extensions of the SIR
compartmentalization have been proposed to deal with the specificity of SARS-CoV-
2 infection. Such generalizations involve additional compartments to better fit the
available experimental data in order to improve the description of disease progression
and epidemic characteristics [28, 59, 77, 85, 97, 98, 112].
Most of these models describe the temporal evolution of the epidemic spread

only in terms of the average numerical density of individuals in each compartment,
thus neglecting other relevant structural properties of individuals, such as their age,
wealth status, social contacts, and spatial movements, in favor of an assumption
of population and territorial homogeneity. Structured epidemic models have been
considered by various authors, especially in connection with age dependence, and
are a classical topic in mathematical epidemiology [65, 69]. The evolution of these
structural quantities, however, is seldom accounted, except for birth and death rates
in the context of age-dependent models.
On the other hand, kinetic models characterized by systems of partial differen-

tial equations (PDEs), recently introduced and studied in the social sciences, have
shown the ability to accurately describe complex social phenomena such as opinion
formation among individuals, the creation of wealth distributions, the emergence
of contacts on social networks [7, 36, 55, 58, 63]. See for instance the recent mono-
graphs and collections [92, 96]. Similarly, the use of kinetic theory has proven to
be very useful in designing feedback controlled models in various fields of social
sciences [3,4,48] and in modeling the movement dynamics of individuals at different
scales [2, 11, 14, 33, 108].
In addition, available experimental data are often affected by large uncertainty,

which must therefore be considered as part of the process of modeling the infectious
disease and simulating the potential epidemic scenarios and control strategies [29,
34, 106]. A large amount of research in this direction has been recently carried out
in the field of hyperbolic and kinetic equations and it is therefore natural to rely
on this scientific background to design new models and numerical methods able to
deal efficiently with the presence of uncertain data [19,71,72,95,101,122]. We also
mention some other related research based on modeling the diffusion of COVID-
19 using PDEs. Specifically, the multiscale approach in [15], the age- and space-
structured model in [35], and the space-dependent models in [62, 107, 115, 116].
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In this survey, we will address these issues in light of a number of recent results
in the area of epidemiological modeling using kinetic equations with a focus on
applications to the COVID-19 pandemic. More precisely, our presentation is or-
ganized into three parts according to the topics covered. In the first part we will
focus on the interplay between the evolution of the pandemic and the presence of a
social characteristic capable of significantly influencing its behavior and/or that is
itself influenced by the pandemic. In the specific case we will consider the influence
of the distribution of contacts [44, 124, 125] and the distribution of wealth among
individuals [43].
Next, in the second part our attention will shift to the importance of possible

control actions aimed at containing the pandemic [10, 77]. In this case it is of
fundamental importance to take into account in the modeling phase any uncertain
data that can significantly change the epidemic scenarios. A particularly significant
problem we will address is that of control actions through containment measures
based on different age-dependent social interaction functions, e.g., at home, at work
or at leisure. Results for various countries affected by the pandemic will illustrate
the effectiveness of the proposed methodology [8, 9, 46].
The last part of this survey is devoted to the challenging case of evaluating

the impact of an infectious disease at a spatial level, including small scale urban
dynamics and large scale regional dynamics. The inclusion of the spatial component
in epidemiological systems is indeed crucial especially when there is a need to
consider spatially heterogeneous interventions, as was and still is the case for the
control of the spread of COVID-19 [39, 99, 105]. These problems will be addressed
both in the case of dynamics on networks connecting different cities [21], and in the
case of completely two-dimensional dynamics at regional level [23]. Applications
of these models to the early stages of the COVID-19 pandemic in Italy will also be
illustrated [18,20]. Some open issues and future developments are also discussed at
the end of this review along with detailed references to the data sources used in the
simulations.

2 Kinetic modelling of social heterogeneity in epidemic dynamics

We discuss in this first part an enhancement of the classical compartmental descrip-
tion of epidemic spread that takes into account statistical aspects of the social behav-
ior of individuals [43,44,124,125]. The approach has its roots in the kinetic theory
of socio-economic modelling through interacting agents (see the monograph [96]
for further details). This permits to correlate the social behavior of agents with the
dynamics of infection.
For simplicity we will develop our arguments for the simple SIR model where

the entire population is divided into three classes: susceptible (S), infected (I) and
recovered (R) individuals. It should be noted, however, that the ideas developed in
this section can be extended to more complex compartmental epidemic models like
the ones considered in [25, 28, 41, 57, 59]. See also Section 3 and 4 of the present
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survey for some generalizations to more realistic compartmental models including
the effects of asymptomatic individuals.
Under a homogeneous mixing assumption the time evolution of the SIR model

reads

𝑑𝑆(𝑡)
𝑑𝑡

= −𝛽𝑆(𝑡)𝐼 (𝑡),

𝑑𝐼 (𝑡)
𝑑𝑡

= 𝛽𝑆(𝑡)𝐼 (𝑡) − 𝛾𝐼 (𝑡)

𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾𝐼 (𝑡),

(1)

where 𝛽 is the average number of contacts per person per time, multiplied by the
probability of disease transmission in a contact between a susceptible and an infec-
tious person, and 𝛾 is the transition rate of infected to the recovered compartment.
In this situation, it can be shown that the dynamics of the infectious class depends
on the ratio 𝑅0 = 𝛽/𝛾, the so-called basic reproduction number. In this case, it is
known that 𝐼 (𝑡) → 0, while 𝑆(𝑡) → 𝑆∞ ∈ [0, 𝛾/𝛽] solution of

𝐼 (0) + 𝑆(0) − 𝑆∞ + 𝛾
𝛽
log

(
𝑆∞

𝑆(0)

)
= 0.

We refer to [65] for an introduction on compartmental modelling in epidemiology.
The heterogeneity of the social structure, which impacts the diffusion of the

infective disease, is characterized by the variable 𝑤 ∈ R+, characterizing its social
state and whose components summarize, for example, the age of the individual, its
number of social connections or its economic status [64, 65]. For a large system of
interacting individuals in a structured population its statistical description is obtained
through the introduction of the distribution functions 𝑓𝐽 (𝑤, 𝑡), 𝑡 ≥ 0, denoting the
probability of having an individual with the social characteristic 𝑤 in the class 𝐽,
where 𝐽 ∈ {𝑆, 𝐼, 𝑅} and such that

𝑓𝑆 (𝑤, 𝑡) + 𝑓𝐼 (𝑤, 𝑡) + 𝑓𝑅 (𝑤, 𝑡) = 𝑓 (𝑤, 𝑡),
∫
R+

𝑓 (𝑤, 𝑡)𝑑𝑤 = 1. (2)

As a consequence, the quantities

𝑆(𝑡) =
∫
R+
𝑓𝑆 (𝑤, 𝑡) 𝑑𝑤, 𝐼 (𝑡) =

∫
R+
𝑓𝐼 (𝑤, 𝑡) 𝑑𝑤, 𝑅(𝑡) =

∫
R+
𝑓𝑅 (𝑤, 𝑡) 𝑑𝑤, (3)

denote the fractions of susceptible, infected and recovered subjects. In the above
setting, the time evolution of the functions 𝑓𝐽 (𝑤, 𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅}, is obtained by
supplementing the epidemiological partitioning in (1) with the dynamics originating
the formation of social heterogeneity by local interactions. Following [43, 96] this
merging results in the system
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𝜕 𝑓𝑆 (𝑤, 𝑡)
𝜕𝑡

= −𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) + Q𝑆 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅) (𝑤, 𝑡),

𝜕 𝑓𝐼 (𝑤, 𝑡)
𝜕𝑡

= 𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) − 𝛾(𝑤) 𝑓𝐼 (𝑤, 𝑡) + Q𝐼 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅) (𝑤, 𝑡)

𝜕 𝑓𝑅 (𝑤, 𝑡)
𝜕𝑡

= 𝛾(𝑤) 𝑓𝐼 (𝑤, 𝑡) + Q𝑅 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅) (𝑤, 𝑡)

(4)

where
𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) = 𝑓𝑆 (𝑤, 𝑡)

∫
R+

𝛽(𝑣, 𝑤) 𝑓𝐼 (𝑣, 𝑡)𝑑𝑣, (5)

represents a nonlinear incidence rate characterized by the number of contacts 𝛽(𝑣, 𝑤)
between an infectious individual with social characteristic 𝑣 and a susceptible indi-
vidual with social characteristic 𝑤, while 𝛾(𝑤) defines the transition to the recovered
compartment of infectious individuals with social feature 𝑤. In (4) the operators
Q𝐽 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅), 𝐽 in {𝑆, 𝐼, 𝑅} describe the evolution of social traits by interactions
among agents in the various compartments and the formation of the corresponding
equilibrium distributions 𝑓𝐽 (𝑤)∞, 𝐽 ∈ {𝑆, 𝐼, 𝑅} such that

Q𝐽 ( 𝑓∞𝑆 ; 𝑓
∞
𝐼 ; 𝑓

∞
𝑅 ) (𝑤) = 0, 𝐽 ∈ {𝑆, 𝐼, 𝑅}. (6)

Note that, when the epidemic parameters are independent of the social feature, i.e.,
𝛽(·, ·) = 𝛽 and 𝛾(·) = 𝛾, thanks to conservation of the number of individuals in each
compartment during the evolution of social traits, by direct integration of (4) against
𝑤 the mass densities (3) satisfy the classical SIR model (1).
The explicit computation of the equilibrium solutions of (6) is extremely dif-

ficult in general, as it depends strongly on the evolution dynamics of the specific
social feature under consideration. Knowledge of such equilibrium solutions, how-
ever, is of paramount importance to gain some understanding of the dynamics and
derive simplified reduced-order models. In the following, we will describe in more
details the case of social heterogeneity based on the formation of suitable con-
tact distributions [44] and the impact of the epidemic on the wealth distribution of
individuals [43].

2.1 Modelling contact heterogeneity

Let us first consider a kinetic system which suitably describes the spreading of an
infectious disease under the dependence of the contagiousness parameters on the
number of social contacts of the agents. Aiming to understand social contacts effects
on the dynamics, we will not consider in the sequel the role of other sources of
possible heterogeneity in the disease parameters (such as the personal susceptibility
to a given disease), which could be derived from the classical epidemiological
models, suitably adjusted to account for new information [40, 94, 118]. Therefore,
we denote by 𝑓𝑆 (𝑤, 𝑡), 𝑓𝐼 (𝑤, 𝑡) and 𝑓𝑅 (𝑤, 𝑡), the distributions at time 𝑡 > 0 of the



6 G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G. Toscani, M. Zanella

number of social contacts of the population of susceptible, infected and recovered
individuals.
For a given constant 𝛼 > 0 we denote with 𝑚𝐽,𝛼 (𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅} the local

moments of order 𝛼 for the distributions of the number of contacts in each class
conveniently divided by the mass of the class

𝑚𝐽,𝛼 (𝑡) =
1
𝐽 (𝑡)

∫
R+
𝑤𝛼 𝑓𝐽 (𝑤, 𝑡) 𝑑𝑤, 𝐽 ∈ {𝑆, 𝐼, 𝑅}. (7)

Unambiguously, we will indicate the local mean values, corresponding to 𝛼 = 1, by
𝑚𝐽 (𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅}.
In what follows, we assume that the various classes in the model act differently in

the social process constituting the contact dynamics. Specifically, we will consider
𝛾(𝑤) ≡ 𝛾 > 0 and the contact function 𝛽(𝑣, 𝑤) as a nonnegative increasing function
with respect to the number of contacts 𝑣 and𝑤 of infected and susceptible individuals,
respectively. The choice

𝛽(𝑣, 𝑤) = 𝛽𝑣𝛼𝑤𝛼, (8)

with constant 𝛼, 𝛽 > 0 corresponds to consider an incidence rate dependent on the
product of the number of social contacts.

2.1.1 Kinetic model for contact formation

To define the dynamics of contacts, we can exploit the results of [45, 61, 96, 113]
to obtain a mathematical formulation of the formation of social contacts. In full
generality, we assume that individuals in different compartments can have a different
mean number of contacts. Then, the microscopic updates of social contacts from 𝑤
to 𝑤′

𝐽
of individuals in the class 𝐽 ∈ {𝑆, 𝐼, 𝑅} will be taken of the form

𝑤′
𝐽 = 𝑤 −Φ𝜀

𝛿 (𝑤/𝑚𝐽 )𝑤 + 𝜂𝜀𝑤, 𝐽 ∈ {𝑆, 𝐼, 𝑅}, (9)

where for compactness and simplicity of notation we used the subscript 𝐽 on the
different compartments and kept implicit the dependence on 𝜀 in 𝑤′

𝐽
.

In a single update (interaction), the number 𝑤 of contacts can be modified for two
reasons, expressed by two terms, both proportional to the value 𝑤. In the first one,
the function Φ𝜀

𝛿
(·), which takes both positive and negative values, characterizes the

typical and predictable variation of the social contacts of agents, namely the personal
social behavior of agents. The quantity 𝜂𝜀 is a random variable of zero mean and
bounded variance of order 𝜀 > 0, expressed by 〈𝜂𝜀〉 = 0, 〈𝜂2𝜀〉 = 𝜀𝜎2, where 〈·〉
denotes the expectation. Furthermore, we assume that 𝜂𝜀 has finite moments up to
order three.
The function Φ𝜀

𝛿
plays the role of the value function in the prospect theory of

Kahneman and Tversky [75,76]. See also [36,66,67,96] for a related use of the value
function in the dynamics of investment propensity. The main hypothesis on which
this function is built is that, in relationship with the mean value 𝑤𝐽 , 𝐽 ∈ {𝑆, 𝐼, 𝑅}, it
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is considered normally easier to increase the value of 𝑤 (individuals look for larger
networks) than to decrease it (people maintain as much connections as possible).
In terms of the variable 𝑠 = 𝑤/𝑚𝐽 we consider then as in [45] the class of value
functions obeying to the above general rule given by

Φ𝜀
𝛿 (𝑠) = 𝜆

𝑒𝜀 (𝑠
𝛿−1)/𝛿 − 1

𝑒𝜀 (𝑠𝛿−1)/𝛿 + 1
, 𝑠 ≥ 0, (10)

where the value 𝜆 denotes the maximal amount of variation of 𝑤 that agents will be
able to obtain in a single interaction

−𝜆 ≤ Φ𝜀
𝛿 (𝑠) ≤ 𝜆,

so that the choice 𝜆 < 1 implies that, in absence of randomness, the value of 𝑤′
𝐽

remains positive if𝑤 is positive. In (10) the parameter 0 < 𝛿 ≤ 1 is a suitable constant
characterizing the intensity of the individual behavior, while 𝜀 > 0 is related to the
intensity of the interaction. We observe that 𝜀 � 1 corresponds to small variations
of the expected difference 〈𝑤′

𝐽
− 𝑤〉.

Thus, for a given density 𝑓𝐽 (𝑤, 𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅}, the operatorsQ𝐽 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅) (𝑤, 𝑡)
on the right hand side of (4) have a linear structure, depending only on compart-
ment 𝐽, characterized by the microscopic interaction (9). Denoting by 𝑄𝜀

𝐽
( 𝑓𝐽 ) =

Q𝐽 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅), the interaction terms can be conveniently written in weak form by
integration against a smooth function 𝜑(𝑤) as [32, 96]∫

R+

𝜑(𝑤)𝑄𝜀
𝐽 ( 𝑓𝐽 ) (𝑤, 𝑡) 𝑑𝑤 =

〈 ∫
R+

𝐵(𝑤)
(
𝜑(𝑤′

𝐽 ) − 𝜑(𝑤)
)
𝑓𝐽 (𝑤, 𝑡) 𝑑𝑤

〉
. (11)

The above operators quantify the variation in density, at a given time, of individuals
in the class 𝐽 ∈ {𝑆, 𝐼, 𝑅} that modify their value from 𝑤 to 𝑤′

𝐽
(r.h.s with negative

sign) and agents that change their value from 𝑤′
𝐽
to 𝑤 (r.h.s. with positive sign).

Here, the expectation 〈·〉 takes into account the presence of the random parameter 𝜂𝜀
in the microscopic interaction (9) while the function 𝐵(𝑤) measures the interaction
frequency. For example, the choice 𝐵(𝑤) = 1/𝑤, which will be used in the sequel,
assigns a low probability to interactions where individuals already have a large
number of contacts and assigns a high probability to contact transitions when the
value of the variable 𝑤 is small.

2.1.2 Quasi-invariant scaling and steady states

Let us focus on the dynamics of social contacts alone in (4), namely by ignoring the
epidemiological terms, and scale time as 𝑡 → 𝑡/𝜀, in accordance with the parameter
𝜀 that measures the intensity of changes in the number of contacts defined by (9).
Thus, small values of 𝜀 correspond to the case in which elementary interactions
(9) produce minimal modification of the number of social contacts and at the same
time their frequency increases like 1/𝜀. This scaling is usually referred to as quasi-
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invariant scaling in kinetic socio-economic modelling [96]. A general view about
this asymptotic passage from kinetic equations based on general interactions towards
Fokker–Planck type equations can be found in [54].
Then, as a result of the scaling, the distribution 𝑓𝐽 , 𝐽 ∈ {𝑆, 𝐼, 𝑅} is solution of

the following problem in weak form

𝑑

𝑑𝑡

∫
R+

𝜑(𝑤) 𝑓𝐽 (𝑤, 𝑡)𝑑𝑤 =
1
𝜀

∫
R+

𝜑(𝑤)𝑄𝜀
𝐽 ( 𝑓𝐽 ) (𝑤, 𝑡) 𝑑𝑤

=
1
𝜀

〈 ∫
R+

𝐵(𝑤)
(
𝜑(𝑤′

𝐽 ) − 𝜑(𝑤)
)
𝑓𝐽 (𝑤, 𝑡) 𝑑𝑤

〉
.

(12)

Now, let us concentrate on the analysis of the asymptotic states of the social contact
dynamics when 𝜀 → 0. To this aim, note that, from the definition of Φ𝜀

𝛿
in (10) and

the assumptions on the noise term 𝜂𝜀 we have

lim
𝜀→0

1
𝜀
Φ𝜀

𝛿

(
𝑤

𝑚𝐽

)
=
𝜆

2𝛿

[(
𝑤

𝑚𝐽

) 𝛿
− 1

]
, lim

𝜀→0

1
𝜀
〈𝜂2𝜀〉 = 𝜎2. (13)

We can Taylor expand 𝜙(𝑤′
𝐽
) in (12) as

𝜑(𝑤′
𝐽 ) − 𝜑(𝑤) = (𝑤′

𝐽 − 𝑤)𝜑′(𝑤) +
1
2
(𝑤′

𝐽 − 𝑤)2𝜑′′(𝑤) +
1
6
(𝑤′

𝐽 − 𝑤)3𝜑′′′(𝑤̂𝐽 ),

with 𝑤̂𝐽 a suitable value between 𝑤′
𝐽
and 𝑤 𝑗 . Hence, inserting the above expansion

in (12) and using the microscopic relation (9), as 𝜀 → 0 by standard arguments we
can prove that the scaled dynamics (12) can be approximated by the corresponding
Fokker-Planck formulation [44, 96]. More precisely, it can be shown that 𝑓𝐽 , 𝐽 ∈
{𝑆, 𝐼, 𝑅} converges to a solution of

𝑑

𝑑𝑡

∫
R+

𝜑(𝑤) 𝑓𝐽 (𝑤, 𝑡)𝑑𝑤 =∫
R+

{
−𝜑′(𝑤) 𝜆 𝑤

1−𝛿

2𝛿

[(
𝑤

𝑚𝐽

) 𝛿
− 1

]
+ 𝜎

2

2
𝜑′′(𝑤) 𝑤2−𝛿

}
𝑓𝐽 (𝑤, 𝑡) 𝑑𝑤.

Integrating back by parts, the limit equation in strong form coincides with the
Fokker-Planck equation

𝜕

𝜕𝑡
𝑓𝐽 (𝑤, 𝑡) = 𝑄̃𝐽 ( 𝑓𝐽 ) (𝑤, 𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅},

where

𝑄̃𝐽 ( 𝑓𝐽 ) (𝑤, 𝑡) =

𝜆

2𝛿
𝜕

𝜕𝑤

{
𝑤1−𝛿

[(
𝑤

𝑚𝐽

) 𝛿
− 1

]
𝑓𝐽 (𝑤, 𝑡)

}
+ 𝜎

2

2
𝜕2

𝜕𝑤2
(𝑤2−𝛿 𝑓𝐽 (𝑤, 𝑡)),

(14)
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complemented with no-flux boundary conditions at 𝑤 = 0

𝜕

𝜕𝑤
(𝑤2−𝛿 𝑓𝐽 (𝑤, 𝑡))

���
𝑤=0

= 0. (15)

Following [44] we can compute the explicit equilibrium distribution of the Fokker-
Planck model. Let us first observe that equation (14) preserves the total number of
individuals and the average number of contacts mean values 𝑚𝐽 , 𝐽 ∈ {𝑆, 𝐼, 𝑅}, in
each compartment. Thus, assuming that the mass of the initial distribution is one
and by setting 𝜇 = 𝜆/𝜎2, the equilibria can be expressed by the functions

𝑓∞𝐽 (𝑤) = 𝐶𝐽 (𝑚𝐽 , 𝛿, 𝜇)𝑤𝜇/𝛿+𝛿−2 exp

{
− 𝜇

𝛿2

(
𝑤

𝑚𝐽

) 𝛿}
, 𝐽 ∈ {𝑆, 𝐼, 𝑅}, (16)

where 𝐶𝐽 > 0 is a normalization constant.

The distribution of contacts

A particular interesting case, corresponds to the choice 𝛿 = 1 for which the steady
states of unit mass are the Gamma densities

𝑓∞𝐽 (𝑤; 𝜃, 𝜇) =
(
𝜇

𝑚𝐽

)𝜇 1
Γ (𝜇)𝑤

𝜇−1 exp
{
− 𝜇

𝑚𝐽

𝑤

}
, 𝐽 ∈ {𝑆, 𝐼, 𝑅}. (17)

With this particular choice, the mean values and the energies of the densities (17),
𝐽 ∈ {𝑆, 𝐼, 𝑅}, are given by∫

R+
𝑤 𝑓∞𝐽 (𝑤; 𝜃, 𝜇) 𝑑𝑤 = 𝑚𝐽 ,

∫
R+
𝑤2 𝑓∞𝐽 (𝑤; 𝜃, 𝜇) 𝑑𝑤 =

𝜇 + 1
𝜇

𝑚2𝐽 . (18)

It is important to note that the distribution (17) is in agreement with that observed
experimentally in [16]. For this reason, in the rest of the section we will restrict to
the case 𝛿 = 1 (see [44] for a more in-depth discussion).

2.1.3 The macroscopic social-SIR dynamics

Referring to Boltzmann’s classical legacy concerning the fluid dynamic limits, using
the knowledge of the equilibrium states of the kinetic model we can derive the
corresponding macroscopic model [32]. The key assumption is that the dynamics
leading to the contact formation is much faster than the epidemic dynamics. This
corresponds to introduce the following scaling

𝑡 → 𝑡/𝜏, 𝛽(𝑣, 𝑤) → 𝜏𝛽(𝑣, 𝑤), 𝛾 → 𝜏𝛾,

being 𝜏 � 1 the scaling parameter.
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Hence, considering the linear Fokker-Planck operator (14) for 𝛿 = 1 as a model
for social interactions we can rewrite system (4) as follows

𝜕 𝑓𝑆 (𝑤, 𝑡)
𝜕𝑡

= −𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) +
1
𝜏
𝑄̃𝑆 ( 𝑓𝑆) (𝑤, 𝑡),

𝜕 𝑓𝐼 (𝑤, 𝑡)
𝜕𝑡

= 𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) − 𝛾 𝑓𝐼 (𝑤, 𝜏) +
1
𝜏
𝑄̃𝐼 ( 𝑓𝐼 ) (𝑤, 𝑡),

𝜕 𝑓𝑅 (𝑤, 𝑡)
𝜕𝑡

= 𝛾 𝑓𝐼 (𝑤, 𝑡) +
1
𝜏
𝑄̃𝑅 ( 𝑓𝑅) (𝑤, 𝑡).

(19)

The system (19) with no-flux boundary conditions at 𝑤 = 0 contains all the informa-
tion on the spreading of the epidemic in terms of the distribution of social contacts.
Indeed, the knowledge of the densities 𝑓𝐽 (𝑤, 𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅}, allows to evaluate by
integrations all moments of interest. Due to the incidence rate 𝐾 ( 𝑓𝑆 , 𝑓𝐼 ), as given in
(5), the time evolution of the moments of the distribution functions is not explicitly
computable, since the evolution of a moment of a certain order depends on the
knowledge of higher order moments, thus producing a hierarchy of equations, like
in classical kinetic theory of rarefied gases [32]. However, similarly to the derivation
of the fluid dynamic limit we can assume the contact densities to be close to their
equilibrium states (17).
Therefore, since for the choice in (8) we have

𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) = 𝛽𝑤 𝑓𝑆 (𝑤, 𝑡)𝑚𝐼 (𝑡) 𝐼 (𝜏),

we can compute the time evolution of the number of individuals in each compartment,
defined in (3), by integrating both sides of the equations in (19) with respect to 𝑤.
Using the fact that the Fokker-Planck terms preserve the total number of individuals,
we obtain the following system of macroscopic equations for the densities

𝑑𝑆(𝑡)
𝑑𝑡

= −𝛽 𝑚𝑆 (𝑡)𝑚𝐼 (𝑡)𝑆(𝑡)𝐼 (𝑡),

𝑑𝐼 (𝑡)
𝑑𝑡

= 𝛽 𝑚𝑆 (𝑡)𝑚𝐼 (𝑡)𝑆(𝑡)𝐼 (𝑡) − 𝛾𝐼 (𝑡),

𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾𝐼 (𝑡).

(20)

Next, taking the evolution of the first moment in (19) since the Fokker–Planck
operators also preserve momentum, one obtains that the means𝑚𝑆 (𝑡)𝑆(𝑡),𝑚𝐼 (𝑡)𝐼 (𝑡)
in (20) satisfy the differential system

𝑑

𝑑𝑡
(𝑚𝑆 (𝑡)𝑆(𝑡)) = −𝛽 𝑚𝑆,2 (𝑡)𝑚𝐼 (𝑡)𝑆(𝑡)𝐼 (𝑡),

𝑑

𝑑𝑡
(𝑚𝐼 (𝑡)𝐼 (𝑡)) = 𝛽 𝑚𝑆,2 (𝑡)𝑚𝐼 (𝑡)𝑆(𝑡)𝐼 (𝑡) − 𝛾𝑚𝐼 (𝑡)𝐼 (𝑡),

(21)

which depends now on the second order moments.
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The closure of system (20)-(21) can be obtained by resorting, at least formally, to
the classical equilibrium assumption on the social interaction variable. Indeed, if 𝜏 �
1 is sufficiently small, one can easily argue from the exponential convergence of the
solution 𝑓𝐽 (𝑤, 𝑡) of the Fokker-Planck equation towards the equilibrium 𝑓∞

𝐽
(𝑤; 𝜃, 𝜇),

𝐽 ∈ {𝑆, 𝐼, 𝑅} (see [114] for example), that the solution remains sufficiently close to
the corresponding Gamma density (17) for all times.
The equilibrium distribution 𝑓∞

𝐽
(𝑤; 𝜃, 𝜇) can then be inserted into system (21)

and, recalling that for Gamma densities

𝑚𝐽,2 (𝑡) =
𝜇 + 1
𝜇

𝑚2𝐽 (𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅},

we can derive a closed system that governs the evolution of the local mean values

𝑑𝑚𝑆 (𝑡)
𝑑𝑡

= − 𝛽
𝜇
𝑚𝑆 (𝑡)2𝑚𝐼 (𝑡)𝐼 (𝑡),

𝑑𝑚𝐼 (𝑡)
𝑑𝑡

= 𝛽𝑚𝑆 (𝑡)𝑚𝐼 (𝑡)
(
1 + 𝜇
𝜇

𝑚𝑆 (𝑡) − 𝑚𝐼 (𝑡)
)
𝑆(𝑡),

𝑑𝑚𝑅 (𝑡)
𝑑𝑡

= 𝛾
𝐼 (𝑡)
𝑅(𝑡) (𝑚𝐼 (𝑡) − 𝑚𝑅 (𝑡)) .

(22)

Therefore, the closure of the kinetic system (19) around a Gamma-type equilibrium
of social contacts leads then to the system of six equations (20)-(22) for the pairs of
mass fractions 𝐽 (𝑡) and local mean values 𝑚𝐽 (𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅}. In the following, we
refer to the coupled systems (20) and (22) as the social SIR model (S-SIR).
It is interesting to remark that system (22) is explicitly dependent on the positive

parameter 𝜇 = 𝜆/𝜎2, which measures the heterogeneity of the population in terms
of the variance of the statistical distribution of social contacts. More precisely,
small values of the constant 𝜇 correspond to high values of the variance, and thus
to a larger heterogeneity of the individuals with respect to social contacts. This
is an important point which is widely present and studied in the epidemiological
literature [10, 27, 40, 41].

Absence of heterogeneity

A limiting case of system (22) is obtained by letting the parameter 𝜇 → +∞, which
corresponds to push the variance to zero (absence of heterogeneity). In this case, if
the whole population starts with a common number of daily contacts, say 𝑤̄, it is
immediate to show that the number of contacts remains fixed in time, thus reducing
system (20) to a classical SIR model with contact rate 𝛽𝑤̄2. Hence this classical
epidemiological model is contained in (20)-(22) and corresponds to consider the
case of a population that, regardless of the presence of the epidemic, maintains the
same fixed number of daily contacts.
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2.1.4 A social-SIR model with saturated incidence rate

We consider the case where the average number of social contacts of infected 𝑚𝐼 is
frozen to 𝑚̃𝐼 as an effect, for instance, of external interventions aimed at controlling
the pandemic spread. In this case, for any 𝛼 ≥ 1, one can explicitly solve the equation
for the evolution of average contacts of susceptibles

𝑑

𝑑𝑡
𝑚𝑆 (𝑡) = − 𝛽𝑐𝛼

𝜇
𝑚𝛼+1

𝑆 𝑚̃𝛼
𝐼 𝐼 (𝑡), 𝑚𝑆 (𝑡) =

𝑚𝑆 (0)(
1 +

𝑐𝛼𝛽𝛼𝑚
𝛼
𝑆
(0)

𝜇
𝑚̃𝛼

𝐼

∫ 𝑡

0
𝐼 (𝑠)𝑑𝑠

)1/𝛼 ,
where 𝑐𝛼 > 0 is such that∫ +∞

0
𝑤𝛼 𝑓∞𝑆 (𝑤)𝑑𝑤 = 𝑐𝛼𝑆(𝑡)𝑤𝛼

𝑆 .

Therefore, approximating the integral
∫ 𝑡

0 𝐼 (𝑠) 𝑑𝑠 ≈ 𝑡 𝐼 (𝑡) we obtain the closed system
for the evolution of mass fractions of the following type

𝑑𝑆(𝑡)
𝑑𝑡

= −𝛽 𝑆(𝑡)𝐼 (𝑡)𝐻 (𝐼 (𝑡), 𝑡),

𝑑𝐼 (𝑡)
𝑑𝑡

= 𝛽 𝐻 (𝐼 (𝑡), 𝑡)𝑆(𝑡)𝐼 (𝑡) − 𝛾𝐼 (𝑡),

𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾𝐼 (𝑡),

(23)

with 𝛽 = 𝛽𝑚𝑆 (0) and which incorporates the generalized macroscopic incidence
function

𝐻 (𝐼 (𝑡), 𝑡) = 1
(1 + 𝜙(𝑡)𝐼 (𝑡))1/𝛼

, (24)

with 𝜙(𝑡) = 𝑐𝛼𝛼𝛽𝑚
𝛼
𝑆
(0)𝑡/𝜇 > 0. The system (23) corresponds to models with

saturated incidence rate, see [30]. We point the interested reader to [44] for a detailed
discussion. See also Section 3 of this survey for a derivation of the saturated incidence
function (24) as a feedback control functional.

2.1.5 Extrapolation of the shape of the incidence rate from data

In this section, we use the previous model to describe the COVID-19 pandemic in
three different European countries: France, Italy and Spain. The data we employ,
concerning the actual number of infected, recovered and deaths of COVID-19 are
publicly available from the John Hopkins University GitHub repository. For the spe-
cific case of Italy, we considered instead the GitHub repository of the Italian Civil
Protection Department (see Data Sources in Section 5.1). We adopted the fitting
procedure described in [8,44] that is based on a strategy with two optimization hori-
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Fig. 1 Estimated shape of the function 𝐻 in several European countries (left plots) and its depen-
dency on the variables 𝐼 (𝑡) and

∫ 𝑡

0 𝐼 (𝑠)𝑑𝑠 (right plots).

zons (pre-lockdown and lockdown time spans) depending on the different strategies
enacted by the governments of the considered European countries. Once the relevant
epidemiological parameters have been estimated in the pre-lockdown time span, we
successively proceeded with the estimation of the shape of the function 𝐻 from the
data.
We seek to understand numerically the dependencies of the function 𝐻 on the

number of infected. In particular, we consider the candidate incidence functions 𝐻1,
𝐻2 and 𝐻3 defined as

𝐻1 (𝐼 (𝑡), 𝑡) =
𝑐

1 + 𝜙𝐼 (𝑡) , 𝐻2 (𝐼 (𝑡), 𝑡) =
𝑐

1 + 𝜙
∫ 𝑡

0 𝐼 (𝑠) 𝑑𝑠
,
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and
𝐻3 (𝐼 (𝑡), 𝑡) =

𝑐(
1 + 𝜙

∫ 𝑡

0 𝐼 (𝑠) 𝑑𝑠
)1/𝛼 ,

with 𝑐 > 0, accordingly with (24) where 𝜙 and 𝛼 are free parameters which are
determined through a least square minimization approach that best fits the estimated
curve with conditions 𝜙 > 0, 𝛼 ≥ 1. The results of this procedure is presented in
Figure 1. We point the interested reader to [44] for a detailed discussion on the
estimated parameters.
We can observe that the optimization gives acceptable results for the different

forms of the incidence function especially in the right column of Figure 1, where
the functions 𝐻2 and 𝐻3 are clearly able to better explain the estimated values of 𝐻
especially after the epidemic peak. Note that, the fits of the model with the available
data when 𝐻3 is used are particularly good. This fact may indicate that people are
rather fast to apply social distancing, and therefore to reduce their average number
of contacts, whereas they tend to restore the pre-pandemic average contact rate more
slowly, possibly due to further psychological effects.

2.2 The interplay between economy and the pandemic

The rapid spreading of the COVID-19 epidemic in western countries and the con-
sequent lockdown measures assumed by the governments to control and limit its
effects will unequivocally lead to important consequences for their economies. In
this section, following [43], we introduce a mathematical framework to study the
economic impact of the pandemic by integrating epidemiological dynamics with a
kinetic model of wealth exchange.
The description of the evolution of the personal wealth in terms of kinetic-type

equations revealed to be successful in the description of emerging wealth distribu-
tions, see [24,37,48,96]. Clearly, an accurate quantification of the implications due
to the pandemic in the distribution of wealth is an extremely difficult problem that re-
quires knowledge of a large number of unknown variables and relationships between
them. In an attempt to better understand the mechanisms underlying these dynamics
we will consider simplified models that, while based on a few obvious universal
characteristics, can be analyzed to provide answers about possible scenarios.

2.2.1 Wealth exchanges in epidemic modelling

The model considered in [43] has the same structure of the kinetic SIR-type model
defined in (4) where now the state of an individual in each class at any instant of
time 𝑡 ≥ 0 is completely characterized by the amount of wealth 𝑤 ∈ R+. Therefore,
𝑓𝑆 (𝑤, 𝑡), 𝑓𝐼 (𝑤, 𝑡) and 𝑓𝑅 (𝑤, 𝑡), are the distributions at time 𝑡 > 0 of the amount of
wealth of the population of susceptible, infected and recovered individuals, respec-
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tively. The distribution of wealth of the whole population is then recovered as in (2)
and consequently is assumed to be a probability density for all times 𝑡 ≥ 0.
Coherently with the previous notations we denote the relative mean wealths in

each compartment as

𝑚𝐽 (𝑡) =
1
𝐽 (𝑡)

∫
R+
𝑤 𝑓𝐽 (𝑤, 𝑡) 𝑑𝑤, 𝐽 ∈ {𝑆, 𝐼, 𝑅}, (25)

and the total mean wealth as

𝑚(𝑡) =
∫
R+
𝑤 𝑓 (𝑤, 𝑡) 𝑑𝑤.

We emphasize that the above notations differ from those originally used in [43], this
in order to make them homogeneous with the notations used in Section 2.1.
In equations (4) the choice of a wealth-dependent recovery rate can be motivated

by considering that wealth can buy access to better hospitals and better treatments,
thus ensuring a higher chance of recovery. Also, a wealth-dependent contact rate, in
the form of a decreasing function of the difference |𝑤−𝑤∗ |, can be introduced to ex-
press that individuals with different degrees of wealth live in different environments,
and this limits contacts in presence of a marked difference. The interaction operators
on the r.h.s. of (4) characterize the wealth evolution due to trading between agents
of the same class, or between agents of different classes, and are built according to
the CPT model [37] with the following structure

Q𝐽 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅) =
∑︁

𝐻∈{𝑆,𝐼,𝑅}
𝑄𝐽𝐻 ( 𝑓𝐽 , 𝑓𝐻 ) (𝑤, 𝑡), 𝐽 ∈ {𝑆, 𝐼, 𝑅}, (26)

where𝑄𝐽𝐻 ( 𝑓𝐽 , 𝑓𝐻 ) describes the changes of wealth in compartment 𝐽 due to binary
interactions among agents in compartments 𝐽 and 𝐻, with 𝐽, 𝐻 ∈ {𝑆, 𝐼, 𝑅}.
In details, an interaction between two individuals in compartment 𝐽 and 𝐻 with

wealth pair (𝑤, 𝑤∗) leads to a wealth pair (𝑤′
𝐽𝐻
, 𝑤′

𝐻𝐽
) defined by relations

𝑤′
𝐽𝐻 = (1 − 𝜆𝐽 )𝑤 + 𝜆𝐻𝑤∗ + 𝜂𝐽𝐻𝑤

𝐽, 𝐻 ∈ {𝑆, 𝐼, 𝑅}
𝑤′
𝐻𝐽 = (1 − 𝜆𝐻 )𝑤∗ + 𝜆𝐽𝑤 + 𝜂𝐻𝐽𝑤∗,

(27)

where 𝜆𝐽 , 𝜆𝐻 ∈ (0, 1) are transaction coefficients, while the market risk variables
𝜂𝐽𝐻 ≥ −𝜆𝐽 and 𝜂𝐻𝐽 ≥ −𝜆𝐻 are independent and identically distributed random
variables with zero mean and the same time-dependent variance 𝜎2 (𝑡) (since we
assume that the risk in the market does not depend on the particular class of trading
agents).
The trade between agents has beenmodeled to include the idea that wealth changes

hands for a specific reason: one agent intends to invest his wealth in some asset, prop-
erty etc. in possession of his trade partner. Typically, such investments bear some
speculative risk, and either provide the buyer with some additional wealth, or lead
to the loss of wealth in a non-deterministic way. Relations (27) couple the saving
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propensity parameter with some risky investment that yields an immediate gain or
loss proportional to the current wealth of the investing agent. Hence 0 < 𝜆𝐽 < 1,
𝑗 ∈ {𝑆, 𝐼, 𝑅} are the parameters which identify the saving propensities 1−𝜆𝐽 , namely
the intuitive behavior which prevents the agents to put in a single trade the whole
amount of his money. The choice 𝜆𝑅 > 𝜆𝑆 , for example, reflects the fact that suscep-
tible individuals can be more cautious in the market and tend to save their wealth,
since they understand that consuming and working less reduces the probability of
infection [50]. On the other hand, infectious individuals have limited possibilities
to act on the market and, as we will see, asymptotically disappear from the wealth
dynamics. The time-dependence of 𝜎 has been postulated by assuming that, in the
presence of a significant spread of the epidemic, the risk variance tends to increase.
This is in agreement, for example, to the market reactions we observed during the
COVID-19 spreading at the announcements of the new numbers of infectious people
in the various countries [127].
As already observed a convenient way to express the operators 𝑄𝐽𝐻 ( 𝑓𝐽 , 𝑓𝐻 ) is

based on its weak form, namely the way the operator acts on observables [37, 96].
Let 𝜙(𝑣) denote a test function and let us define with 〈·〉 the expected value with
respect to the pair 𝜂𝐽𝐻 , 𝜂𝐻𝐽 in the interaction process. Thus, for 𝐽, 𝐻 ∈ {𝑆, 𝐼, 𝑅} we
have∫
R+

𝜙(𝑤)𝑄𝐽𝐻 ( 𝑓𝐽 , 𝑓𝐻 ) (𝑤, 𝑡) 𝑑𝑤 =〈 ∫
R2+

(𝜙(𝑤′
𝐽𝐻 ) − 𝜙(𝑤)) 𝑓𝐽 (𝑤, 𝑡) 𝑓𝐻 (𝑤∗, 𝑡) 𝑑𝑤∗ 𝑑𝑤

〉
,

(28)

where 𝑤′
𝐽𝐻
is defined by (27).

2.2.2 Fokker-Planck scaling and steady states

To analyze the asymptotic behavior of the model it is useful to resort to the so-called
quasi-invariant trading limit which permits to derive the corresponding Fokker-
Planck description of the Boltzmann operators (28). To this aim, in a similar fashion
to Section 2.1.2, following [37, 43, 54, 96], we scale the binary trades according to

𝜆𝐽 → 𝜀𝜆𝐽 , 𝐽 ∈ {𝑆, 𝐼, 𝑅}, 𝜎 →
√
𝜀𝜎, (29)

and similarly the functions governing the spread of the disease

𝛽(𝑤, 𝑤∗) → 𝜀𝛽(𝑤, 𝑤∗), 𝛾(𝑤) → 𝜀𝛾(𝑤), (30)

and denote with 𝑄𝜀
𝐽𝐻

(·, ·), 𝐽, 𝐻 ∈ {𝑆, 𝐼, 𝑅} the scaled interaction terms.
The limit procedure induced by the above scaling corresponds to the situation

in which are prevalent the exchanges of wealth which produce an extremely small
modification of wealths, but we are waiting enough time to still see the effects. In
fact, rescaling time as 𝑡 → 𝑡/𝜀, for small values of 𝜀, the Boltzmann-type operators
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converge to Fokker-Planck operator with variable coefficient of diffusion and linear
drift. More precisely we have that for small values of 𝜀 � 1 (see [43] for details)

1
𝜀

∑︁
𝐻∈{𝑆,𝐼,𝑅}

∫
R+

𝑄𝜀
𝐽𝐻 ( 𝑓𝐽 , 𝑓𝐻 ) (𝑤, 𝑡)𝜙(𝑤) 𝑑𝑤 ≈

∫
R+

𝑄̃𝐽 ( 𝑓𝐽 ) (𝑤, 𝑡)𝜙(𝑤) 𝑑𝑤

where

𝑄̃𝐽 ( 𝑓𝐽 ) (𝑤, 𝑡) =
𝜕

𝜕𝑤

[
𝜎(𝑡)2
2

𝜕

𝜕𝑤
(𝑤2 𝑓𝐽 (𝑤, 𝑡)) + (𝑤𝜆𝐽 − 𝑚̄(𝑡)) 𝑓𝐽 (𝑤, 𝑡)

]
, (31)

with
𝑚̄(𝑡) = 𝜆𝑆𝑚𝑆 (𝑡)𝑆(𝑡) + 𝜆𝐼𝑚𝐼 (𝑡)𝐼 (𝑡) + 𝜆𝑅𝑚𝑅 (𝑡)𝑅(𝑡). (32)

This gives the system

𝜕 𝑓𝑆 (𝑤, 𝑡)
𝜕𝑡

= −𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) + 𝑄̃𝑆 ( 𝑓𝑆) (𝑤, 𝑡)

𝜕 𝑓𝐼 (𝑤, 𝑡)
𝜕𝑡

= 𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑤, 𝑡) − 𝛾 𝑓𝐼 (𝑤, 𝑡) + 𝑄̃𝐼 ( 𝑓𝐼 ) (𝑤, 𝑡)

𝜕 𝑓𝑅 (𝑤, 𝑡)
𝜕𝑡

= 𝛾 𝑓𝐼 (𝑤, 𝑡) + 𝑄̃𝑅 ( 𝑓𝑅) (𝑤, 𝑡).

(33)

It is immediate to verify that the above Fokker-Planck-type operators are mass and
momentum preserving. Similarly to Section 2.1.3, one can analyze the equilibrium
densities associated to the differential system

𝜎2

2
𝜕 (𝑤2 𝑓∞

𝐽
(𝑤))

𝜕𝑤
+ (𝑤𝜆𝐽 − 𝑚̄) 𝑓∞𝐽 (𝑤) = 0, 𝐽 ∈ {𝑆, 𝐼, 𝑅},

to derive reduced order models for the evolution of the densities of susceptible, infec-
tious and recovered individuals. As we will see in the next section these equilibrium
states have the shape of inverse Gamma distributions [81, 109].

2.2.3 The formation of bimodal wealth distributions

We verify in a simplified case, that the Fokker–Planck system (33) possesses as
stationary solutions inverse Gamma distributions that may generate a bimodal form
of wealth distribution. Bimodal shapes are typical of situations of high stress in
economy, and are investigated starting from the Argentinian crisis of the first year
of the new century [58, 63]. This example also shows that a similar behavior can be
expected in reason of the epidemic spreading.
Suppose that 𝛽(𝑤, 𝑤∗) = 𝛽, 𝛾(𝑤) = 𝛾 and 𝜎(𝑡) = 𝜎 are constant. Then, integrat-

ing with respect to the wealth variable, thanks to conservation of the total wealth,
we obtain that the relative mass densities satisfy the classical SIR model (1). In this
case, it is known that 𝐼 (𝑡) → 0, while 𝑆(𝑡) → 𝑆∞ ∈ [0, 𝛾/𝛽]. Likewise, the system



18 G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G. Toscani, M. Zanella

for the mean values reads

𝑑 (𝑚𝑆 (𝑡)𝑆(𝑡))
𝑑𝑡

= −𝛽𝐼 (𝑡)𝑚𝑆 (𝑡) 𝑆(𝑡) + (𝑚̄(𝑡) − 𝜆𝑆𝑚𝑆 (𝑡))𝑆(𝑡) (34)

𝑑 (𝑚𝐼 (𝑡)𝐼 (𝑡))
𝑑𝑡

= 𝛽𝐼 (𝑡)𝑚𝑆 (𝑡) 𝑆(𝑡) − 𝛾𝑚𝐼 (𝑡) 𝐼 (𝑡) + (𝑚̄(𝑡) − 𝜆𝐼𝑚𝐼 (𝑡))𝐼 (𝑡) (35)

𝑑 (𝑚𝑅 (𝑡)𝑅(𝑡))
𝑑𝑡

= 𝛾𝑚𝐼 (𝑡) 𝐼 (𝑡) + (𝑚̄(𝑡) − 𝜆𝑅𝑚𝑅 (𝑡))𝑅(𝑡). (36)

Since, as 𝑡 → +∞ we have 𝐼 (𝑡) → 0, 𝑚𝑆 (𝑡) → 𝑚∞
𝑆
and 𝑚𝑅 (𝑡) → 𝑚∞

𝑅
, the

asymptotic values of the means satisfy

𝜆𝑅𝑚
∞
𝑅 = 𝜆𝑆𝑚

∞
𝑆 ,

together with the constraint 𝑚∞
𝑅
𝑅∞ +𝑚∞

𝑆
𝑆∞ = 𝑚 by conservation of the total mean

wealth. This gives the asymptotic values

𝑚∞
𝑆 =

𝜆𝑅

𝜆𝑅𝑆
∞ + 𝜆𝑆𝑅∞𝑚, 𝑚∞

𝑅 =
𝜆𝑆

𝜆𝑅𝑆
∞ + 𝜆𝑆𝑅∞𝑚. (37)

Thus, formally as 𝑡 → ∞ in the Fokker-Planck system (33) we get that the stationary
states 𝑓∞

𝑆
(𝑤) and 𝑓∞

𝑅
(𝑤) are given by two inverse Gamma densities

𝑓∞𝑆 (𝑤) = 𝑆∞ 𝜅𝜇𝑆

Γ(𝜇𝑆)
𝑒−

𝜅
𝑤

𝑤1+𝜇𝑆
, 𝑓∞𝑅 (𝑤) = 𝑅∞ 𝜅𝜇𝑅

Γ(𝜇𝑅)
𝑒−

𝜅
𝑤

𝑤1+𝜇𝑅
(38)

with

𝜇𝑆 = 1 + 2𝜆𝑆
𝜎2
, 𝜇𝑅 = 1 + 2𝜆𝑅

𝜎2
, 𝜅 = (𝜇𝑆 − 1)𝑚∞

𝑆 = (𝜇𝑅 − 1)𝑚∞
𝑅 . (39)

The details of the trading activity at the basis of the kinetic description allow to
characterize the tails of the distributions from (39). Hence, a low value of the Pareto
index is obtained in presence of small values of the parameter 𝜆𝑆 , 𝜆𝑅 (small saving
propensity of agents), or to high values of the parameter 𝜎 (highly risky market).
Therefore, the asymptotic wealth distribution is the mixture of two inverse Gamma
densities of mass 𝑆∞ and 𝑅∞ respectively

𝑓∞ (𝑤) = 𝑓∞𝑆 (𝑤) + 𝑓∞𝑅 (𝑤), (40)

with asymptotic means (37) and variances given by

Var∞𝑆 =
𝜅2

(𝜇𝑆 − 1) (𝜇𝑆 − 2) , Var∞𝑅 =
𝜅2

(𝜇𝑅 − 1) (𝜇𝑆 − 2) , 𝜇𝑅, 𝜇𝑆 > 2.

As a consequence, the wealth distribution has a bimodal structure, since the maxi-
mum of 𝑓∞

𝑆
(𝑤) and 𝑓∞

𝑅
(𝑤) are achieved, respectively, at the points
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Fig. 2 Exact solutions for wealth distributions at the end of the epidemic (33) in the Fokker-Planck
approximation for 𝜇𝑆 = 2.5, 𝜇𝑅 = 7.0, 𝑆∞ = 0.4, and 𝑅∞ = 0.6 (top) and 𝜇𝑆 = 2.5, 𝜇𝑅 = 11.0,
𝑆∞ = 0.8, and 𝑅∞ = 0.2 (bottom).

𝑤̄𝑆 =
𝜅

𝜇𝑆 + 1 , 𝑤̄𝑅 =
𝜅

𝜇𝑅 + 1 . (41)

We report in Figure 2 the resulting profiles for various choices of 𝜇𝑆 < 𝜇𝑅, and 𝑆∞,
𝑅∞. Note that the mixture of the two inverse Gamma densities (38) does not always
result in an evident bimodal shape. Indeed, while the profile on the right of Figure 2
is clearly bimodal, a different choice of parameters on the left produces a unimodal
steady profile.

2.2.4 The increase of wealth inequalities

Next, we compare the evolution of the wealth distribution of the system under
more realistic hypotheses about the dependence of the risk coefficient 𝜎 on the
epidemic spread. We consider the kinetic model (33) in the case of the following two
infectious-dependent market risk coefficients

𝜎1 (𝑡) = 𝜎0 (1 + 𝛼𝐼 (𝑡)), 𝜎2 (𝑡) = 𝜎0
(
1 + 𝛼

∫ 𝑡

0
𝐼 (𝜏)𝑑𝜏

)
, (42)

where 𝛼 > 0, 𝜎0 > 0. In details, 𝜎1 (𝑡) characterizes the instantaneous influence of
the epidemic based on the observed number of infected, whereas 𝜎2 (𝑡) takes into
account possible long time memory effects on the market based on the epidemic
impact.
We consider, as initial distribution, an inverse Gamma distribution

𝑓 (𝑤) = (𝜇 − 1)𝜇
Γ(𝜇)

exp
(
− 𝜇−1

𝑤

)
𝑤1+𝜇

(43)

with 𝜇 = 3, representing an initial economic equilibrium state.
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Fig. 3 Test 2. Behavior of the Gini index (left) and of the middle class fraction (right) defined
in (45) during the outbreak of the epidemic for the different risk measures in (42) with 𝛼 = 5,
𝜎0 = 0.1.

To get a more detailed view of the emerging equilibria, we resort to the Gini
index calculation, see [48]. This value should be understood as a measure of a
country’s wealth inequality and varies in [0, 1], where 0 indicates perfect equality
and 1 maximum inequality.
In Figure 3 we represent the evolution of the Gini index. We clearly observe an

inequality of wealth that grows with the epidemiological dynamics. Moreover, even
in the case of 𝜎1 with 𝜆𝑆 = 𝜆𝑅, where these effects are absorbed in the long-lasting
trends, the recovery of the economy occurs at a much lower rate than the worsening
rate.
Epidemiological dynamics may translate into additional wealth inequalities, in

particular we can measure the evolution of the total number of individuals belonging
to the middle class. Although there are several ways to give a technical definition
of the middle class, it is often more of an idea or estimate than a fixed number.
Generally speaking, the middle class is loosely defined as those who fall into the
middle group of workers compared to the bottom 20% or top 20%. We can define it
using an interval [𝑤𝐿 , 𝑤𝑅] such that∫ 𝑤𝐿

0
𝑓 (𝑤, 0) ≈ 0.2,

∫ ∞

𝑤𝑅

𝑓 (𝑤, 0) ≈ 0.2, (44)

and computing the time evolution of

𝑀𝐶 (𝑡) =
∫ 𝑤𝑅

𝑤𝐿

𝑓 (𝑤, 𝑡) 𝑑𝑤, (45)

gives us an estimate of the percentage of people living in middle-income households.
In Figure 3 (right plot), we represent the evolution of 𝑀𝐶 (𝑡) corresponding to the
considered 𝜎1 (𝑡), 𝜎2 (𝑡). We can clearly see how the emerging inequalities mainly
affect themiddle class, which is constantly decreasing in the case of𝜎2 and undergoes
a transitory decrease for 𝜎1. In particular, in this last scenario and in the 𝜆𝑆 < 𝜆𝑅
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regime, at the end of the epidemic dynamics only a partial recovery to the original
pre-epidemic level is observed.

3 Social control and data uncertainty

The adoption of containment measures to reduce the amplitude of the epidemic peak
is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental
models need to be modified and studied to correctly describe the effects of forced
external actions to reduce the impact of the disease. The importance of the social
structure, such as age dependence, which was shown to be essential in the recent
COVID-19 pandemic, must be considered. In addition, available data are often
incomplete and heterogeneous, so a high degree of uncertainty must be incorporated
into the model. In this section we deal with both these aspects following [8, 9].

3.1 Control of socially structured models

The heterogeneity of the social structure, which impacts the diffusion of the infective
disease has been already discussed in Section 2. Among the social characteristics
of fundamental importance in the context of the COVID-19 pandemic certainly
the age of individuals is among the most significant given the heterogeneity of the
contagiousness of the virus and the related health risks. We assume that the rapid
spread of the disease and the low mortality rate allow to ignore changes in the social
structure, such as the aging process, births and deaths. This is equivalent to assuming
in (4) that the interaction operators Q𝐽 ( 𝑓𝑆; 𝑓𝐼 ; 𝑓𝑅), 𝐽 ∈ {𝑆, 𝐼, 𝑅} vanish.
In order to keep to a standard notation in age-structured models [65, 69] in the

following we will use the variable 𝑎 to denote the social feature instead of 𝑤 used in
the general formulation (4). Thus, we will denote by 𝑓𝑆 (𝑎, 𝑡), 𝑓𝐼 (𝑎, 𝑡) and 𝑓𝑅 (𝑎, 𝑡),
the distributions at time 𝑡 > 0 of susceptible, infected and recovered individuals with
a given age 𝑎 ∈ Λ ⊂ R+. In this situation the nonlinear incidence rate (5) reads

𝐾 ( 𝑓𝑆 , 𝑓𝐼 ) (𝑎, 𝑡) = 𝑓𝑆 (𝑎, 𝑡)
∫
Λ

𝛽social (𝑎, 𝑎∗) 𝑓𝐼 (𝑎∗, 𝑡) 𝑑𝑎∗, (46)

where the function 𝛽social (𝑎, 𝑎∗) ≥ 0 represents the interaction rate among individ-
uals with different ages.
Typically, in socially structured models the interaction rate between people is

assumed to be separable, and proportionate to the activity level of the social fea-
ture [64, 65], alternative approaches are based on preferential mixing [31, 60]. In
what follows we will assume an age-dependent social interaction function such that

𝛽social (𝑎, 𝑎∗) =
∑︁
𝑗∈A

𝛽 𝑗 (𝑎, 𝑎), (47)
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where the set A indicates the social activies, such as family, work, school.
In the following, although we will derive our feedback-controlled formulation

for an age-structured SIR model, the extension to more realistic compartmental
models [49, 57] and other social characteristics, such as the total number of social
contacts and the wealth of individuals discussed in Section 2, can be done in a similar
fashion.

3.1.1 Optimal control formulation

We consider an optimal control framework to define the strategy of a policy maker
in introducing non-pharmaceutical interventions such as social distancing and other
containment measures linked to the social structure. In what follows we assume that
policy maker aims to minimize the impact of the epidemic through an age dependent
control action depending both on time and pairwise interactions among individuals
with different ages. Thus, we introduce the optimal control problem

min
u∈U

𝐽 (u) :=
∫ 𝑇

0
𝜓(𝑆(𝑡), 𝐼 (𝑡))𝑑𝑡

+
∑︁
𝑗∈A

1
2

∫ 𝑇

0

∫
Λ×Λ

𝜈 𝑗 (𝑎, 𝑎∗, 𝑡) |𝑢 𝑗 (𝑎, 𝑎∗, 𝑡) |2 𝑑𝑎𝑑𝑎∗𝑑𝑡,
(48)

subject to

𝜕 𝑓𝑆 (𝑎, 𝑡)
𝜕𝑡

= − 𝑓𝑆 (𝑎, 𝑡)
∑︁
𝑗∈A

∫
Λ

(𝛽 𝑗 (𝑎, 𝑎∗) − 𝑢 𝑗 (𝑎, 𝑎∗, 𝑡)) 𝑓𝐼 (𝑎∗, 𝑡) 𝑑𝑎∗

𝜕 𝑓𝐼 (𝑎, 𝑡)
𝜕𝑡

= 𝑓𝑆 (𝑎, 𝑡)
∑︁
𝑗∈A

∫
Λ

(𝛽 𝑗 (𝑎, 𝑎∗) − 𝑢 𝑗 (𝑎, 𝑎∗, 𝑡)) 𝑓𝐼 (𝑎∗, 𝑡) 𝑑𝑎∗

− 𝛾(𝑎) 𝑓𝐼 (𝑎, 𝑡)
𝜕 𝑓𝑅 (𝑎, 𝑡)

𝜕𝑡
= 𝛾(𝑎) 𝑓𝐼 (𝑎, 𝑡),

(49)

with initial condition 𝑓𝑆 (𝑎, 0) = 𝑓 0
𝑆
(𝑎), 𝑓𝐼 (𝑎, 0) = 𝑓 0

𝐼
(𝑎), and 𝑓𝑅 (𝑎, 0) = 𝑓 0

𝑅
(𝑎).

The function 𝜓(𝑆, 𝐼) accounts for the total number of the infected population 𝐼 (𝑡)
and susceptibles 𝑆(𝑡), such that 𝜓(·, ·) is positive and 𝜕𝐼𝜓(𝑆, 𝐼) ≥ 0. This function
models the policy maker’s perception of the impact of the epidemic by the number
of people currently infected and susceptible and in the sequel will be referred to as
perception function. Each component of the control u = (𝑢1, . . . , 𝑢𝐿) acts selectively
on the interaction between individuals of ages 𝑎 and 𝑎∗ for a specific activity in A,
with 𝐿 the total number of activities. We consider a quadratic penalization of the
control, weighted by a specific function 𝜈 𝑗 (𝑎, 𝑡) > 0 associated to each activity.
In (48) the setU ⊆ R𝐿 is the space of admissible controls 𝑢 𝑗 , 𝑗 ∈ A defined as

U =
{
u ∈ R𝐿 | 0 ≤ I(𝑢 𝑗 ) (𝑎, 𝑡) ≤ min{𝑀,I(𝛽 𝑗 ) (𝑎, 𝑡)}, ∀ (𝑎, 𝑡), 𝑀 > 0

}
,
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where I corresponds to the integral operator

I(𝜑) (𝑎, 𝑡) = 1
𝐼 (𝑡)

∫
Λ

𝜑(𝑎, 𝑎∗, 𝑡) 𝑓𝐼 (𝑎∗, 𝑡) 𝑑𝑎∗, (50)

which ensures the admissibility of the solution for (49). The above restriction on
admissible controls can be relaxed if we consider controls that violate the previous
condition locally but preserve the inequality in integral form after integration against
𝑖(𝑎∗, 𝑡).
Solving the above optimization problem, however, is generally quite complicated

and computationally demanding when there are uncertainties as it involves solving
simultaneously the forward problem (48)- (49) and the backward problem derived
from the optimality conditions [8]. Furthermore, the assumption that the policy
maker follows an optimal strategy over a long time horizon seems rather unrealistic
in the case of a rapidly spreading disease such as the COVID-19 epidemic.

Examples of perception function

We report two relevant examples of the perception function 𝜓(·), given by a
convex function underestimating the number of infected

𝜓(𝑆, 𝐼) (𝑡) = 𝐶 𝐼
𝑞 (𝑡)
𝑞

, 𝑞 ≥ 1, (51)

and a concave function overestimating such number

𝜓(𝑆, 𝐼) (𝑡) = 𝐶 ln(1 + 𝜏𝐼 (𝑡))
𝜏𝑆(𝑡) , 𝜏 > 0, (52)

with 𝐶 > 0 a suitable renormalization constant. The function in (51) has been
introduced [8], whereas the function in (52) is related to well-known epidemic
models with saturated incidence rates [30, 52, 79].
Let us emphasize that extending the above optimal control formulation to more

complex compartmental models designed specifically for COVID-19, like SEPIAR
or SIDHARTE [57,59], can be done by generalizing the perception function in (48)
to include, for example, the hospitalized compartment, or other specific indicators
that can be measured from the data.

3.1.2 Feedback controlled compartmental models

In this section we consider short time horizon strategies which permit to derive
suitable feedback controlled models. These strategies are suboptimal with respect to
the original problem (48)-(49) but they have proved to be very successful in several
social modeling problems [3–6]. To this aim, we consider a short time horizon of
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length ℎ > 0 and formulate a time discretize optimal control problem through the
functional 𝐽ℎ (𝑢) restricted to the interval [𝑡, 𝑡 + ℎ], as follows

min
u∈U

𝐽ℎ (u) := 𝜓(𝑆(𝑡), 𝐼 (𝑡 + ℎ)) +
∑︁
𝑗∈A

1
2

∫
Λ×Λ

𝜈 𝑗 (𝑎, 𝑎∗, 𝑡) |𝑢 𝑗 (𝑎, 𝑎∗, 𝑡) |2𝑑𝑎𝑑𝑎∗ (53)

subject to dynamics (49). By recalling that the macroscopic information on the
infected is

𝐼 (𝑡 + ℎ) = 𝐼 (𝑡) + ℎ
∫
Λ

[
𝑓𝑆 (𝑎, 𝑡)

∑︁
𝑗∈A

∫
Λ

(
𝛽 𝑗 (𝑎, 𝑎∗) − 𝑢 𝑗 (𝑎, 𝑎∗, 𝑡)

)
𝑓𝐼 (𝑎∗, 𝑡)𝑑𝑎∗

− 𝛾(𝑎) 𝑓𝐼 (𝑎, 𝑡)
]
𝑑𝑎,

we can derive the minimizer of 𝐽ℎ computing ∇u𝐽ℎ (u) ≡ 0. Using (53) and the
macroscopic information on 𝐼 (𝑡 + ℎ) and introducing the scaling 𝜈 𝑗 (𝑎, 𝑎∗, 𝑡) =

ℎ𝜅 𝑗 (𝑎, 𝑎∗, 𝑡) we retrieve the instantaneous control

𝑢 𝑗 (𝑎, 𝑎∗, 𝑡) =
1

𝜅 𝑗 (𝑎, 𝑎∗)
𝑓𝑆 (𝑎, 𝑡)𝑖(·, 𝑎∗, 𝑡)𝜕𝐼𝜓(𝑆(𝑡), 𝐼 (𝑡 + ℎ))] . (54)

Passing to the limit for ℎ → 0 and embedding into (49) the control 𝑢 𝑗 we obtain an
instantaneous feedback controlled dynamics.

Explicit form of incidence rates

To understand the action of the feedback control (54) let us consider the simplest
case of a standard SIR model without age dependence (homogeneous mixing), and
specific social interactions. In this simplified setting the model has the structure of
SIR model with the modified transmission rate

𝑑

𝑑𝑡
𝑆(𝑡) = −𝛽𝜅 (𝑡)𝑆(𝑡)𝐼 (𝑡)

𝑑

𝑑𝑡
𝐼 (𝑡) = 𝛽𝜅 (𝑡)𝑆(𝑡)𝐼 (𝑡) − 𝛾𝐼 (𝑡),

(55)

where the transmission rate is

𝛽𝜅 (𝑡) = 𝛽 −
𝑆(𝑡)𝐼 (𝑡)𝜕𝐼𝜓(𝑆(𝑡), 𝐼 (𝑡))

𝜅
. (56)

Introducing the explicit expressions of the control term for the perception function
(51) and (52), we obtain in the convex case (51)

𝛽𝜅 (𝑡) = 𝛽 −
𝐶𝑆(𝑡)𝐼 (𝑡)𝑞

𝜅
= 𝛽

(
1 − 𝑆(𝑡)𝐼 (𝑡)𝑞

𝜅

)
, (57)
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whereas in the logarithmic case (52) and assuming 𝐶 = 𝛽 and 𝜏 = 1/𝜅, we have

𝛽𝜅 (𝑡) = 𝛽 −
𝐶𝐼 (𝑡)

𝜅(1 + 𝜏𝐼 (𝑡)) =
𝛽

1 + 𝜏𝐼 (𝑡) . (58)

Interestingly enough, the resulting nonlinear incidence rates (57)-(58) embedding the
action of feedback controls correspond to the ones considered in [9,84] and [30,52],
respectively. See also Section 2.1 of the present survey for a derivation of saturated
incidence rates like (58). Other nonlinear incidence rates may be obtained similarly
by considering different perception functions, see [84] and the references therein.

See also Section 2.1 of the present survey.

Extensions to SEIRD models

We can extend previous computation to the socially structured compartmental
model including additional compartments such as exposed, and dead individuals.
The resulting feedback controlled SEIRD model reads

𝜕 𝑓𝑆 (𝑎, 𝑡)
𝜕𝑡

= 𝑓𝑆 (𝑎, 𝑡)
∑︁
𝑗∈A

∫
Λ

(
𝛽 𝑗 (𝑎, 𝑎∗) − 𝑢 𝑗 (𝑎, 𝑎∗, 𝑡)

)
𝑓𝐼 (𝑎∗, 𝑡)𝑑𝑎∗

𝜕 𝑓𝐸 (𝑎, 𝑡)
𝜕𝑡

= 𝑓𝑆 (𝑎, 𝑡)
∑︁
𝑗∈A

∫
Λ

(
𝛽 𝑗 (𝑎, 𝑎∗) − 𝑢 𝑗 (𝑎, 𝑎∗, 𝑡)

)
𝑓𝐼 (𝑎∗, 𝑡)𝑑𝑎∗

− 𝜎(𝑎) 𝑓𝐸 (𝑎, 𝑡),
𝜕 𝑓𝐼 (𝑎, 𝑡)
𝜕𝑡

= 𝜎(𝑎) 𝑓𝐸 (𝑎, 𝑡 + ℎ) − (𝛾(𝑎) + 𝛼(𝑎)) 𝑓𝐼 (𝑎, 𝑡).

𝜕 𝑓𝑅 (𝑎, 𝑡)
𝜕𝑡

= 𝛾(𝑎) 𝑓𝐼 (𝑎, 𝑡)

𝜕 𝑓𝐷 (𝑎, 𝑡)
𝜕𝑡

= 𝛼(𝑎) 𝑓𝐼 (𝑎, 𝑡),

(59)

with initial condition 𝑓𝑆 (𝑎, 0) = 𝑓 0
𝑆
(𝑎), 𝑓𝐸 (𝑎, 0) = 𝑓 0

𝐸
(𝑎), 𝑓𝐼 (𝑎, 0) = 𝑓 0

𝐼
(𝑎),

𝑓𝑅 (𝑎, 0) = 𝑓 0
𝑅
(𝑎) and 𝑓𝐷 (𝑎, 0) = 𝑓 0

𝐷
(𝑎). Compared to (49) we introduced the

age dependent parameters: 𝜎(𝑎) ≥ 0, the transition rate of exposed individuals
to the infected class, and 𝛼(𝑎) ≥ 0, the disease-induced death rate of infectious
individuals. The feedback control 𝑢 𝑗 in this case is defined as follows

𝑢 𝑗 (𝑎, 𝑎∗, 𝑡) =
𝜎(𝑎)

𝜅 𝑗 (𝑎, 𝑎∗)
𝑓𝑆 (𝑎, 𝑡) 𝑓𝐼 (𝑎∗, 𝑡)𝜕𝐼𝜓(𝑆(𝑡), 𝐼 (𝑡)), (60)

where the main difference with respect to (54) is the additional scaling parameter
𝜎(𝑎). We refer to [8] for the derivation of the control form (60), and to [9] for further
extension to SEPIAR model and an extensive study on 𝜓(𝑆, 𝐼) = 𝐼𝑞/𝑞.
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3.1.3 Containment in homogeneous social mixing dynamics

To illustrate the effects of introduced controls that mimic containment procedures, let
us first consider the case where the social structure is not present. Hence we consider
model (55) with initial small number of infected and recovered 𝐼 (0) = 3.68 × 10−6,
𝑅(0) = 8.33×10−8. These normalized fractions refer specifically to the first reported
values in the case of the Italian outbreak of COVID-19, even if in this simple test
case we will not try to match the data in a quantitative setting but simply to illustrate
the behavior of the feedback controlled model.
Based on recent studies [83,126], the initial infection rate of COVID-19 𝑅0 = 𝛽/𝛾

has been estimated between 2 and 6.5. Here, to exemplify the possible evolution of
the pandemic we consider a value close to the lower bound, taking 𝛽 = 0.25 and
𝛾 = 0.10, namely a recovery rate of 10 days, so that 𝑅0 = 2.5.

Fig. 4 Test 1. Evolution of the fraction of infected (left) and recovered (right) based on the SIR
feedback constrained model (55) with perception function 𝜓 (𝐼) = 𝐼 and several penalizations
𝜅 = 10−2, 10−3, 10−4. The choice 𝜅 = +∞ corresponds to the unconstrained case. First row, the
control is applied for 𝑡 ∈ [50, 100]; Second row, the control has a longer action in [50, 200].

In Figures 4we report the infected and recovered dynamics based on the activation
of the control in two different time frames. Top images show the case in which the
activation time is bounded 𝑡 ∈ [50, 100], whichmeans that after 100 dayswe suppose
that all containment restrictions are cancelled. In bottom row we consider a larger
activation time frame 𝑡 ∈ [50, 200]. With the choice of the perception function
𝜓(𝐼) = 𝐼 we can observe how the control term is able to flatten the curve.
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3.2 Dealing with data uncertainty

Early in the outbreak of new infectious diseases, the actual number of people infected
and recovered is typically underestimated, causing fatal delays in implementing pub-
lic health policies in the face of spreading epidemic fronts. This is the case of the
spreading of COVID-19 worldwide, often mistakenly underestimated due to defi-
ciencies in surveillance and diagnostic capacity [90,104,126]. Among the common
sources of uncertainties for dynamical systems modeling epidemic outbreaks we
may consider: noisy and incomplete available data, and structural uncertainty due to
the possible inadequacy of the mathematical model used to describe the phenomena
under consideration. In the following we consider the effects on the dynamics of
uncertain data, such as the initial conditions on the number of infected people or the
interaction and recovery rates. On the numerical level we consider techniques based
on stochastic Galerkin methods, for which spectral convergence on random variables
is obtained under appropriate regularity assumptions [122].

3.2.1 Feedback controlled and socially structured models with uncertain
inputs

We introduce the random vector z = (𝑧1, . . . , 𝑧𝑑𝑧
) whose components are assumed to

be independent real valued random variables 𝑧𝑘 : (Ω, 𝐹) → (R,BR), 𝑘 = 1, . . . , 𝑑𝑧
withBR the Borel set. We assume to know the probability density 𝑝(z) : R𝑑𝑧 → R𝑑𝑧

+
characterizing the distribution of z. Here, z ∈ R𝑑𝑧 is a random vector taking into
account various possible sources of uncertainty in the model.
In presence of uncertainties we generalize the initial modeling by introducing

the quantities 𝑓𝑆 (z, 𝑎, 𝑡), 𝑓𝐼 (z, 𝑎, 𝑡) and 𝑓𝑅 (z, 𝑎, 𝑡) representing the distributions at
time 𝑡 ≥ 0 of susceptible, infectious and recovered individuals. The total size of the
population is a deterministic conserved quantity in time, i.e.

𝑓𝑆 (z, 𝑎, 𝑡) + 𝑓𝐼 (z, 𝑎, 𝑡) + 𝑓𝑅 (z, 𝑎, 𝑡) = 𝑝(𝑎),
∫
Λ

𝑝(𝑎)𝑑𝑎 = 1,

and the uncertain fractions of the population that are susceptible, infected and re-
covered are defined as follows

𝑆(z, 𝑡) =
∫
Λ

𝑓𝑆 (z, 𝑎, 𝑡) 𝑑𝑎, 𝐼 (z, 𝑡) =
∫
Λ

𝑓𝐼 (z, 𝑎, 𝑡) 𝑑𝑎, 𝑅(z, 𝑡) =
∫
Λ

𝑓𝑅 (z, 𝑎, 𝑡) 𝑑𝑎.

Hence, the controlled system (49) in presence of uncertainty reads
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𝜕𝑡 𝑓𝑆 (z, 𝑎, 𝑡) = − 𝑓𝑆 (z, 𝑎, 𝑡)
∑︁
𝑗∈A

∫
Λ

(
𝛽 𝑗 (z, 𝑎, 𝑎∗) − 𝑢 𝑗 (𝑎, 𝑎∗, 𝑡)

)
𝑓𝐼 (z, 𝑎∗, 𝑡)𝑑𝑎∗

𝜕𝑡 𝑓𝐼 (z, 𝑎, 𝑡) = 𝑓𝑆 (z, 𝑎, 𝑡)
∑︁
𝑗∈A

∫
Λ

(
𝛽 𝑗 (z, 𝑎, 𝑎∗) − 𝑢 𝑗 (𝑎, 𝑎∗, 𝑡)

)
𝑓𝐼 (z, 𝑎∗, 𝑡)𝑑𝑎∗

− 𝛾(z, 𝑎)) 𝑓𝐼 (z, 𝑎, 𝑡)
𝜕𝑡 𝑓𝑅 (z, 𝑎, 𝑡) = 𝛾(z, 𝑎) 𝑓𝐼 (z, 𝑎, 𝑡),

(61)

where the controls terms are assumed to be deterministic and defined as

𝑢 𝑗 (𝑎, 𝑎∗, 𝑡) =
1

𝜅 𝑗 (𝑎, 𝑎∗)
R[ 𝑓𝑆 (·, 𝑎, 𝑡) 𝑓𝐼 (·, 𝑎∗, 𝑡)𝜕𝐼𝜓(𝑆(·, 𝑡), 𝐼 (·, 𝑡))],

beingR[𝜓(𝑆(·, 𝑡), 𝐼 (·, 𝑡))] a suitable operator taking into account the presence of the
uncertainties z. Examples of such operator that are of interest in epidemic modelling
rely on the expectated value

R[𝜓(𝑆, 𝐼) (·, 𝑡)] = E[𝜓(𝑆, 𝐼) (·, 𝑡)] =
∫
R𝑑𝑧

𝜓(𝑆, 𝐼) (z, 𝑡) 𝑝(z)𝑑z, (62)

or on deterministic data which underestimate the number of infected

R[𝜓(𝑆, 𝐼) (·, 𝑡)] = 𝜓(𝑆, 𝐼) (z0, 𝑡), (63)

where z0 is a given value such that 𝐼 (z0, 𝑡) ≤ 𝐼 (z, 𝑡), for all z ∈ R𝑑𝑧 and 𝑡 > 0. We
refer to [8, 9] for further details on the derivation, and further extensions.

A solvable example

We consider a simplified version of model (61) in absence of control, with homoge-
neous mixing 𝛽social (𝑧) and recovery rate 𝛾(𝑧), 𝑧 ∈ R distributed as 𝑝(𝑧). Integrating
against 𝑎 we obtain the following SIR model with uncertainty

𝑑

𝑑𝑡
𝑆(𝑧, 𝑡) = −𝛽social (𝑧)𝑆(𝑧, 𝑡)𝐼 (𝑧, 𝑡)

𝑑

𝑑𝑡
𝐼 (𝑧, 𝑡) = 𝛽social (𝑧)𝑆(𝑧, 𝑡)𝐼 (𝑧, 𝑡) − 𝛾(𝑧)𝐼 (𝑧, 𝑡),

(64)

with deterministic initial values 𝐼 (𝑧, 0) = 𝐼0 and 𝑆(𝑧, 0) = 𝑆0. Following [106],
we assume a linear source of uncertainty 𝛽social (𝑧) = 𝛽 + 𝛼𝑧, 𝛼 > 0, and constant
recovery rate 𝛾(𝑧) = 𝛾 > 0. The solution for the proportion of infected during the
initial exponential phase is

𝐼 (𝑧, 𝑡) = 𝐼0𝑒 (𝛽+𝛼𝑧)𝑆0𝑡−𝛾𝑡 ,

and its expectation
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E[𝐼 (·, 𝑡)] = 𝐼0𝑒𝛽𝑆0𝑡−𝛾𝑡
∫
R
𝑒𝛼𝑧𝑆0𝑡 𝑝(𝑧) 𝑑𝑧 = 𝐼0𝑒𝛽𝑆0𝑡−𝛾𝑡𝑊 (𝑡), (65)

where𝑊 (𝑡) represents the statistical correction factor to the standard deterministic
exponential phase of the disease 𝐼0𝑒𝛽𝑆0𝑡−𝛾𝑡 . If 𝑧 is uniformly distributed in [−1, 1]
we can explicitly compute

𝑊 (𝑡) = sinh (𝛼𝑆0𝑡)
𝛼𝑆0𝑡

> 1, 𝑡 > 0.

More in general, if 𝑧 has zero mean then by Jensen’s inequality we have𝑊 (𝑡) > 1
for 𝑡 > 0, so that the expected exponential phase is amplified by the uncertainty.
In a similar way, keeping 𝛽social (𝑧) = 𝛽 constant, but introducing a source of

uncertainty in the initial data 𝐼 (𝑧, 0) = 𝐼0 + 𝜇𝑧, 𝜇 > 0 and 𝑧 ∈ R distributed as 𝑝(𝑧)
the solution in the exponential phase reads

𝐼 (𝑧, 𝑡) = (𝐼0 + 𝜇𝑧)𝑒𝛽𝑆0𝑡−𝛾𝑡 ,

and then its expectation

E[𝐼 (·, 𝑡)] =
∫
R
(𝐼0 + 𝜇𝑧)𝑒𝛽𝑆0𝑡−𝛾𝑡 𝑝(𝑧) 𝑑𝑧 = (𝐼0 + 𝜇𝑧)𝑒𝛽𝑆0𝑡−𝛾𝑡 , (66)

where 𝑧 is the mean of the variable 𝑧. Therefore, the expected initial exponential
growth behaves as the one with deterministic initial data 𝐼0 + 𝜇𝑧. Of course, if
both sources of uncertainty are present the two effects just described sum up in the
dynamics.

The presence of a large number of undetected infected is at the basis of the
construction of numerous epidemiological models with an increasingly complex
compartmental structure in which the original compartment of the infected is sub-
divided into further compartments with different roles in the propagation of the
disease [51, 57, 59]. The following remark clarifies the relationships to other deter-
ministic compartmental models.

Connection to other compartmental models

Let us consider model (64) with a one-dimensional random input 𝑧 ∈ R distributed
as 𝑝(𝑧). Furthermore, for a function 𝐹 (𝑧, 𝑡) we will denote its expected value as
𝐹̄ (𝑡) = E[𝐹 (·, 𝑡)]. Now, starting from a discrete probability density function

𝑝𝑘 = 𝑃 {𝑍 = 𝑧𝑘} ,
𝑛∑︁

𝑘=1
𝑝𝑘 = 1,

we have 𝐹̄ (𝑡) =
∑𝑛

𝑘=1 𝑝𝑘𝐹𝑘 , with 𝐹𝑘 = 𝐹 (𝑧𝑘). Taking the expectation in (64), we
can write
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𝑑

𝑑𝑡
𝑆(𝑡) = −𝑆(𝑡)

𝑛∑︁
𝑘=1

𝛽𝑘 𝑝𝑘 𝐼𝑘 (𝑡)

𝑑

𝑑𝑡
𝐼 (𝑡) = 𝑆(𝑡)

𝑛∑︁
𝑘=1

𝛽𝑘 𝑝𝑘 𝐼𝑘 (𝑡) −
𝑛∑︁

𝑘=1
𝛾𝑘 𝑝𝑘 𝐼𝑘 (𝑡),

𝑑

𝑑𝑡
𝑅̄(𝑡) =

𝑛∑︁
𝑘=1

𝛾𝑘 𝑝𝑘 𝐼𝑘 (𝑡),

(67)

with 𝛽𝑘 = 𝑆𝑘𝛽𝑘/𝑆, 𝑘 = 1, . . . , 𝑛. For example, in the case 𝑛 = 2, by identifying
𝐼𝑑 = 𝑝1𝐼1 and 𝐼𝑢 = 𝑝2𝐼2with the compartments of detected and undetected infectious
individuals, we have the same structure of a SIAR compartmental model including
the undetected (or the asymptomatic) class.
The additional dependence of the epidemiological parameters on the random

variable allows us to take into account changes in the corresponding dynamics of
disease transmission and recovery.

3.2.2 Application to the COVID-19 outbreak

In this section, we first present the impact of social structure in feedback-controlled
models with uncertain data, which account for the presence of symptomatic and
asymptomatic unreported cases, at the first wave of the COVID-19 pandemic. In
particular we will focus on different scenarios of possible containment measures for
different countries.

Model calibration and estimating actual infection trends

Estimating epidemiological parameters is a very difficult problem that can be ad-
dressed with different approaches [29, 34, 106]. In the case of COVID-19 due to the
limited number of data and their great heterogeneity this becomes an even bigger
problem that can easily lead to unrealistic results.
Similarly to Section 2.1.5 we calibrate the model using data publicly available

from the John Hopkins University GitHub repository, and GitHub repository of the
Italian Civil Protection Department for the Italian case (see Data Sources in Section
5.1). We adopted the fitting procedure described in [9] that is based on a strategy
with two optimization horizons (pre-lockdown and lockdown time spans) depending
on the different strategies enacted by the governments of the considered European
countries. Once the relevant epidemiological parameters have been estimated in the
pre-lockdown time span, i.e. 𝛽𝑒 > 0 and 𝛾𝑒 > 0, we successively proceeded with
the estimation of the control penalty parameter 𝜅𝑒 = 𝜅(𝑡) > 0. These two calibration
steps were analyzed under the assumption of homogeneous mixing.
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We report in Figure 5 the corresponding time dependent values for the control
parameter 𝑘 (𝑡), as well as results of themodel fittingwith the actual trends of infected
individuals.

Fig. 5 Model behavior with fitting parameters and actual trends in the number of reported infectious
using the estimated control penalization terms after lockdown over time in the various countries.

Next we focus on the influence of uncertain quantities on the controlled system
with homogeneous mixing. According to recent results on the diffusion of COVID-
19 in many countries the number of infected, and therefore recovered, is largely
underestimated on the official reports, see e.g. [70,90]. As discussed in [9] a param-
eter estimation based on the previous fitting has some limitations and in particular
overestimates the reproduction rate in the early phase of the pandemic. For this
purpose, to have an insight on global impact of uncertain parameters we consider a
two-dimensional uncertainty z = (𝑧1, 𝑧2) with independent components such that

𝐼 (z, 0) = 𝐼0 (1 + 𝜇𝑧1), 𝑅(z, 0) = 𝑅0 (1 + 𝜇𝑧1), 𝜇 > 0 (68)

and
𝛽(z) = 𝛽𝑒 − 𝛼𝛽𝑧2, 𝛾(z) = 𝛾𝑒 + 𝛼𝛾𝑧2, 𝛼𝛽 , 𝛼𝛾 > 0 (69)

where 𝑧1, 𝑧2 are chosen to be distributed as symmetric Beta distributions in [0, 1], 𝑓 0𝐼
and 𝑓 0

𝑅
are the initial number of reported cases and recovered taken from [126]. The

parameter 𝜇 = 2(𝑐 − 1) is common for all countries such that E[𝐼 (z, 0)] = 𝑐𝐼 (0),
E[𝑅(z, 0)] = 𝑐𝑅(0) where 𝑐 = 8.56, corresponding to average disagreement in the
total number of cases based on an estimated infection fatality rate (IFR) of 1.3% in
the range 0.9%− 2.0%. The feedback controlled model has been computed using an
estimation of the total number of susceptible and infected reported, namely we have
the control term

𝑢(𝑡) = − 1
𝑘 (𝑡) 𝑆𝑟 (𝑡)𝐼𝑟 (𝑡), (70)

where 𝑆𝑟 (𝑡) and 𝐼𝑟 (𝑡) are the model solution obtained from the registered data, and
thus 𝐼𝑟 (𝑡) represents a lower bound for the uncertain solution 𝐼 (z, 𝑡).
In Figure 6 we report the evolution of reproduction number 𝑅0 for the considered

countries under the uncertainties in (69) obtained with 𝛼𝛽 = 0.03, 𝛼𝛾 = 0.05 and
𝑧2 ∼ 𝐵(2, 2). The reproduction number is estimated from
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𝑅0 (𝑧2, 𝑡) =
𝛽(𝑧2) − 𝑢(𝑡)𝜒(𝑡 > 𝑡)

𝛾(𝑧2)
,

being the control 𝑢(𝑡) defined in (70) and 𝑡 is the country-dependent lockdown
time. The estimated reproduction number relative to data is reported with x-marked
symbols and represents an upper bound for 𝑅0 (𝑧2, 𝑡).

Fig. 6 Evolution of estimated reproduction number 𝑅0 and its confidence bands for uncertain data
in as in (69). The 95% and 50% confidence levels are represented as shaded and darker shaded
areas respectively. The green zones denote the interval between the first day the 50% confidence
band and the expected value fall below 1.

Effect of social contacts in the population.

We first analyze the effects of the inclusion of age dependence and social interactions
in the above dynamics with uncertainty in the case of COVID-19 outbreak for the
Italian case. The age dependent social interaction rate 𝛽(𝑎, 𝑎∗) is defined as follows,

𝛽(𝑎, 𝑎∗) = (1 − 𝜉)𝛽𝑒 + 𝜉
∑︁
𝑗∈A

𝛽 𝑗 (𝑎, 𝑎∗), (71)

where 0 ≤ 𝜉 ≤ 1, thus for 𝜉 = 0 we recover the homogeneuos mixing, whereas for
𝜉 = 1 we have a full social mixing behavior.
The social interaction function, 𝛽social (𝑎, 𝑎∗), accounts for the interactions due to

specific activitiesA = {Family, Education, Profession}. This function is normalized
using the estimated parameters 𝛽𝑒 in accordance with

𝛽𝑒 = 𝐶𝛽

∫
Λ×Λ

𝛽(𝑎, 𝑎∗) 𝑓 (𝑎) 𝑓 (𝑎∗) 𝑑𝑎 𝑑𝑎∗, 𝛾𝑒 = 𝐶𝛾

∫
Λ

𝛾(𝑎) 𝑓 (𝑎) 𝑑𝑎, (72)

where 𝑓 (𝑎) is the age distribution with Λ = [0, 𝑎max], 𝑎max = 100, and 𝐶𝛽 , 𝐶𝛾

normalization constants. We refer to the Appendix of [8] for specific definition of
the social interaction 𝛽 𝑗 (𝑎, 𝑎∗).
In Figure 7we report the results of the expected number of infectedwith the related

confidence bands in case of homogeneousmixing and different levels of socialmixing
(𝜉 = 0.75, 𝜉 = 1) for the constant recovery rate 𝛾𝑒. Middle and right figures report
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the corresponding expected density of infected individuals 𝑓𝐼 (𝑎, 𝑡) = E( 𝑓𝐼 (𝑧, 𝑎, 𝑡))
for mild and full social mixing. Uncontrolled homogeneous mixing model is used
in the pre-lockdown phase (before 9 March), whereas the feedback controlled age
dependent model (61) is used in the lockdown phase.
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Fig. 7 Left: Expected number of infected in time for the perception function 𝜓 (𝐼) = 𝐼 , and a
constant recovery rate 𝛾𝑒 together with the confidence bands for homogeneous mixing (𝜉 = 0),
mild social mixing ( 𝜉 = 0.75) and full social mixing (𝜉 = 1). Middle and right: Expected age
distribution of infectious individuals with constant 𝛾𝑒.

Relaxing control on the various social activities.

We consider the social interaction functions corresponding to the contact matrices
in [102] for the various countries. As a result we have four interaction functions
characterized by A = {𝐹, 𝐸, 𝑃, 𝑂}, where we identify family and home contacts
with 𝛽𝐹 , education and school contacts with 𝛽𝐸 , professional and work contacts
with 𝛽𝑃 , and other contacts with 𝛽𝑂. We report in Figure 8, as an example, the total
social interaction functions for the various countries. The functions share a similar
structure but with different scalings according to the country specific features.
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Fig. 8 The total contact interaction function 𝛽 = 𝛽𝐹 +𝛽𝐸 +𝛽𝑃 +𝛽𝑂 taking into account the contact
rates of people with different ages. Family and home contacts are characterized by 𝛽𝐹 , education
and school contacts by 𝛽𝐸 , professional and work contacts by 𝛽𝑃 , and other contacts by 𝛽𝑂 .

An age-related recovery rate 𝛾(𝑎) is selected according to [9] as a decreasing
function of the age,
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𝛾(𝑎) = 𝛾𝑒 + 𝐶𝑒−𝑟𝑎, (73)

with 𝑟 = 5 and𝐶 ∈ R, in accordance with [121,124], and such that the normalization
(72) is satisfied.
To match the single control applied in the extrapolation of the penalization term

𝜅(𝑡) to age dependent penalization factors 𝜅 𝑗 (𝑎, 𝑡) we redistribute the values of the
penalization parameters as

𝜅 𝑗 (𝑎, 𝑡)−1 =
𝑤 𝑗 (𝑡)

∫
Λ
𝛽 𝑗 (𝑎, 𝑎∗) 𝑑𝑎∗∑

𝑗∈A 𝑤 𝑗 (𝑡)
∫
Λ×Λ 𝛽 𝑗 (𝑎, 𝑎∗) 𝑑𝑎 𝑑𝑎∗

𝜅(𝑡)−1, 𝑗 ∈ A

where 𝑤 𝑗 (𝑡) ≥ 0, are weight factors denoting the relative amount of control on a
specific activity. According to [102], we assume 𝑤𝐸 = 1.5, 𝑤𝐻 = 0.2, 𝑤𝑃 = 0.5,
𝑤𝑂 = 0.6, namely the largest effort of the control is due to the school closure which
as a consequence implies more interactions at home. Work and other activities are
equally impacted by the lockdown.
In Figure 9 we report the age distribution of infected computed for each country

at the end of the lockdown period using an age dependent recovery and a constant
recovery. The differences in the resulting age distributions are evident. In subsequent
simulations, to avoid an unrealistic peak of infection amongyoung people,we decided
to adopt an age-dependent recovery [121].

Fig. 9 Age distribution of infected using constant and age dependent recovery rates as in (73) at
the end of the lockdown period in different countries.

We analyze the effects on each country of the same relaxation of the lockdown
measures at two different times. The first date is country specific according to current
available informations, the second is June 1st for all countries. For all countries
we assumed a reduction of individual controls on the different activities by 20%
on family activities, 35% on work activities and 30% on other activities without
changing the control over the school. The behaviors of the curves of infected people
together with the relative 95% confidence bands are reported in Figure 10.
The results show well the substantial differences between the different countries,

with a situation in US which highlight that the relaxation of lockdown measures
could lead to a resurgence of the infection. On the contrary, Germany was in the
most favorable situation to ease the lockdown without risking a new start of the
infection.
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Fig. 10 Scenario 1: Effect on releasing containment measures in various countries at two different
times. In all countries after lockdown we assumed a reduction of individual controls on the different
activities by 20% on family activities, 35% onwork activities and 30% on other activities by keeping
the lockdown over the school.

4 Multiscale transport models

In this section, we introduce multiscale hyperbolic transport models designed to
study the propagation of an epidemic phenomenon described by the diffusive behav-
ior of the non-commuting part of the population, acting only over an urban scale, and
the spatial movement and interaction of commuters, moving also on an extra-urban
scale. This makes it possible to describe more realistically the typical dynamic of
commuters, which affects only a small fraction of individuals, and to distinguish it
from the epidemic process which, instead, involves the entire population, including
non-commuters. The presence of a group of non-commuting population, indeed, pre-
vents the entire population in a compartment from moving indiscriminately through
space generating an unrealistic mass migration effect. In the following, we will con-
sider a spatial domain either structured as a network, whose nodes identify cities of
interest and arcs represent common mobility paths, as discussed in Section 4.1, or
representing realistic 2D geographical regions, as further detailed in Section 4.2.

4.1 Spatial dynamics on networks

4.1.1 1D hyperbolic compartmental model

To simplify the presentation, the epidemiological starting point of the model is
given by a compartmental structure with a simple SIR partitioning [65, 78]. We
assume to have a population with individuals having no prior immunity and the vital
dynamics represented by births and deaths is neglected because of the time scale
considered. To account for the spatial movement of the population, individuals of
each compartment are subdivided in three classes, 𝑆±,0, 𝐼±,0, 𝑅±,0, traveling in a 1D
bounded space domainΩ ⊆ Rwith characteristic speeds +𝜆𝑖 ,−𝜆𝑖 and 0 respectively,
with 𝑖 ∈ {𝑆, 𝐼, 𝑅}. Therefore, we consider a stationary part of the population, of non-
commuters, characterized by a null characteristic speed. The total compartmental
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densities are defined as the sum of all the components of the subgroups

𝑆 = 𝑆+ + 𝑆− + 𝑆0, 𝐼 = 𝐼+ + 𝐼− + 𝐼0, 𝑅 = 𝑅+ + 𝑅− + 𝑅0 . (74)

The discrete-velocity system of the SIR epidemic transport model for commuters,
associated to relaxation times 𝜏𝑖 , then reads

𝜕𝑆±
𝜕𝑡

± 𝜆𝑆
𝜕𝑆±
𝜕𝑥

= −𝐹𝐼 (𝑆±, 𝐼) +
1
2𝜏𝑆

(𝑆∓ − 𝑆±) ,

𝜕𝐼±
𝜕𝑡

± 𝜆𝐼
𝜕𝐼±
𝜕𝑥

= 𝐹𝐼 (𝑆±, 𝐼) − 𝛾𝐼 𝐼± + 1
2𝜏𝐼

(𝐼∓ − 𝐼±) ,

𝜕𝑅±
𝜕𝑡

± 𝜆𝑅
𝜕𝑅±
𝜕𝑥

= 𝛾𝐼 𝐼± + 1
2𝜏𝑅

(𝑅∓ − 𝑅±) .

(75)

This system is coupled with a classical ODE SIR model, which describes the evolu-
tion of the stationary population of non-commuters:

d𝑆0
d𝑡

= −𝐹𝐼 (𝑆0, 𝐼) ,
d𝐼0
d𝑡

= 𝐹𝐼 (𝑆0, 𝐼) − 𝛾𝐼 𝐼0 ,
d𝑅0
d𝑡

= 𝛾𝐼 𝐼0 . (76)

Let us observe that, under no inflow/outflow boundary conditions, summing up
the equations in (75)-(76) and integrating in Ω yields the conservation of the total
population.
All the epidemic densities and, eventually, the epidemic parameters and the re-

laxation times depend on (z, 𝑥, 𝑡), where (𝑥, 𝑡) are the physical variables of space
𝑥 ∈ Ω ⊆ R and time 𝑡 > 0, while z = (𝑧1, . . . , 𝑧𝑑)𝑇 ∈ R𝑑 is a random vector charac-
terizing the possible sources of uncertainty as in Section 3.2.1. The same applies for
the incidence function 𝐹𝐼 , defined with respect to the infectious compartment 𝐼 as

𝐹𝐼 (𝑔, 𝐼) = 𝛽𝐼
𝑔𝐼 𝑝

1 + 𝜅𝐼 𝐼 𝑝
, 𝑝 ≥ 1, (77)

where 𝛽𝐼 (z, 𝑥, 𝑡) is the transmission rate, accounting for both number of contacts
and probability of transmission, hence it may vary based on the effects of govern-
ment control actions, such as mandatory wearing of masks, shutdown of specific
work/school activities, or full lockdowns [8,59,65]. The parameter 𝜅𝐼 (z, 𝑥, 𝑡) acts as
incidence damping coefficients based on the self-protective behavior of the individ-
ual that arises from awareness of the risk associated with the epidemic [21, 30, 52].
We refer also to Section 2.1 and 3 for the derivation of saturated incidence func-
tions of the form (77). Note that, the classic bilinear case corresponds to 𝑝 = 1 and
𝜅𝐼 = 0. Finally, the parameter 𝛾𝐼 (z, 𝑥, 𝑡) is the recovery rate of infected (inverse of
the infectious period).
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4.1.2 Macroscopic formulation and diffusion limit

Introducing now the macroscopic variables 𝑆𝑐, 𝐼𝑐, 𝑅𝑐 for the commuters, with 𝑆𝑐 =

𝑆+ + 𝑆−, 𝐼𝑐 = 𝐼+ + 𝐼−, 𝑅𝑐 = 𝑅+ + 𝑅−, and defining the fluxes

𝐽𝑆 = 𝜆𝑆 (𝑆+ − 𝑆−), 𝐽𝐼 = 𝜆𝐼 (𝐼+ − 𝐼−), 𝐽𝑅 = 𝜆𝑅 (𝑅+ − 𝑅−), (78)

a hyperbolic model underlying the macroscopic formulation of the spatial propaga-
tion of an epidemic at finite speeds, equivalent to the mesoscopic one [11], presented
in system (75), is obtained [21]:

𝜕𝑆𝑐

𝜕𝑡
+ 𝜕𝐽𝑆
𝜕𝑥

= −𝐹𝐼 (𝑆𝑐, 𝐼) ,

𝜕𝐼𝑐

𝜕𝑡
+ 𝜕𝐽𝐼
𝜕𝑥

= 𝐹𝐼 (𝑆𝑐, 𝐼) − 𝛾𝐼 𝐼𝑐 ,

𝜕𝑅𝑐

𝜕𝑡
+ 𝜕𝐽𝑅
𝜕𝑥

= 𝛾𝐼 𝐼𝑐 ,

𝜕𝐽𝑆

𝜕𝑡
+ 𝜆2𝑆

𝜕𝑆𝑐

𝜕𝑥
= −𝐹𝐼 (𝐽𝑆 , 𝐼) −

1
𝜏𝑆
𝐽𝑆 ,

𝜕𝐽𝐼

𝜕𝑡
+ 𝜆2𝐼

𝜕𝐼𝑐

𝜕𝑥
=
𝜆𝐼

𝜆𝑆
𝐹𝐼 (𝐽𝑆 , 𝐼) − 𝛾𝐼𝐽𝐼 −

1
𝜏𝐼
𝐽𝐼 ,

𝜕𝐽𝑅

𝜕𝑡
+ 𝜆2𝑅

𝜕𝑅𝑐

𝜕𝑥
=
𝜆𝑅

𝜆𝐼
𝛾𝐼𝐽𝐼 −

1
𝜏𝑅
𝐽𝑅 .

(79)

Note that here the above system is coupled with the equations for the non-commuting
population (76) through identities (74). It is easy to verify that system (79) is sym-
metric hyperbolic in the sense of Friedrichs-Lax [53].
From a formal viewpoint, it can be shown that the proposed model recovers the

parabolic behavior expected from standard space-dependent epidemic models in the
diffusion limit [12,21]. Introducing the diffusion coefficients 𝐷𝑖 = 𝜆

2
𝑖
𝜏𝑖 , 𝑖 ∈ {𝑆, 𝐼, 𝑅}

that characterize the diffusive transport mechanism of 𝑆, 𝐼, 𝑅 respectively, and letting
𝜏𝑖 → 0, while keeping the diffusion coefficients finite [82], from the last three
equations of system (79) we recover Fick’s laws

𝐽𝑆 = −𝐷𝑆

𝜕

𝜕𝑥
𝑆𝑐, 𝐽𝐼 = −𝐷 𝐼

𝜕

𝜕𝑥
𝐼𝑐, 𝐽𝑅 = −𝐷𝑅

𝜕

𝜕𝑥
𝑅𝑐,

which, inserted in the first three equations of system (79), yield the following
parabolic reaction-diffusion system for the commuters [17, 91]

𝜕𝑆𝑐

𝜕𝑡
=
𝜕

𝜕𝑥

(
𝐷𝑆

𝜕

𝜕𝑥
𝑆𝑐

)
− 𝐹𝐼 (𝑆𝑐, 𝐼) ,

𝜕𝐼𝑐

𝜕𝑡
=
𝜕

𝜕𝑥

(
𝐷 𝐼

𝜕

𝜕𝑥
𝐼𝑐

)
+ 𝐹𝐼 (𝑆𝑐, 𝐼) − 𝛾𝐼 𝐼𝑐 ,

𝜕𝑅𝑐

𝜕𝑡
=
𝜕

𝜕𝑥

(
𝐷𝑅

𝜕

𝜕𝑥
𝑅𝑐

)
+ 𝛾𝐼 𝐼𝑐 .

(80)
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The relaxation times can modify the nature of the behavior of the solution [12, 21],
which can result either hyperbolic or parabolic (when considering small relaxation
times and large speeds). This feature of the model makes it particularly suitable for
the description of the dynamics of human populations, which are characterized by
movement at different spatial scales [23]. It is therefore natural to assume 𝜏𝑖 = 𝜏𝑖 (𝑥),
since in geographic areas densely populated we can assume a diffusive dynamics
while along the main arteries of communication a hyperbolic description will be
more appropriate avoiding propagation of information at infinite speed.

Reproduction number in space dependent dynamics

The standard threshold of epidemic models is the well-known basic reproduction
number 𝑅0. Its definition in the case of spatially dependent dynamics, as already
noted in [115, 116], is not straightforward particularly when considering its spatial
dependence.
Assuming no inflow/outflow boundary conditions in Ω, summing up the evolu-

tionary equations for the infectious compartment 𝐼 in (75)-(76) and integrating over
space we have

𝜕

𝜕𝑡

∫
Ω

𝐼 (z, 𝑥, 𝑡) 𝑑𝑥 =
∫
Ω

𝐹𝐼 (𝑆, 𝐼) 𝑑𝑥 −
∫
Ω

𝛾𝐼 (z, 𝑥, 𝑡)𝐼 (z, 𝑥, 𝑡) 𝑑𝑥 ≥ 0

when

𝑅0 (z, 𝑡) =
∫
Ω
𝐹𝐼 (𝑆, 𝐼) 𝑑𝑥∫

Ω
𝛾𝐼 (z, 𝑥, 𝑡)𝐼 (z, 𝑥, 𝑡) 𝑑𝑥

≥ 1. (81)

If no spatial dependence is assigned to variables and parameters, as well as no
uncertainty, and no social distancing effects are taken into account, i.e. 𝜅𝐼 = 0, we
recover the conventional SIR ODE model and the reproduction number results in
accordance with its standard definition [65]:

𝑅0 (𝑡) =
𝛽𝐼𝑆

𝛾𝐼
.

4.1.3 Extension to multi-compartmental modelling

To account for more complex compartmental models capable of better analyzing the
evolution of specific infectious diseases, we consider extending the simple SIR com-
partmentalization by taking into account two additional population compartments,
𝐸 and 𝐴, resulting in a SEIAR model [18, 20]. Subjects in the 𝐸 compartment are
the exposed, hence infected but not yet infectious, being in the latent period. More-
over, among the infectious subjects, we distinguish the population between a group
of individuals 𝐼 who will develop severe symptoms and a group of individuals 𝐴
who will never develop symptoms or, if they do, these will be very mild. In fact, as
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discussed in Section 3, the presence of undetected asymptomatic individuals turns
out to be essential to correctly analyze the evolution of COVID-19 [57, 98].
Note that, the presence of uncertainty in the data, included from the beginning

in the modeling process, could allow the compartmentalization of asymptomatic
individuals to be eliminated by implicitly including them in the uncertainty about the
number of infected individuals, as described in Section 3.2.1. In this context, however,
in order to highlight the link with similar models used in the literature [98,111,112],
we keep the asymptomatic compartment separated to the symptomatic one, with the
former being affected by the highest level of uncertainty.
Defining the total density of the additional compartments, 𝐸 = 𝐸+ + 𝐸− + 𝐸0,

𝐴 = 𝐴+ + 𝐴− + 𝐴0, the resulting discrete-velocity system of the SEIAR epidemic
transport model for commuters reads

𝜕𝑆±
𝜕𝑡

± 𝜆𝑆
𝜕𝑆±
𝜕𝑥

= −𝐹𝐼 (𝑆±, 𝐼) − 𝐹𝐴(𝑆±, 𝐴) +
1
2𝜏𝑆

(𝑆∓ − 𝑆±) ,

𝜕𝐸±
𝜕𝑡

± 𝜆𝐸
𝜕𝐸±
𝜕𝑥

= 𝐹𝐼 (𝑆±, 𝐼) + 𝐹𝐴(𝑆±, 𝐴) − 𝑎𝐸± + 1
2𝜏𝐸

(𝐸∓ − 𝐸±) ,

𝜕𝐼±
𝜕𝑡

± 𝜆𝐼
𝜕𝐼±
𝜕𝑥

= 𝑎𝜎𝐸± − 𝛾𝐼 𝐼± + 1
2𝜏𝐼

(𝐼∓ − 𝐼±) ,

𝜕𝐴±
𝜕𝑡

± 𝜆𝐴

𝜕𝐴±
𝜕𝑥

= 𝑎(1 − 𝜎)𝐸± − 𝛾𝐴𝐴± + 1
2𝜏𝐴

(𝐴∓ − 𝐴±) ,

𝜕𝑅±
𝜕𝑡

± 𝜆𝑅
𝜕𝑅±
𝜕𝑥

= 𝛾𝐼 𝐼± + 𝛾𝐴𝐴± + 1
2𝜏𝑅

(𝑅∓ − 𝑅±) ,

(82)

which is coupled with the following SEIAR model describing the evolution of non-
commuting individuals

d𝑆0
d𝑡

= −𝐹𝐼 (𝑆0, 𝐼) + 𝐹𝐴(𝑆0, 𝐴) ,

d𝐸0
d𝑡

= 𝐹𝐼 (𝑆0, 𝐼) + 𝐹𝐴(𝑆0, 𝐴) − 𝑎𝐸0 ,

d𝐼0
d𝑡

= 𝑎𝜎𝐸0 − 𝛾𝐼 𝐼0 ,

d𝐴0
d𝑡

= 𝑎(1 − 𝜎)𝐸0 − 𝛾𝐴𝐴0 ,

d𝑅0
d𝑡

= 𝛾𝐼 𝐼0 + 𝛾𝐴𝐴0 .

(83)

The quantity 𝛾𝐴(z, 𝑥, 𝑡) is the recovery rate of asymptomatic/mildly symptomatic
infected, which is distinguished from the recovery rate of highly symptomatic in-
fected previously introduced 𝛾𝐼 (z, 𝑥, 𝑡); while 𝑎(z, 𝑥, 𝑡) represents the inverse of
the latency period and 𝜎(z, 𝑥, 𝑡) is the probability rate of developing severe symp-
toms [28,57,112]. In this model, the transmission of the infection is governed by two
different incidence functions, 𝐹𝐼 (·, 𝐼) and 𝐹𝐴(·, 𝐴), simply to distinguish between
the behavior of 𝐼 and 𝐴 individuals. Analogously to (77),
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S±,0 E±,0

A±,0

I±,0

R±,0
βI, βA

γA

γIa σ

a (1 - σ)

kI, kA

Fig. 11 Flow chart of the multi-population SEIAR dynamics based on five compartments: sus-
ceptible (S), exposed (E), severe symptomatic infectious (I), mildly symptomatic/asymptomatic
infectious (A), and removed –healed or deceased– population (R), each one subdivided in three
classes of individuals traveling in the domain with characteristic speeds +𝜆𝑖 , −𝜆𝑖 and 0, with
𝑖 ∈ {𝑆, 𝐸, 𝐼, 𝐴, 𝑅}

𝐹𝐴(𝑔, 𝐴) = 𝛽𝐴
𝑔𝐴𝑝

1 + 𝜅𝐴𝐴
, (84)

where a different contact rate, 𝛽𝐴, and coefficient 𝜅𝐴 are taken into account for
mildly/no symptomatic people. The flow chart of the multiscale SEIAR model is
shown in Fig. 11.
Let us observe that, similarly to the diffusive scaling presented in Section 4.1.2

for the SIR-type model, introducing the same definition (78) of flux for the additional
compartments, 𝐽𝐸 and 𝐽𝐴, we get an analogous macroscopic formulation also for the
SEIAR-type spatial model. Furthermore, defining also 𝐷𝐸 = 𝜆2

𝐸
𝜏𝐸 and 𝐷𝐴 = 𝜆2

𝐴
𝜏𝐴,

we recover the diffusion limit of the SEIAR-type system. The reader can refer to [20]
for details on this derivation.

Reproduction number in space dependent SEIAR models

For the SEIAR-type spatial model, the reproduction number (which is again not
straightforward to be determined) can be computed following the Next-Generation
Matrix (NGM) approach [40] considering no flux boundary conditions, which yields
the following definition for the average value of 𝑅0 in the domain Ω for 𝑡 > 0, given
the uncertain input vector z:

𝑅0 (z, 𝑡) =
∫
Ω
𝐹𝐼 (𝑆, 𝐼) 𝑑𝑥∫

Ω
𝛾𝐼 (z, 𝑥, 𝑡)𝐼 (z, 𝑥, 𝑡) 𝑑𝑥

·
∫
Ω
𝑎(z, 𝑥, 𝑡)𝜎(z, 𝑥, 𝑡)𝐸 (z, 𝑥, 𝑡) 𝑑𝑥∫

Ω
𝑎(z, 𝑥, 𝑡)𝐸 (z, 𝑥, 𝑡) 𝑑𝑥

+
∫
Ω
𝐹𝐴(𝑆, 𝐴) 𝑑𝑥∫

Ω
𝛾𝐴(z, 𝑥, 𝑡)𝐴(z, 𝑥, 𝑡) 𝑑𝑥

·
∫
Ω
𝑎(z, 𝑥, 𝑡) (1 − 𝜎(z, 𝑥, 𝑡))𝐸 (z, 𝑥, 𝑡) 𝑑𝑥∫

Ω
𝑎(z, 𝑥, 𝑡)𝐸 (z, 𝑥, 𝑡) 𝑑𝑥

.

(85)
We refer to [20] for the details of the derivation of the above expression.
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4.1.4 Network modelling

The hyperbolic transport models here proposed, similarly to other fields of appli-
cation, like traffic flow models, chemotaxis and cardiovascular modeling, can be
embedded into a network of cities following [26, 100]. Note that, the approach dif-
fers from the classical network modeling in epidemiology based on coupled systems
of ODEs [13, 39, 57, 88].
A network or a connected graph G = (N ,A) is composed of a finite set of 𝑁

nodes (or vertices)N and a finite set of 𝐴 bidirectional arcs (or edges)A, such that
an arc connects a pair of nodes [100]. An example of network is presented in Fig. 12.

a1

a2

n1 n2

n3

n4a3

Fig. 12 Schematic representation of a network composed by 4 nodes (𝑛1, 𝑛2, 𝑛3, 𝑛4) and 3 arcs
(𝑎1, 𝑎2, 𝑎3) in a Y-shape configuration.

Following [18, 21], it is possible to structure a 1D network considering that the
nodes of the network identify locations of interest such as municipalities, provinces
or, in a wider scale, regions or nations, while the arcs, enclosing the 1D spatial dy-
namics, represent the paths linking each location to the others. In this configuration,
nodes are active since the epidemic state of each one evolves in time influenced
by the mobility of the commuting individuals, moving from the other locations in-
cluded in the network, always considering a part of the population composed by
non-commuting individuals which remain at the origin node.
In order to prescribe the proper coupling between nodes and arcs, it is necessary

to impose appropriate transmission conditions at each arc-node interface, which
ensure the conservation of total density (population) in the network and of fluxes at
the interface and further solving the Riemann problem at each interface employing
Riemann Invariants. The complete description of the implementation of transmission
conditions at nodes is presented in [21] for a SIR-type spatial model and in [18] for
a SEIAR-type transport model.

4.1.5 Effect of spatially heterogeneous environments in hyperbolic and
parabolic configuration

Following [120], we analyze the behavior of the SIR-type model (75) with a
commuter-only population (𝑖 = 𝑖𝑐, 𝑖 ∈ {𝑆, 𝐼, 𝑅}) in a single 1D domain concern-
ing spatially heterogeneous environments, taking into account a spatially variable
contact rate
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Fig. 13 Numerical results of the spatially heterogeneous SIR case with hyperbolic configuration
of relaxation times and characteristic velocities (first row), with 𝜏 = 1.0, 𝜆2 = 1.0, or parabolic
configuration (second row), with 𝜏 = 10−5, 𝜆2 = 105. Time and spatial evolution of 𝑆 (first column)
and 𝐼 (second column).

𝛽𝐼 (𝑥) = 𝛽𝐼
(
1 + 0.05 sin13𝜋𝑥

20

)
.

Initial conditions are imposed assuming, in this setting, no uncertainty in the input
data, with

𝑆(𝑥, 0) = 1 − 𝐼 (𝑥, 0), 𝐼 (𝑥, 0) = 0.01 𝑒−(𝑥−10)2 , 𝑅(𝑥, 0) = 0.0,

fluxes 𝐽𝑆 (𝑥, 0) = 𝐽𝐼 (𝑥, 0) = 𝐽𝑅 (𝑥, 0) = 0.0 and zero-flux boundary conditions.
The initial reproduction number results 𝑅0 = 1.111 > 1, given by the choice
𝛽𝐼 = 11.0, 𝜅𝐼 = 0 and 𝛾𝐼 = 10.0. Two different scenarios are considered, to
concern both the hyperbolic and the parabolic limit of the system of equations. In the
hyperbolic configuration, the relaxation times of all the compartments of individuals
are 𝜏 = 1.0, with the square of the characteristic velocities 𝜆2 = 1.0; while in the
parabolic configuration 𝜏 = 10−5 and 𝜆2 = 105. The problem is solved applying an
asymptotic-preserving (AP) Implicit-Explicit (IMEX) Runge-Kutta Finite Volume
method, which permits to consistently simulate the diffusive (and stiff) regime of
the system without loosing the expected 2𝑛𝑑 order accuracy [21, 22]. In Fig. 13,
numerical results for both the scenarios are reported. A temporary persistence of
the infectious can be noticed, with oscillations that reflect the sinusoidal form of
the spatially variable contact rate. Differences of the dynamics of the epidemics in
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(n2)
MILAN

(n1)
LODI (n5)

CREMONA

BRESCIA
(n4)

BERGAMO
(n3)

a1

a2 a3

a4

a5

a1+5

a2+3

a3+4

Fig. 14 Representation of the network of the Lombardy test case, composed of 5 nodes, corre-
sponding to the provinces of interest and 5 arcs, connecting each city to the others, considering all
the main paths of commuters. The dimension of the node is proportional to the dimension of the
urbanized area of the province.

the two configurations of the relaxation times are evident. In particular, observing
the evolution of susceptible individuals, it can be seen that in the purely diffusive
case the amount of susceptible tends to a much lower equilibrium value than in the
hyperbolic case, with almost all the individuals of the system infected by the disease.

4.1.6 Application to the emergence of COVID-19 in Italy

To analyze the effectiveness of the proposed approach in a realistic epidemic scenario,
we design a numerical test reproducing the evolution of the first outbreak of COVID-
19 in the Lombardy Region of Italy, from February 27, 2020 to March 27, 2020,
with respect to uncertainties underlying the initial conditions and chosen epidemic
parameters, considering the SEIAR-type multiscale transport SEIAR (82)-(83) in
a network configuration, as described in Section 4.1.4. The system of equations is
solved using a stochastic AP (sAP) IMEX Runge-Kutta Finite Volume Collocation
method [19, 20, 123]. This numerical scheme permits to reach spectral accuracy
in the stochastic space, if the solution is sufficiently smooth in that space, and to
switch from a stochastic Collocationmethod for the advection problem to a stochastic
Collocation method for the diffusive problem in a uniform way with respect to the
involved parameters without loosing accuracy, i.e. sAP property [71,74]. For further
details regarding the numerical method and its convergence analysis the reader can
refer to [20].
A five-node network is considered, whose nodes represent the 5 main provinces

interested by the epidemic outbreak in the first months of 2020: Lodi (𝑛1), Milan
(𝑛2), Bergamo (𝑛3), Brescia (𝑛4) and Cremona (𝑛5). The arcs 𝑎 𝑗 connecting each
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node to the others identify the main set of routes and railways viable by commuters
each day. A schematic representation of this network is shown in Fig. 14.
The transmission coefficients at each arc-node interface, as well as the percentage

of commuters belonging to each province, are imposed using the official national
mobility flow assessment. In particular, the matrix of commuters used reflects mo-
bility data provided by Lombardy Region for the regional fluxes of year 2020 (see
Data Sources in Section 5.1).
The characteristic speed associated to each arc is fixed to permit a full round trip in

each origin-destination sectionwithin a day. The characteristic speed of compartment
𝐼 is fixed to zero in all the nodes of the network. In the arcs, the relaxation time is
assigned so that the model recovers a hyperbolic regime, while a parabolic setting
is prescribed in the cities for commuters to simulate the diffusive behavior of the
disease spread which typically occurs in highly urbanized zones.
Concerning initial conditions and epidemic parameters of the test, at the beginning

of the pandemic tracking of positive individuals cannot be considered reliable, but
an information affected by uncertainty. To this aim, we introduce a single source of
uncertainty 𝑧 having uniform distribution, 𝑧 ∼ U(0, 1), and the initial conditions for
compartment 𝐼, at each node, are prescribed as

𝐼 (𝑥, 0, 𝑧) = 𝐼0 (1 + 𝑧) , (86)

with 𝐼0 density of infectious people on February 27, 2020, as given by data recorded
by the Civil Protection Department of Italy. The amount of total inhabitants of each
province is given by 2019 data of the Italian National Institute of Statistics (see Data
Sources in Section 5.1).
Due to the adopted screening policy, we chose to associate all infected individ-

uals detected to the 𝐼 compartment. Furthermore, also 𝛽𝐼 is considered a random
parameter:

𝛽𝐼 (0, 𝑧) = 𝛽𝐼,0 (1 + 𝜇𝑧) .

Assuming that highly infectious subjects are mostly detected in the most optimistic
scenario, being subsequently quarantined or hospitalized, we set the minimum value
𝛽𝐼,0 = 0.03 𝛽𝐴, as in [28,57] and 𝜇 = 0.06−1.The initial value of 𝛽𝐴 is calibrated as
the result of a least square problem, namely the L2 norm of the difference between
the observed cumulative number of infected 𝐼 (𝑡) and the numerical evolution of the
same compartment, through a deterministic SEIAR ODEmodel set up for the whole
Lombardy Region, with the result 𝛽𝐴 = 0.545. In the above fitting, we also estimated
𝐸0 ≈ 10 𝐼0 and 𝐴0 ≈ 9 𝐼0. Consequently, also initial conditions for compartments 𝐸 ,
𝐴 and 𝑆 are stochastic, depending on the initial amount of severe infectious at each
location, while 𝑅0 = 0 everywhere. Finally, we fix 𝛾𝐼 , 𝛾𝐴 and 𝑎 according to [28,57],
considering these clinical parameters deterministic and 𝜎 as in [28,77], setting then
𝜅𝐼 = 𝜅𝐴 = 30. With the above setup, we obtain an initial expected value of the basic
reproduction number in the whole network E[𝑅0] = 3.6, which is in agreement with
estimations reported in [28, 57, 117].
We model the escalation of lockdown restrictions, starting from March 9, 2020,

initial day of the northern Italy lockdown, reducing the transmission rates, increasing
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Fig. 15 Expected evolution in time, with 95% confidence intervals, for chosen representative cities,
Lodi (first row),Milan (second row), Bergamo (third row), and the whole Lombardy network (fourth
row), of: compartments 𝐸, 𝐴, 𝐼 , together with the basic reproduction number 𝑅0 (left); cumulative
amount of severe infectious (𝐼 + 𝑅𝐼 ) compared with data of cumulative infectious taken from the
COVID-19 repository of the Civil Protection Department of Italy (middle); cumulative amount of
severe infectious (𝐼 +𝑅𝐼 ) with respect to the effective cumulative amount of total infectious people,
including asymptomatic and mildly symptomatic individuals (𝐼 + 𝐴 + 𝑅) (right). Vertical dashed
lines identify the onset of governmental lockdown restrictions.

𝜅 coefficients, due to the public being increasingly aware of the epidemic risks and
reducing the percentage of commuting individuals according tomobility data tracked
through mobile phones and made available by Google [1, 117].
Numerical results are reported in Fig. 15 for 3 representative cities, namely Lodi,

Milan, Bergamo, and the whole Lombardy network. In Figs. 15 (first column) the
expected evolution in time of the infected individuals, together with 95% confidence
intervals, including 𝐸 , 𝐼 and 𝐴. Each plot is also associated with the temporal
evolution of the reproduction number 𝑅0 (z, 𝑡).One can see the capacity of the model
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to reproduce a very heterogeneous epidemic trend in the network analyzed, which is
also reflected in the different ranges and patterns shown for the 𝑅0 of each province.
It can also be observed the agreement between the evolution of the reproduction
number and the epidemic spread. In particular, it is confirmed the decline of the
daily number of infected as 𝑅0 reaches values below 1, as shown in the plots for
Lodi and Bergamo. On the other hand, the persistence of the virus in the complete
network, and especially in Milan, is noticed until March 27, 2020 (last day of the
simulation), where the reproduction number remains greater than 1.
As visible from Fig. 15 (second column), the lower bound of the confidence

band of the cumulative amount in time of 𝐼 is comparable with the observed data
of the Civil Protection Department of Italy. As expected, the mean value of infected
people is higher, especially in Milan, the province most affected by the virus, due to
the uncertainty of available data, which certainly underestimate the real amount of
infected people.
The comparison between the expected evolution in time of the cumulative amount

of 𝐼 with respect to the effective cumulative amount of total infectious people,
including also compartment 𝐴, is shown in Fig. 15 (third column). Here, it can be
noticed how much of the spread of COVID-19 has actually been lost from the data
of the first outbreak in Lombardy and the impact that the presence of asymptomatic
or undetected subjects has had on the epidemic evolution.

4.2 Realistic geographical settings

4.2.1 2D kinetic transport model

Let us now define Ω ⊂ R2 a two-dimensional geographical area of interest, still
assuming that individuals have been separated into commuting and non-commuting
population, with the former at position 𝑥 ∈ Ωmoving with velocity directions 𝑣 ∈ S1.
Considering initially a simple SIR-dynamics, we denote by 𝑓𝑆 = 𝑓𝑆 (z, 𝑥, 𝑣, 𝑡), 𝑓𝐼 =
𝑓𝐼 (z, 𝑥, 𝑣, 𝑡) and 𝑓𝑅 = 𝑓𝑅 (z, 𝑥, 𝑣, 𝑡), the respective kinetic densities of susceptible,
infected and removed individuals. The kinetic distribution of commuters is then
given by

𝑓 (z, 𝑥, 𝑣, 𝑡) = 𝑓𝑆 (z, 𝑥, 𝑣, 𝑡) + 𝑓𝐼 (z, 𝑥, 𝑣, 𝑡) + 𝑓𝑅 (z, 𝑥, 𝑣, 𝑡),

and their total density is obtained by integration over the velocity space

𝜌(z, 𝑥, 𝑡) = 1
2𝜋

∫
S1
𝑓 (z, 𝑥, 𝑣∗, 𝑡) 𝑑𝑣∗.

As a consequence, the number of commuting susceptible, infectious and removed
individuals can be recovered irrespective of their direction of displacement by inte-
gration over the velocity space. This gives

𝑆𝑐 (z, 𝑥, 𝑡) =
1
2𝜋

∫
S1
𝑓𝑆 (z, 𝑥, 𝑣, 𝑡) 𝑑𝑣 , 𝐼𝑐 (z, 𝑥, 𝑡) =

1
2𝜋

∫
S1
𝑓𝐼 (z, 𝑥, 𝑣, 𝑡) 𝑑𝑣 ,
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𝑅𝑐 (z, 𝑥, 𝑡) =
1
2𝜋

∫
S1
𝑓𝑅 (z, 𝑥, 𝑣, 𝑡) 𝑑𝑣 .

In this setting, the densities of the commuters satisfy the kinetic transport equa-
tions [23]

𝜕 𝑓𝑆

𝜕𝑡
+ ∇𝑥 · (𝑣𝑆 𝑓𝑆) = −𝐹𝐼 ( 𝑓𝑆 , 𝐼) +

1
𝜏𝑆

(𝑆𝑐 − 𝑓𝑆)

𝜕 𝑓𝐼

𝜕𝑡
+ ∇𝑥 · (𝑣𝐼 𝑓𝐼 ) = 𝐹𝐼 ( 𝑓𝑆 , 𝐼) − 𝛾𝐼 𝑓𝐼 +

1
𝜏𝐼

(𝐼𝑐 − 𝑓𝐼 )

𝜕 𝑓𝑅

𝜕𝑡
+ ∇𝑥 · (𝑣𝑅 𝑓𝑅) = 𝛾𝐼 𝑓𝐼 +

1
𝜏𝑅

(𝑅𝑐 − 𝑓𝑅) ,

(87)

where the total densities are still defined by the sum of commuting and non-
commuting part 𝑆 = 𝑆𝑐 + 𝑆0, 𝐼 = 𝐼𝑐 + 𝐼0, 𝑅 = 𝑅𝑐 + 𝑅0. Densities of non-commuters,
who act only at a local scale, satisfy the following diffusion dynamics

𝜕𝑆0
𝜕𝑡

= −𝐹𝐼 (𝑆0, 𝐼) + ∇𝑥 · (𝐷𝑆∇𝑥𝑆0)

𝜕𝐼0
𝜕𝑡

= 𝐹𝐼 (𝑆0, 𝐼) − 𝛾𝐼 𝐼0 + ∇𝑥 · (𝐷 𝐼∇𝑥 𝐼0)

𝜕𝑅0
𝜕𝑡

= 𝛾𝐼 𝐼0 + ∇𝑥 · (𝐷𝑅∇𝑥𝑅0).

(88)

In the resultingmultiscale kinetic SIRmodel (87)-(88),which couples the commuting
and non-commuting dynamics, the velocities 𝑣𝑖 = 𝜆𝑖𝑣 in (87), as well as the diffusion
coefficients 𝐷𝑖 in (88), with 𝑖 ∈ {𝑆, 𝐼, 𝑅}, are designed to take into account the
heterogeneity of geographical areas, and are thus chosen dependent on the spatial
location. The same stands also for the relaxation times, in analogy with system
(75)-(76). We refer to (77) for the definition of the incidence function 𝐹𝐼 (·, 𝐼), and
to Section 4.1.1 in general for the definition of the epidemic parameters involved.
Furthermore, for the definition of the reproduction number of the above system we
refer to (81) and the relative discussion.

4.2.2 Macroscopic formulation and diffusion limit

Let us introduce the flux functions

𝐽𝑆 =
𝜆𝑆

2𝜋

∫
S1
𝑣 𝑓𝑆 𝑑𝑣, 𝐽𝐼 =

𝜆𝐼

2𝜋

∫
S1
𝑣 𝑓𝐼 𝑑𝑣, 𝐽𝑅 =

𝜆𝑅

2𝜋

∫
S1
𝑣 𝑓𝑅 𝑑𝑣. (89)

where we omitted the dependence on (𝑥, 𝑣, 𝑡) for notation simplicity. Assuming 𝜆𝑖 ,
𝑖 ∈ {𝑆, 𝐼, 𝑅}, independent from space and integrating system (87) in 𝑣, we get the
following set of equations for the macroscopic formulation of densities
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𝜕𝑆𝑐

𝜕𝑡
+ ∇𝑥 · 𝐽𝑆 = −𝐹𝐼 (𝑆𝑐, 𝐼)

𝜕𝐼𝑐

𝜕𝑡
+ ∇𝑥 · 𝐽𝐼 = 𝐹𝐼 (𝑆𝑐, 𝐼) − 𝛾𝐼 𝐼𝑐

𝜕𝑅𝑐

𝜕𝑡
+ ∇𝑥 · 𝐽𝑅 = 𝛾𝐼 𝐼𝑐,

(90)

and fluxes

𝜕𝐽𝑆

𝜕𝑡
+
𝜆2
𝑆

2𝜋

∫
S1
(𝑣 · ∇𝑥 𝑓𝑆)𝑣 𝑑𝑣 = −𝐹𝐼 (𝐽𝑆 , 𝐼) −

1
𝜏𝑆
𝐽𝑆

𝜕𝐽𝐼

𝜕𝑡
+
𝜆2
𝐼

2𝜋

∫
S1
(𝑣 · ∇𝑥 𝑓𝐼 )𝑣 𝑑𝑣 =

𝜆𝐼

𝜆𝑆
𝐹𝐼 (𝐽𝑆 , 𝐼) − 𝛾𝐼𝐽𝐼 −

1
𝜏𝐼
𝐽𝐼

𝜕𝐽𝑅

𝜕𝑡
+
𝜆2
𝑅

2𝜋

∫
S1
(𝑣 · ∇𝑥 𝑓𝑅)𝑣 𝑑𝑣 =

𝜆𝑅

𝜆𝐼
𝛾𝐼𝐽𝐼 −

1
𝜏𝑅
𝐽𝑅 .

(91)

Note that the above system is not closed because the evolution of the fluxes in (91)
involves higher order moments of the kinetic densities.
The diffusion limit can be formally recovered by introducing the diffusion coef-

ficients 𝐷𝑖 =
1
2𝜆
2
𝑖
𝜏𝑖 , with 𝑖 ∈ {𝑆, 𝐼, 𝑅}, and letting 𝜏𝑖 → 0. We get, from the r.h.s.

in (87), 𝑓𝑆 = 𝑆𝑐, 𝑓𝐼 = 𝐼𝑐, 𝑓𝑅 = 𝑅𝑐, and, consequently, from (91) we recover Fick’s
laws

𝐽𝑆 = −𝐷𝑆∇𝑥𝑆𝑐, 𝐽𝐼 = −𝐷 𝐼∇𝑥 𝐼𝑐, 𝐽𝑅 = −𝐷𝑅∇𝑥𝑅𝑐,

which inserted into (90) lead to the diffusion system for the population of com-
muters [89, 110, 119]

𝜕𝑆𝑐

𝜕𝑡
= −𝐹𝐼 (𝑆𝑐, 𝐼) + ∇𝑥 · (𝐷𝑆∇𝑥𝑆𝑐)

𝜕𝐼𝑐

𝜕𝑡
= 𝐹𝐼 (𝑆𝑐, 𝐼) − 𝛾𝐼 𝐼𝑐 + ∇𝑥 · (𝐷 𝐼∇𝑥 𝐼𝑐)

𝜕𝑅𝑐

𝜕𝑡
= 𝛾𝐼 𝐼𝑐 + ∇𝑥 · (𝐷𝑅∇𝑥𝑅𝑐)

(92)

coupled with (88) for the non-commuting counterpart.
Similarly to the one-dimensional case, the capability of the model to account

for different regimes, hyperbolic or parabolic, according to the space dependent
relaxation times 𝜏𝑖 , 𝑖 ∈ {𝑆, 𝐼, 𝑅}, makes it suitable for describing the dynamics of
human beings. Indeed, it is reasonable to avoid describing the details of movements
within an urban area and model this through a diffusion operator. On the other
hand, commuters when moving from one city to another follow well-established
connections for which a description via transport operators is more appropriate.
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4.2.3 Extension to multi-compartmental modelling

As previously presented for the 1D model in Section 4.1.3, it is possible to extend
the modelling considering more general compartmental subdivisions. For example,
more realistic models for COVID-19 should take into account the exposed popula-
tion as well as the asymptomatic fraction of infected. As an example, we describe
the extension of the multiscale kinetic transport modeling presented in the previous
sections to a more general compartmental structure, even if still sufficiently sim-
ple, where the exposed population is included and infected people are distinguished
between highly symptomatic and mildly/no symptomatic (see Fig. 11). We denote
the commuter individuals which belong to the newly introduced compartment of ex-
posed by 𝑓𝐸 (z, 𝑥, 𝑣, 𝑡) and of asymptomatic (or mildly symptomatic) by 𝑓𝐴(z, 𝑥, 𝑣, 𝑡),
resulting

𝑓 (z, 𝑥, 𝑣, 𝑡) = 𝑓𝑆 (z, 𝑥, 𝑣, 𝑡) + 𝑓𝐸 (z, 𝑥, 𝑣, 𝑡) + 𝑓𝐼 (z, 𝑥, 𝑣, 𝑡) + 𝑓𝐴(z, 𝑥, 𝑣, 𝑡) + 𝑓𝑅 (z, 𝑥, 𝑣, 𝑡) .

The kinetic SEIAR-type dynamics of the commuters then reads [18]

𝜕 𝑓𝑆

𝜕𝑡
+ ∇𝑥 · (𝑣𝑆 𝑓𝑆) = −𝐹𝐼 ( 𝑓𝑆 , 𝐼) − 𝐹𝐴( 𝑓𝑆 , 𝐴) +

1
𝜏𝑆

(𝑆𝑐 − 𝑓𝑆)

𝜕 𝑓𝐸

𝜕𝑡
+ ∇𝑥 · (𝑣𝐸 𝑓𝐸) = 𝐹𝐼 ( 𝑓𝑆 , 𝐼) + 𝐹𝐴( 𝑓𝑆 , 𝐴) − 𝑎 𝑓𝐸 + 1

𝜏𝐸
(𝐸𝑐 − 𝑓𝐸)

𝜕 𝑓𝐼

𝜕𝑡
+ ∇𝑥 · (𝑣𝐼 𝑓𝐼 ) = 𝑎𝜎 𝑓𝐸 − 𝛾𝐼 𝑓𝐼 +

1
𝜏𝐼

(𝐼𝑐 − 𝑓𝐼 )

𝜕 𝑓𝐴

𝜕𝑡
+ ∇𝑥 · (𝑣𝐴 𝑓𝐴) = 𝑎(1 − 𝜎) 𝑓𝐸 − 𝛾𝐴 𝑓𝐴 + 1

𝜏𝐴
(𝐴𝑐 − 𝑓𝐴)

𝜕 𝑓𝑅

𝜕𝑡
+ ∇𝑥 · (𝑣𝑅 𝑓𝑅) = 𝛾𝐼 𝑓𝐼 + 𝛾𝐴 𝑓𝐴 + 1

𝜏𝑅
(𝑅𝑐 − 𝑓𝑅) ,

(93)

with 𝐸 = 𝐸𝑐 + 𝐸0, 𝐴 = 𝐴𝑐 + 𝐴0, and

𝐸𝑐 (z, 𝑥, 𝑡) =
1
2𝜋

∫
S1
𝑓𝐸 (z, 𝑥, 𝑣, 𝑡) 𝑑𝑣 , 𝐴𝑐 (z, 𝑥, 𝑡) =

1
2𝜋

∫
S1
𝑓𝐴(z, 𝑥, 𝑣, 𝑡) 𝑑𝑣 .

Indeed, this system is coupled with the following one describing the dynamics of
non-commuters, who act only at the urban scale:
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𝜕𝑆0
𝜕𝑡

= −𝐹𝐼 (𝑆0, 𝐼) − 𝐹𝐴(𝑆0, 𝐴) + ∇𝑥 · (𝐷𝑆∇𝑥𝑆0)

𝜕𝐸0
𝜕𝑡

= 𝐹𝐼 (𝑆0, 𝐼) + 𝐹𝐴(𝑆0, 𝐴) − 𝑎𝐸0 + ∇𝑥 · (𝐷𝐸∇𝑥𝐸0)

𝜕𝐼0
𝜕𝑡

= 𝑎𝜎𝐸0 − 𝛾𝐼 𝐼0 + ∇𝑥 · (𝐷 𝐼∇𝑥 𝐼0)

𝜕𝐴0
𝜕𝑡

= 𝑎(1 − 𝜎)𝐸0 − 𝛾𝐴𝐴0 + ∇𝑥 · (𝐷𝐴∇𝑥𝐴0)

𝜕𝑅0
𝜕𝑡

= 𝛾𝐼 𝐼0 + 𝛾𝐴𝐴0 + ∇𝑥 · (𝐷𝑅∇𝑥𝑅0).

(94)

For the definition of the incidence function regarding asymptomatic people 𝐹𝐴(·, 𝐴),
we consider (84).
When introducing the same definition of flux (89) for the additional compart-

ments, 𝐽𝐸 and 𝐽𝐴, integrating system (93) in 𝑣, we get the set of equations for the
macroscopic densities [18]. Moreover, defining also 𝐷𝐸 = 1

2𝜆
2
𝐸
𝜏𝐸 and 𝐷𝐴 = 1

2𝜆
2
𝐴
𝜏𝐴

and considering the analogous of the diffusion limit discussed in Section 4.2.2, we
recover SEIAR system in the diffusive regime for the commuting individuals [18]
coupled with (94) for the non-commuting counterpart.
To define the reproduction number also for this multiscale SEIAR-type kinetic

transport model, we recall the NGM approach [40] considering no flux boundary
conditions, which yields the same definition (85). Details of this derivation are
reported in [18].

4.2.4 Application to the spatial spread of COVID-19 in Italy in
Emilia-Romagna and Lombardy Region

Let us underline that the discretization of the resulting multiscale systems of PDEs
is not trivial and therefore requires the construction of a specific numerical method
able to correctly describe the transition from a convective to a diffusive regime in
realistic geometries. For this purpose, we adopt an asymptotic-preserving IMEX
Runge-Kutta method on unstructured grids coupled with a stochastic Collocation
method which ensures spectral accuracy in the stochastic space [71,72,95]. At each
collocation node, the numerical scheme combines a discrete ordinate method in
velocity with the even and odd parity formulation [42, 73] and achieves asymptotic
preservation in time using suitable IMEX Runge-Kutta schemes [22], namely, to
obtain a scheme which consistently captures the diffusion limit and for which the
choice of the time discretization step is not related to the smallness of the scaling
parameters 𝜏. All the details concerning the numerical scheme and its validation in
terms of accuracy are reported in [18, 23].
To validate the proposed methodology in realistic geographical and epidemiolog-

ical scenarios, two numerical tests reproducing, respectively, the epidemic outbreak
of COVID-19 in the Emilia-Romagna Region of Italy, fromMarch 1, 2020 to March
10, 2020, and in the Lombardy Region of Italy, from February 27, 2020 to March 22,
2020, are designed. In the former, we solve a multiscale SEIR-type system of PDEs
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Fig. 16 Top: identification of the Emilia-Romagna provinces (left) and initial condition imposed for
characteristic speeds 𝜆𝑖 , 𝑖 ∈ {𝑆, 𝐸, 𝑅} (right). Bottom: identification of the Lombardy provinces
(left), initial condition imposed for characteristic speeds 𝜆𝑖 , 𝑖 ∈ {𝑆, 𝐸, 𝐴, 𝑅} (right).

in a deterministic setting (for further details on the chosen SEIR model the reader
can refer to [23]). In the latter, we also take into account the uncertainty underlying
initial conditions of infected individuals, solving the multiscale SEIAR-type system
of PDEs (87)-(88).
The computational domain is defined in terms of the boundary that circumscribes

the Regions as a list of georeferenced points in the ED50/UTM Zone 32N reference
coordinate system from Istituto Nazionale di Statistica (see Data Sources in Section
5.1). No-flux boundary conditions are imposed in the whole boundary of the domain,
assuming that the population is notmoving from/to the adjacent Regions. The domain
is then subdivided in the provinces of the specific Region. The identification of these
cities is shown in Fig. 16 (top left) for Emilia-Romagna and in Fig. 16 (bottom
left) for Lombardy. To avoid the mobility of the population in the entire territory
and to simulate a more realistic geographical scenarios in which individuals travel
along the main traffic paths of the Region, different values of propagation speeds are
assigned in the domain which reflect, as close as possible, the real characteristics of
the territory. The resulting distribution of the characteristic speeds is visible from
Fig. 16 (top right) for Emilia-Romagna and Fig. 16 (bottom right) for Lombardy
case.
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Fig. 17 Initial distribution (on February 27, 2020) of the infected population 𝐸0 + 𝐼0 + 𝐴0 (left)
and of the reproduction number 𝑅0 (0) (right) in the Lombardy Region.

The space-dependent relaxation time is assigned so that the model recovers a
hyperbolic regime in the entire region, apart from the main cities, where a parabolic
setting is prescribed to correctly capture the diffusive behavior of the disease spread-
ing which typically occurs in highly urbanized zones. Considering 𝑝𝑐 the number of
citizens of a generic city (province) denoted with subscript 𝑐 = 1, . . . ,N𝑐, the initial
spatial distribution of the generic population 𝑓 (𝑥, 𝑦) is assigned, for each province
and each epidemiological compartment, as a multivariate Gaussian function with
the variance being the radius of the urban area 𝑟𝑐:

𝑓 (𝑥, 𝑦) = 1
2𝜋𝑟𝑐

𝑒
− (𝑥−𝑥𝑐 )2+(𝑦−𝑦𝑐 )2

2𝑟2𝑐 𝑝𝑐 ,

with (𝑥𝑐, 𝑦𝑐) representing the coordinates of a generic city center. The initial pop-
ulation setting, for each province, is taken from 2019 data of the Italian National
Institute of Statistics.
For the Emilia-Romagna Region, we estimate the initial number of exposed

individuals, including asymptomatic, as 𝐸0 = 4 𝐼0; while, for the Lombardy Region,
𝐸0 = 10 𝐼0 and 𝐴0 = 9 𝐼0 in each location, with 𝐼0 given by data recorded by
the Civil Protection Department of Italy in the first day simulated. As previously
discussed in Section 4.1.6, for the Lombardy test, we introduce a single source of
uncertainty 𝑧 having uniform distribution, 𝑧 ∼ U(0, 1) so that the initial conditions
for compartment 𝐼, in each control volume, are prescribed as in (86). Moreover, we
refer to regional mobility data to properly subdivide the population in commuters
and non-commuters (see Data Sources in Section 5.1). Concerning the calibration
and the choice of clinical epidemic parameters, as well as for the modeling of the
governmental restrictions, the reader can refer to [23] for the Emilia-Romagna case
and to [20] for the Lombardy case. With the chosen parametric setups, we obtain
initial reproduction number for Emilia-Romagna 𝑅0 = 2.3 and an initial expected
value of the basic reproduction number for the Lombardy Region E[𝑅0 (0)] = 3.2,
which are in accordance with available literature [28, 57, 117]. Nevertheless, with
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Fig. 18 Left: time evolution of total infected and recovered population (𝑅 + 𝐼) compared against
experimental data for the Emilia-Romagna Region. Right: time evolution of total infected and
recovered population (𝑅 + 𝐼) compared against experimental data for the province of Piacenza
(black), Parma (red), Bologna (purple) and Rimini (blue).

Fig. 19 Distribution of exposed population 𝐸, including asymptomatic, on March 1, 4 and 10,
2020 (from left to right) in Emilia-Romagna.

the proposed methodology it is possible to present the heterogeneity underlying the
basic reproduction number at the local scale, as shown for the Lombardy case in Fig.
17 (bottom), together with the initial global amount of infected people 𝐸0 (𝑥, 𝑦) +
𝐼0 (𝑥, 𝑦) + 𝐴0 (𝑥, 𝑦) present in the domain.
Fig. 18 plots a comparison against the measured data at the Regional level,

reported by the Civil Protection Department of Italy, and the same comparison for
the province of Piacenza, Parma, Bologna and Rimini, depicting an overall very
good agreement. Figure. 19 shows the time evolution of the exposed population 𝐸 ,
including asymptomatic,which ismoving fromboth Piacenza andRimini towards the
center of the region and the city of Bologna, then spreading northern in the direction
of Ferrara. The wave of the exposed population is clearly visible, highlighting the
hyperbolic regime of the model.
In Fig. 20 (first column), the expected evolution in time of the infected indi-

viduals, together with 95% confidence intervals, is shown for exposed 𝐸 , highly
symptomatic subjects 𝐼 and asymptomatic or weakly symptomatic people 𝐴, for
three representative cities, namely Lodi, Milan and Bergamo, and the whole Lom-
bardy Region. Here it is already appreciable the heterogeneity of the diffusion of the
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Fig. 20 Expected evolution in time, with 95% confidence intervals, for chosen representative
cities, Lodi (first row), Milan (second row), Bergamo (third row), and the whole Lombardy network
(fourth row), of: compartments 𝐸, 𝐴, 𝐼 (left); severe infectious (𝐼 + 𝑅𝐼 ) compared with data of
cumulative infectious taken from the COVID-19 repository of the Civil Protection Department of
Italy (middle); severe infectious (𝐼 + 𝑅𝐼 ) with respect to the effective cumulative amount of total
infectious people, including asymptomatic and mildly symptomatic individuals (𝐼 + 𝐴+ 𝑅) (right).
Vertical dashed lines identify the onset of governmental lockdown restrictions.

virus. Indeed, from the different y-axis scales adopted for the plot of the provinces,
it can be noticed that Milan and Bergamo present a consistently higher contagion
with respect to the one shown in Lodi. From the same Fig. 20 (second column) it
can be observed that the lower bound of the confidence interval of the cumulative
amount in time of highly symptomatic individuals is in line with data reported by
the Civil Protection Department of Italy. As expected, due to the uncertainty taken
into account, the mean value of the numerical result in each city is higher than
the registered one. Also the comparison between the expected evolution in time of
the cumulative amount of severe infectious with respect to the effective cumulative
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Fig. 21 Expectation (left) and variance (right) of the cumulative amount of infected people𝐸+𝐴+𝐼
at the end of the simulation (March 22, 2020) in the Lombardy Region.

amount of total infectious people, including asymptomatic and mildly symptomatic
individuals, is shown in Fig. 20 (third column). From this figure it is clear that the
number of infections recorded during the first outbreak of COVID-19 in Lombardy
represents a clear underestimation of the actual trend of infection suffered by the
Region and by Italy as a whole, and how the presence of asymptomatic subjects,
not detected, has affected the pandemic evolution. Results concerning the rest of the
cities of the Region can be found in [18].
In Fig. 21, final expectation and variance of the cumulative amount of infected

people, namely 𝐸+𝐴+𝐼, are reported in the 2D framework of Lombardy. If comparing
Fig. 21 (top left) with 16 (bottom left), it can be noticed that, at the end of March,
the virus is no longer mostly affecting the province of Lodi and Cremona, but has
been spread, arriving to hit most of all Brescia, Milan and Bergamo.

5 Concluding remarks and research perspectives

In this review paper, we presented a series of recent results obtained in the field of
kinetic modeling applied to epidemiology. In particular, we focused on three main
aspects: the influence of social features such as the number of contacts, wealth and
age of individuals, the design of effective control techniques even in the presence
of uncertain data, and finally, the impact on the pandemic of the movements of
individuals both on urban and extra-urban scales. All these aspects proved essential
in order to present realistic scenarios on the spread of the epidemic and in agreement
with the observed data.
The modeling approach presented here, although in some cases developed for the

sake of simplicity on compartmental models with a very basic structure, can be easily
extended, as analyzed in the last part of the survey, also to more realistic models
for the spread of the COVID-19 epidemic. In particular, given the generality of the
social structure modelling proposed in this survey, this opens interesting perspectives
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in future directions by going to evaluate the impact of additional features that can
influence the evolution of the pandemic, such as the viral load [38,87] or the spread
of fake-news [56]. The former in particular plays a decisive role in analyzing the
influence of the so-called super-spreaders [80,93], while the latter we have seen play
a key role regarding the vaccination campaign [86, 103].

5.1 Data sources

With respect to the numerical results presented in the simulations, specifically in
Sections 2.15, 3.2.2, 4.1.6 and 4.2.4, the following data repositories were used. The
GitHub repository of the Italian Civil Protection Department1; the John Hopkins
University GitHub repository [47]; Regione Lombardia, Italy, Commuters Data2;
the Italian National Institute of Statistics, ISTAT3; Geographical Data from ISTAT4;
Regione Emilia-Romagna, Italy, Commuters Data5.
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