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Abstract

We consider in this paper a diffusion-convection reaction equation in one space di-
mension. The main assumptions are about the reaction term, which is monostable, and
the diffusivity, which changes sign once or even more than once; then, we deal with a
forward-backward parabolic equation. Our main results concern the existence of globally
defined traveling waves, which connect two equilibria and cross both regions where the
diffusivity is positive and regions where it is negative. We also investigate the monotony
of the profiles and show the appearance of sharp behaviors at the points where the
diffusivity degenerates. In particular, if such points are interior points, then the sharp
behaviors are new and unusual.

AMS Subject Classification: 35K65; 35C07, 34B40, 35K57

Keywords: Sign-changing diffusivity, traveling-wave solutions, diffusion-convection re-
action equations, sharp profiles.

1 Introduction

This paper deals with traveling-wave solutions to degenerate parabolic equations of forward-
backward type. More precisely, we consider the equation

ρt + f(ρ)x =
(

D(ρ)ρx
)

x
+ g(ρ), t ≥ 0, x ∈ R. (1.1)

We denote with ρ = ρ(t, x) the unknown function; also in view of applications we understand
ρ as a (normalized) density or a concentration and then assume that ρ is valued in the interval
[0, 1]. On the convective term f we only assume

(f) f ∈ C1[0, 1], f(0) = 0.

The condition f(0) = 0 just fixes a flux representative, since convection is only defined
up to an additive constant. In the following, for brevity, we denote the derivative of f as
h(ρ) = ḟ(ρ). We assume that g satisfies
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(g) g ∈ C0[0, 1], g > 0 in (0, 1), g(0) = g(1) = 0.

Condition (g) is natural in this framework and then g is said of monostable type. The
diffusivity D is required to satisfy one of the following assumptions, for some α, β ∈ (0, 1):

(Dpn) D ∈ C1[0, 1], D > 0 in (0, α) and D < 0 in (α, 1);

(Dnp) D ∈ C1[0, 1], D < 0 in (0, β) and D > 0 in (β, 1).

Each condition is labelled following the sign of D: “pn” in (Dpn) means that D is first
positive and then negative, and the other so on. Above, α denotes a zero of D such that
Ḋ(α) ≤ 0 while β denotes a zero of D such that Ḋ(β) ≥ 0.

0 ρ

f

1 ρ

g

1 ρ

D

α 1

(Dpn)

ρ

D

β 1

(Dnp)

Figure 1: Typical plots of the functions f , g and D.

The above assumptions on D are the main issue of this paper, and make (1.1) a forward
parabolic equation where D > 0 and a backward parabolic equation where D < 0. The
above conditions leave also open the possibility that D vanishes at 0 or 1.

There are several motivations to study forward-backward parabolic equations as (1.1):
for a short list of different modeling we quote [18, 21, 27] for biology, [13] for geophysics, [19]
for thermodynamics. However, our main source of inspiration has been the recent modeling
of collective movements, namely of vehicular flows and crowds dynamics. About this topic,
we refer to [15, 16, 28] for general information, to [4, 5, 7] for the modeling using degenerate
parabolic equations, to [9] for the study of star graphs, while for sign-changing diffusivities
we refer to [11, 12, 26] and the references in the two former papers.

Our interest in this paper is about traveling-wave solutions (TWs for short) to (1.1);
they are solutions to (1.1) of the form ρ(t, x) = ϕ(x− ct). Here, the function ϕ = ϕ(ξ) is the
profile of the TW and the real number c is its speed. The equation for the profiles is then

(

D(ϕ)ϕ′
)′
+

(

c− h(ϕ)
)

ϕ′ + g(ϕ) = 0, (1.2)

where ′ denotes the derivative with respect to ξ. More precisely we focus on wavefronts,
i.e., globally-defined, nonconstant and monotone profiles. To fix ideas we deal with non-
increasing profiles and this leads us, because of (g), to impose the conditions

ϕ(−∞) = 1, ϕ(+∞) = 0. (1.3)

The study of non-decreasing profiles, in which the conditions in (1.3) are switched, is not
explicitly treated in this paper. Nevertheless, all the results can be rephrased in that case,
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once that (roughly speaking) the direction of speeds is reversed. Clearly, even under (1.3)
the solutions to (1.2) are at most unique up to horizontal shifts. An interesting issue is
whether the equilibria 0 and 1 can be reached by a wavefront ϕ at a finite value ξ0. This
possibly occurs if D vanishes at those points, and in such cases ϕ is necessarily constant on
either (ξ0,∞) or (−∞, ξ0), with values 0 and 1, respectively. The profile is called sharp if it
is not differentiable at ξ0. In this case ϕ is not a classical solution of (1.2) (see Definition
2.1). We refer to [17] for more information on traveling waves. The case where D changes
sign has been considered by several authors but only when f = 0. About this case, we quote
[2, 21] for D satisfying (Dnp) and (Dpn), respectively, and monostable g; [22] for the case
(Dpn) and bistable g (i.e., g changes sign once).

The main result of the current paper is that there still exist wavefronts joining 1 with
0, which travel across regions where D changes sign. In our approach the profiles are
constructed by suitably pasting two semi-wavefronts and possibly a traveling wave solution in
a bounded interval (see the next section for a definition), as in [11]. As a consequence of this
procedure, one realizes that the assumptions onD can be somewhat relaxed, as in [2]. Indeed,
for instance in case (Dpn), it is sufficient to require D ∈ C0[0, 1] and D ∈ C1[0, α]∩C1[α, 1]:
the derivatives at α− and α+ may be different.

We prove that the wavefronts constructed in this way are unique (up to shifts) and
provide results about the strict monotony of profiles; in particular, we characterize when
they are sharp. At last, we give rather precise bounds on the critical thresholds by exploiting
the estimates obtained in [6]; there, in turn, we used some related recent results proved in
[25]. The main tool underlying our approach is a well-known reduction (in regions where
D has constant sign) of Equation (1.2) to singular first-order systems [24] and its study
by comparison-type techniques. More precisely, if we denote z(ϕ) := D(ϕ)ϕ′, where ϕ′ is
computed at ϕ−1(ϕ) (notice that the inverse function of ϕ exists because of the monotony
of ϕ), then we are reduced to consider the problems, for instance in the case (Dpn),















ż(ϕ) = h(ϕ)− c− (Dg)(ϕ)
z(ϕ) , ϕ ∈ (0, α),

z(ϕ) < 0, ϕ ∈ (0, α),

z(0) = 0,

or















ż(ϕ) = h(ϕ) − c− (Dg)(ϕ)
z(ϕ) , ϕ ∈ (α, 1),

z(ϕ) > 0, ϕ ∈ (α, 1),

z(1) = 0,

(1.4)
and similar problems in the other cases. We refer to [6] for a detailed study of (1.4)1.

Problems (1.4) seems to suggest that the roles played by D and g are interchangeable;
this is not true, in general. Consider for instance the bistable (or Allen-Cahn) equation,
where D > 0 in (0, 1) but g satisfies g(0) = g(α) = g(1) = 0, g < 0 in (0, α) and g > 0 in
(α, 1). In this case it is known [1], at least if f = 0, that equation (1.1) admits a unique
admissible speed c corresponding to a wavefront from 1 to 0. In the current case (Dnp), on
the contrary, where the role of D and g is commuted with respect to the bistable case, we
shall find a whole half line of admissible speeds. The same result holds for the case (Dpn).

Here follows an outline of the paper. Section 2 contains the statements of our main
results. In Section 3, we first briefly recall some preliminary results in order to keep the
paper self-contained; then we prove the main result under (Dpn). Section 4 deals with the
case (Dnp). In Section 5 we give some explicit examples; they aim at showing the role played
by the convection term f , the qualitative difference of the thresholds in the cases (Dpn) and
(Dnp), the occurrence of non-regular profiles. At last, Section 6 extends the previous results
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to the case when D changes sign twice.

2 Main results

As we mentioned in the Introduction, traveling-waves can fail to be of class C1 in the whole
of their domain. The following definition makes precise what we mean by a TWs, see [17].

Definition 2.1. Assume f,D, g ∈ C0[0, 1] and let I ⊂ R be an open interval. Let ϕ ∈ C0(I)
be a function valued in [0, 1], which is differentiable a.e. and such that D(ϕ)ϕ ′ ∈ L1

loc(I); at
last, let c be a real constant.

Then the function ρ(x, t) := ϕ(x − ct), for (x, t) with x − ct ∈ I, is a traveling-wave
solution (briefly, a TW) to equation (1.1) with wave speed c and wave profile ϕ if we have

∫

I

(

D
(

ϕ(ξ)
)

ϕ′(ξ)− f
(

ϕ(ξ)
)

+ cϕ(ξ)
)

ψ′(ξ)− g
(

ϕ(ξ)
)

ψ(ξ) dξ = 0, (2.1)

for every ψ ∈ C∞
0 (I).

We now give some definitions about TWs. A TW is: global if I = R; strict if I 6= R and
ϕ cannot be extended to R; classical if ϕ is differentiable, D(ϕ)ϕ′ is absolutely continuous
and (1.2) holds a.e.; sharp at ℓ if there exists ξℓ ∈ I, with ϕ(ξℓ) = ℓ, such that ϕ is classical
in I \ {ξℓ} and not differentiable at ξℓ. Analogously, a TW is classical at ℓ if it is classical in
a neighborhood of ξℓ.

Moreover, a TW is: a wavefront if it is global, with a monotonic, non-constant profile
ϕ which satisfies either (1.3) or the converse condition; a semi-wavefront to 1 (or to 0) if
I = (a,∞) for a ∈ R, the profile ϕ is monotonic, non-constant and ϕ(ξ) → 1 (respectively,
ϕ(ξ) → 0) as ξ → ∞; a semi-wavefront from 1 (or from 0) if I = (−∞, b) for b ∈ R, the
profile ϕ is monotonic, non-constant and ϕ(ξ) → 1 (respectively, ϕ(ξ) → 0) as ξ → −∞.
About semi-wavefronts, we say that ϕ connects ϕ(a+) (1 or 0) with 1 or 0 (resp., with
ϕ(b−)).

The problem of the loss of regularity of ϕ depends on whether the parabolic equation
degenerates or not; more precisely, by arguing on the very equation (1.2), it is easy to see
that if f,D are of class C1 and g of class C0, then ϕ is classical in every interval I± ⊆ I
where ±D

(

ϕ(ξ)
)

> 0 for ξ ∈ I±; moreover, ϕ ∈ C2(I±) (see e.g. [17, Lemma 2.20]).
We recall that for a function q : [0, 1] → R, the notation D+q(ρ0) and D−q(ρ0), with

ρ0 ∈ [0, 1], stands for the right, resp., left lower Dini-derivative of q at ρ0; analogously, D
±(q)

represent the right and left upper Dini-derivatives of q. More explicitly,

D±q(ρ0) := lim inf
ρ→ρ±

0

q(ρ)− q(ρ0)

ρ− ρ0
, D±q(ρ0) := lim sup

ρ→ρ±
0

q(ρ)− q(ρ0)

ρ− ρ0
.

In addition to the main assumptions (f), (Dpn)-(Dnp) and (g) stated in the Introduction,
we also need for some results two further regularity conditions on the product of Dg at the
boundary of the interval [0, 1], which are stated using the above notation:

D+Dg(0) < +∞ and D−Dg(1) < +∞. (2.2)

In general, (2.2)1 implies that problem (1.4)1 has a super-solution for sufficiently large c,
see [23] in the case f = 0, and hence it is solvable for those c. Condition (2.2)1 is always
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satisfied if D(0) = 0, while, if D(0) 6= 0, it requires that g is sublinear close to 0; condition
(2.2)2 is commented analogously. At last, we denote the difference quotient of a function
F = F (ϕ) with respect to a point ϕ0 as

δ(F,ϕ0)(ϕ) :=
F (ϕ)− F (ϕ0)

ϕ− ϕ0
. (2.3)

We first focus on the case (Dpn). The construction of a wavefront to (1.1) takes place
by properly joining two semi-wavefronts, each of them with an intrinsic threshold. The
existence of such semi-wavefronts in the region (0, α) has been done in [6, Theorem 2.2]; the
main content of that result is the following. Under (f), (Dpn), (g) and (2.2)1 there exists a
real number, denoted by c∗p,r, satisfying

max

{

sup
(0,α]

δ(f, 0), h(0) + 2
√

D+Dg(0)

}

≤ c∗p,r ≤ sup
(0,α]

δ(f, 0) + 2
√

sup
(0,α]

δ(Dg, 0), (2.4)

such that Equation (1.1) admits strict semi-wavefronts to 0, connecting α to 0, with speed
c if and only if c ≥ c∗p,r. It is worth noting that the left- and the right-hand side of (2.4)
describe a non-empty interval (possibly degenerating to a single point) of real numbers, as a
direct inspection trivially shows. Moreover, in [25, Theorem 3.1] the authors proved that in
case Dg differentiable at ϕ = 0 (e.g. in case D(0) = 0) the second addend of the right-hand
side of (2.4) can be further enhanced by replacing δ(Dg, 0)(ϕ) with its mean value in (0, ϕ),
that is

c∗p,r ≤ sup
(0,α]

δ(f, 0) + 2

√

sup
ϕ∈(0,α]

1

ϕ

∫ ϕ

0

D(s)g(s)

s
ds. (2.5)

We warn the reader that those semi-wavefronts are proved to be intrinsically nonunique,
i.e., nonuniqueness holds even understanding profiles differing by a horizontal shift as a
same profile (see Proposition 3.1). The subscripts p, r in c∗p,r mean that we are considering
a case where D is positive in an interval I+ and vanishes in the right extremum of I+, while
g vanishes at the opposite extremum. Similarly, we shall use the notation c∗n,l, c

∗
p,l and c

∗
n,r.

An analogous result for semi-wavefronts from 1, connecting 1 to α, is first deduced in
this paper. Assume (f), (Dpn), (g) and (2.2)2. There exists c∗n,l ∈ R satisfying

max

{

sup
[α,1)

δ(f, 1), h(1) + 2
√

D−Dg(1)

}

≤ c∗n,l ≤ sup
[α,1)

δ(f, 1) + 2
√

sup
[α,1)

δ(Dg, 1), (2.6)

such that Equation (1.1) admits strict semi-wavefronts from 1, connecting 1 to α, with
speed c, if and only if c ≥ c∗n,l; see Proposition 3.2. Also in this case profiles are intrinsically
nonunique.

We now present our main results on wavefronts. Define, see Figure 2,

c∗pn := max
{

c∗p,r, c
∗
n,l

}

. (2.7)

For what concerns an estimate on c∗pn, see Remark 3.3. We introduce the quantity
s±(γ, c), defined formally by

s±(γ, c) :=
1

2

[

h(γ)− c±
√

(

h(γ) − c
)2 − 4Ḋ(γ)g(γ)

]

. (2.8)
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ρ

c∗p,r

D > 0

c∗n,l

D < 0 ρ
0 1α ρ

c∗n,r

D < 0

c∗p,l

D > 0 ρ
0 1β

Figure 2: The thresholds c∗p,r, c
∗

n,l used in (2.7) and c∗n,r, c
∗

p,l, used below in (2.15).

In the next result, we make use of (2.8) with γ = α. In this particular case, s−(α, c) is
well-defined since Ḋ(α)g(α) ≤ 0.

Theorem 2.1. Assume (f), (g), (Dpn) and (2.2). Equation (1.1) admits a (unique up to
space shifts) wavefront, with speed c and profile ϕ satisfying (1.3), if and only if c ≥ c∗pn.

For such c, we have ϕ′(ξ) < 0 when ϕ(ξ) ∈ (0, 1) \ {α}; there exists a unique ξα ∈ R

such that ϕ(ξα) = α and

ϕ′(ξ±α ) =







g(α)
s−(α,c) < 0 if Ḋ(α) < 0 or c > h(α),

−∞ if Ḋ(α) = 0 and c ≤ h(α).
(2.9)

At last, it holds that:

(i) if D(0)D(1) < 0, then ϕ is strictly decreasing and hence classical in R \ {ξα};

(ii) if D(0)D(1) = 0 and c > c∗pn, then ϕ is classical in R \ {ξα}; ϕ is strictly decreasing if

c > max
{

h(0) +D+g(0), h(1) +D−{−g}(1)
}

;

(iii) if D(0) = 0 and c = c∗pn = c∗p,r > h(0), then ϕ is sharp at 0 (reached at some ξ0 > ξα)
and if D(1) = 0 and c = c∗pn = c∗n,l > h(1), then ϕ is sharp at 1 (reached at some
ξ1 < ξα). In these cases we have

ϕ′(ξ−0 ) =







h(0)−c∗p,r
Ḋ(0)

< 0 if Ḋ(0) > 0,

−∞ if Ḋ(0) = 0,
ϕ′(ξ+1 ) =







h(1)−c∗
n,l

Ḋ(1)
< 0 if Ḋ(1) > 0,

−∞ if Ḋ(1) = 0.

We refer to Figure 3 for a pictorial representation of Theorem 2.1. Theorem 2.1 extends
[21, Theorem 1] to the case of a non-zero convection term f ; if f = 0 the estimates on c∗pn
deduced from (2.4) and (2.6) coincide with those in [21]. Estimates (2.4) and (2.6) imply
c∗pn ≥ max

{

h(0), h(1)
}

. However, if h(ϕ) ≥ h(0) for every ϕ in a right neighborhood of 0,
then c∗p,r > h(0), see [6, Remark 6.4], and so c∗pn > h(0). An analogous remark holds for the
point 1. This means that the lower estimate on c∗pn is not sharp, in general. Therefore we
also extend the corresponding result of [21], since they proved that the threshold c∗, which
plays the role of c∗pn here, satisfies the stricter estimate c∗ > 0.

On the other hand, a new result that could not occur in [21] is that we can have ϕ′(ξα) =
−∞, see (2.9)2, while in the case f = 0 profiles are always C1 at ξα. Explicit examples of
fronts passing from a positive- to a negative-diffusivity region such that (2.9)2 occurs, are
given in Example 5.1. From a formal point of view, if f = 0 then this could occur if c ≤ 0,
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ξ

ϕ

1

α

ξ1αξ3α ξ2αξ21

ϕ1

ϕ2

ϕ2

ϕ3

ξ30 ϕ3

Figure 3: Some possible wavefronts joining 1 with 0 in case (Dpn): a classical wavefront ϕ1

(for c > c∗pn and either Ḋ(α) < 0 or c > h(α)); a wavefront ϕ2 which is sharp at 1, with

finite right derivative at ξ21 and (ϕ2)′(ξ2α) = −∞ (for c = c∗n,l > h(1), D(1) = 0, Ḋ(1) > 0,

Ḋ(α) = 0 and c ≤ h(α)); a wavefront ϕ3 which is sharp at 0 with (ϕ3)′(ξ30) = −∞ (for
c = c∗p,r > h(0), D(0) = 0 = Ḋ(0)).

see (2.9)2, while in that case c > 0 holds; more rigorously, see [21, (29)]. We emphasize that
this phenomenon does not depend on the change of sign of D at α, but on the occurrence
of the two conditions in (2.9)2, see [6, Remark 9.3]. Moreover, just to get an insight on the
problem, assume Ḋ(α) = 0; in order that (2.9)2 takes place it is necessary that

max
{

sup
(0,α]

δ(f, 0), sup
[α,1)

δ(f, 1)
}

≤ h(α), (2.10)

so that we have room for c. Condition (2.10) has a simple geometric interpretation: the
slope of the tangent to the graph of f at α must be larger that the slope of any chord joining
(0, 0) with any other point of the graph of f , in the interval in (0, α], and analogously for the
interval [α, 1). We easily see that sup(0,α] δ(f, 0) ≤ h(α) fails if f is concave in [0, α], while it
holds if f is convex; the converse result holds for the other condition. This means that (2.9)2
may hold only if f changes its convexity. Moreover, if f changes convexity only once, for
instance at α, then f must be convex in [0, α] and concave in [α, 1], and not conversely. In
other words, the profile may become vertical if, at least in some subintervals, the behavior
of f strongly contrast that of D.

We now comment on (iii). The lack of results for the cases c∗p,r = h(0) or c∗n,l = h(1) is
due to the fact that in these extremal cases the regularity depends on further properties of
D and g. Indeed, under the mild assumptions of Theorem 2.1 the profile ϕ can be either
sharp or classical when reaches the equilibria 0 or 1 (for explicit examples at 0, we refer to
[6, Remark 10.1]; the discussion at 1 is analogous).

We focus now on (Dnp). Condition (Dnp) is specular to (Dpn), in an obvious sense: if
D satisfies (Dpn) then −D satisfies (Dnp). Despite this fact, the results in this case only
partially mimic those of Theorem 2.1. In particular, if we focus on the interval (β, 1), where
D > 0, the contrast with [6, Theorem 2.2] emerges evident. Apart from a trivial horizontal
translation, we are under the hypotheses considered in [10, Theorem 2.7] (compare (Dnp)-(g)
in the interval (β, 1) with the corresponding assumptions of [10, Theorem 2.7]). In contrast
with [6, Theorem 2.2] cited before, [10, Theorem 2.7] affirms that, for each c ∈ R, Equation
(1.1) admits (unique up to space shifts) strict semi-wavefronts from 1, connecting 1 to β.
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Nevertheless, the system still admits a threshold speed, in the following sense. There exists
c∗p,l ∈ R such that the (unique up to space shifts) non-increasing wave profile ϕ, defined
maximally in (−∞, ξβ), satisfies [10, Theorem 2.6]

(

D(ϕ)ϕ′
)

(ξ−β ) =

{

0 if c ≥ c∗p,l,

ℓ < 0 if c < c∗p,l.
(2.11)

By improving the estimates of c∗p,l in [10], as for (2.4)-(2.5), it results that c∗p,l must satisfy

max

{

sup
(β,1]

δ(f, β), h(β) + 2

√

Ḋ(β)g(β)

}

≤ c∗p,l ≤

sup
(β,1]

δ(f, β) + 2

√

sup
ϕ∈(β,1]

1

ϕ− β

∫ ϕ

β

D(s)g(s)

s− β
ds. (2.12)

See Proposition 4.1. Similarly, Equation (1.1) admits a (unique up to shifts) strict semi-
wavefront to 0, connecting β to 0, for every c ∈ R. Moreover, there exists c∗n,r ∈ R satisfying

max

{

sup
[0,β)

δ(f, β), h(β) + 2

√

Ḋ(β)g(β)

}

≤ c∗n,r ≤

sup
[0,β)

δ(f, β) + 2

√

sup
ϕ∈[0,β)

1

β − ϕ

∫ β

ϕ

D(s)g(s)

s− β
ds, (2.13)

such that the (unique up to shifts) non-increasing profile ϕ, defined maximally in (ξβ,+∞),
satisfies

(

D(ϕ)ϕ′
)

(ξ+β ) =

{

0 if c ≥ c∗n,r,

s > 0 if c < c∗n,r,
(2.14)

see Proposition 4.2. We set (see Figure 2)

c∗np := max
{

c∗n,r, c
∗
p,l

}

. (2.15)

In the next theorem, s±(β, c) is given by (2.8). Note that, in spite of Ḋ(β) ≥ 0, s±(β, c)
is well-defined since in virtue of (2.15) and (2.12) (or (2.13)), we clearly have (h(β)− c)2 ≥
(h(β) − c∗n,p)

2 ≥ 4Ḋ(β)g(β).

Theorem 2.2. Assume (f), (g), (Dnp). Then, Equation (1.1) admits a (unique up to space
shifts) wavefront, with speed c and profile ϕ satisfying (1.3), if and only if c ≥ c∗np.

For such c, we have ϕ′ < 0 if ϕ ∈ (0, 1) \ {β}. There exists a unique ξβ ∈ R such that

8



ϕ(ξβ) = β and

ϕ′(ξβ
−) =



















g(β)
s−(β,c) if c > c∗p,l,

g(β)
s+(β,c∗

p,l
) if c = c∗p,l and Ḋ(β) > 0,

−∞ if c = c∗p,l and Ḋ(β) = 0,

ϕ′(ξβ
+) =



















g(β)
s−(β,c) if c > c∗n,r,

g(β)
s+(β,c∗n,r)

if c = c∗n,r and Ḋ(β) > 0,

−∞ if c = c∗n,r and Ḋ(β) = 0.

(2.16)

At last, the following holds true:

(i) if D(0)D(1) < 0 then ϕ is classical in R \
{

ξβ
}

;

(ii) if D(0) = 0, and either c > h(0) or c = h(0) and Ḋ(0) < 0, then ϕ is classical at 0; if
D(1) = 0, and either c > h(1) or c = h(1) and Ḋ(1) < 0 then ϕ is classical at 1;

(iii) if D(0) = 0 and c < h(0), then ϕ is sharp at 0 (reached at some ξ0 > ξβ); if D(1) = 0
and c < h(1), then ϕ is sharp at 1 (reached at some ξ1 < ξβ). In these cases we have

ϕ′(ξ−0 ) =







h(0)−c

Ḋ(0)
if Ḋ(0) < 0,

−∞ if Ḋ(0) = 0,
ϕ′(ξ+1 ) =







h(1)−c

Ḋ(1)
if Ḋ(1) < 0,

−∞ if Ḋ(1) = 0.

ξ

ϕ

1

β

ϕ1 ϕ2
ϕ3

ϕ4
ϕ5

Figure 4: Some possible wavefronts joining 1 with 0 in case (Dnp); Profiles are labelled
according to the cases (1)–(4) of Remark 4.2; ϕ5 occurs in both cases (3) and (4). For
simplicity we only represented strictly monotone profiles.

About the regularity of ϕ at ξβ, see also Remark 4.2. From (2.12) and (2.13), we have
c∗np ≥ h(β) and c∗np > h(β) if Ḋ(β) > 0. Hence, all quantities represented as s±(β, ·) in
(2.16) are negative and finite real values.

Theorem 2.2 above extends [2, Theorem 1] to the case of a non-zero convection term f ;
if f = 0, the estimates on c∗np deduced from (2.12) and (2.13) improve those in [2], not only
because of a flaw in the upper estimate in c∗ (the analog of c∗np) in [2], see formula (14)
there, but also because the more precise estimates from [6] and [25] are involved here (and
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not in [2]). Moreover, by c∗np ≥ h(β), with a reasoning as above Theorem 2.1 we can further
show, as in [2], that c∗np > 0 when f = 0. In Theorem 2.2 we also prove the existence of
sharp profiles at either 0 or 1 even if c > c∗np, see case (iii) above. Again, this is due to the
presence of f . Indeed, from a formal point of view, by the estimates in (iii) it follows that,
if f = 0, then to have sharp profiles one needs c < 0, while c is always positive in this case.

We point out that, if c∗p,l > c∗n,r and ϕ is the profile corresponding to c = c∗np = c∗p,l
given by Theorem 2.2, then ϕ′(ξ−β ) 6= ϕ′(ξ+β ). The same conclusion holds if c∗p,l < c∗n,r and
c = c∗np = c∗n,r. Both alternatives c∗p,l = c∗n,r and c∗p,l 6= c∗n,r can indeed occur: explicit
examples are shown in Example 5.3. This suggests that Theorems 2.1 and 2.2 produce two
separate families of solutions. Moreover, in Example 5.2, we show that the thresholds c∗pn
of Theorem 2.1 and c∗np of Theorem 2.2 are essentially different, in the sense that taking
opposite diffusivities do not produce necessarily c∗pn = c∗np. Roughly speaking, this is due
essentially because (2.4)–(2.6) and (2.12)–(2.13) are unrelated estimates.

Also notice the different role played by the sub-thresholds c∗p,r, c
∗
n,l and c∗p,l, c

∗
n,r: the

former two discriminate the existence of the semi-wavefronts, the latter two the regularity.
Indeed, the estimates (2.4), (2.6) concern the equilibrium points 0, 1 of g, while the estimates
(2.12), (2.13) only concern the point β where D vanishes. The values of ϕ′ at ξα or ξβ: ϕ

′(ξα)
is uniquely determined (being possibly −∞), while we can have ϕ′(ξ−β ) 6= ϕ′(ξ+β ). Moreover,
in the case (Dpn), a profile may be sharp only if c = c∗pn; in case (Dnp), a profile can be
sharp also if c > c∗np. As a consequence of these facts, items (i)–(iii) in the two theorems
are similar but far from being symmetric.

3 Wavefronts with positive to negative diffusivities

In this section we assume condition (Dpn). First, we discuss the existence of semi-wavefronts
to 0 and from 1 in Proposition 3.1 and in Proposition 3.2, respectively. Then, by pasting
their profiles, we provide the proof of Theorem 2.1.

In the next proposition s−(α, c) is given by (2.8).

Proposition 3.1. Assume (f), (g), (Dpn), (2.2)1. Then, there exists c∗p,r satisfying (2.4)
such that Equation (1.1) has strict semi-wavefronts to 0, connecting α to 0, if and only if
c ≥ c∗p,r. If ϕ is the non-increasing profile of one of them, then

ϕ′(ξ) < 0 for any 0 < ϕ(ξ) < α. (3.1)

For c > c∗p,r, there exists β(c) < 0 such that every profile is uniquely determined (up to space
shifts) by the value

(

D (ϕ)ϕ′
)

(ξ+α ) =: ℓ ∈ [β(c), 0], (3.2)

where ξα ∈ R is such that (ξα,+∞) is the maximal-existence interval of ϕ.
If ϕℓ is the profile satisfying (3.2), then ϕ′

ℓ(ξ
+
α ) = −∞ if ℓ ∈ [β(c), 0), while

ϕ′
0(ξ

+
α ) =







g(α)
s−(α,c) if Ḋ(α) < 0 or c > h(α),

−∞ if Ḋ(α) = 0 and c ≤ h(α).
(3.3)

Proof. We refer to Figure 5, solid lines. The existence of these semi-wavefronts, the estimate
of c∗p,r and condition (3.1) are discussed in [6, Theorem 2.2]. The proof of [6, Theorem 2.2]
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also includes the equivalence between the presence of a semi-wavefront with speed c and the
solvability of the problem (1.4)1 for the same c, with z(ϕ) = D(ϕ)ϕ′. Conditions (3.2) and
(3.3) then come, respectively, from [6, Proposition 5.1] and [6, (9.2)] (see also [6, Remark
9.2]) which are directly formulated for problem (1.4)1.

ρ
α

D

10

g

ξ

ϕ

ξα

α

1

Figure 5: D satisfies (Dpn): Left: the plots of D, g in [0, α] (solid lines) and in [α, 1] (dashed
lines); right, a corresponding profile.

Remark 3.1. Every semi-wavefront ϕ given in Proposition 3.1 satisfies
(

D (ϕ)ϕ′
)

(ξ−0 ) = 0,
(see e.g. [6, formula (9.19)]), where ξ0 = sup

{

ξ > ξα : ϕ(ξ) > 0
}

∈ (ξα,+∞].

Proposition 3.2. Assume (f), (g), (Dpn) and (2.2)2. There exists c∗n,l ∈ R satisfying (2.6)
such that Equation (1.1) admits strict semi-wavefronts from 1, connecting 1 to α, with speed
c, if and only if c ≥ c∗n,l. If ϕ is the non-increasing profile of one of such fronts, then it holds
that

ϕ′(ξ) < 0 if α < ϕ(ξ) < 1. (3.4)

For c > c∗n,l, there exists γ(c) > 0 such that every profile is uniquely determined (up to space
shifts) by the value

(

D (ϕ)ϕ′
)

(ξ−α ) =: s ∈ [0, γ(c)], (3.5)

where ξα ∈ R is such that (−∞, ξα) is the maximal-existence interval of ϕ.
If ϕs is the profile satisfying (3.5), then ϕ′

s(ξ
−
α ) = −∞ if s ∈ (0, γ(c)], while

ϕ′
0(ξ

−
α ) =







g(α)
s−(α,c) if Ḋ(α) < 0 or c > h(α),

−∞ if Ḋ(α) = 0 and c ≤ h(α).
(3.6)

Proof. We refer to Figure 5, dashed lines. Take, for ϕ ∈ [0, 1],

D̄ (ϕ) := −D (1− ϕ) , ḡ (ϕ) := g (1− ϕ) , f̄ (ϕ) := f(1)− f (1− ϕ) . (3.7)

Set ᾱ := 1−α. Then D̄, ḡ, f̄ satisfy (Dpn) with ᾱ replacing α, (g), (f) and (2.2)1. Set h̄ = ˙̄f .
We apply Proposition 3.1 to deduce that there exists a real value c∗ satisfying

max

{

h̄(0) + 2
√

D+D̄ḡ(0), sup
(0,ᾱ]

δ
(

f̄ , 0
)

}

≤ c∗ ≤ sup
(0,ᾱ]

δ
(

f̄ , 0
)

+ 2
√

sup
(0,ᾱ]

δ (Dg, 0)
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such that there exist strict semi-wavefronts connecting 0 to ᾱ, with speed c, if and only if
c ≥ c∗. In the formula above, we recall that δ (·, ·) is defined in (2.3). Direct manipulations
show that the above chain of inequalities coincides with (2.6), in virtue of (3.7). Fix c ≥ c∗

and let ϕᾱ,0 be the profile of a semi-wavefront connecting ᾱ to 0, having speed c, given by
Proposition 3.1. Moreover, assume that ϕᾱ,0 is maximally defined in (ξᾱ,+∞). Define then
ϕ1,α : (−∞,−ξᾱ) → R by

ϕ1,α(ξ) := 1− ϕᾱ,0 (−ξ) for ξ < ξα := −ξᾱ. (3.8)

Notice that, because ϕᾱ,0 connects ᾱ to 0, then (3.8) implies

lim
ξ→−∞

ϕ1,α(ξ) = 1 and lim
ξ→ξ−α

ϕ1,α(ξ) = α,

thus ϕ1,α connects 1 to α. Also, from (3.8) and D̄
(

ϕᾱ,0
)

ϕ′
ᾱ,0 ∈ L1 (ξᾱ,∞), we have

D
(

ϕ1,α

)

ϕ′
1,α ∈ L1 (−∞, ξα). Since ϕᾱ,0 satisfies (1.2), with D̄, ḡ, h̄, in (ξᾱ,+∞) for c ≥ c∗,

then direct computations show that ϕ1,α satisfies (1.2) in (−∞, ξα) with the same c. Solu-
tions are always meant in the sense of Definition 2.1.

Viceversa, let ϕ be a profile of a strict semi-wavefront of (1.1), connecting 1 to α asso-
ciated to some c ∈ R, defined maximally in (−∞, 0). By setting

ϕᾱ,0(τ) := 1− ϕ (−τ) for τ > 0, (3.9)

we obtain the profile of a strict semi-wavefront, from ᾱ to 0, of Equation (1.2) (with D̄, ḡ
and f̄ as in (3.7)) associated to the speed c. By applying Proposition 3.1 we deduce that
c ≥ c∗. The first part of the statement is hence proved, with c∗n,l = c∗ defined above.

Finally, (3.4)–(3.6) follow by (3.8) and Proposition 3.1, for γ(c) := −β(c).

Remark 3.2. According to (3.8) and Remark 3.1, every semi-wavefront ϕ given in Propo-

sition 3.2 satisfies
(

D (ϕ)ϕ′
)

(

ξ+1

)

= 0, where ξ1 := inf
{

ξ < ξα : ϕ(ξ) < 1
}

∈ [−∞, ξα).

Proof of Theorem 2.1. Let c∗p,r and c∗n,l be the thresholds given in Proposition 3.1 and 3.2,
respectively, and define c∗pn as in (2.7).

First, we take c ≥ c∗pn and prove that there is a wavefront to equation (1.1) that sat-
isfies (1.3) and has speed c. Associated to such a value of c, from Proposition 3.1, there
exists a strict semi-wavefront ϕ0 (according to the notation introduced in the statement of
Proposition 3.1) to 0 with wave speed c, connecting α to 0, such that

(

D (ϕ0)ϕ
′
0

)

(ξ+α ) = 0, (3.10)

see (3.2). In (3.10), the value ξα, which is finite because we are considering a strict semi-
wavefront, is such that ϕ0 is maximally defined in (ξα,+∞). Analogously, from Proposition
3.2, we have that there exists a semi-wavefront from 1 with wave speed c, which connects 1
to α and such that its profile ψ0 realizes

(

D (ψ0)ψ
′
0

)

(ξ−α ) = 0, (3.11)

see (3.5). Here, we assumed that ψ0 is maximally defined in (−∞, ξα); this is always possible
unless of shifting ψ0. We refer to Remark 3.4 for the reasons of the choices of ϕ0 and ψ0.
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Let ξ1, ξ0 ∈ R be such that

ξ0 := sup
{

ξ > ξα : ϕ0(ξ) > 0
}

∈ (ξα,+∞],

ξ1 := inf
{

ξ < ξα : ψ0(ξ) < 1
}

∈ [−∞, ξα),

see Figure 6. Define then the function ϕ = ϕ(ξ) by

ϕ(ξ) =

{

ϕ0(ξ), ξ ≥ ξα,

ψ0(ξ), ξ < ξα.
(3.12)

It is clear that ϕ is well-defined and continuous in (−∞,+∞); moreover, ϕ is non-increasing
and connects 1 to 0. Since both ϕ0 and ψ0 satisfy (1.2) in their domains, then ϕ satisfies
(1.2) pointwise in (−∞, ξ1) ∪ (ξ1, ξα) ∪ (ξα, ξ0) ∪ (ξ0,+∞).

ξξα

ϕ

ψ0

ϕ0

ϕ

ξ0

ψ0
α

1

ξ1

ϕ0

Figure 6: Construction of the profile ϕ in the case ξ0, ξ1 ∈ R.

Formulas (3.10), (3.11) imply that D(ϕ)ϕ′ is continuously extended to ξ = ξα; we have

(

D (ψ0)ψ
′
0

)

(ξ+1 ) = 0 and
(

D (ϕ0)ϕ
′
0

)

(ξ−0 ) = 0. (3.13)

Formula (3.13)2 follows from Remark 3.1 applied to ϕ0 and (3.13)1 follows from Remark
3.2 applied to ψ0. Hence, we showed that D(ϕ)ϕ′ ∈ L1

loc(−∞,+∞). It remains to show
that ϕ is a solution of (1.2) in (−∞,+∞), according to Definition 2.1. To this purpose,
take ζ ∈ C∞

0 (−∞,∞). Since ϕ is a distributional solution of (1.2) in both (−∞, ξα) and
(ξα,+∞), then we can reduce to test (2.1) when supp ζ ⊆ [ξα− δ, ξα+ δ] ⊂ (ξ1, ξ0), for some
δ > 0. Hence, we need to test whether

∫ ξα+δ

ξα−δ

(

D (ϕ)ϕ′ − f (ϕ) + cϕ
)

ζ ′ − g (ϕ) ζ dξ = 0. (3.14)

Clearly, the left-hand side of (3.14) equals

∫ ξα

ξα−δ

(

D (ψ0)ψ
′
0 − f (ψ0) + cψ0

)

ζ ′ − g (ψ0) ζ dξ+

∫ ξα+δ

ξα

(

D (ϕ0)ϕ
′
0 − f (ϕ0) + cϕ0

)

ζ ′ − g (ϕ0) ζ dξ. (3.15)
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Let us focus on the former addend of (3.15). We have:

∫ ξα

ξα−δ

(

D (ψ0)ψ
′
0 − f (ψ0) + cψ0

)

ζ ′ − g (ψ0) ζ dξ =

lim
δ>ε→0+

∫ ξα−ε

ξα−δ

(

D (ψ0)ψ
′
0 − f (ψ0) + cψ0

)

ζ ′ − g (ψ0) ζ dξ =

lim
δ>ε→0+

(

(

D (ψ0)ψ
′
0

)

(ξα − ε)− f
(

ψ0 (ξα − ε)
)

− cψ0 (ξα − ε)
)

ζ (ξα − ε) =

(

D (ψ0)ψ
′
0

)

(

ξ−α

)

ζ (ξα)−
(

f (α)− cα
)

ζ (ξα) = −
(

f (α)− cα
)

ζ (ξα) . (3.16)

Similar arguments involving the latter addend of (3.15) lead to

∫ ξα+δ

ξα

(

D (ϕ0)ϕ
′
0 − f (ϕ0) + cϕ0

)

ζ ′ − g (ϕ0) ζ dξ =

−
(

D (ϕ0)ϕ
′
0

)

(

ξ+α

)

ζ (ξα) +
(

f(α)− cα
)

ζ (α) =
(

f(α)− cα
)

ζ (ξα) . (3.17)

Putting together (3.16) and (3.17) proves (3.14).

Conversely, we prove that if there exists a wavefront with speed c, whose profile ϕ is
non-increasing and satisfies (1.2)-(1.3), then c ≥ c∗pn. Let ξα ∈ R be such that ϕ(ξα) = α.
Such a ξα obviously exists since ϕ is continuous and satisfies (1.3). Furthermore, we have

{ϕ = α} = {ξα} . (3.18)

Indeed, otherwise there exists an open set J ⊂ {ϕ = α} where ϕ is constantly equal to α.
Thus, in J , equation (1.2) for ϕ reduces to g(α) = 0, which is clearly forbidden by (g). Then,
we proved (3.18).

The function ϕα,0 : (ξα,+∞) → (0, α), defined by ϕα,0 = ϕ, is a strict semi-wavefront
to 0 with speed c, connecting α to 0, and the function ϕ1,α : (−∞, ξα) → (α, 1), defined
by ϕ1,α = ϕ, is a strict semi-wavefront from 1, with speed c, connecting 1 to α. From
Propositions 3.1 and 3.2, both c ≥ c∗p,r and c ≥ c∗n,l must occur. Hence, c ≥ c∗pn, and the
first part of Theorem 2.1 is proved.

To conclude the proof, we apply [6, Corollary 9.4] to ϕα,0 (defined just above) and to
ϕᾱ,0 (defined by (3.9)). �

Remark 3.3 (Estimates for c∗pn). We now explicitly provide estimates for the threshold c∗pn
in (2.7). Obviously, c∗pn inherits the bounds, from above and below, for both c∗p,r and c∗n,l.
Such estimates are contained in Propositions 3.1 and 3.2. We hence have:

c∗pn ≥ max

{

sup
(0,α]

δ(f, 0), sup
[α,1)

δ(f, 1), h(0) + 2
√

D+Dg(0), h(1) + 2
√

D−Dg(1)

}

,

c∗pn ≤ max







sup
(0,α]

δ(f, 0) + 2
√

sup
(0,α]

δ(Dg, 0), sup
[α,1)

δ(f, 1) + 2
√

sup
[α,1)

δ(Dg, 1)







.

If f is identically zero, such estimates were given in [21, formula (14)].
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Remark 3.4. It is worth emphasizing that, given c large enough, among the profiles in the
families

{ϕℓ : ℓ ∈ [β(c), 0]} and {ψs : s ∈ [0, γ(c)]},
given by Propositions 3.1 and 3.2 respectively, we can only benefit from ϕ0 and ψ0 to
construct a wavefront as in Theorem 2.1. In particular, we can take advantage only of those
profiles whose associated functions z (solving (1.4)) vanish at α±. In all the other cases,
the pasting of a profile ϕℓ with a profile ψs does not provide a solution (according to the
distributional sense of Definition 2.1) in a neighborhood of the matching point. Indeed,
under these assumptions, (3.16) and (3.17) read respectively as

∫ ξα

ξα−δ

(

D (ψs)ψ
′
s − f(ψs) + cψs

)

ζ ′ − g(ψs)ζ dξ =
[

s+ cα− f(α)
]

ζ(ξα), (3.19)

∫ ξα+δ

ξα

(

D (ϕℓ)ϕ
′
ℓ − f(ϕℓ) + cϕℓ

)

ζ ′ − g(ϕℓ)ζ dξ =
[

−ℓ− cα+ f(α)
]

ζ(ξα). (3.20)

Thus, in place of (3.14), putting together (3.19) and (3.20) gives

∫ ξα+δ

ξα−δ

(

D (ϕ)ϕ′ − f(ϕ) + cϕ
)

ζ ′ − g(ϕ)ζ dξ = (s− ℓ) ζ(ξα), (3.21)

which vanishes for each arbitrary test function ζ if and only if s = ℓ = 0.
In the first instance, this seems to be suggested by the fact that if, formally,

z(α) = D
(

ϕ(ξα)
)

ϕ′(ξ−α ) = D(α)ϕ′(ξ−α ) < 0,

then necessarily ϕ′(ξ−α ) = −∞, because D(α) = 0; the same remark holds if w(α) > 0.
Nonetheless, the failure of the pasting is not due to a possibly infinite derivative of the
profile at the matching point; indeed, Theorem 2.1 (ii) shows that the wavefront ϕ can well
have infinite slope at ξα, see profile ϕ2 in Figure 3.

4 Wavefronts with negative to positive diffusivities

In this section we assume condition (Dnp) and prove Theorem 2.2.
The existence and regularity of semi-wavefronts from 1, connecting 1 to β, was obtained

essentially in [10, Theorem 2.7] in the case D(1) > 0 and in [8, Theorems 2.3 and 2.5] when
D(1) = 0. We collect these results in the next proposition. The sharper estimate (2.12) for
the threshold c∗p,l comes from [6, Corollary 5.4 and Remark 5.5]. The symbols s±(α, c) are
given by (2.8). We refer to Figure 7, solid lines.

Proposition 4.1. Assume (f), (g), (Dnp). Then, for every c ∈ R, Equation (1.1) has a
(unique up to shifts) strict semi-wavefront solution from 1, connecting 1 to β, with speed c
and profile ϕ defined in its maximal-existence interval (−∞, ξβ), for some ξβ ∈ R. It holds
that ϕ′ < 0 if β < ϕ < 1. There exists c∗p,l satisfying (2.12) such that (2.11) holds true and
we have

ϕ′(ξ−β ) =



















g(β)
s−(β,c) if c > c∗p,l,

g(β)
s+(β,c∗

p,l
) if c = c∗p,l and Ḋ(β) > 0,

−∞ if c = c∗p,l and Ḋ(β) = 0 or c < c∗p,l.

(4.1)
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Moreover, the following results hold.

(i) If D(1) > 0, then ϕ is classical.

(ii) If D(1) = 0 and either c > h(1) or c = h(1) and Ḋ(1) < 0, then ϕ is classical.

(iii) If D(1) = 0 and c < h(1), then ϕ is sharp at 1 (reached at some ξ1 < ξβ) with

ϕ′(ξ+1 ) =







h(1)−c

Ḋ(1)
< 0 if Ḋ(1) < 0,

−∞ if Ḋ(1) = 0.

ρβ

D

1

g

ξ

ϕ

ξβ

β

1

Figure 7: D satisfies (Dnp). Left: the plots of D, g in [0, β] (dashed lines) and [β, 1] (solid
lines); right, a corresponding profile.

We discuss the existence of semi-wavefronts to 0 in the next proposition.

Proposition 4.2. Assume (f), (g), (Dnp). Then, for every c ∈ R Equation (1.1) has a
(unique up to space shifts) strict semi-wavefront solution to 0, connecting β to 0, with speed
c and profile ϕ defined in its maximal-existence interval (ξβ,+∞), for some ξβ ∈ R. It holds
that ϕ′ < 0 if 0 < ϕ < β. In addition, there exists c∗n,r ∈ R satisfying (2.14) and we have

ϕ′(ξ+β ) =



















g(β)
s−(β,c) if c > c∗n,r,

g(β)
s+(β,c∗n,r)

if c = c∗n,r and Ḋ(β) > 0,

−∞ if c < c∗n,r or c = c∗n,r and Ḋ(β) = 0.

(4.2)

Moreover, the following results hold.

(i) If D(0) < 0, then ϕ is classical.

(ii) If D(0) = 0 and either c > h(0) or c = h(0) and Ḋ(0) < 0 then ϕ is classical.

(iii) If D(0) = 0 and c < h(0) then ϕ is sharp at 0 (reached at some ξ0 > ξβ) with

ϕ′(ξ−0 ) =







h(0)−c

Ḋ(0)
< 0 if Ḋ(0) < 0,

−∞ if Ḋ(0) = 0.
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Proof. We refer to Figure 7, dashed lines. Let D̄, ḡ and f̄ be defined by (3.7). We already
observed in the proof of Proposition 3.2 that ḡ and f̄ still satisfy (g) and (f). In this case,
instead, D̄ satisfies (Dnp) with β̄ := 1−β replacing β. Hence, Proposition 4.1 applied to D̄,
ḡ and f̄ informs us that strict semi-wavefronts with speed c ∈ R connecting 1 to β̄ exist for
every c. Let ϕ1,β̄ be a profile of one of such fronts, defined in (−∞, ξβ̄). Set ξβ := −ξβ̄ and

ϕβ,0(ξ) := 1− ϕ1,β̄(−ξ) for ξ > ξβ. (4.3)

With arguments analogous to those in the proof of Proposition 3.2, it turns out that ϕβ,0
is the profile of a desired strict semi-wavefront of (1.1), connecting β to 0. Hence, the first
part of the statement is proved. By Proposition 4.1 applied to D̄, ḡ and f̄ , in the interval
[β̄, 1], we obtain that there exists a real value, say c̄∗, satisfying

max







sup
(β̄,1]

δ(f̄ , β̄), h̄(β̄) + 2

√

˙̄D(β̄)ḡ(β̄)







≤

c̄∗ ≤ sup
(β̄,1]

δ(f̄ , β̄) + 2

√

sup
ϕ∈(β̄,1]

1

ϕ− β̄

∫ ϕ

β̄

D̄(s)ḡ(s)

s
ds

such that
(

D̄(ϕ1,β̄)ϕ
′

1,β̄

)

(ξ−
β̄
) =

{

0 if c ≥ c̄∗,
ℓ < 0 if c < c̄∗,

and

ϕ′

1,β̄(ξ
−

β̄
) =























ḡ(β̄)
s̄−(β̄,c)

if c > c̄∗,

ḡ(β̄)

s̄+(β̄,c̃∗)
if c = c̄∗ and ˙̄D(β̄) > 0,

−∞ if c = c̄∗ and ˙̄D(β̄) = 0 or c < c̄∗.

(4.4)

Here, s̄± is defined as s± in (2.8) but with D̄, ḡ and h̄ instead of the non-subscripted ones.
Define c∗n,r = c̄∗. The former of the two previous formulas yields to (2.14). Analogously,
(4.4) implies (4.2). Finally, (i)–(iii) follow from the application of (i)–(iii) of Proposition
4.1 to ϕ1,β̄ and (4.3)-(3.7). The proof is then concluded.

Proof of Theorem 2.2. For each c ∈ R, Propositions 4.1, 4.2 provide the existence of a
strict semi-wavefront ϕ1,β from 1, connecting 1 to β, and a strict semi-wavefront ϕβ,0 to 0,
connecting β to 0. Let c∗np be as in (2.15) and take c ≥ c∗np. Proposition 4.1 informs us that
ϕ1,β satisfies (2.14)1 while Proposition 4.2 implies that ϕβ,0 realizes (2.11)1. In addition,
from the uniqueness up to shifts of both ϕ1,β and ϕβ,0, we can suppose that their maximal-
existence intervals are one the complement of the other and that the two of them have the
finite extremum at the same ξβ ∈ R. Thus, by proceeding as in the proof of Theorem 2.1,
we conclude that gluing together ϕ1,β and ϕβ,0 at ξβ produces the desired wavefront. This
concludes the if part of the statement.

Suppose now that ϕ is a profile of a wavefront connecting 1 to 0 associated to some
c ∈ R. Necessarily, there exists a unique ξβ ∈ R such that ϕ(ξβ) = β. Let ϕ+ be defined by
ϕ+(ξ) = ϕ(ξ), for ξ ∈ (−∞, ξβ). Here, the index “+” stands for the positive sign of D (ϕ+)
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in its domain. The function ϕ+ is a semi-wavefront from 1, connecting 1 to β. Analogously,
ϕ− defined by ϕ−(ξ) = ϕ(ξ), for ξ ∈ (ξβ,+∞) is a semi-wavefront to 0, connecting β to
0. The function ϕ is a solution of Equation (1.2), according to Definition 2.1. Thus, if
ζ ∈ C∞

0 (−∞,+∞) is a test function with supp ζ ⊆
[

ξβ − δ, ξβ + δ
]

then we have

∫ ξβ+δ

ξβ−δ

(

D (ϕ)ϕ′ − f (ϕ) + cϕ
)

ζ ′ − g (ϕ) ζ dξ = 0. (4.5)

Observe that both ϕ+ and ϕ− are classical solution of (1.2) in (−∞, ξβ) and (ξβ,+∞), re-

spectively, because in these domains ±D (ϕ±) > 0. Since
∫ ξβ+δ
ξβ−δ

= limδ>ε→0+
∫ ξβ−ε

ξβ−δ
+
∫ ξβ+δ
ξβ+ε

,

from (4.5) and integration by parts we obtain

(

D (ϕ+)ϕ
′
+

)

(

ξ−β

)

ζ(ξβ) = 0 and
(

D (ϕ−)ϕ
′
−

)

(

ξ+β

)

ζ(ξβ) = 0. (4.6)

Therefore, (2.11)1 for ϕ+ and (2.14)1 for ϕ− both hold true. As a consequence, by applying
Proposition 4.1 to ϕ+ and Proposition 4.2 to ϕ− we deduce that c ≥ c∗p,l and c ≥ c∗n,r, from
which c ≥ c∗np.

Finally, the values of ϕ′(ξ±β ) follow from each possible combination of (4.1) applied to ϕ+

and (4.2) applied to ϕ−. Analogously, Parts (i)–(iii) follow from putting together (i)–(iii)
of Proposition 4.1 applied to ϕ+ and (i)–(iii) of Proposition 4.2 applied to ϕ−. �

Remark 4.1. In Remark 3.3 we deduced estimates from above and below for c∗pn. Bounds
for c∗np of Theorem 2.2 can be obtained similarly, starting now from (2.12), (2.13) and (2.15).

Remark 4.2. From (2.16), we can make explicit the a priori regularity of ϕ at ξβ depending
on the value of c and the relative order between the thresholds (see also Figure 4). We have:

(1) if c > c∗np, we have ϕ′(ξβ
−) = ϕ′(ξβ

+) ∈ (−∞, 0);

(2) if c = c∗np = c∗n,r = c∗p,l, we have ϕ′(ξβ
+) = ϕ′(ξβ

−) ∈ (−∞, 0) if Ḋ(β) > 0 and

ϕ′(ξ±β ) = −∞ if Ḋ(β) = 0;

(3) if c = c∗np = c∗n,r > c∗p,l, we have ϕ′(ξβ
−) > ϕ′(ξβ

+), with ϕ′(ξβ
−) ∈ (−∞, 0) and

ϕ′(ξβ
+) ∈ [−∞, 0), with ϕ′(ξβ

+) = −∞ if and only if Ḋ(β) = 0;

(4) if c = c∗np = c∗p,l > c∗n,r, we have ϕ′(ξβ
+) > ϕ′(ξβ

−), with ϕ′(ξβ
+) ∈ (−∞, 0) and

ϕ′(ξβ
−) ∈ [−∞, 0), with ϕ′(ξβ

−) = −∞ if and only if Ḋ(β) = 0.

5 Examples

In this section we provide some examples about Theorems 2.1 and 2.2.

Example 5.1. This example shows that (2.9)2 can indeed occur when a front goes from a
positive- towards a negative-diffusivity region and the term f is not identically zero. Consider
D, g and f defined by

D(ϕ) =











ϕ
(

ϕ− 1
2

)2
if ϕ ∈ [0, 1/2],

− (1− ϕ)
(

1
2 − ϕ

)2
if ϕ ∈ (1/2, 1],

g(ϕ) =

{

ϕ if ϕ ∈ [0, 1/2],

1− ϕ if ϕ ∈ (1/2, 1],
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and

f(ϕ) =







ϕ3

3 + 3
4ϕ

2 − 1
2ϕ if ϕ ∈ [0, 1/2],

ϕ3

3 − 7
4ϕ

2 + 2ϕ− 5
8 if ϕ ∈ (1/2, 1].

Note, with these choices, D satisfies (Dpn) with α = 1/2 and Ḋ(α) = 0 while (g)
and (f) hold for g and f . Moreover, h(α) = 1/2. From direct inspection, the function
z(ϕ) := ϕ

(

ϕ− 1/2
)

, for 0 ≤ ϕ ≤ 1/2, satisfies (1.4)1 with c = 0 < h(α). By integrating the
formal identity z(ϕ) = D(ϕ)ϕ′, the profile ϕα,0 of a semi-wavefront connecting α to 0, with
speed c = 0, can be determined. In particular, the following Cauchy problem:

ϕ′ =
1

ϕ− 1/2
and ϕ(0) =

1

4
,

is solved by ϕα,0(ξ) :=
1
2 −

√

1
16 + 2ξ, for any ξ ≥ − 1

32 , and ϕ > 0 for ξ < 3
32 . Since g(0) = 0,

by setting ϕα,0(ξ) = 0 for ξ ≥ 3
32 we have that ϕα,0 : (− 1

32 ,+∞) → [0, 1/2) is the desired
wave profile associated to the speed c = 0. Moreover, with the notations of Theorem 2.1,
ξα = − 1

32 and ϕ′
α,0

(

ξ+α
)

= −∞. Similar arguments lead to conclude that

ϕ(ξ) :=























1 if ξ ≤ −5/32,
1
2 +

√

−1/16− 2ξ if − 5/32 < ξ < −1/32,
1
2 −

√

1/16 + 2ξ if − 1/32 ≤ ξ < 3/32,

0 if ξ ≥ 3/32,

is the profile of a (sharp at both 0 and 1) wavefront of (1.1) with speed c = 0, such that
ϕ′

(

ξ±α
)

= −∞. Observe, from Part (ii) of Theorem 2.1 it must occur c∗pn = 0.

Example 5.2. We show that c∗pn in Theorem 2.1 and c∗np in Theorem 2.2 are essentially
different: opposite diffusivities do not produce necessarily c∗pn = c∗np. To this aim, define

g(ϕ) :=







ϕ2 if ϕ ∈
[

0, 1/2
]

,

(1− ϕ)2 if ϕ ∈
(

1/2, 1
]

,
f(ϕ) :=







ϕ2 (ϕ− 1) if ϕ ∈
[

0, 1/2
]

,

ϕ(1− ϕ)2 − 1/4 if ϕ ∈
(

1/2, 1
]

.

The functions g and f satisfy (g) and (f). Let D1 and D2 be defined by

D1(ϕ) :=







ϕ
(

1/2 − ϕ
)

if ϕ ∈
[

0, 1/2
]

,

− (1− ϕ)
(

ϕ− 1/2
)

if ϕ ∈
(

1/2, 1
]

,
D2(ϕ) = −D1(ϕ) for ϕ ∈ [0, 1].

With these choices, D1 satisfies (Dpn) with α = 1/2 and D2 satisfies (Dnp) with β = 1/2.
From (2.4) and h(0) = ḟ(0) = 0 we have c∗p,r ≥ 0. Direct computations show that the
function z = z(ϕ) defined by

z(ϕ) := ϕ2
(

ϕ− 1/2
)

, ϕ ∈
[

0, 1/2
]

, (5.1)

solves ż = h − D1g/z in (0, 1/2), z < 0 in (0, 1/2) and z(0) = 0. From the proof of [6,
Theorem 2.2] we have c∗p,r ≤ 0. Then, c∗p,r = 0 follows at once by (2.4). Also, the symmetry
of the coefficients implies that c∗n,l = c∗p,r = 0. Thus,

c∗pn = 0.

19



Observe that we actually need to involve z in (5.1) since none of the intervals given by (2.4)
and (2.6), even in the sharper form involving (2.5), reduce to the point {0}.

Starting from the formal identity ż(ϕ) = D(ϕ)ϕ′, (5.1), we can compute the profile ϕ of
the (unique up to shifts) wavefront associated to c∗pn in the current case. We have:

ϕ(ξ) =







1
4e

−ξ ξ > log(1/2),

1− eξ ξ ≤ log(1/2),

where in the interval ξ ≤ log(1/2) we make use of the symmetry of the problem.
On the other hand, consider now D2, g and f together. We have

c∗p,l ≥ max







sup
( 1
2
,1]

δ
(

f, 1/2
)

, h(1/2) + 2

√

Ḋ2(1/2)g(1/2)







> 0,

since h(1/2) = −1/4 and 2
√

Ḋ2(1/2)g(1/2) = 1/
√
2. It follows necessarily that

c∗np ≥ c∗p,l > 0.

Then, we proved that replacing D, which satisfies (Dpn), with −D, which then satisfies
(Dnp), one can get c∗np > c∗pn.

Example 5.3. In Theorem 2.2 the case c∗p,l 6= c∗n,r reveals the existence of unusual non-
regular fronts, where ϕ = β, while in the case c∗p,l = c∗n,r this is not possible. We now show
an example in either case.

First, assume that D and g satisfy (Dnp)-(g) and are such that Dg is convex in (0, β) and
concave in (β, 1). For instance, we can take β = 1

2 , D(ϕ) = ϕ − 1/2 and g(ϕ) = ϕ(1 − ϕ).
We plainly have

sup
ϕ∈[0,β)

1

β − ϕ

∫ β

ϕ

(Dg)(s)

s− β
ds = Ḋ(β)g(β) and sup

ϕ∈(β,1]

1

ϕ− β

∫ ϕ

β

(Dg)(s)

s− β
ds = Ḋ(β)g(β).

Suppose also that f = 0 in [0, 1]. Under these assumptions, inequalities (2.12) and (2.13)
become indeed equalities:

c∗n,r = c∗p,l = c∗np = 2

√

Ḋ(β)g(β).

Second, consider D ∈ C1 [0, 1] such that D < 0 in (0, 1/2) and D(ϕ) =
(

ϕ− 1/2
)3
, for

ϕ ∈ [1/2, 1]; assume that g satisfies (g) with g(ϕ) = 1 − ϕ, for ϕ ∈ [1/2, 1], and let f be
defined by

f(ϕ) :=







0 if ϕ ∈ [0, 12),
(

ϕ− 1
2

)2 (

ϕ− 3
2

)

if ϕ ∈ [12 , 1].

For 1/2 ≤ ϕ ≤ 1, set

z(ϕ) :=

(

ϕ− 1

2

)2

(ϕ− 1) .
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Such a z solves (1.4)2 with α = 1/2 and c = 0 in (1/2, 1). Moreover, since it also holds
z(1/2) = 0, then 0 ≥ c∗p,l (see e.g. the proof of [6, Theorem 2.2]). The left-hand side of (2.12)

implies that c∗p,l ≥ 0, because h(1/2) = ḟ(1/2) = 0. Thus, c∗p,l = 0. On the other hand, if
we have h = 0 constantly in (0, 1/2), then c∗n,r > 0 (as already observed in Introduction, for
the case of non-negative D we refer to [6, Remark 6.4] and reference therein; the case when
D is negative is treated similarly). Thus, in this case we have

c∗np = c∗n,r > c∗p,l.

Similarly, one can provide examples where c∗np = c∗p,l > c∗n,r.

6 The case when D vanishes more than once

In this final section we briefly outline how to cope with the case when D changes sign more
than once, focusing on the simplest of these cases. More precisely we consider one of the
following assumptions, see Figure 8:

(Dpnp) D ∈ C1[0, 1], D > 0 in (0, α) ∪ (β, 1) and D < 0 in (α, β), with α < β;

(Dnpn) D ∈ C1[0, 1], D < 0 in (0, β) ∪ (α, 1) and D > 0 in (β, α), with β < α.

ρ

D

α β 1

(Dpnp)

ρ

D

β α

1

(Dnpn)

Figure 8: Typical plots of the functions D.

About the case (Dpnp) we refer to [14, 20], where g is, respectively, monostable and
bistable; [3] for the case (Dpnp) and monostable g, but with a specific quadratic diffusivity
D. The case (Dnpn) has never been considered.

Theorem 6.1. Assume (f), (Dpnp), (g) and (2.2)1. Then, there exists c∗pnp ∈ R such that
Equation (1.1) admits a (unique up to space shifts) wavefront, with speed c and profile ϕ
satisfying (1.3), if and only if c ≥ c∗pnp.

Theorem 6.2. Assume (f), (Dnpn), (g) and (2.2)2. Then, there exists c∗npn ∈ R such that
Equation (1.1) admits a (unique up to space shifts) wavefront, with speed c and profile ϕ
satisfying (1.3), if and only if c ≥ c∗npn.

In both theorems one can easily deduce more informations on the profiles, as in Theorems
2.1 and 2.2. We leave these details to the reader.

Proof of Theorem 6.1. We divide our problem in three sub-problems corresponding to
the three connected components of {D 6= 0}. To the intervals (0, α) and (β, 1) we apply
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Propositions 3.1 and 4.1, respectively. Indeed, the results of Sections 3 and 4 hold under
lighter assumptions, involving only that part of the conditions corresponding to the interval
under consideration.

Let c∗p,r and c∗p,l be the thresholds appearing in Propositions 3.1 and 4.1, respectively.
Hence, associated to the same speed c, both a semi-wavefront connecting α and 0, with
profile ϕα,0 satisfying (3.10) and a semi-wavefront connecting β to 1, whose profile is ϕ1,β

satisfying (2.11)1, are given, if and only if c ≥ max{c∗p,r, c∗p,l}.
We claim that there exists c∗αβ ∈ R such that the following holds: if and only if c ≥

c∗αβ , Equation (1.1) admits a strict TW, connecting β to α, whose non-increasing profile
ϕβ,α ∈ (α, β) is defined in some interval (ξβ , ξα), where −∞ < ξβ < ξα < +∞ are such that
ϕβ,α(ξ

+
β ) = β and ϕβ,α(ξ

−
α ) = α and also

(

D
(

ϕβ,α
)

ϕ′
β,α

)(

ξ+β

)

= 0 =
(

D
(

ϕβ,α
)

ϕ′
β,α

)(

ξ−α

)

.

Then by gluing together ϕ1,β , ϕβ,α and ϕα,0 (modulo shifts) we obtain the front of (1.1)
satisfying (1.3), in virtue of (6), as in the proof of Theorem 2.1. Clearly, we define

c∗pnp = max
{

c∗p,r, c
∗
p,l, c

∗
αβ

}

.

This proves the if part of Theorem 6.1. Viceversa, assume that a wavefront ϕ of (1.1),
associated to some speed c, is given. As in the proof of the only if parts of Theorems 2.1
and 2.2, ϕ is decomposed into a semi-wavefront which connects 1 to β whose profile satisfies
(2.11), a strict TW connecting β to α and a strict semi-wavefront connecting α to 0. By
Propositions 3.1 and 3.2, the only if part of our claim implies c ≥ c∗pnp. Thus, Theorem 6.1
follows from the claim. We refer to Figure 9.

ξ

ϕ

1

β

ξβ

α

ξα

ϕ1,β

ϕα,β

ϕα,0

Figure 9: The pasting of the profiles.

We prove the claim. Let D̄, ḡ, f̄ and ᾱ be as in (3.7) and let h̄ be the derivative of f̄ ,
which gives h̄(ϕ) = h(1−ϕ). Set β̄ = 1−β. Let c be a real value and consider the following
equation in the unknown ψ = ψ(ξ) ∈ [β̄, ᾱ]:

(

D̄(ψ)ψ′
)′

+
(

c− h̄(ψ)
)

ψ′ + ḡ(ψ) = 0. (6.1)

We are interested in a non-increasing ψ satisfying (6.1) in some interval (ξᾱ, ξβ̄), with −∞ <

ξᾱ < ξβ̄ < +∞, such that ψ(ξᾱ
+) = ᾱ, ψ(ξβ̄

−) = β̄ and

(

D̄(ψ)ψ′
)

(ξᾱ
+) = 0 =

(

D̄(ψ)ψ′
)

(ξβ̄
−).
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By using a standard argument (see e.g. [24]) based on the monotonicity of ψ and the
definition of z(ψ) := D̄(ψ)ψ′, the existence of a ψ as above, but with not necessarily finite
ξᾱ and ξβ̄, is equivalent to the solvability of the problem















ż(ψ) = h̄(ψ)− c− D̄(ψ)ḡ(ψ)
z(ψ) , ψ ∈ (β̄, ᾱ),

z(ψ) < 0 ψ ∈ (β̄, ᾱ),

z(β̄) = z(ᾱ) = 0.

Since D̄ > 0 in (β̄, ᾱ), D̄(β̄) = D̄(ᾱ) = 0, ḡ > 0 in [β̄, ᾱ], by applying [6, Proposition 4.2],
such a problem is solvable if and only if c ≥ c∗, for some c∗ ∈ R. Also, since (by arguing
as in [6, Lemma 9.1] and [10, proof of Theorem 2.5] where analogous assumptions were
considered) we have

lim
ψ→ᾱ−

D̄(ψ)

z(ψ)
∈ R and lim

ψ→β̄+

D̄(ψ)

z(ψ)
∈ R,

then ξᾱ and ξβ̄ are finite because ψ is bounded and ψ′(ξ) < 0 for ξ which tends to either

ξᾱ
+ or ξβ̄

−. Finally, setting c∗αβ := c∗ concludes the proof of the claim since the desired ϕβ,α
exists if and only if there exists ψ, by ϕβ,α(ξ) := 1− ψ(−ξ).

�

Remark 6.1. The analog of Theorem 6.1 when f = 0 was given in the first part of [14,
Theorem 4.2] with slightly different notation. We point out that in [14] wavefronts are
necessarily classical at 1 (called classical or sharp of type (I), there). Instead, when D(1) = 0
and c < h(1) the wavefronts of Theorem 6.1 can be sharp at 1, too, by applying Part (iii) of
Proposition 4.1 to ϕ1,β of the proof of Theorem 6.1. Note, c < h(1) cannot happen if f = 0.

We also observe that, as in [14, Theorem 4.2], wavefronts are sharp at 0 only if D(0) = 0
and c = c∗pnp. Moreover, if D(0) = 0 and c = c∗pnp, generalizing [14, (4.1)], it is possible
to provide a sufficient condition on f and Dg in order to make wavefronts of Theorem 6.1
always classical at 0.

Proof of Theorem 6.2. We proceed in the spirit of the proof of Theorem 6.1. We consider
separately the intervals where D has constant sign. From Proposition 3.2 we deduce that a
semi-wavefront connecting 1 to α, with speed c and profile satisfying (3.5) with s = 0, exists
if and only if c ≥ c∗n,l. Proposition 4.2 implies that there exists a semi-wavefront connecting
β to 0 with speed c and profile satisfying (2.14)1 if and only if c ≥ c∗n,r. About the interval
(β, α), we argue as in the proof of Theorem 6.1, but considering Equation (1.2), directly,
rather than Equation (6.1). We have that a strict TW connecting α to β with speed c
and profile ϕα,β : (ξα, ξβ) → (β, α) satisfying ϕα,β(ξ

+
α ) = α, ϕα,β(ξ

−

β ) = β and such that
(

D(ϕα,β)ϕα,β
)

(ξ) tends to 0 if either ξ → ξ+α and ξ → ξ−β , exists if and only if c ≥ c∗βα. To
conclude the proof, we set c∗npn := max{c∗n,l, c∗n,r, c∗βα}. �

Remark 6.2. Similarly to Remark 6.1, we can deduce information on the regularity of
wavefronts given in Theorem 6.2.
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