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A B S T R A C T   

More information about a person’s genetic makeup, drug response, multi-omics response, and genomic response 
is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non- 
animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment 
paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making 
predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge 
data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation 
algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data 
and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any 
personalized medicine approaches. In this article, we have studied the current trends and future perspectives in 
personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI 
on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in 
personalized medicine, toxicogenomics, and AI in order to fully realize their potential.   

1. Introduction 

Personalized medicine and toxicology are two fields that are 
increasingly becoming interconnected [1]. Personalized medicine aims 
to optimize treatment outcomes by taking into account an individual’s 
unique characteristics, such as genetics, lifestyle, and environment [2]. 
The field of toxicogenomics, which combines the study of genetics and 
the toxicological aspect of drugs/chemicals, plays an important role in 
connecting personalized medicine and toxicology. Personalized medi
cine is an emerging field that aims to provide the right treatment to the 
right patient at the right time, taking into account the patient’s unique 
characteristics [3]. This approach is based on the recognition that no 
two patients are alike and that traditional "one-size-fits-all" approaches 
to treatment may not be effective for all patients [4]. Personalized 

medicine uses a combination of genetic, molecular, and clinical data to 
tailor treatment to individual patients. This can include genetic testing 
to identify patients who are at risk of certain diseases or to predict how 
they would respond to specific treatments. It also includes the use of 
molecular profiling to identify the specific characteristics of a patient’s 
disease and to select the most appropriate treatment [5]. Since genetic 
makeup is one of the primary causes of cancer, diabetes, autoimmune 
diseases, pediatric diseases and behavioural disorders, personalized 
medicine is expected to be the future of such clinical problems. As the 
concept of personalized medicines indicates, the novelty or the 
personalization lies in the decision process towards a particular therapy, 
which in turn is handled based on a host of data across the population. It 
further proceeds to define the patient’s or individual’s response to a 
disease, based on integrated multi-omics information from different 
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aspects involving proteomics, genomics, epigenomics, transcriptomics, 
metabolomics, microbiomics and several other omics fields. The inclu
sion of an undeniable approach and disaggregation of data by sex and 
gender [6] has led to the possible inclusion of genderomics and sexomics 
which were often neglected in the past science. Accordingly, genomic 
and epigenomic signatures localize at the branch point among genome, 
phenome, and sexome in both health and disease conditions suggesting a 
multi-omics approach as the unique complete strategy [6]. Among the 
different applications of personalized medicine, genetic screening for 
diagnosis, and drug therapy for genetic markers of efficacy are 
commonly focused on by researchers. However, the integration of these 
efficacy markers needs proper evidence of clinical validity during all 
stages of individual treatment[7]. A proper understanding of drugs 
adsorption, metabolism and excretion along with their half-life is 
needed for each patient [8]. 

The field of toxicology is concerned with the identification, charac
terization, and quantification of the adverse effects of chemicals and 
other agents on living organisms [9]. This includes the study of the 
mechanisms of toxicity, the identification of susceptible populations, 
and the development of strategies for risk assessment and risk man
agement. Personalized medicine is an important tool to be considered by 
toxicologists, as it is expected to reduce drug attrition and development 
process and time, improve safety assessments, and facilitate a better 
understanding of drugs’ mechanisms of action. Recent paradigm shifts 
towards the application of alternate models for toxicity testing can be 
seen after the popularity to discontinue animal testing has peaked. In 
line with this, computational toxicology has emerged as a game-changer 
without its need to conduct testing on apical end points [10]. 

Considering the huge data obtained from omics applications and 
toxicological profiles, the impact of AI on these fields is becoming more 
and more relevant [11]. The advent of AI is expected to fuel changes to 
toxicogenomics and toxicology in the near future. Currently, many 
models and databases are being developed to amalgamate the field of 

toxicogenomics and toxicology to make the decision process of person
alized medicine more systematic and time-efficient. 

1.1. The role of toxicogenomics in connecting personalized medicine and 
toxicology 

Toxicogenomics is the study of how a person’s genetic profile may 
impact how they react to a specific medication. To comprehend how a 
person’s genetic composition can alter their reaction to a specific 
treatment in response to various exposure scenarios of therapeutic agent 
uptake, this field merges the study of genetics and drug metabolism 
(Fig. 1). This can be applied to optimise drug dosage and lower the 
possibility of negative effects due to chemical exposure. For instance, 
some people may metabolize a drug differently than others due to ge
netic variances, necessitating a different dosage or alternative 
medication. 

Toxicology and personalized medicine are connected through the use 
of toxicogenomics, which assists in determining how a person’s genetic 
makeup can impact the reaction to a specific medication. Broadly, this 
field combines the study of genetics and drug metabolism to understand 
how an individual’s genetic makeup can affect his/her response to a 
particular medication. This can be used to optimize drug dosing and 
reduce the risk of adverse reactions. 

Another way toxicogenomics connects these two fields is by enabling 
genomic techniques to study the effects of chemicals and other agents on 
the genome and transcriptome, and how these effects enable predicting 
an individual’s response to exposure. This aids in identifying individuals 
who may be at increased risk of adverse effects from exposure to a 
particular chemical or agent. Finally, Toxicology is also related to 
personalized medicine by identifying the risk of exposure to environ
mental toxins. It can also assist in reducing the risk of disease and 
improving the health outcomes. Overall, toxicology plays an important 
role in personalized medicine by providing information on how an 

Fig. 1. Risk Assessment using Toxicogenomics. Use of toxicogenomics to predict an individual’s susceptibility to toxicity from environmental pollutants or thera
peutic drugs. By identifying genetic variations that affect the metabolism or detoxification of these compounds, risk assessment can be improved, and more effective 
interventions can be developed to protect vulnerable populations. 
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individual’s unique characteristics can affect their response. Nowadays, 
merging classic and novel GWAS-identified genomic loci is mandatory 
for complete individual profile identification and risk assessment, 
especially for complex diseases and traits [12]. 

1.2. The impact of artificial intelligence and machine learning (ML) on 
personalized medicine and toxicology 

Artificial intelligence is a rapidly growing field that has the potential 
to revolutionize personalized medicine and toxicology [13]. AI is a set of 
technologies that enable computers to simulate human intelligence and 
perform tasks that would typically require human intelligence, such as 
learning, reasoning, and decision-making. AI can be used to analyze 
large amounts of data and make predictions about treatment outcomes 
or toxicity. From a toxicologist and cliniciańs perspective, AI represents 
the applications of computational powers to resemble a human-like 
decision-making process. Many techniques including fuzzy expert sys
tems, artificial neural networks, and machine learning are commonly 
applied in the medical application of AI [14]. In personalized medicine, 
AI assists in patient data analysis, such as genetic and molecular 
profiling data to predict treatment outcomes and select the most 
appropriate treatment for individual patients. AI can also be used to 
monitor disease progression, treatment response, and identify patients 
who may be at risk. Machine learning is commonly used in this regard 
with predictions backed by mathematical data points as supervised by 
humans. Alternatively, more unsupervised techniques have also been 
gaining popularity in the healthcare field in recent years [15]. Virtual 
applications of AI in healthcare can range from analyzing electronic 
health records to personalized medicine based on clinical genomics 
[16]. As can be observed in Fig. 2, AI applications involve the integra
tion of several diverse data points contributed by time-driven patient 
chart monitoring blood pressure, heart rate, laboratory results, and 
others along with a series of medical images from x-rays, CT, MRI, and 
ultrasound [17–19]. An amalgamation of all these data into 
machine-understandable code to identify patterns in the patient 
response contributes to the decision-making process. 

In toxicology, AI analyses complex data on the effects of chemicals 
and other agents on living organisms; this is achieved by the integration 
of cheminformatics and bioinformatics. With the availability of huge 
data in these fields, innovations with big data-based AI are expected to 
get incited [20]. This can help to identify potentially hazardous com
pounds and to prioritize them for further testing. AI can also be used to 
analyze large amount of toxicology data, such as from animal studies, 
identifying the patterns and predicting the toxicity in humans. AI could 
also assist to analyze large amount of data from toxicogenomic studies 
identifying genetic variations that are associated with drug response and 
developing decision-support tools for drug dosing and treatment selec
tion. Currently, studies targeting the AI model development for toxicity 
prediction are more predominant. However, very limited studies exist 
that predict the toxicity mechanisms [20]. This can be attributed to the 
lack of scientific consensus on such AI-predicted mechanisms. Since AI is 
continuously and rapidly evolving, this is certainly in demand estab
lishing standard models for toxicity predictions and mechanisms. 

Despite the potential of AI in personalized medicine and toxicology, 
there are still some challenges that need to be addressed. These include 
the need for large amount of high-quality data, the need for robust and 
well validated algorithms to interpret the results. Additionally, there are 
concerns on the bias and discrimination in AI-driven approaches; thus, 
these approaches need to be transparent and interpretable. 

2. Personalized medicine and toxicology: an overview 

Toxicology and personalized medicine are intertwining. The 
personalized medicine seeks to improve treatment outcomes by 
considering the patient’s particular traits including the genetics, life
style, and environment, [22]. Toxicology, in contrast, studies the effect 

of chemicals on living things; it also indicates the options to reduce the 
effects. We give an overview of these two topics in this section, outlining 
their definitions, concepts, present applications, and difficulties. The 
goal of personalized medicine is to give the appropriate medication to 
the appropriate patient at the appropriate time while taking into 
consideration the patient’s features [6]. This strategy is founded on the 
understanding that no two people are the same and that conventional, 
"one-size-fits-all," approaches to treatment may not be successful for all 
patients [23]. In order to customize treatment for specific patients, 
personalized medicine combines genetic, molecular, and clinical data. 
Genetic testing can determine the patients those are at risk of developing 
a particular disease; it can too forecast how they would react to a 
particular course of treatment. Additionally, molecular profiling is used 
to determine the precise features of a patient’s illness and the best 
therapeutic approach. 

Many patients may not react favorably to the majority of medica
tions, the precision medicine’s goal is to overcome this. The precision 
medicine identifies the patients who should receive a certain treatment 
and the appropriate dosage. This is known as personalized medicine; it 
certainly widens the implementation domain. Thus, knowing the pri
mary causes of heterogeneity is necessary in treatment response for the 
implementation of precision medicine. 

Toxicology in personalized medicine is the study of the pharmaco
kinetic variability regarding a particular medication in a single patient. 
The causes of pharmacokinetic variability, particularly those connected 
to an individual phenotype and genotype, are typically well understood, 
and the prescription information addresses how they may affect a pa
tient. Through population pharmacokinetics analysis and targeted 
studies that address typical reasons for pharmacokinetic variabilities, 
such as age, the presence of food, organ failure, and concurrent treat
ment, the impact of phenotype are thoroughly investigated for the ma
jority of medications. Recently, it has been demonstrated that the 
microbiota influences pharmacokinetic variability [24]. For various 
medications whose absorption, distribution, metabolism, or elimination 
include polymorphic metabolic enzymes or transporters, the effect of 
genotype has also been studied. 

Pharmacodynamic variability that frequently makes up the majority 
of response variability is significantly less derived than pharmacokinetic 
variability. When there are known target receptor polymorphisms, the 
subject genotype has been examined; nevertheless, there are relatively 
few instances, where this has resulted in recommendations that affect 
the selection of a medicine or dose. 

Warfarin is the most well-known example; the polymorphisms in 
vitamin K epoxide reductase convertase 1 affect the sensitivity of the 
body and are taken into account, while designing the dosing algorithms 
[25,26]. Occasionally, a person’s genotype identifies who should not 
receive a drug, such as in the cases of abacavir (HLA-B5701), carba
mazepine (HLA-B1502), and simvastatin (SLCO1B1) [27] [28]. 

2.1. Current applications and challenges in personalized medicine and 
toxicology 

Personalized medicine has the potential to revolutionize the way the 
disease is usually understood and treated. There are several current 
applications of personalized medicine in the clinic, including the use of 
genetic testing to guide treatment decisions, the use of molecular 
profiling to select the most appropriate treatment for individual pa
tients, and the use of toxicogenomics to optimize drug dosing and reduce 
the risk of adverse reactions. The Human Genome Project, the Interna
tional HapMap Project, and Genome-wide Association Studies (GWASs) 
are just a few of the molecular scientific breakthroughs that have helped 
medicine over the past ten years (International HapMap Consortium, 
2005). Single nucleotide polymorphisms (SNPs) are already a great 
resource for mapping complicated genetic features because they are 
already acknowledged as one of the primary drivers of human genetic 
diversity and disease modulators [29]. 
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Fig. 2. Illustrating the Holistic Artificial Intelligence in Medicine (HAIM) framework which is used to process the databases and tables sourced from leading 
healthcare institutions. The framework processes the data to generate individual patient files which contain past and present multimodal patient information from 
the moment of admission. The data modality is fed to independent embedding-generating streams. The tabular data is minimally processed using simple trans
formations or normalizations to produce encodings or embedding-like categorical numerical values. The selected time series is processed by generating statistical 
metrics to produce embedding representative of their trends. Natural language inputs such as notes are processed using a pre-trained transformer neural network to 
generate text embeddings of fixed size. Image inputs such as X-rays are processed using a pre-trained convolutional neural network to extract fixed-size embedding. 
All generated embeddings are concatenated to generate a fusion embedding that can be used to train, test, and deploy models for predictive analytics in healthcare 
operations. Reproduced with permission[21]. Copyright 2022, Springer Nature. 
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However, some challenges need to be addressed to realize the full 
potential of personalized medicine. These include the need of high- 
quality data, robust and validated algorithms, and effective methods 
to interpret the results of personalized medicine-driven analyses. 
Microarray-based genotyping techniques, which could only examine 
regions of known variation, are being replaced by sequencing technol
ogies as they become more widely available and more cost-effective 
[30]. These technologies’ high error rates present substantial diffi
culties for applications, such as finding new variations. By utilizing 
hashing, prefix and suffix trees, or other heuristics, many packages, like 
BLAT, have been tailored for the alignment of short reads. However, 
reference sequence bias is still a problem for short-read assemblers, 
because reads, with more similarities to the reference sequence, are 
more likely to map than reads with valid differences. A recent review 
studies comprehensively to correctly monitor these alignments to pre
vent these problems [31]. 

Genetic changes can affect gene expression in complex ways, and 
many effects at different can be commonly expected. The development 
of diagnostic tools, the selection of pertinent variations for pharmaco
genetic investigations, and the accurate interpretation of associations 
depend on the elucidation of at least the primary functional variants of 
each gene. The development of large collaborative biobanks with 
extensive medical sample information, available to researchers upon 
request. to study genotype-phenotype relationships is a challenge in this 
area as are improvements to in silico prediction tools and in vitro test 
systems that frequently result in contentious and unreproducible data 
[32]. 

At this time, it is uncertain to pick out the most effective solution to 
these issues. The appeal of pathway-oriented techniques is that they are 
hypothesis-driven. Their weakness, meanwhile, is a lack of under
standing of biological gene networks. GWA permits the identification of 
cis- and trans-genetic determinants without the need for a hypothesis 
and, in theory, may account for the heritability of virtually any pheno
type. Incomplete and inadequate SNP coverage (lack of causative mu
tations, issues with pseudogenes, etc.) and poor statistical approaches 
for revealing the "hidden heritability" underlying the most significant 

relationships enduring multiple testing corrections are the current lim
itations. However, new technologies have already and would probably 
continue to pose significant problems to fundamental research because 
it would be crucial to functionally test a vast array of discoveries and 
ideas. 

Toxicology plays an important role in protecting human health and 
the environment by identifying and assessing the risks associated with 
exposure to chemicals and other agents. There are several applications 
of toxicology, including the development of strategies for risk assess
ment and risk management, the identification of susceptible pop
ulations, and the study of the mechanisms of toxicity. However, some 
challenges should be addressed; these include the need for large amount 
of high-quality data and robust systems for the assessment of the 
chemical toxicity [33]. 

The availability of data has altered and improved with the devel
opment of laboratory automation and the paradigm shift toward 21st 
Century Toxicology, focusing on adverse impact routes and under
standing mechanisms of action. For instance, projects like ToxCast and 
Tox21 have generated publicly accessible bioactivity data for various 
endpoints using high throughput/high content tests for a large number 
of compounds [34]. Additionally, omics technologies used to screen 
alterations in genomes, proteomes, metabolomes, and other systems 
have generated a wealth of data (Fig. 3). Data from biomonitoring and 
epidemiology are also become easier to be obtained. In toxicology, there 
are several current applications of AI, such as predicting the chemical 
toxicity and toxicity of other agents based on their structure and prop
erties. AI is also helpful in analyzing large amount of toxicology data, 
such as from animal studies, to identify the patterns and predict toxicity 
in humans. However, there are still some challenges that include the 
need for large amount of high-quality data, robust and well validated 
methods for risk assessment, and effective risk management strategies in 
protecting human health and the environment [35]. 

Big data sets for predictive toxicology are usually diverse and vari
able. This relates to the measurement errors and inherent variability of 
biological data, variability connected to various measuring techniques 
employed by various laboratories. Additionally, there are errors in the 

Fig. 3. Schematics show the Toxicokinetics (TK) trait inherent in a species, which may indicate the species’ sensitivity to the absorption, distribution, metabolism 
and excretion of toxic substances. Toxicodynamics (TD) trait derived from genome resources, which may indicate a species’ sensitivity to the toxic effects of a 
substance at the cellular and molecular level. Reproduced with permission [36]. Copyright 2020, Frontiers. 
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overall documentation and transfer of study results. The data sets are 
therefore subject to various types of uncertainties. It is equally necessary 
to improve the data quality, compatibility, and comparability of the data 
to reduce these uncertainties. The standardization of formats, agreement 
on the minimal data to be recorded for experimental data, and 
connection to standardized ontologies should all be pursued to over
come the challenges [37]. 

3. Toxicogenomics in personalized medicine and toxicology 

The modern idea of personalized medicine is fundamentally based on 
pharmacogenetics, the study to know the effects on the genetic variation 
by drugs; toxicogenomics is the multifactorial extension of the same 
concept. Although a "personalized" approach has always been a hall
mark of effective medical practice, toxicogenomics ensures the wide
spread use of molecular data to adapt medication therapy to each patient 
optimizing the therapeutic benefit and reducing the adverse events [38]. 
This can be used to optimize drug dosing and reduce the risk of adverse 
reactions. For example, individuals with certain genetic variations may 
metabolize a drug differently than others and may require a different 
dosage or a different drug altogether [26]. 

Over the past few decades, basic principles, and genes characterizing 
the absorption, distribution, metabolism and excretions (ADME) of 
drugs were accumulated resulting in huge data availability to fuel the 
current state of personalized medicined approaches. Toxicogenomics 
can play an important role in personalized medicine and toxicology by 
providing information about the individual’s unique genetic makeup 
effect on the treatment and exposure to chemicals [39]. 

3.1. Drug development and therapeutic aspect of toxicogenomics 

Toxicogenomics is supported by two major streams of research: 1) 
that seeks to understand the biological genotype-phenotype correlations 
and discover genetic variation, and 2) that builds on the former to look 
at genetic factors concerning the drug response phenotypes and use 
novel diagnostic tools translating this knowledge into clinical care. The 
speed and output of molecular discovery have been changed by modern 
technology providing us with new research tools. However, significant 
obstacles must be overcome to fulfil this promise for basic and clinical 

research. Toxicogenomics can be divided into several sub-disciplines, 
including pharmacokinetics, which focuses on the body mechanism to 
handle the drugs, and pharmacodynamics [40]. 

In drug development, toxicogenomics can identify genetic variations 
that may affect the drug response and select populations for clinical 
trials that are more likely to respond to the drug. This can help to 
optimize drug development and reduce the costs associated with clinical 
trials. Additionally, developing and verifying tests for potential thera
peutic applications is of interest to the researchers. The first stage is to 
link the gene to the illness, then the researchers across the domains 
collaborate to find a chemical that may be altered to treat the ailment 
[41] (Fig. 4). Since we obtain a more precise understanding of diseases 
and the pharmacokinetics and pharmacodynamics of the new medicine, 
genetic advances have an impact on the creation of new drugs [41]. In 
therapy, toxicogenomics assists in optimizing drug dosing and reducing 
the risk of adverse reactions [42]. This can include the use of genetic 
testing to identify individuals at increased risk of adverse reactions to a 
particular medication, and the selection of alternative treatments that 
may be safer for these individuals. 

3.2. Examples of pharmacogenomic-guided treatment in clinical practice 

There are several examples of toxicogenomics-guided treatment in 
clinical practice. One example is the use of genetic testing to guide the 
use of warfarin, a blood thinner that is used to prevent blood clots. 
Warfarin is metabolized by several different enzymes in the body; ge
netic variations in these enzymes can affect the metabolism of warfarin 
and the risk of bleeding [43]. Genetic testing can be used to identify 
individuals at increased risk of bleeding and adjust the dose of warfarin 
accordingly. Another example is the use of genetic testing to guide the 
use of tamoxifen, a drug that is used to treat breast cancer. Genetic 
variations in the CYP2D6 enzyme can affect the metabolism of tamox
ifen and the risk of recurrence [44]. Genetic testing enables the identi
fication of individuals who may not be metabolizing tamoxifen 
effectively. This also enables the selection of alternative treatments that 
may be more effective for these individuals. 

Fig. 4. The schematic is showing the workflow 
of preclinical drug discovery by applying a 
compound library as input for a property pre
diction pipeline. The pipeline starts by using 
historic data to train machine learning-based 
models for property prediction. It then in
tegrates the multi-level and systems-level 
models for efficacy, safety, pharmacokinetics, 
and feasibility. This generates a set of drug 
design criteria that are simultaneously opti
mized for the generation of new molecules by 
the generative molecular design framework. 
The process can be repeated numerous times 
using an active learning approach to decide 
when a molecular simulation or experiment is 
needed to improve or validate the models. The 
result of this workflow is a set of optimized drug 
candidates [45].   
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3.3. Challenges and Limitations of Toxicogenomics 

While toxicogenomics has the potential to improve the safety and 
effectiveness of drug therapy, some challenges and limitations need to 
be addressed. One of the main challenges is the need for large amount of 
high-quality data to identify genetic variations that are associated with 
drug response [46]. Additionally, there is a need for robust and vali
dated methods for interpreting the results of pharmacogenomic testing, 
and for developing decision support tools for drug dosing and treatment 
selection. Another challenge is the need for standardization and regu
lation of pharmacogenomic testing along with proper education and 
training for healthcare providers to use the results of pharmacogenomic 
testing in clinical practice [47]. 

Furthermore, there are ethical considerations, such as privacy and 
discrimination, which need to be addressed when using toxicogenomics 
in personalized medicine [48]. Several nations have already adopted 
some regulations that are specifically geared toward genetic research or 
the gathering of DNA samples. For instance, the collection, mainte
nance, use, or provision of China’s human genetic resources to foreign 
organizations is governed under China’s Regulation of Human Genetic 
Resources. Similarly, in Brazil, the Resolution 340/2004 (NHC 2004) on 
genetic research and Resolution 2201/2001 on biorepository and bio
bank requirements have impact on how to conduct genetic research and 
how genetic specimens are stored, including the necessity of sharing any 
biobank samples with researchers in Brazil [49]. The regulatory re
strictions and policies across the globe are different. As toxicogenomics 
is currently in a state where it is mainly performed for exploratory 
purposes, it may be unethically based on certain jurisdictions, and un
lawful to return the patient genetic details to participants. Tox
icogenomics is an emerging field that combines the study of genetics and 
drug metabolism to understand how an individual’s genetic makeup can 
affect their response to a particular medication. Informed 
decision-making across the clinical development life cycle can be based 
on genetic analysis of clinical trial data, which may also result in sig
nificant clinical and business opportunities for patient classification and 
therapeutic value propositions [50]. However, there are several obsta
cles and restrictions to conduct genetic analysis during clinical devel
opment that include small sample size, lack of worldwide 
representation, and issues in validating results. Toxicogenomics has 
many potential applications in drug development and therapy, such as 
identifying genetic variations, optimizing drug dosing, and reducing the 
risk of adverse reactions [51]. However, some challenges and limitations 
need to be addressed, such as the need for large amount of high-quality 
data, the need for standardization and regulation of pharmacogenomic 
testing, and ethical considerations (published with permission from blog 
post) [52]. Additionally, reliable and consistent reproduction of results 
is a requirement for the successful application of toxicogenomics results 
in the regulatory setting regardless the approach being employed or the 
specific application planned. Thus, it is crucial to develop a trustworthy 
practice that is repeatable for in vitro TGx investigations. Given the 
quick development and evolution of genomic technologies, it is 
extremely difficult to ensure consistency and transferability in methods 
across the disciplines and between the laboratories and users. 

4. Artificial intelligence in personalized medicine and 
toxicology 

AI is a set of technologies that enable computers to simulate human 
intelligence and perform tasks that would typically require human in
telligence, such as learning, reasoning, and decision-making [53]. AI 
analyzes large amount of data and makes predictions about treatment 
outcomes or toxicity. Healthcare is being transformed by AI and big 
data, especially for the analysis of complicated disorders. Human ge
nomes and other biomarkers may easily be interpreted using machine 
learning and advanced computer techniques, which have significant 
applications in diagnosis and preventive care. For instance, patients’ 

cardiovascular disorders can be diagnosed using artificial intelligence. 
Chest radiographs can be used to identify congestive heart failure using 
a neural network classifier. The study by Seah et al.[54] produce an 
intriguing result by using a generative adversarial network to directly 
see the traits that are used to create the prediction. It makes it possible to 
produce a visual output that is utilized to draw attention to pertinent 
aberrant characteristics in chest X-rays. 

In personalized medicine, AI can be used to analyze patient data, 
such as genetic and molecular profiling data, to predict treatment out
comes and select the most appropriate treatment for individual patients. 
AI can also be used to monitor disease progression and determine the 
response to treatment; it also identifies the patients who may be at risk of 
adverse events. Preventive care for diseases with a higher chance of 
occurrence may be part of a patient’s individualized treatment plan, 
such as increased cancer screening if the patient has BRCA 1 or BRCA 2 
gene mutation. In addition, AI can anticipate a patient’s response to 
various treatments using genetic data, biomarkers, and other physio
logical data. This can help patients avoid negative side effects prevent
ing unnecessary expensive medicines. The most difficult issues in 
individualized care are being solved with the help of AI and precision 
medicine rendering a translational approach from the molecule to the 
bedside, particularly for those complex diseases in which gene- 
environment interactions have a role. Customized healthcare dogma 
(Fig. 5) could be a fantasy by nature but could advance with AI. 

In toxicology, AI can predict the toxicity of chemicals and other 
agents based on their structure and properties [55]. This can help to 
identify potentially hazardous compounds and prioritize them for 
further testing. AI can also be used to analyze large amount of toxicology 
data, such as from animal studies, to identify patterns and predict 
toxicity in humans. In addition, the positive effects and properties of 
natural compounds as anti-cancer, anti-inflammatory or 
anti-viral/bacterial/fungal molecules can be tested by the standard in 
vitro or advanced cell models and effectively validated by AI tools [56, 
57]. In order to be able to anticipate from datasets, AI algorithms use 
learning methodologies based on categorization or pattern recognition 
to (multi-dimensional) input data. For instance, in clinical medicine, this 
may entail using pathological specimen outcomes to forecast the diag
nosis and staging of the pathological specimen that is obtained on a new 
patient. There are numerous AI algorithms available, which can be 
generally classified as either supervised or unsupervised. Support vec
tor, random forest, neural network, and evolutionary algorithms are 
some of the techniques (EA) [58]. 

4.1. Applications of AI in personalized medicine and toxicology 

AI has the potential to revolutionize personalized medicine by 
providing new ways to analyze patient data and make predictions about 
treatment outcomes. The application of AI in healthcare is a burgeoning 
field of development that could potentially impact healthcare provision. 
One of the earliest applications of precision medicine at scale is perhaps 
genome-informed prescribing. However, making real-time recommen
dations depends on creating machine learning algorithms to anticipate 
which patients would probably require a drug for certain genomic in
formation. Genotyping individuals before that information is required is 
the key to customizing drugs and dosages. Similarly, AI-mediated 
analysis of hundreds of exomes, and distinct molecular subgroups of 
medulloblastoma have already been identified. This has made it easier 
to administer the appropriate medication, at the appropriate dosage, to 
the appropriate cohort of pediatric patients. Some examples of AI ap
plications in personalized medicine include: 

• Predictive modelling: AI enables patient data analysis, such as ge
netic and molecular profiling data, to predict treatment outcomes 
and select the most appropriate treatment for a patient. It can also 
predict the effectiveness of an existing or a new drug candidate, 
based on the complex OMICS data. For instance, AI has been proven 
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effective in identifying new targets for cancer therapy and predicting 
drug efficacy [59].  

• Disease progression monitoring: AI can monitor disease progression 
and determine response to the treatment, and identify patients who 
may be at risk of adverse events. The application of machine learning 
models in medical imaging on skin lesions enables automated clas
sification of skin cancer [60].  

• Drug development: AI examines large amount of data from drug 
development studies, such as pharmacokinetic and pharmacody
namics, to identify the patterns and predict the drug efficacy & 
toxicity.  

• Clinical decision support: AI helps to develop decision supporting 
tools for drug dosing and treatment selection providing personalized 
treatment recommendations to healthcare providers. Clinical deci
sion support has already been applied in several applications 
including paediatrics, traumatic brain injury risk classification [61], 
asthma assessment [62], antibiotic selection [63] etc. 

AI also has the potential to revolutionize toxicology by providing 
new ways to analyze toxicology data and make predictions about 
toxicity [34]. Some examples of AI applications in toxicology include: 

1. Toxicity prediction: AI can identify potentially hazardous com
pounds and prioritize them for further testing. For example, carci
nogenicity testing is crucial for locating potential carcinogens while 
developing new drugs and evaluating the potential risks of envi
ronmental chemicals. In order to predict carcinogenicity for small 
compounds, Li et al. [64] recently create the DeepCarc model. A test 
set of 171 compounds is used to assess the DeepCarc model, which is 
constructed using a dataset of 692 chemicals.  

• Data analysis: Toxicogenomics is a branch of toxicology that studies 
the harmful effects of chemicals or xenobiotics at the gene and/or 
protein levels in specific cells or tissues of an organism [18]. It does 
this by using genomic technologies (such as gene expression 
profiling, proteomics, metabolomics, and related approaches). In 
addition to acting as biomarkers for predictive toxicology, tox
icogenomics has become a key technique in the identification of 

putative molecular pathways of toxicity at the gene, protein, or 
metabolite level in cells or tissues of organisms in response to 
exposure to environmental toxins. Molecular endpoints resulting 
from toxicogenomics data can be correlated with in vivo 
regulatory-relevant phenotypic toxicity or toxicokinetic endpoints 
(e.g., machine learning and PBPK models) [65,66]. In a recent study, 
scientists gather time-series toxicogenomic data from in vitro assays 
on the expression of a library of 38 key proteins (covering all 
recognized known DNA damage repair pathways) after exposure to a 
wide concentration range of 20 selected genotoxicity-positive and 
genotoxicity-negative chemicals [67]. This study shows that tox
icogenomic data may be analyzed using machine learning tech
niques, connecting molecular level biomarker data to 
regulatory-relevant in vivo phenotypic and toxicity endpoints. 

• Risk assessment: AI can examine large amounts of data from envi
ronmental and human studies, to identify patterns and predict the 
risk of exposure to chemicals and other agents [68]. In this scenario, 
Adverse outcome pathway analysis is a conceptual framework that 
represents the current understanding of the relationship between a 
direct molecular initiating event and an unfavorable result at a 
biological level of organization that is pertinent to risk assessment for 
human health. 

4.2. Challenges and limitations of AI in personalized medicine and 
toxicology 

While AI has the potential to revolutionize personalized medicine 
and toxicology [69], there are still several challenges and limitations; 
these include:  

1. Data availability and quality: AI requires large amount of high- 
quality data fitting to translational toxicogenomics to train and 
validate algorithms as shown in Fig. 5. This can be a challenge in 
personalized medicine and toxicology, where data is often limited 
and of variable quality [70]. Machine learning methods are 
increasingly being used to analyze toxicological data, but there is 
disagreement on the appropriate algorithm for a specific dataset or 
type of data. Various algorithms have distinct needs in terms of the 

Fig. 5. The clinical applications of translational toxicogenomics in personalized decision-making. The flowchart of toxicogenomics data management involving 
epidemiology and theranostics in personalized decision-making shows the integration of genotyping, bioinformatics, and clinical decision-making to achieve 
personalized medicine. 
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quantity and kind of data (e.g. continuous vs categorical). Re
searchers must test multiple algorithms and evaluate their results to 
design the optimal model.  

• Algorithm validation: AI algorithms need to be robust and well 
validated to ensure that they produce reliable results. This can be a 
challenge in personalized medicine and toxicology, where the 
complexity of the data and the variability of patient responses can 
make algorithm validation difficult [71]. For instance, insufficient 
coverage of pathways and chemicals in the applicability of domain of 
particular models is a common problem in carcinogen assessment 
using AI. A weight of evidence model-based on machine learning was 
created by combining integrating results from several models with 
complementary mechanisms like QSAR model, in silico tox
icogenomic models and structural alert models [72].  

• Interpretation of results: AI-driven analyses can be complex and 
difficult to interpret. This can be a challenge in personalized medi
cine and toxicology, where the results of AI-driven analyses need to 
be translated into actionable recommendations for healthcare pro
viders and patients [73].  

• Bias and discrimination: AI-driven approaches can be affected by 
bias and discrimination, which can lead to inaccurate or unfair re
sults [74]. This is a concern in personalized medicine and toxicology, 
where AI-driven approaches can be used to make important de
cisions about patient treatment and exposure to chemicals.  

• The use of machine learning models in toxicology is complicated by 
the fact that many people perceive artificial intelligence and machine 
learning algorithms as "black boxes" that lack mechanistical expla
nation. Knowledge-based machine learning techniques should be 
created to get over this restriction and provide interpretable pre
dictions. Further, Traditional machine learning techniques have 
difficulty in identifying crucial information, making it challenging to 
anticipate the future events accurately. This data frequently involves 
a large number of substances with many fingerprint descriptors as 
more high-throughput data becomes accessible. The performance on 
model validation may be hampered by many machine learning 
models’ tendency to overfit, however, these restrictions may be 
solved by more sophisticated deep neural network models.  

• Transparency and interpretability: AI-driven approaches can be 
difficult to understand and interpret. This can be a challenge in 
personalized medicine and toxicology, where the results of AI-driven 
analyses need to be transparent and interpretable ensuring that they 
are trusted and accepted by healthcare providers and patients [75]. 

The reliance on preclinical and clinical studies may diminish as the 
data continue to grow and become more accurate [76]. The predictive 
power of the available AI techniques has significantly improved, 
although there is still considerable room for improvement given the 
complexity of toxicology. For instance, predictive carcinogenicity 
models are not accurate or reliable enough to entirely replace in vitro or 
in vivo research. The topic of artificial intelligence seems to have only 
recently come up in toxicology conversations (as of 2016); nevertheless, 
the data suggest that AI has been around since 2011, thus indicating the 
scope for better data translation between toxicology and AI [76]. 

4.3. AI tool applicable in toxicogenomics linking toxicology and 
personalized medicine 

AI algorithms use learning methodologies based on categorization or 
pattern recognition to anticipate future datasets (multi-dimensional). 
For instance, in clinical medicine, this may entail using pathological 
specimen outcomes to forecast the diagnosis and staging of the patho
logical specimen that is obtained on a new patient. There are numerous 
AI algorithms available, which can be generally classified as either su
pervised or unsupervised. Support vector, random forest, neural 
network, and evolutionary algorithms are some of the techniques (EA). 

Recently, both neural network-based machine learning and EA tech
niques have been combined for applications that cannot be addressed by 
usually polynomial algorithms (Fig. 6). Some of the common AI-based 
algorithms that are currently used for applications in toxicogenomics 
and toxicology are listed below.  

• Machine learning algorithms: These are a type of AI that can learn 
from data and make predictions without being explicitly pro
grammed [77]. Machine learning algorithms enable toxicogenomics 
to identify genetic variations that are associated with drug response, 
and to develop decision-support tools for drug dosing and treatment 
selection.  

• Natural Language Processing (NLP): This is a branch of AI that deals 
with the interaction between computers and humans using natural 
language [78]. NLP can be used to extract information from elec
tronic health records, literature and other sources to aid in phar
macogenomic research.  

• Predictive modelling: This is a type of machine learning that serves to 
make predictions about future events based on historical data. Pre
dictive modelling helps toxicogenomics to identify the individuals 
who may be at increased risk of adverse reactions to a particular 
medication and predict treatment outcomes [79].  

• Artificial Neural Networks (ANN): ANN is a type of machine learning 
algorithm that can predict and help in decisions making based on a 
large amount of data [80]. ANN supports toxicogenomics to identify 
genetic variations that are associated with drug response and 
develop decision-support tools for drug dosing and treatment 
selection.  

• Deep learning: This is a subset of machine learning that uses neural 
networks with multiple layers to learn from data [77]. Deep learning 
can analyze large amounts of genetic and molecular profiling data, 
and make predictions about treatment outcomes and toxicity.  

• Computer-aided drug design (CADD): It is an AI-based tool that 
predicts the properties of chemical compounds and optimizes drug 
design [81]. CADD further helps to identify potential drug candidates 
that have a favorable genetic profile and optimize drug dosing and 
treatment selection.  

• Toxicity prediction models: These models use AI algorithms such as 
machine learning and deep learning to predict the toxicity of 
chemicals based on their structural and properties data [82]. 

4.4. Prediction models 

A large amount of the toxicity data is evaluated using quantitative 
structure-activity relationships (QSARs) predictions for two to three 
thousand compounds per year [83]. Their utility is severely constrained 
due to their uncertainty. With the advent of the REACH system, which 
states that "No Data, No Market" for all chemicals, the EU and other 
nations that had previously been extremely passive in introducing 
QSARs, are now aggressively investing in the development and exten
sion of the QSARs program. Additionally, institutional backing has been 
formed to demand that non-testing techniques, such as QSARs, be 
discovered first before performing a new toxicity test for REACH regis
tration [83]. 

Quantitative Structure-Activity Relationship (QSAR) models: QSAR 
models use quantitative algorithms to predict the toxicity of chemicals 
based on their chemical structure and properties [84]. These models can 
be used to identify potentially hazardous compounds and prioritize 
them for further testing. Machine learning algorithms are viewed 
differently by certain people than by others. A structure-activity rela
tionship is typically used in QSAR modelling to model a quantitative 
label prediction. Machine learning, on the other hand, refers to the use 
of a statistical method to generalize the data and produce predictions 
based on the model. Structure-activity relationships can be utilized to 
model the data in machine learning, which could lead to confusion be
tween the two modelling approaches[85]. Additionally, it should be 
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emphasized that machine learning allows for the modelling of data using 
features other than structure, therefore the structure is not mandatory. 
Similar to this, the compound’s activity need not have the predicted 
label, and other labels are acceptable. 

2. Adverse drug reaction prediction models: These models use AI 
algorithms to predict the likelihood of adverse drug reactions based on 
patient data such as genetic and demographic information [86]. These 
models assist in identifying patients who may be at risk of adverse re
actions to a particular medication and selecting alternative treatments 
that may be safer for these patients [57]. 

3. Drug-drug interaction prediction models: These models use AI 
algorithms to predict the likelihood of drug-drug interactions based on 
patient data such as genetic and demographic information, and medi
cation history [87]. These models can identify patients at risk of 
drug-drug interactions, and select alternative treatments that may be 
safer for these patients [88]. 

4. Risk assessment models: These models use AI algorithms to 
analyze large amount of data from environmental and human studies to 
identify patterns and predict the risk of exposure to chemicals and other 
agents [89]. 

5. Decision support systems: These are AI-based tools that can be 
used to provide personalized treatment recommendations to healthcare 
providers based on patient data such as genetic and demographic in
formation, and medication history [90]. 

There are several free, open-source prediction software models 
available for use in toxicogenomics, linking toxicology and personalized 
medicine.Table 1. 

It is important to keep an eye out for new and updated software tools 
that may become available since the field of AI and toxicogenomics is 
rapidly growing. Additionally, some of these tools may require a certain 
level of expertise to use them. 

5. Current trends and future perspectives 

The progress of toxicology research over the years has proven that 
scientific trends ebb and flow in the field of toxicology just like in other 
disciplines. While some dominant ideas like zebrafish models continue 
to pertain over years, new concepts like AO are not considered the game- 
changer they are expected to be. However, that does not seem to be the 
case, with ideas like the microbiome and personalized medicine occu
pying prominent positions [100]. The limitation posed by AI regarding 
data availability and translation continues to hold AI only as a pre
liminary tool rather than a highly reliable end point to toxicology 
studies. 

In the future, toxicology is expected to become even more important 
in protecting human health and the environment [101]. There would be 
an increasing focus on using AI to predict the toxicity of chemicals and 
other agents, furthermore, it could well be used to analyze large amount 
of toxicology data. Additionally, there would be a growing emphasis on 
using toxicology data to inform policy decisions and protect vulnerable 
populations. Toxicogenomics plays a crucial role in connecting person
alized medicine and toxicology by providing information on how an 
individual’s unique genetic makeup can affect their response to treat
ment and exposure to chemicals. It can be used to optimize drug dosing 
and reduce the risk of adverse reactions in personalized medicine pre
dicting the toxicity of chemicals in toxicology. In future, toxicogenomics 
is expected to play an important role in connecting these two fields, as 
more genetic and molecular profiling data becomes available and AI 
algorithms improve [102]. 

5.1. The impact of artificial intelligence on personalized medicine and 
toxicology 

AI is having a significant impact on personalized medicine and 
toxicology by providing new ways to analyze patient data and make 
predictions about treatment outcomes or toxicity. AI can examine large 
quantity of data and make predictions about treatment outcomes, and 
toxicity, which can aid in decision-making and improve patient out
comes [103]. Additionally, AI can monitor disease progression and 
determine the response to treatment, and identify patients who may be 
at risk of adverse events. In future, AI is expected to improve the accu
racy of predictions about treatment outcomes and toxicity aiding the 
development of new treatments and drugs. 

Personalized medicine, toxicology, toxicogenomics, and AI are fields 
that are rapidly advancing and evolving. Personalized medicine and 
toxicology are becoming increasingly important in the era of precision 
medicine, and toxicogenomics plays a crucial role in connecting these 
two fields. AI is having a significant impact on personalized medicine 
and toxicology by providing new ways to analyze patient data and make 
predictions about treatment outcomes or toxicity [100,104]. In the 
future, these fields are expected to become even more important and 
continue to evolve as technology advances. 

6. Outlook: the role of personalized medicine, toxicology, 
toxicogenomics and artificial intelligence in the era of precision 
medicine 

Personalized medicine, toxicology, toxicogenomics, and AI are four 

Fig. 6. Toxicogenomics pipeline involving ma
chine learning algorithm and AI. The tox
icogenomics pipeline starts with the collection 
of genomic data from patients, including DNA 
sequencing and genotyping. This data is then 
used to identify genetic variations associated 
with drug response. Machine learning algo
rithms are applied to the genomic data to create 
predictive models of drug response. These 
models can be used to predict how a patient 
would respond to a particular drug based on 
their genetic profile. The integration of AI in 
toxicogenomics can enhance the ability to 
identify novel drug-gene interactions and 
improve the accuracy of predictive models in 
precision medicine.   
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fields that are becoming increasingly interconnected. Personalized 
medicine aims to optimize treatment outcomes by taking into account an 
individual’s unique characteristics, such as genetics, lifestyle, and 
environment [105]. Toxicology informs the effects of chemicals and 
other agents on living organisms, and how these effects can be prevented 
or mitigated. Toxicogenomics informs the effect of an individual’s ge
netic makeup to a particular medication. 

• In personalized medicine, AI can forecast patient data, such as ge
netic and molecular profiling data, to predict treatment outcomes 
and select the most appropriate treatment for an individual patient. 
In toxicology, AI can envisage the toxicity of chemicals and other 
agents based on their structure and properties. Toxicogenomics plays 
an important role in connecting these two fields, by providing in
formation on how an individual’s unique characteristics can affect 
their response to treatment and exposure to chemicals.  

• Another challenge in personalized nanomedicine during the COVID- 
19 pandemic is the difficulty in controlling virus transmission due to 
limited data [106,107], especially in the case of new variants with 
higher transmissibility [106]. This makes it hard to conduct clinical 
trials and test the safety and efficacy of personalized nanomedicine 
treatments on COVID-19 patients [28,46]. Additionally, the rapid 
spike of infection in some areas makes it hard to reach and treat 
patients who need personalized nanomedicine treatments. This can 
also lead to a shortage of medical resources, including equipment 
and staff, further complicating the implementation of personalized 
nanomedicine as a treatment option.  

• It is anticipated that more models would be created to forecast 
toxicity, especially with new data sources and the reduction of 
computational costs brought on by technology advancements. 
However, efforts are certainly needed to address the bottlenecks of 
AI for predictive toxicology, in terms of the quantity and quality of 
the data. Although partnerships with pharmaceutical firms and 
publicly accessible web databases serve to some extent to reduce this 
problem, some gene or protein targets or even toxicological end
points cannot be anticipated owing to the absence of necessary data 
[108]. Additionally, there are concerns about the potential for bias 
and discrimination in AI-driven approaches, and the need to ensure 
that these approaches are transparent and interpretable. Moreover, 
additional work is necessary to address the problem of unbalanced 
data in predictive toxicology, such as gathering and disseminating 
compounds’ unfavorable experimental outcomes.  

• Hepatotoxicity, carcinogenicity, cardiotoxicity, and mutagenicity 
are the main topics of recent predictive toxicology research, but 
other types of toxicity are generally understudied; a significant 
portion of human toxicity remains unknown. The community can get 

Table 1 
List of prediction software for use in toxicogenomics and toxicology.  

Tools Features Remarks Reference 

OpenTox Multiple models for 
toxicity prediction and 
risk assessment. 
Including QSAR 
modelling, machine 
learning, and data 
visualization. 

Open-source, 
Guarantees the 
portability of 
components by 
enforcing language- 
independent 
interfaces 

[91] 

Toxtree Based on structural 
and properties data 
and applies decision 
tree approach i.e. 
statistical and 
knowledge base 

Open-source, More 
interpretable and can 
guide molecule 
modification, 
suitable for non- 
specialised users 

[92] 

R/PharmacoGx R package for 
toxicogenomics data 
analysis. It includes 
tools for data 
visualization, machine 
learning, and 
statistical analysis 

Open-Source. Also 
identifies molecular 
features associated 
with drugs effects 

[93] 

OpenPKG C+ + model for whole 
body physiology. 
Leverages data from 
physiochemical data 
and from in vivo 
studies to determine 
the time evolution of 
drug distribution and 
clearance on an organ- 
specific level 

Open-source, 
compartmental 
framework for 
analyzing protein- 
drug binding and 
drug metabolism and 
degradation 

[94] 

SafetyPharma A platform for drug 
safety analysis. It 
includes tools for data 
visualization, machine 
learning, and 
statistical analysis. 

Commercial [95] 

ADRpred Predicts adverse drug 
reactions. It uses 
machine learning 
algorithms to predict 
the likelihood of 
adverse reactions 
based on patient data. 
knowledge-based 

Open-source, uses 
knowledge graph 
embedding to 
effectively encode 
drugs 

[96] 

ToxCast Database of in vitro 
toxicity assays for use 
in predicting the 
toxicity of chemical 
mixtures 

Research project. 
Focus on the 
molecular and 
cellular pathways 
that are targets of 
chemical interactions 

[97] 

Virtual ToxLab predict the toxic 
potential (endocrine 
and metabolic 
disruption, some 
aspects of 
carcinogenicity and 
cardiotoxicity) of 
existing and 
hypothetical 
compounds (drugs, 
chemicals, natural 
products) 

Simulates and 
quantifies their 
interactions towards 
a series of proteins 
suspected to trigger 
adverse effects using 
automated, flexible 
docking combined 
with multi- 
dimensional QSAR 

[98] 

Deductive 
estimate of risk 
from existing 
knowledge 
(DEREK) 

Prediction based on 
chemical structure, 
and toxic functional 
groups. correlation 
between structure and 
biological activity i.e. 
Knowledge-based. 

Commercial, 
Working towards 
integrating multiple 
prediction programs 

[83] 

DanishQSAR A repository-based 
model with prediction 
related to 
physicochemical 
characteristics, acute 

Limited to only 
600000 chemicals 
and 200 QSAR 
models. 

[83]  

Table 1 (continued ) 

Tools Features Remarks Reference 

toxicity, skin irritation 
and environmental 
toxicity 

VegaHubQSAR Built to meet REACH 
requirements and 
contains 40000 
chemical data. Can 
predict mutagenicity, 
carcinogenicity, skin 
irritation, endocrine 
binding, 
developmental toxicity 
and physicochemical 
properties. 

Possible batch 
prediction 

[83] 

PreADMET Statistitical tool for 
carcinogenicity 
prediction models and 
genotoxicity 
prediction 

Commercial, Limited 
by the data from 
mouse models and 
Ames test 

[99]  
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closer to replacing in vivo toxicity testing with in silico approaches by 
learning more about all types of toxicity (and not just the major types 
of toxicity).  

• Even as the need for additional data is evident, the industry’s and 
regulators’ acceptance of such in silico approaches is crucial for their 
broad usage. The regulations safeguard the consumers by guaran
teeing that items have a stringent safety routine, enabling them to 
confidently utilize these products. It is necessary to develop pro
tocols to check the accuracy and dependability of in silico technolo
gies, which should also guarantee that reproducible outcomes can be 
attained. It must be shown that in vitro and in silico methodologies 
can produce risk evaluations with the same level of rigor as those 
made using conventional techniques and consistent mechanistic 
understanding. 

7. Conclusions 

We have studied personalized medicine, toxicology, toxicogenomics 
and AI usage in detail and found that these are becoming increasingly 
interconnected. They have the potential to revolutionize the way we 
understand and treat disease mitigating the adverse effects of chemicals, 
drugs and other agents. The existence of several comparative tox
icogenomics is crucial in recovering, analyzing and comparing the novel 
information with recorded data. However, it is important to address the 
challenges and limitations that come with these fields to fully realize 
their potential. These challenges are found to be mainly the need for 
large amount of high-quality data, robust and validated methods, 
transparency and interpretability in the results. Additionally, it is 
important to consider ethical considerations such as privacy and 
discrimination when implementing these fields in clinical practice. 

The era of precision medicine is rapidly approaching, and the inte
gration of personalized medicine, toxicology, toxicogenomics and AI can 
play a vital role in achieving its goals. These fields can help to optimize 
treatment outcomes and reduce the risk of adverse effects, by taking into 
account an individual’s unique characteristics such as genetics, lifestyle 
and environment. Furthermore, AI can help to analyze vast amounts of 
data and make predictions about treatment outcomes and toxicity. It is 
important to continue the research and development in these fields to 
improve patient outcomes and protect human health. 
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