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Abstract
The aim of this paper is to construct (explicit) heat kernels for some hybrid evolution equa-
tions which arise in physics, conformal geometry and subelliptic PDEs. Hybrid means that
the relevant partial differential operator appears in the form L1 L2 , but the vari-
ables cannot be decoupled. As a consequence, the relative heat kernel cannot be obtained
as the product of the heat kernels of the operators L1 and L2 . Our approach is
new and ultimately rests on the generalised Ornstein-Uhlenbeck operators in the opening of
Hörmander’s 1967 groundbreaking paper on hypoellipticity.

Keywords Heat kernel CR extension problem Cauchy problem

Mathematics Subject Classification (2010) 35K08 35R03 53C17

1 Introduction

Consider a second order partial differential operator L and the heat equation L 0
associated with it. Following a well-established tradition by heat kernel we mean a function

such that for any the function is a solution of the heat equation, and
in the distributional sense as 0 . The aim of this paper is to construct

explicit heat kernels for some hybrid evolution equations which arise in diverse frameworks
such as e.g. sub-Riemannian geometry and problems from the applied sciences that are
modelled by some classes of subelliptic equations. By hybrid we mean that the relevant
partial differential operator appears in the form L1 L2 , but the variables cannot be
decoupled. Consequently, the relative heat kernel cannot be simply obtained as the product
of the heat kernels of the operators L1 and L2 . Our approach is completely
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self-contained, elementary, and it is purely based on PDE methods whose final objective
is to emphasise the so far unexplored connection of the relevant class of hybrid equations
with the generalised operators of Ornstein-Uhlenbeck type in the opening of Hörmander’s
groundbreaking 1967 work [30]. It is worth mentioning here that as a by-product we obtain
a simple proof of the well-known (non-hybrid) cases of the heat operator in a stratified
nilpotent Lie group of step two and of the Baouendi-Grushin operator (see respectively
Sections 4 and 3 below).

To motivate our results we next discuss some prototypical examples which fall within
the scope of our approach. We begin with an example from conformal CR geometry. In
recent years the study of the so-called extension operators has received increasing attention
from workers in analysis and geometry especially in connection with certain conformally
invariant nonlocal operators. A typical situation of interest is represented by the Heisenberg
group with real coordinates 1 and horizontal Laplacian

L
2

4
1

. (1.1)

In their seminal paper [19] Frank et al. have introduced the following extension problem:
given a function 0 , find a function that solves the Dirichlet
problem

1 2 2

4 L 0 in

0
(1.2)

where the fractional parameter 0 1 . The term
2

4 has a geometric meaning
whose explanation comes from the equivalence between (1.2) and the scattering eigenvalue
problem in complex hyperbolic space. A fundamental aspect of the problem (1.2) is the
following weighted Dirichlet-to-Neumann relation, proved in [19],

22 1

1
lim

0

1 2 L . (1.3)

The pseudo-differential operator L in the right-hand side of Eq. 1.3 represents the
fractional power of the conformal horizontal Laplacian on defined via the spectral
formula

L 2
1
2L 1 1

2
1
2L 1 1

2

.

This operator of order 2 , which was first introduced by Branson, Fontana and Morpurgo
in [9], is drastically different from the standard fractional powers defined by the well-known
formula

L
1 0

1
1

where L is the heat semigroup with ker-
nel (4.6). The second order time-independent PDE in Eq. 1.2 is a notable example of the
type of hybrid equations that are the object of interest of the present paper. To clarify this
aspect we observe that if we formally think of as a generic point in the space with fractal
dimension 2 1 , and we let denote its “distance” to the origin, then the PDE in

1we explicitly mention here that traditionally the letter is reserved for the vertical variable in . However,
since we want to indicate the time variable with , we have opted for the notation . The letter instead
indicates the horizontal variables in 2 .
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Eq. 1.2 can be interpreted as the action of the differential operator
2

4 L on
functions having spherical symmetry in . If we consider the heat equation associated with
such operator,

2

4
L 0 (1.4)

it is immediate to recognise that in such equation the variables 2 1 and
cannot be decoupled since the variable appears in both the limiting

operators
2

4 and L (see Eq. 1.1). In Section 4 we will show that the
heat kernel with pole at the origin associated with Eq. 1.4 is given by

q 2

4 2 2 sinh
2 1 2 2

4 tanh . (1.5)

We emphasise that Eq. 1.2 is dramatically different from the extension problem à la
Caffarelli-Silvestre

1 2 L 0 in

0
(1.6)

in which the geometric term
2

4 is missing. The evolution PDE associated with Eq. 1.6
is

L 0

and it should be clear to the reader that this is not of hybrid type since its fundamental
solution with singularity at the origin

4 1
2

4

is indeed the product of the fundamental solutions of the two heat operators and
L (the reader should note that we have used a superscript to distinguish such heat
kernel from that in Eq. 1.5, for which we have used a subscript ). Formula Eq. 1.5 (see
also the more general case treated in Theorem 4.1 below) plays a critical role in the analysis
of conformal properties of the pseudodifferential operator L , and we refer the interested
reader to the works [25, 26, 39, 43, 44] for more insights into this aspect.

Another significant model of the class of equations encompassed by the present paper is
the following:

2

4
0 (1.7)

where , and 0. The Eq. 1.7 is a hybrid between the time-dependent

Baouendi-Grushin operator in ,
2

4 , and the famous degenerate
Kolmogorov operator in 2 , . Our interest in Eq. 1.7, and the
corresponding heat kernel (1.10) below, stems from its connection with a notable class of
PDEs arising in the physics of human vision and polymers. Consider in fact the Mumford
operator [40]

M 1 cos sin 2 cos sin 2
1 2 (1.8)

where 1 and 2 cos sin . The operator (1.8) plays a critical role in the
physics of semiflexible polymers and it is of interest to understand the relevant heat kernel.
There is a natural Lie algebra associated with the vector fields 1 2, the roto-translation
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algebra, but it is not nilpotent. However, one can check that, in view of Hörmander’s the-
orem in [30], the Mumford operator M is hypoelliptic. Its nilpotent approximation is the
equation

2

2
0. (1.9)

The PDE (1.9) differs from Eq. 1.7 in the fact that it contains the term
2

2 , instead

of
2

2 , but one can link one to the other by means of transmutation formulas. Our
approach produces the following explicit heat kernel for Eq. 1.7 (with pole at a generic point

0 0 0 )

0 0 0

4 2 0 2
2

0
2 2 det 1 2

exp
1

4
1 0

2

0
1 2

2

0
2

0
1 2

2
(1.10)

where

2
sinh 2

2
cosh 2 1

4 2 2

cosh 2 1
4 2 2

2 2 sinh 2 cosh 2 1 2 1
8 3 3

.

Formula Eq. 1.10 is a special case of the more general Theorem 3.6 below, to which we
refer the reader.

We now briefly discuss the organisation of the paper. In Section 2 we recall the class (2.1)
of generalised Ornstein-Uhlenbeck operators in the opening of Hörmander’s cited paper
[30], and for completeness provide a short proof of Proposition 2.1 since this result con-
stitutes the backbone of the present work. Section 3 introduces the hybrid class Eq. 3.1, of
which the Eq. 1.7 discussed above is a prototypical representative. Besides its own inter-
est, such section is instrumental to the rest of the paper. In the Section 3.1 we solve the
Cauchy problem Eq. 3.4 for a generalised harmonic oscillator. The main result is Proposi-
tion 3.2 that establishes a generalisation of the classical formula of Mehler. In Section 3.2
we use this result to derive the heat kernel for the Baouendi-Grushin operator, see Eq. 3.19
in Theorem 3.4. In Theorem 3.6 we finally construct the heat kernel for the class of hybrid
equations in Eq. 3.1. Section 4 represents the more geometric part of the paper. There we
construct the heat kernel for the conformal extension problem Eq. 4.1. The latter repre-
sents a time-dependent generalisation to arbitrary groups of Heisenberg type of the above
discussed conformal extension problem Eq. 1.2 from [19]. The main result of the section
is Theorem 4.1. To prove it we follow a pattern similar to that in Section 3. We first con-
struct the heat kernel for a generalised harmonic oscillator with a complex drift. This step
serves as a building block in the proof of the main Theorem 4.1. In the process, and as
a by-poduct of our approach, we also provide a new elementary proof of the famous for-
mula of Hulanicki-Gaveau-Cygan for the heat kernel on a Carnot group of step two, see
Theorem 4.6.

826 N. Garofalo, G. Tralli



2 The Generalised Ornstein-Uhlenbeck Operators of Hörmander

In this section we recall a well-known explicit heat kernel that constitutes the essential
ingredient of the present work. Consider the class of differential equations in 0 ,

K A tr 2 0. (2.1)

Here, the matrices and have real, constant coefficients, and moreover
0. A basic feature of the operator K is the invariance with respect to the following

non-Abelian group law in 1

see [36]. We emphasise that the evolution equation K A 0 encompasses
operators that are very different in nature. Besides of course the classical heat equation (

and ), it contains the Ornstein-Uhlenbeck equation 0
in [41] ( and ), but also the very degenerate equation of Kolmogorov from
the kinetic theory of gases 0 in 2 0 , see [35] (

and ), as well as the degenerate Ornstein-Uhlenbeck equation

0 in 2 0 which arises in the Smoluchowski-

Kramers approximation of Brownian motion with friction, see [10] ( and

).

In [30] Hörmander proved that Eq. 2.1 is hypoelliptic if and only if its covariance matrix
satisfies the following Kalman condition for one (and therefore every) 0

1

0
0. (2.2)

The hypothesis (2.2) will henceforth be assumed in this section. Under such assumption
we note that is strictly increasing in the sense of quadratic forms: one has in fact
for any 0 0

0 0
0

0
0

0

0

0
0 0

0 0.

It follows that
1 is strictly decreasing. (2.3)

Therefore, the matrix
1 lim 1

is well-defined, and of course it is symmetric and nonnegative definite. Formally, 1 is the
inverse of the matrix 0 , but it is well-known that the latter is well-defined if
and only if all the eigenvalues of have strictly negative real part (see, e.g., [11, Proposition
2.3]). On the other hand 1 is well-defined for any choice of satisfying Eq. 2.2, even
if it possibly has a non-trivial kernel.

To introduce the main result of this section we next recall the time-dependent intertwined
pseudo-distance

1 0.
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The behaviour for large of and has been instrumental in our previous works
[22, 23] in establishing several functional inequalities related to the differential operator A .

Proposition 2.1 The heat kernel of Eq. 2.1 is given by

4 2

det 1 2
exp

2

4
. (2.4)

More precisely, for any such that

1
4

1
(2.5)

the function

(2.6)

solves the Cauchy problem K A 0 in 0 , 0 .

Proof The proof of Eq. 2.4 is known and fairly elementary. Denoting by the dual variable
of , and letting 2 , then on the Fourier transform side the
Cauchy problem reduces to solving

4 2 tr 0 in 0

0 .
(2.7)

Now Eq. 2.7 can be easily solved via the method of characteristics. Fixing
0 , one considers . This function, in turn, solves

4 2 tr 0 0 .

Recalling (2.2), we see that is given by

4 2 tr .

Since and , this implies the remarkable
formula

tr 4 2
. (2.8)

The representation formula Eq. 2.6 follows from Eq. 2.8 by taking the inverse Fourier
transform and straightforward manipulations.

It is proved in [17, Theorem 1.4] that, if
2

for some positive constants
, then the function is solution to K 0 in a suitable strip 0 and

it attains the initial datum . We need to prove that, given satisfying Eq. 2.5, the function
is well defined for every 0 and it defines in fact a solution of the Cauchy

problem in the whole 0 . To see this, for any 0 we write

4 2

det 1 2
exp

2

4

exp
1
4

1 4 2

det 1 2
exp

1
2

1

exp
1
4

1

.
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Exploiting (2.5) we thus infer

sup
1
4

1
exp

1
4

1

(2.9)

4 2

det 1 2
exp

1
2

1

exp
1
4

1 1
4

1
.

Property (2.3) ensures, for every fixed 0, the existence of 0 such that

1 1 2 .

Inserting this information in Eq. 2.9 we deduce that

sup
1
4

1
exp

1
4

1

4 2

det 1 2
exp

1
2

1

exp
1
4

2

sup
1
4

1
exp

1
4

1 1 1

4 2

det 1 2
exp

1
4

1 1
2

.

By arguing in a similar way one can compute the derivatives of at any point
0 by exchanging the order of derivation and integration: this shows that is

solution and completes the proof of the theorem.

It is easy to see that for the heat equation ( and ) the matrix
and therefore 1 . The matrix 1 is the null matrix also for the Kolmogorov

equation ( and ) since
2

2
2

2
3

3

and thus

1
4 6

2
6
2

12
3

. Instead, for the Ornstein-Uhlenbeck equation ( and

) the matrix 1
2 1 2 and therefore 1 2 . In the following

two examples we discuss two situations that will be useful in the remainder of the present
work. Henceforth in this paper we indicate by the real analytic function defined
by

sinh
. (2.10)

Given a matrix with real coefficients, the notation will denote the matrix
identified by the power series of the function . It is worth noting that is invertible

with inverse matrix given by 1
0

2

2 1 . Similar interpretation for the matrix
cosh .

Example 2.2 (Ornstein-Uhlenbeck with a possibly degenerate drift) Let be a real
matrix, that is symmetric and nonnegative definite, and consider the operator obtained by
Eq. 2.1 with the choice

and 2 .

Then
1 4 . (2.11)
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Proof With and given above we have 0
4 . Keeping in mind that

0 and sinh 0
2 1

2 1 , we now make the following observation

0

2 4 1

4

2

2

1

4
0

2

2

2

2

2

0

2 2

2 1
2 1

where is as in Eq. 2.10. Since the previous identity can be rewritten as follows

2 1

we then obtain
1 1

2 . (2.12)

We notice that 1 and diagonalize simultaneously, and the function
2

2
converges to 4 as for any 0. Then, from Eq. 2.12 we obtain

1 lim 1 4

which proves Eq. 2.11.

The Smoluchowski-Kramers equation ( and ) men-

tioned in the opening of the section falls within the class considered in the following
example.

Example 2.3 (Degenerate Ornstein-Uhlenbeck) Let 1 with 1 and 1 .
Consider a symmetric and positive definite matrix 1 and a 1 matrix 0 with
rank 1. For the operator K in Eq. 2.1 corresponding to the choice

1

1 1 1

2 1 1

0 1 1

one has
1 4 1 1

1 1 1

. (2.13)

Proof As a first step we observe that with and given above, where the lower indices
indicate the dimensions of the various zero matrices, the Kalman condition Eq. 2.2 is
satisfied. Since the kernel of is 1-dimensional, the operator tr 2 is
degenerate-elliptic. Denoting for 1 and 0 one has

tr 2

1

2
0.

Moreover, the commutator between and 0 is given by

0 2
1

1

1

1

0 .
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From this relation and the fact that Im 0 1 we deduce that the vector fields
0 1 ... satisfy Hörmander’s finite rank condition on the Lie algebra in [30] and there-

fore the operator K is hypoelliptic. As we have recalled, this is equivalent to saying that
Eq. 2.2 hold.

Next, we compute

2 1
1

1
2 0

1
1

2 1
1

and

11 12

12 22

where

11
1

4
1

1
4 1

12
1

8
2

1
2 1

2

0

22
1

4
0

2
1

1

4
1

1 3 4 2 1 4 1
0 .

By means of known formulas for the inverse of a partitioned matrix (see, e.g., [31, Section
0.7.3]), we obtain

1 11 12
1

22 12

1

1

1 22 12
1

11 12
1

12
1

22

12
1

11 1

.

We now notice that, as , we have the limiting relations

1
11 4 1 22

4
0

2
1 0 1 12 1 .

Since 0
2

1 0 is invertible, we conclude that

1 lim 1 4 1 1

1 1 1

which establishes Eq. 2.13.

3 Baouendi met Kolmogorov

In this section we discuss a first interesting class of hybrid evolution equations which,
remarkably, is directly amenable to the setting of Proposition 2.1 by means of partial Fourier
transform and a suitable exponential transformation, see Eq. 3.30 below. The reader should
bear in mind that the work in this section is also instrumental to the remainder of the
paper. Consider a symmetric and positive definite matrix 1. Let 1 , and
fix also a 1 matrix 0 having maximum rank 1. We denote the relevant variables

831Heat Kernels for a Class of Hybrid Evolution Equations



1 and 0 . Our objective is to solve the Cauchy problem in
1 0 ,

1
4 1 0 0

0 0
(3.1)

where 0 is a suitably assigned function in 1 . We stress that, in our terminology,
the partial differential operator L in Eq. 3.1 is hybrid since L L1 L2, where
L1

1
2

1
4 1 and L2

1
2 0 , and the term

appears in both L1 and L2. Before proceeding we emphasise that the hybrid PDE
in Eq. 3.1 encompasses equations as diverse as the parabolic Baouendi-Grushin equation in

0
2

4
0 (3.2)

see [1, 28, 29], and the already mentioned degenerate Kolmogorov equation in 2 0 ,

0 (3.3)

see [35]. The former of these two limiting cases is obtained by taking 1 0 and 1
in Eq. 3.1, whereas the latter corresponds to taking 0, 1, and 0 in Eq. 3.1.
To ease the reader’s understanding we first discuss in detail our approach to constructing
the fundamental solution of Eq. 3.2 since this allows to present some of the ideas in a
significant, yet simpler model. This will be accomplished in the next two Sections 3.1 and
3.2, the former of which contains a self-contained construction of the Mehler fundamental
solution for the generalised harmonic oscillator in Eq. 3.4 below by reducing such operator
to a special case of Proposition 2.1. We mention that when the matrix is a multiple
of the identity such fundamental solution is well-known and we could have simply lifted
its expression from the literature, see Remark 3.3 below. In line with the declared self-
contained spirit of the present paper, our objective is to show that Proposition 3.2 below can
be derived from Proposition 2.1 by elementary considerations.

3.1 The Harmonic Oscillator aka Ornstein-Uhlenbeck

In what follows given a number we denote by a matrix such that
, 0. We consider the Cauchy problem for the generalised harmonic oscillator

2 0

0 0 0
(3.4)

where 0 is suitably chosen. We have the following key lemma.

Lemma 3.1 Suppose that the functions and are connected by the transformation

1
2 tr . (3.5)

Then, is a solution to the PDE in Eq. 3.4 if and only if is a solution to the following
equation of Ornstein-Uhlenbeck type

2 0.
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Proof We compute
1
2 tr 1

2 tr

1
2 tr 2 tr

1
2 tr

1
2 tr 1

2 tr tr .

This gives

2 1
2 tr 2 . (3.6)

The Eq. 3.6 proves the lemma.

The next proposition is the main result of this subsection.

Proposition 3.2 (generalised Mehler formula) Let M be given by the following formula

M 4 2 det 2 (3.7)

exp 1
4 2 cosh 2 2 cosh 2 2 2

with as in Eq. 2.10. Then, for any 0 such that
1
2 0 (3.8)

the function

M 0

is solution of Eq. 3.4.

Proof In view of Lemma 3.1 we see that if solves the Cauchy problem Eq. 3.4, then
1
2 tr solves the Cauchy problem

2 0

0
1
2 0 .

(3.9)

To solve Eq. 3.9 we intend to apply Proposition 2.1 with , and 2 .
Keeping Example 2.2 in mind, we know from Eqs. 2.12 and 2.11 that with this choice we
have

1 2 (3.10)

and
1 4 .

Therefore, the initial datum in Eq. 3.9 is equal to

0
1
2 0

1
4

1 1
2 0

and, since 0 is continuous and satisfies Eq. 3.8, it nicely fits the assumption of Proposition
2.1. According to Eqs. 2.4-2.6 the solution of Eq. 3.9 is thus given by

1
2 0

where we have let

4 2 det 1 2 1
4

1 2 2
. (3.11)
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By Eq. 3.10 we have in particular that

det 1 2 tr det 2 . (3.12)

Using Eqs. 3.10 and 3.12 in Eq. 3.11, we find

4 2 tr det 2
1
4 2 . (3.13)

From Eqs. 3.13 and 3.5 we now see that the solution of Eq. 3.4 is given by

M 0

where

M 4 2 det 2
1
4 2 1

4 2 (3.14)
1
4 2 .

Using the tautological identity

2 2 sinh 2 2
2 2

2
and the fact that

2 2

we can now write the argument in the exponentials in Eq. 3.14 as

2 2 2

2 sinh 2 2 sinh 2 2

2 2 2

2 sinh 2 2 sinh 2 2 2

2 2 2 2

2 cosh 2 2 cosh 2 2 2 .

This shows Eq. 3.7. We have finally proved Proposition 3.2.

In what follows we will use the following alternative expression of Eq. 3.7

M 4 2 det 2 (3.15)

exp
1

4
2 cosh 2 2 cosh 1 2

2

2 cosh 2 cosh 1 2 .

In particular, by performing the change of variable

2 cosh 2
4

2 cosh 1 2
4

from Eq. 3.15 it is immediate to recognise that

M
1

det cosh 2
exp

1

4
2 cosh 2 cosh 1 2 .

(3.16)
Formula Eq. 3.16 will be useful in the proof of Theorem 3.4 below.
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Remark 3.3 The reader may find it interesting to compare Eq. 3.7 with the classical 1866
Mehler formula for the harmonic oscillator 2 0, see e.g. [7, Section 4.2],

M 4 2 2

sinh 2

2

2 cotanh 2 2 2 2 csch 2 .

This formula follows immediately from Eq. 3.7 by taking in its expression.

3.2 The Heat Kernel of the Baouendi-Grushin Operator

In his 1967 Ph.D. Dissertation [1] under the supervision of B. Malgrange, S. Baouendi first
studied the Dirichlet problem in 2 for a class of degenerate elliptic operators that includes
the following model

2

4
(3.17)

where . At that time M. Vishik was visiting Malgrange, who discussed
with him the thesis project of Baouendi. Vishik subsequently asked Malgrange permission
to suggest to his own Ph.D. student, Grushin, to work on some questions related to the
hypoellipticity of operators modelled on Eq. 3.17, see [28, 29]. This is how the operator
Eq. 3.17 became known as the Baouendi-Grushin operator. This operator is also important
since it is connected to harmonic functions with special symmetries in a group of Heisenberg
type . We notice, in this respect, that there is no global group law underlying Eq. 3.17, but
the operator is invariant with respect to standard translations along
the manifold of degeneracy 0 . We consider the Cauchy problem

2

4 0 in 0

0 .
(3.18)

The next result provides an explicit heat kernel for Eq. 3.17.

Theorem 3.4 Let

B
2

4 2 sinh

2

(3.19)

4 tanh
2 2 2 sech .

Then for every S the function

B

is a solution of Eq. 3.18.

Proof We indicate with 2 the partial Fourier trans-
form of with respect to the variable , with dual variable . Applying such
Fourier transform to Eq. 3.18, for any fixed we obtain

2 2 2 0 in 0

0 .
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This is a Cauchy problem for a harmonic oscillator such as Eq. 3.4 above, with matrix
. From Proposition 3.2 we know that the solution of such problem is

given by the formula

M

2 M

where M is Mehler’s fundamental solution given by

M 4 2 2

sinh 2

2
2

2 2 cotanh 2 2 csch 2

(3.20)
see Remark 3.3. We know that

0
in the pointwise sense. We will

now show that, for every fixed , such convergence also holds in 1 . To see
this we write

M 1 M

M 1 M .

Applying Eq. 3.16 with we easily obtain

M
1

cosh 2

2 2

4
2

tanh 2 1 sech2 2 .

From this identity we immediately see that

(i) 0 M 1;
(ii) M 1 as 0 .

From (i) and (ii) we infer by dominated convergence theorem that

1 M
0

0.

On the other hand, by applying Eq. 3.15 with and performing the change of

variables with sech 2 4 tanh 2
2 , we deduce

M

2
1

cosh 2

2 2

4
2

tanh 2 1 sech2 2 2

sech 2 4
tanh 2

2

2
2

sech 2 4
tanh 2

2 0
0
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where the last limiting relation can be again justified via dominated convergence theorem
since S and therefore is continuous at and it can be bounded by an
integrable function uniformly in . This proves that

lim
0

0 . (3.21)

If we now take the inverse Fourier transform of , we find the following
representation for the solution of problem Eq. 3.18

2 M . (3.22)

We stress that Eq. 3.21 ensures uniform in , and therefore pointwise convergence
of to as 0 . From Eq. 3.22 it is clear that the heat kernel of the
parabolic Baouendi-Grushin equation in Eq. 3.18 is thus given by

B 2 M (3.23)

where M is as in Eq. 3.20. Changing variable 2 in the integral over ,
we finally obtain Eqs. 3.19 from 3.23.

We mention the works [2, 12, 13] for various derivations and integral representations of
the heat kernel for Eq. 3.17 when 1. For related discussions about the fundamental solu-
tions of more general (time-independent) Baouendi-Grushin operators we refer the reader
to [3, 5, 20].

3.3 Back to the Hybrid Equation

In this subsection we finally solve the Cauchy problem Eq. 3.1. In preparation for our main
result, Theorem 3.6 below, we introduce for every the 1 1 matrices

1

1 1 1

2 1 1

0 1 1

. (3.24)

For every 0 we next consider the covariance matrix associated with and

0
. (3.25)

If we keep in mind Example 2.3 with the choice 1 1, we know that the
matrix is positive definite for every 0, i.e. it satisfies the Kalman condition Eq. 2.2
above. Moreover, by Eq. 2.13 we have

1 4 1 1

1 1 1

. (3.26)

We next establish a lemma that will play a crucial role in the proof of Theorem 3.6.

Lemma 3.5 For any 0 and we have

1 1

2
1 1

2
1

1

.
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Proof The case 0 is trivial since is still a positive definite matrix and 1 is

the null matrix. We can thus assume 0. Keeping in mind the explicit form of (see
Example 2.3 with 1 1), we notice that

1

2
1 2 1

4 1
1

1 1 1

is a 1 1 matrix of rank . We can then exploit the formula for the inverse
of a small-rank adjustment (see, e.g., [31, Section 0.7.4]), which is sometimes referred to as
the Sherman-Morrison-Woodbury formula, to infer that

1 1

2
1

1

1
2

1
2

1
4 1 1

4

1
2

1
4 1

1

1

1 1 1

where we have used the fact that the first block 11 in is equal to

1

4

1
2

1
4 1

(see again Example 2.3). By exploiting the simple inequality 4 1
1

1
2 ,

we deduce that

1 1

2
1

1

4 1
4 1

1

1

1 1 1

2 1 1

1 1 1

1

2
1

which implies the desired conclusion.

Theorem 3.6 For and 0 0 0 we let

0 0 4
1

2 det 1 2 1
4

1
0 0

and define

0 0 0
2 0

1
2 1 0 0 tr 1 (3.27)

0 0 .

Given 0 S 1 , the function

1 0 0 0 0 0 0 0 0 0 0 (3.28)

solves the Cauchy problem Eq. 3.1.
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Proof As before, our first step is to take the Fourier transform of Eq. 3.1 with respect to the
variable , with dual variable . If we let

2

then for every fixed the problem Eq. 3.1 becomes in 1 0

2 2
1 0 0

0 0 1 .
(3.29)

Our second step is to make the following change of dependent variable , where the
two functions are linked by the relation

1
2 1 tr 1 . (3.30)

This step represents a generalised version of Eq. 3.5 in Lemma 3.1. After some straight-
forward computations one recognises that in terms of the function the problem Eq. 3.29
becomes in 1 0

2 1 0 0

0 2 1 0 1 .
(3.31)

Remarkably, the PDE in Eq. 3.31 can be cast in the form Eq. 2.1, where now 1,
and the matrices and are given by Eq. 3.24. The covariance matrix is given by
the positive definite matrix in Eq. 3.25. By Eq. 3.26 we can rewrite the initial datum
in Eq. 3.31 as

0 2 1
0

1
8

1

0 .

Since 0 is bounded, we can apply Proposition 2.1: if we thus let and 0

0 0 , and define 0 0 as in Eq. 2.4 above, we infer that the function

1
0 0

1
2 1 0 0

0 0 0 0 0

solves the problem Eq. 3.31. In view of Eq. 3.30 this implies that
1
2 1 tr 1

1
0 0

1
2 1 0 0

0 0 0 0 0.

As we intend to take the inverse Fourier transform of with respect to ,
we want to understand the behaviour of with respect to this variable. Since 0
belongs to the Schwartz class, we know that 0 0 0 decays faster than any polyno-
mial in in a uniform way with respect to 0 0 . Our objective is thus to analyse the
function

1
2 1 tr 1

1
0 0

1
2 1 0 0

0 0.

Using Eq. 3.26 and the explicit expression of 0 in Eq. 2.4, we write

tr 1

4
1

2

1
8

1

det
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1

1
4

1
0 0

1
8

1
0 0

0 (3.32)

tr 1

4
1

2

1
4

1 1
2

1

det

1
4

1
2

1
2 1 1

2
1 1

2
1
2

1
exp

1

4

1

2

1
2 1 1

2

1
2 1

2 0

1

2

1
2 1 1

2

1
2 1

2

2

0

tr 1 det
1

2

1
2 1 1

2

1
2

1
4

1 1
2

1

1
4

1
2

1 1

where in the last equality we have used the change of variables 0 , where

1

2

1
2 1 1

2

1
2

4
1
2 0

1

2

1
2 1 1

2

1
2

4
1
2

and the fact that 1

2 1
2 . At this point a small miracle happens since from

Lemma 3.5 we have, for every 1 , and 0, that

1 1

2
1

1

2
1

1

.

Inserting this information in Eq. 3.32 we obtain

0
tr 1

det 1
2

1
2 1 1

2

1
2

2
1

2 tr 1

(3.33)

where in the last inequality we have exploited (2.3) to obtain 1
2

1
2 1

1
2 1

2 . Moreover we also have

lim
0

1 1 . (3.34)
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The limiting behaviour in Eq. 3.34 can be checked by using the change of variables

0 where 0 4
1
2 in the definition of , as this gives

tr 1

1
2

1
8

1

1

2 1
8

1 4
1
2 4

1
2

.

Since 4
1
2 as 0 , we easily obtain Eq. 3.34 from the above

identity. Hence, by exploiting Eqs. 3.33 and 3.34, we can argue as in the proof of Eq. 3.21
in Theorem 3.4 to deduce that

0
0

0. (3.35)

Keeping in mind that , we are now ready to take the inverse
Fourier transform, obtaining

1

2 1
2 1 tr 1

0 0

1
2 1 0 0 2 0

0 0 0 0 0 0 0 .

Since 0 S and thanks to Eq. 3.33, is a well-defined and smooth func-
tion and it coincides with the expression stated in Eq. 3.28. Proceeding verbatim as in the
proof of Theorem 3.4 and using Eq. 3.35, we also see that is solution of the Cauchy
problem Eq. 3.1. We conclude that the function defined by Eq. 3.27 does pro-
vide the heat kernel. We stress that, for any 0 0 0 1 and

0, 0 0 0 is well-defined (and smooth) since, by arguing as in
Eq. 3.32-Eq. 3.33, we have

0 0 0

1
2 1 tr 1

0 0
1
2 1 0 0

2
1

2

tr 1

det

where in the last inequality we have used that tr 1 0 and the fact that det 1

grows at most polynomially with respect to (see the explicit form of in Example
2.3 with 1 1). This finishes the proof of the theorem.

If we set 1 and 1 , the PDE in Eq. 3.1 becomes the hybrid equation
highlighted in Eq. 1.7. In this special situation, for with 0 and 0, we have

2

1 2

2

and

2
sinh 2

2
cosh 2 1

4 2 2

cosh 2 1
4 2 2

2 2 sinh 2 cosh 2 1 2 1
8 3 3

which yields the explicit formula Eq. 1.10 for the heat kernel.
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4 A Class of Heat Kernels from Conformal CR Geometry

In this section we construct the heat kernel of a class of hybrid evolution equations that play
an important role in conformal CR geometry. In Section 1 we have already discussed the
extension problem Eq. 1.2 in the Heisenberg group in the seminal work of Frank et al.
[19]. More in general, we now consider a Lie group of Heisenberg type with logarithmic

coordinates , where and (see Section 4.2). If L
2

4

1 , denotes a horizontal Laplacian in (see Eq. 4.33 below), then in this more
general framework the parabolic counterpart of the extension problem Eq. 1.2 is as follows:
given a function 0 , find a function such that

1 2 2

4 L 0 in

0 .
(4.1)

Our present objective is the computation of the heat kernel of the evolution PDE in
Eq. 4.1, i.e. of the equation defined in as

L
1 2 2

4
L 0 (4.2)

The following is our main result.

Theorem 4.1 Let be a group of Heisenberg type. For every 0 1 the heat kernel
with pole at the origin of the operator L in Eq. 4.2 is given by

q 2

4 2 1 sinh
2 1 2 2

4 tanh . (4.3)

The relevance of the heat kernel (4.3), and its intertwined counterpart obtained by
replacing with , is in the fact that such functions encapsulate properties of conformal
invariance of the time independent pseudo-differential operator L already mentioned in
the introduction. These aspects have played a central role in our recent works [25] and [26]
and also in the earlier papers by Roncal and Thangavelu [43, 44] which contain a heuristic
ansatz of the expression Eq. 4.3.

As in the case of (which constitutes the 1 case of our treatment), a key
observation here is that the PDE in Eq. 4.2 is the restriction of the equation

2

4
L 0 (4.4)

to functions depending on the variable , where belongs to the space with fractal
dimension 2 1 . The link between Eq. 4.4 and the PDE in Eq. 4.2 is readily seen by
observing that, if , then on a function we have
1 2 . Another remark is that Eq. 4.4 is of hybrid type since the variable appears in
both equations

2

4
0

and
L 0

see Eq. 4.33 below for the expression of L . Also observe that, similarly to the situation of
the operator in Eq. 3.1 in Section 3, the PDE in Eq. 4.4 contains the limiting case in which
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the fractal dimension 1 2 1 0 of the variable vanishes, which is equivalent to
letting 1. In such case the PDEs Eqs. 4.2, 4.4 formally become

L 0 (4.5)

the heat equation in associated with the horizontal Laplacian L . For the latter the heat
kernel is well-known and it is given by

2

4 2 sinh
2 1

2

2

4 tanh . (4.6)

In the special case of the Heisenberg group one has 2 , 1, and Eq. 4.6
gives back the famous formula independently found by Hulanicki [32] and Gaveau [27].
We mention here that in [18] Folland proved the existence of the heat kernel in any Carnot
group, but of course in such generality one does not have an explicit representation such as
Eq. 4.6.

Remark 4.2 The reader should note that if in Eq. 4.3 we formally set 1 and 0 we
perfectly recover the Hulanicki-Gaveau formula Eq. 4.6 when the pole 0 0 !

Similarly to what we did in Section 3, in the present section we first provide in Theorem
4.6 a totally self-contained and elementary proof of the construction of the heat kernel for
the limiting case Eq. 4.5. We do this not just for groups of Heisenberg type, but in the
more general framework of a Carnot group of step two. Of course the result per se is not
new, as Cygan established it in [16], but our proof is. Although the relevant PDE Eq. 4.5 is
not hybrid in the sense specified in the opening of this paper, the motivation for including
here the construction of its heat kernel is twofold: (i) on one hand it allows to present our
approach to Theorem 4.1 in a significant, yet simplified setting; (ii) on the other hand we
feel that our self-contained proof will be of interest to workers in analysis and PDEs who are
not directly familiar with those important and deep tools, such as e.g. group representation
theory, Laguerre calculus, complex Hamiltonians or a priori ansatz, which in one form or
another have entered the previous related works such as [4, 6, 8, 14, 16, 27, 32, 34, 37, 38,
42].

4.1 The Generalised Harmonic Oscillator with a Complex Drift

In what follows given a number we denote by a skew-symmetric
matrix, i.e., we assume . We intend to solve the Cauchy problem for the following
generalised harmonic oscillator with a complex drift

2 2 0

0 0 0
(4.7)

where 0 is suitably chosen. We will need the following lemma that allows to eliminate the
complex drift from Eq. 4.7.

Lemma 4.3 Suppose that and are connected by the relation
2 . (4.8)

Then, is a solution to the PDE in Eq. 4.7 if and only if is a solution to the equation
2 0.
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Proof Let be a solution to the PDE in Eq. 4.7. We note that by the skew-symmetry of
we know that

2 2 .

Using this observation the reader can verify by a direct computation that

2 .

It is also clear from Eq. 4.8 that

2 2 2 .

Combining the latter two equations we easily reach the desired conclusion.

Returning to the Cauchy problem Eq. 4.7 the following is the main result of this
subsection.

Proposition 4.4 Let

Q
4 2

det 2
1
2 1

4 2 cosh 2
(4.9)

Then, for any 0 such that

1
2

0

the function

Q 0 (4.10)

solves Eq. 4.7.

Proof It is clear that using Lemma 4.3 the Cauchy problem Eq. 4.7 is transformed into

2 0

0 0 0
(4.11)

for the function defined by Eq. 4.8. If we now define 2, then clearly
0, , and 2 2. We can thus re-write Eq. 4.11 as follows

2 0

0 0 0.

According to Proposition 3.2 the function

M 0

with 2 and M as in Eq. 3.7, solves the latter problem. Undoing Eq. 4.8
we have proved that the function defined by

M 2
0 (4.12)
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solves Eq. 4.7. We next want to further simplify the expression Eq. 4.12. Keeping in mind
the explicit expression Eq. 3.7 for M , we have

M 2

4 2 det 2 exp
1

4
2 cosh 2 2 2

2 cosh 2 2 2 2 (4.13)

We now observe that, since commutes with any even analytic function of 2, we
have in particular

2 cosh 2 2 2 2 cosh 2 (4.14)

as well as

2

0

2 2

2
0

2 2 1

2 1
(4.15)

0

4 2 2

2
2

0

4 2 2

2 1

0

2 2

2
2

0

2 2

2 1

cosh 2 2 2 1 .

We thus find from Eq. 4.15

2 2 2 2 2 cosh 2 4 . (4.16)

Replacing now Eq. 4.14 and Eq. 4.16 in Eq. 4.13, we finally obtain

M 2 4 2 det 2 exp
1

4
2 cosh 2

2 cosh 2 2 2 cosh 2

4 2
det 2 exp

1

4
2 cosh 2

Q .

This concludes the proof.

It is clear from the previous proof that the kernel Q is equal to M 2

with M given by Eq. 3.7 and with . Using the commutation property in Eq. 4.14
we then deduce from Eq. 3.16 that

Q

1

det cosh 2
exp

1

4
2 cosh 2 cosh 1 2 .

(4.17)

This equation will be used in the proof of Theorem 4.6 below.
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4.2 Gaveau, Hulanicki and Cyganmet Ornstein and Uhlenbeck

Henceforth, we denote by a Carnot group of step two and we let g 1 2 indicate
its Lie algebra, with inner product . Recall that the step two assumption means that

1 1 2 and that 1 2 0 . We let dim 1 , dim 2 , and we
fix orthonormal basis 1 ... and 1 ... for 1 and 2 respectively. For points

1 and 2 we will use either one of the representations 1 ,

1 , or also 1 ... , 1 ... . Whenever convenient, we routinely
identify 1 and 2 and the points with their logarithmic coordinates

respectively. Recall that the Kaplan mapping 2 End 1 is
defined by

. (4.18)

Clearly, , and one has 0. Moreover, by the bracket generating
assumption 1 1 2, we know that the map is injective. Via the Baker-Campbell-
Hausdorff formula

exp exp exp
1

2
(4.19)

the map Eq. 4.18 identifies the non-Abelian multiplication law in

1

2
1

.

For future use we observe that

1 1

2
1

. (4.20)

The map Eq. 4.18 also induces a complex geometry in the Lie group. This becomes par-
ticularly transparent in the special case of groups of Heisenberg type for which 2

2
1 , see the seminal works [33] and [15]. In general, for the mapping

2 (4.21)

we have 2 0, and therefore it defines a symmetric nonnegative
element of End 1 for every 2. Consequently, the matrix is well-defined.

Remark 4.5 Notice that Ker Ker can have positive dimension. Nevertheless,
the injectivity of ensures that is not the null endomorphism for every 0. More-
over, being skew-symmetric, the dimension of the range of has to be at least
two. Since the linearity of allows us to write , one can deduce
that there exists 0 0 such that has at least two eigenvalues bigger than 0 .
This implies that

det 0
2 2 0

0 0

2

. (4.22)
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If for 1 ... we define left-invariant vector fields by the Lie rule

exp
0
, then by Eq. 4.19 one obtains in the logarithmic coordinates

1

2
1

1

2
1 1

. (4.23)

Although we will not make an explicit use of this fact, we note that Eq. 4.23 implies the
following commutation relation

1

.

Given a function 1 we will indicate by 1 ... its horizontal
gradient, and set 1

2 1 2. The horizontal Laplacian generated by the
orthonormal basis 1 ... of 1 is the second-order differential operator on defined
by

L
1

2

where 1 ... are given by Eq. 4.23. A computation gives

L
1

4
1 1

(4.24)

where represents the standard Laplacian in the variable 1 ... , and

1

. (4.25)

For S (recall that we are thinking of ) we now consider the Cauchy
problem

L 0 in 0

0 .
(4.26)

The aim of this section is to provide a new simple proof of the following classical result.

Theorem 4.6 (Gaveau-Hulanicki-Cygan) The heat kernel in 0 is given by the
formula

2 4 2
1
2 det

1 2
(4.27)

exp
1

4
cosh

where and .

It is appropriate to mention that although the integral representations in the above cited
literature appear in different forms with respect to Eq. 4.27, they are in fact equivalent to it.
The advantage of our presentation is that it is particularly transparent and is easily applicable
for instance to delicate questions in geometric measure theory treated in our work [24].
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Proof of Theorem 4.6 Fix S . To solve Eq. 4.26 we start from the expression Eq. 4.24
of the horizontal Laplacian, keeping also Eq. 4.25 in mind. We identify with
and, denoting for

2

the partial Fourier transform of with respect to the central variable , we obtain
from Eq. 4.24

2
1 2 1 0

0 0.
(4.28)

Now, it is not difficult to recognise that

1

2. (4.29)

Furthermore, we obtain from Eq. 4.25

1 1 1 1

. (4.30)

Using the identities Eqs. 4.29, 4.30 we can thus write Eq. 4.28 in the form

2 2 2 0

0 0
(4.31)

where for fixed, we have let . To solve problem Eq. 4.31 we now
apply Proposition 4.4 with the choice of the skew-symmetric matrix , so that the
symmetric matrix 2 is presently given by 2 (we warn
the reader that the role of the dimension in Proposition 4.4 is now taken by the dimension

of the first layer 1). Formula Eq. 4.10 allows to conclude that

Q

with the kernel Q as in Eq. 4.9. We can now argue as in the proof of Theorem 3.4. First,
by exploiting Eq. 4.17, we can ensure that in 1 as 0 .
Then, we can conclude that the function

2 Q

solves the Cauchy problem Eq. 4.26. The desired heat kernel on the group is thus given by

2 Q

4 2 2 det 2
1 2

exp
1

4
2 cosh 2
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where we have used the expression Eq. 4.9. Making the change of variable 2
and exploiting the linearity and the skew-symmetry of the mapping , we finally obtain

2 4 2
1
2 det

1 2

exp
1

4
cosh . (4.32)

From Eq. 4.22 it is easy to verify that the integral in Eq. 4.32 is finite, and the kernel
is a smooth function. This completes the proof of Theorem 4.6.

For the sake of completeness we close this brief subsection by showing how to recover
the Gaveau-Hulanicki formula Eq. 4.6 from Theorem 4.6. We recall that a Carnot group of
step two is said of Heisenberg type if for every 2 the mapping in Eq. 4.21
satisfies 2 2 . Therefore, , and we have

and also

cosh cosh
tanh

.

We thus obtain from Eq. 4.27

2

4 2 sinh
2 1

2

2

4 tanh

which coincides with the expression recalled in Eq. 4.6.

4.3 Proof of Theorem 4.1

In this section we finally turn to the proof of Theorem 4.1. As we have already observed,
we begin from the crucial observation that, in a group of Heisenberg type , the relevant
heat equation associated with Eq. 4.2 is Eq. 4.4, with the variable running in the space
with fractal dimension 2 1 . Henceforth, to continue the analysis we proceed formally
and treat the number 2 1 as if it were an integer. In this way we will arrive to a specific
candidate for a heat kernel in the form Eq. 4.3. Only at that point we will rigorously justify
our computations and complete the proof.

We begin by observing that the assumption 2 2 implies in particular that
2 for every 1 and every 1 ... (see, e.g, [21, Prop.

2.9]). Inserting this information in Eq. 4.24 we conclude that in a group of Heisenberg type
the horizontal Laplacian is given by

L
2

4
1

. (4.33)

Combining Eq. 4.4 and Eq. 4.33, it is clear that we presently want to solve the Cauchy
problem in 2 1 0

2 2

4 1 0

0 0
(4.34)

where the function 0 is assigned in S 2 1 . Proceeding as in the
Section 4.2 we now take a partial Fourier transform of the problem Eq. 4.34 with respect to
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the variable . Denoting by 2 , and using
the identity Eq. 4.30, we obtain from Eq. 4.34

2 2 2 2 2 0

0 0
2 1 0.

At this point we make critical use of the elimination of the complex drift transformation
introduced in Lemma 4.3. For , we define

2 .

We leave it to the reader to verify that, similarly to Lemma 4.3, the function now solves
the problem

2 2 2 2 0

0 0 .

According to Proposition 3.2, if we denote by M the kernel in Eq. 3.7 with the choice
of 2 1 , we deduce that is given by

2 1
M 0

which we can rewrite as

2 1
M 2

0 .

By taking the inverse Fourier transform we then have

(4.35)

2 1

2 M 2
0 .

From Eq. 4.35 we can extract the following heat kernel for the problem Eq. 4.34

2 M 2 .

By arguing as in Eq. 4.13-Eq. 4.16 (where we have deduced the expression of Q) and
similarly to Eq. 4.32, we obtain from the explicit expression of M that

2

4 2 1

1
2

sinh

2 1

1
4 tanh

2 2 2 2 sinh . (4.36)

If we set 0 into Eq. 4.36, and we keep Eq. 4.20 in mind, as well as the definition of
q in Eq. 4.3, we easily realize that

0 1 0 0 0

q 1 .

The previous identities, together with the already discussed relation between the Eqs. 4.4
and 4.2, make the function

q
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the candidate heat kernel of L with pole at the origin for any value of the fractional
parameter 0 1 . We now rigorously prove this fact, thus establishing Theorem 4.1.

On the one hand, a straightforward computation shows that q does solve
the Eq. 4.2 in 0 . We are thus left with understanding in which sense the kernel
q approaches the delta-function 0 0 0 as 0 . With this in mind we
introduce the measure

2 1

1
1 2 .

This is a natural measure for the operator L since it is easy to check that L is sym-
metric (i.e. formally self-adjoint) with respect to . Moreover, the renormalising constant
2 1

1 has been chosen in such a way that the following lemma holds true.

Lemma 4.7 For every 0 we have

0
q 1.

Proof For 0 denote

0 .

We want to show that

lim q 1. (4.37)

It is easy to see that, for any fixed 0,

q

2

4 2 1 sinh

2 1 2 2

4 .

By Fubini’s theorem we are then free to choose the order of integration. With this in
mind, we notice that

0
q

2 1

1
1 2

2

4 sinh

2 1 tanh 2 1

2 1

cosh 2

2 1

which implies

q 2 1

cosh 2

2 1

.
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We now stress that, being the function 1
cosh 2

2 1
in the Schwartz class

S , its Fourier transform is still in S and in particular in 1 . Hence we
have

lim q lim 1

where in the last step we have applied the inversion theorem for the Fourier transform and
the fact that 0 1. This concludes the proof of Eq. 4.37.

In order to complete the proof of Theorem 4.1 we need to show the validity of the
following limiting relation:

S 0 we have

lim
0 0

q 0 0 0 . (4.38)

For any fixed as in Eq. 4.38, let us introduce the functions 0 defined,
for any 0, by

0 0 0

and

2 1

1 4 2 1

2

sinh 2

2 1

0

2 2

4
2

tanh 2 1 2 .

We notice that 0 S . We want to show that

0 in 1 as 0 . (4.39)

In order to prove Eq. 4.39 we first notice that, by exploiting the change of variables

4

2

tanh 2
and

2

4

2

tanh 2

we have

1

1 2

1

cosh 2

2 1

0

2
4

tanh 2

2
4

tanh 2

2
.
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Therefore, using also the identity 0
2

1 2 and recalling

that 0 0 0 , we can write

0
1

1 2

1

cosh 2

2 1

0

2

4
tanh 2

2
4

tanh 2

2

0
0

2 1

cosh 2

2 1

1
1

cosh 2

2 1

1

1 2 0

2

4
tanh 2

2
4

tanh 2

2
0 0

1

1 2 0

2
0 0 1

1

cosh 2

2 1

.

Since S 0 , we know that there exists 0 such that

1 1
for all 0

and that moreover

is continuous at 0 0 (the continuity is actually uniform in ).

The last two properties allow to exploit the dominated convergence theorem and infer
that:

lim
0 0

2
0 0 1

1

cosh 2

2 1

0

and

lim
0 0

2

4
tanh 2

2
4

tanh 2

2
0 0 0.

In turn, these limiting relations imply that

0
0

0.

This concludes the proof of Eq. 4.39. From Eq. 4.39 and the continuity of the Fourier
transform from 1 to , we deduce that

0 in as 0 (4.40)
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where we have used the notation for the inverse Fourier transform
2 . Moreover, for any 0 , we have 0 0 0 0 0 and, by an

application of Fubini’s theorem, also

0
2 1

1 4 2 1

0

2 0
2

sinh 2

2 1 2 2

4
2

tanh 2 1 2

1

4 2 1 0

2 0
2

sinh 2

2 1

2 2

4
2

tanh 2

0
q 0 .

Hence, Eq. 4.40 implies that

0
q 0

0
0 0 0 uniformly for 0 .

In particular, when applied to 0 0, this completes the proof of Eq. 4.38 and finishes the
proof of Theorem 4.1.
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13. Chang, C.-H., Chang, D.-C., Gaveau, B., Greiner, P., Lee, H.-P.: Geometric analysis on a step 2 Grusin
operator. Bull. Inst. Math. Acad. Sin. (N.S.) 4(2), 119–188 (2009)

14. Chang, D.-C., Tie, J.: Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group. J.
Geom. Anal. 10(4), 653–678 (2000)
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19. Frank, R.L., Gonzá, l.ez., M.D.M., Monticelli, D., Tan, J.: An extension problem for the fractional

Laplacian. Adv. Math. 270, 97–137 (2015)
20. Garofalo, N.: Unique continuation for a class of elliptic operators which degenerate on a manifold of

arbitrary codimension. J. Diff. Equations 104(1), 117–146 (1993)
21. Garofalo, N.: Hypoelliptic Operators and Some Aspects of Analysis and Geometry of sub-Riemannian

Spaces. Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. In: EMS Ser. Lect. Math.,
Eur. Math. Soc., vol. 1, pp. 123–257. Zürich (2016)
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