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Abstract: A search for radiative decay of B0
s mesons to orbitally excited K+K− states is per-

formed using proton proton collisions recorded by the LHCb experiment, corresponding to an
integrated luminosity of 9 fb−1. The dikaon spectrum in the mass range mKK < 2400MeV/c2

is dominated by the ϕ(1020) resonance that accounts for almost 70% of the decay rate.
Considering the possible contributions of f2(1270), f ′2(1525) and f2(2010) meson states, the
overall tensor contribution to the amplitude is measured to be

F{f2} = 16.8± 0.5 (stat.)± 0.7 (syst.)%,

mostly dominated by the f ′2(1525) state. Several statistically equivalent solutions are obtained
for the detailed resonant structure depending on whether the smaller amplitudes interfere
destructively or constructively with the dominant amplitude. The preferred solution that
corresponds to the lowest values of the fit fractions along with constructive interference leads
to the relative branching ratio measurement

B(B0
s → f ′2γ)

B(B0
s → ϕγ) = 19.4+0.9

−0.8 (stat.)+1.4
−0.5 (syst.)± 0.5 (B)%,

where the last uncertainty is due to the ratio of measured branching fractions to the K+K−

final state. This result represents the first observation of the radiative B0
s → f ′2(1525)γ decay,

which is the second radiative transition observed in the B0
s sector.
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1 Introduction

In the Standard Model (SM), the radiative decays of beauty hadrons proceed at leading
order through b→ sγ one-loop electromagnetic-penguin transitions, dominated by a virtual
intermediate top quark coupled to a W boson. Extensions of the SM predict additional
one-loop contributions that can introduce sizeable effects on the dynamics of the transition.
Radiative decays of the neutral and charged B mesons were first observed by the CLEO
collaboration in 1993 [1] through the decay modes B → K∗γ. In 2007 the Belle collaboration
reported the first observation of the companion decay in the B0

s sector [2], B0
s → ϕγ. The LHC

era has brought observations of new radiative b-hadron decay modes and precise measurements
of branching fractions, helicity structure and asymmetries in this class of decays [3–10].

Several exclusive modes have been observed in radiative decays of neutral B0 mesons [11],
including tensor intermediate states, and compared to theoretical predictions [12–15]. In the
B0
s sector, the ϕγ final state remains the only b→ sγ transition observed. Radiative decays
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of scalar beauty mesons allow a clean spectroscopic representation of the hadronic system
accompanying the photon, free of the S-wave amplitude contributions that usually complicate
partial wave analyses.1 This work represents the first amplitude analysis of the dikaon resonant
structure in the B0

s→ K+K−γ decay2 up to a dikaon invariant mass mKK = 2400MeV/c2.
This analysis exploits data collected by the LHCb experiment in proton-proton (pp) collisions
at 7, 8 and 13 TeV centre-of-mass energies in the years of 2011–2012 (Run 1) and of 2015–2018
(Run 2), corresponding to 3 fb−1 and 6 fb−1 of integrated luminosity, respectively.

2 Detector and selection

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range
2 < η < 5 designed for the study of heavy hadrons containing b or c quarks [17, 18]. The
detector elements that are relevant for this analysis are: a silicon-strip vertex detector
surrounding the pp interaction region that allows the beauty hadron to be identified from its
characteristically long flight distance; a tracking system that provides a precise measurement
of the dikaon momentum; two ring-imaging Cherenkov detectors (RICH) that allow to
discriminate between the different species of charged hadrons; a calorimeter system consisting
of scintillating-pad (SPD) and preshower detectors, an electromagnetic calorimeter (ECAL)
and a hadronic calorimeter, that provides the reconstruction and the identification of the
radiated photons. In addition, a muon system allows the identification of muons.

Simulated samples are used to optimise the selection criteria and evaluate the background
contamination. The simulated pp collisions are generated using Pythia [19, 20]. The decay
chain of hadronic particles and the final-state radiation are handled by EvtGen [21] and
PHOTOS [22], respectively. The detector response to the interacting particles is implemented
in the Geant4 framework [23, 24].

The online event selection is performed by a trigger [25, 26], consisting of a hardware
stage based on the information from the calorimeter and muon systems, followed by a software
stage which fully reconstructs the event. In order to reduce the large level of combinatorial
background coming from pp collisions, the hardware trigger selects events having an ECAL
cluster with an energy component transverse to the beam (ET) above a threshold varying
between 2.50 and 2.96 (2.11 and 2.70) GeV in Run 1 (Run 2). To facilitate the reconstruction
in the software trigger the hardware trigger selects only events with fewer than 600 (450)
hits in the SPD for Run 1 (Run 2).

The software trigger is designed to efficiently select candidates with two high transverse
momentum (pT) tracks significantly displaced from the interaction point and one high-ET
photon [27]. The trigger efficiency is further enhanced by about 20% by imposing looser track
requirements for the events passing a tighter photon threshold, ET > 4GeV, at the hardware
stage. For Run 2 data, a multivariate classifier based on topological criteria complements
the software trigger selection [28]. The Run 1 software trigger requires mKK to be below
2000 MeV/c2. This restrictive criterion has been removed in Run 2 and the dikaon phase
space of this analysis is extended up to mKK < 2400MeV/c2, corresponding to the observed

1A similar feature is realised in the J/ψ → K+K−π0 hadronic decay [16].
2The inclusion of charge-conjugate processes is implicit unless stated otherwise.
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phase space of the B0
s → K+K−γ signal. A fiducial cut mKK < 1950MeV/c2, just below

the trigger threshold, is applied to the Run 1 data.
The reconstructed B0

s → K+K−γ candidate combines a pair of good-quality tracks
and an energetic photon. The two tracks are required to have large impact parameters
(IP) with a significance that exceeds four units with respect to any primary proton-proton
collision vertex (PV) [29]. Both tracks must have a transverse momentum larger than
500 MeV/c with at least one above 1.2 GeV/c. Kaons are identified using particle identification
information provided mainly by the RICH system. The probability associated to the kaon
hypothesis must be larger than any other hadron hypothesis, pion or proton, and larger
than a threshold optimised to reduce the expected contamination from B0→ K+π−γ and
Λ0
b→ pK−γ radiative decays, which have the same topology as the signal. The optimisation

is performed for each year of data taking using simulated samples with particle identification
performance derived from dedicated calibration data. The fiducial ranges used for track
momentum, p ∈ [4.5, 100.0]GeV/c, and pseudorapidity, η ∈ [1.5, 4.5], match the phase space
covered by the data-driven calibration tool [30]. The two tracks should have a distance
of closest approach less than 0.15 mm and form a good quality vertex. Vertex isolation is
used to reduce partially reconstructed B → K+K−(X)γ backgrounds, where X generically
represents an unreconstructed fragment of the decay final state. Specifically, a lower limit
is applied on the χ2 increase in the vertex fit when adding any additional reconstructed
track, referred to in the following as ∆χ2

Vtx(B0
s ).

Clusters in the ECAL system identified as photon candidates are selected by requiring
that they cannot be geometrically associated with any extrapolated track. Photons and
neutral pions are distinguished by exploiting their cluster shape and energy distribution [31].
The photon four-momentum is evaluated using the dikaon vertex as the origin and the
position and energy of the associated cluster. The transverse component of the reconstructed
photon momentum is required to be larger than 3.0 GeV/c.

The B0
s candidate four-momentum is computed by summing the four-momenta of the two

kaons and the photon. The B0
s candidates are selected in the mass range [4700, 6400] MeV/c2.

The momentum is required to point back to the associated primary vertex and to have a
transverse component larger than 2.0 GeV/c. A significant contamination is expected from
the B0

(s)→ (K±π0)K∓ decays that involve a K±π0 resonant state, including charmed modes
through D±

(s) decays. Those hadronic contributions are vetoed by requiring the K±γ system
to be above the D±

s mass, i.e. mK±γ > 2000MeV/c2, assigning the neutral pion mass to the
reconstructed photon. This criterion, hereafter referred to as the anti-charm veto, suppresses
the mass peaking contamination from charmless B0 → K∗±K∓ decays and significantly
reduces the partially reconstructed decays involving a misidentified π0 meson.

Background candidates resulting from combinations of unrelated kaons and photon,
hereafter denoted as combinatorial background, can be strongly suppressed by exploiting
kinematic and topological variables. Boosted Decision Tree classifiers (BDT) [32, 33] are
trained for each year of data taking using simulated events reproducing the detector conditions
as signal proxy and data selected in the upper mass sideband of the signal mass peak as
background proxy. The typical mass resolution of the B0

s → K+K−γ signal is 85 MeV/c2,
and is dominated by the photon energy resolution. The upper mass sideband is accordingly
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defined as mK+K−γ > mB0
s
+ 300MeV/c2, where mB0

s
is the known B0

s mass value [11]. The
input variables to the classifier are: the momentum, pseudorapidity, flight distance and
∆χ2

Vtx(B0
s ) of the reconstructed B0

s candidate, the IP and transverse momentum of the kaon
candidates, the IP, momentum, and pT of the dikaon combination, and the difference of the
primary vertex fit χ2 calculated with or without the tracks associated to the reconstructed
B0
s meson. An additional input variable to the BDT in Run 2 is the isolation variable,

IpT = pT(B0
s )−

∑
pT

pT(B0
s ) +

∑
pT
, (2.1)

where the sum is taken over tracks that are not part of the B0
s signal candidate but are

associated with the same PV and fall within a cone of half-angle ∆R < 1.7 rad. The half-angle
of a track is defined as (∆R)2 = (∆θ)2 + (∆ϕ)2, where ∆θ and ∆ϕ are the differences in
the polar and azimuthal angles of each track with respect to the B0

s candidate direction.
The optimal BDT working point is optimised for each year of data taking by maximising
the ratio S/

√
S +B, where S is the expected number of signal candidates estimated from

simulation and B is the number of combinatorial background candidates in the signal region
estimated by extrapolating the data distribution in the upper mass sideband of the signal
mass peak. The efficiency of the optimal BDT cut on the preselected signal is around 97%
while the combinatorial background is reduced by factor of 20.

The remaining combinatorial background and the partially reconstructed B decays
can be constrained by their invariant-mass distribution on both sides of the signal peak.
The selected K+K−γ sample is additionally polluted by misidentified B0→ K+π−γ and
Λ0
b → pK−γ decays that pass the dikaon identification requirements and populate the B0

s

signal region. The corresponding B0 and Λ0
b contamination estimated from simulation are

4.5± 1.1% and 6.9± 1.9% of the signal yield, respectively. Due to the limited calorimeter
energy resolution and the resulting wide signal peak, the misidentified backgrounds cannot
be efficiently separated from the B0

s signal mass distribution. Further peaking backgrounds
stemming from photon misidentification, such as B → K+K−π0 charmless decays, are highly
suppressed thanks to the anti-charm veto that rejects the K∗±K∓ intermediate states. The
residual colour-suppressed decay modes to the (K+K−)π0 final states are difficult to quantify
due to their unknown resonant structure. The suppressed charmed decay B0 → D0π0 with
D0 → K+K− or K+π−, which is well-localized in the dikaon mass spectrum, can similarly
contribute to the signal mass region. The unresolved peaking contributions are, therefore,
embedded in the signal component in the mass model and their description is handled in
the subsequent amplitude analysis of the dikaon system.

3 Invariant-mass fit

The invariant-mass distribution of the B0
s → K+K−γ signal is modelled using a modified

double-sided Crystal-Ball [34] probability density function (PDF) with an asymmetrical
Gaussian core and tails on either side. The Gaussian mass peak position and the left/right
width parameters are allowed to vary freely in the fit to accommodate the possible difference
between simulation and data resolutions and to account for the contamination of the embedded
peaking backgrounds. The low-mass tail parameters cannot be resolved in the fit to data due
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to the large partially reconstructed backgrounds populating the left sideband. They are fixed
to the values obtained from a fit to simulated samples. The high-mass tail accounts for the
imperfections of the tracking and, in the case of radiative decays, the large cluster pile-up
variations in the ECAL which may affect the photon energy determination. The parameter
that defines the location of transition to the right-tail function is allowed to vary freely in the
fit to adjust the misidentified Λ0

b→ pK−γ background, mostly contaminating the right side of
the signal peak, while the tail decay parameter is fixed to the value obtained from simulation.
The partially reconstructed B0

s → K+K−(X)γ backgrounds are described using ARGUS
functions [35] convoluted with the signal resolution function. Two inclusive components, with
one or with two missing pions, are considered for the partially reconstructed B0

s decays in
the nominal mass range, mKKγ ∈ [4700, 6400]MeV/c2. Several exclusive decay modes with
similar shapes potentially compete in the partially reconstructed decay region. Furthermore,
the branching fractions of most of these decays are unknown. The overall yield of the
inclusive partially reconstructed contributions, hereafter denoted as one-missing-pion and
two-missing-pion components, is thus allowed to vary freely in the fit to data. The shape of
the one-missing-pion component is partially constrained using the parameterisation obtained
from a fit to the simulated decay B0

s → ϕ(1680)(→ K+K−π0)γ, used as a proxy. In the fit to
data, the curvature parameter of the ARGUS function is fixed to the value obtained from the
fit to this simulated sample. The missing-mass shift is set to the known neutral pion mass [11],
mπ0 , and the slope parameter, which depends on the actual decay dynamics, is allowed
to vary freely to accommodate the unknown composition of the generic one-missing-pion
component. The two-missing-pion component, which mostly contributes to the lower edge of
the mass window, is modelled using a similar ARGUS function, with a missing-mass shift
fixed to 2mπ0 and a free slope parameter. The curvature parameter, poorly resolved in the fit
to data, is fixed to the same value as for the one-missing-pion component. The combinatorial
background due to random KKγ combinations is modelled using a decreasing exponential
shape where the decay parameter is free to vary. The peaking backgrounds are not modelled
separately and are included in the signal component, as previously discussed.

An unbinned extended maximum-likelihood fit is performed according to the PDF

F(mKKγ) = Ns · S(mKKγ) +
∑
bkg

Nbkg ·Bbkg(mKKγ), (3.1)

where S (Bbkg) represents the signal (background) PDF and Ns (Nbkg) the associated yield(s)
allowed to vary freely. The resulting fit projections on the Run 1 and Run 2 data samples
are shown in figure 1. The yield of the B0

s → K+K−γ signal candidates is found to be
Ns = (5.66± 0.14)× 103 and (44.5± 0.5)× 103 in Run 1 and Run 2, respectively, including
peaking background components that are expected to contribute about 10%.

Following the sP lot technique [36], a signal weight (sWeight) is assigned to each candidate
to statistically subtract the combinatorial and partially reconstructed background components
in the subsequent amplitude analysis. The left-hand plot in figure 2 displays the dikaon mass
distribution for the selected K+K−γ candidates. The sWeighted projection of the signal
component that contributes up to mKK ∼ 2400MeV/c2 is superimposed. The right-hand
plot in figure 2 displays the signal sWeighted projection on the amplitude observables plane
(mKK , cos θKK), where θKK is the helicity angle defined as the angle between the positively
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Figure 1. Invariant-mass distribution for K+K−γ candidates for (top) Run 1 and (bottom) Run2,
with the fit projection overlaid.

charged kaon direction and the B0
s meson momentum in the dikaon rest frame. Aside from the

dominant vector contribution in the ϕ(1020) region, one can clearly see a tensor contribution
around 1500 MeV/c2, identifiable as a significant contribution from the f ′2(1525) resonance.

4 Amplitude analysis

4.1 Amplitude model

The kinematics of the three-body transition B0
s → (K+K−)rγ, where R is an intermediate

dikaon state, can be completely described by the invariant dikaon mass, mKK , and the helicity
observable, cos θKK , related to the traditional Dalitz [37] mass coordinates sij = m2

ij as

cos θKK =
(sK+γ − sK−γ)mKK

4MB0
s
qrqB0

s

c2, (4.1)
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Figure 2. (Left) dikaon invariant mass for the selected K+K−γ candidates and the sWeighted
signal distribution. The narrow peak around 1860 MeV/c2 and its small reflection 100 MeV/c2 above
correspond to D0 → K+K− and to misidentified D0 → K−π+ decays, which are strongly suppressed
in the sWeighted distribution. (Right) sWeighted projection of the B0

s → K+K−γ signal on the
(mKK , cos θKK) plane. The hatched areas indicate the acceptance regions suppressed by the anti-
charm veto (see section 4.2 for details).

where qr and qB0
s

represent the kaon momentum in the dikaon rest frame and the dikaon
momentum in the B0

s rest frame, respectively. The Lorentz-invariant three-body decay rate
in the (mKK , cos θKK) coordinates system is given by

dΓ = J3(mKK)|M(mKK , cos θKK)|2dmKKdcos θKK , (4.2)

where J3(mKK) represents the three-body phase-space Jacobian3

J3(mKK) ∝
qrqB0

s

M2
B0

s

c−2, (4.3)

and the matrix element M(mKK , cos θKK) represents the transition amplitude. The transition
probability is obtained by summing incoherently over the unobserved photon helicity states

|M|2 =
∑
λ=±1

|Mλ|2 = 2|M|λ|=1|2, (4.4)

where the last identity results from the fact that Mλ=+1 exhibits the same θKK helicity
dependency as Mλ=−1.

To describe this amplitude transition, an isobar approach is used that consists of the
coherent sum of the individual amplitudes describing the intermediate states

M(mKK , cos θKK) =
∑

r
cr Ar(mKK , cos θKK), (4.5)

where cr is a complex coefficient and Ar represents the amplitude for the intermediate state
R. The amplitudes Ar are modelled as

Ar(mKK , cos θKK) = Ar(mKK)dJr
10(cos θKK), (4.6)

3Irrelevant constant factors are omitted here.
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where Ar(mKK) is the mass lineshape of the intermediate state R with spin Jr. The angular
dependency is given by the Wigner d-functions dJr

λλ′(θKK) that represent the matrix elements
of the operator rotating the angular momentum basis from the B0

s decay axis (|λ| = 1) to the
dikaon decay axis (λ′ = 0) [38]. As no S-wave is allowed in the radiative decays of B mesons,
a nominal model based on relativistic Breit-Wigner amplitudes is adopted to describe the
mass lineshapes, Ar(mKK), for all the considered resonant states

Ar(mKK) = Fr · FB · BWr(mKK ;µr,Γr), (4.7)

where Fr and FB are the Blatt-Weisskopf factors [39] accounting for the centrifugal barrier
effect in the decays of the R resonance and the B0

s meson, respectively. The Breit-Wigner
complex pole for the resonance R is given by

BWr(mKK ;µr,Γr) =
1

(µ2r −m2
KK)− iµrW(mKK ; Γr)

, (4.8)

with µr and Γr, are the corresponding pole mass and width. The mass-dependent width
is defined as

W(mKK ; Γr) = Γr
qr
q̄r

µr
mKK

F2
r , (4.9)

where q̄r is a reference kaon momentum evaluated at the nominal mass pole of the resonance.
The normalized Blatt-Weisskopf form-factors

Fr = F(qr, q̄r, Lr), (4.10)
FB = F(qB, q̄B, LB), (4.11)

are derived from the spherical Hankel functions of first kind [39],

F(q, q̄, L) =
∣∣∣∣HL(rq̄)
HL(rq)

∣∣∣∣ = (
q

q̄

)L hL(rq̄)
hL(rq)

, (4.12)

where the parameter r is the meson radius that accounts for the size of the centrifugal barrier
effect and L is the relative angular momentum in the resonance decay. The L-dependent
functions hL(z) for L ≤ 4 are

h0(z) = 1, (4.13)
h1(z) =

√
1 + z2, (4.14)

h2(z) =
√
9 + 3z2 + z4, (4.15)

h3(z) =
√
225 + 45z2 + 6z4 + z6, (4.16)

h4(z) =
√
11025 + 1575z2 + 135z4 + 10z6 + z8. (4.17)

The radius parameter associated with the ϕ(1020) meson lineshape, rϕ, is allowed to vary
in the fit. The radius value is fixed to rf2 = 3.0 (GeV/c)−1 for heavier dikaon resonances,
and to rB = 5.0 (GeV/c)−1 for the B0

s meson. The variation of the radii of heavy mesons is
considered when evaluating systematic uncertainties. The relative angular momentum Lr
of the pseudoscalar kaons equals the resonance spin. The relative angular momentum of
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the resonance in the radiative B0
s decay takes eigenvalues in the Jr ± 1 range. The lowest

allowed value, Jr − 1, is assumed in the nominal model. Other values are considered when
evaluating systematic uncertainties.

The experimental dikaon mass resolution is included in each individual Breit-Wigner
pole using an analytical approach derived from ref. [40] and assuming Gaussian behaviour.
The relativistic Voigt profile is built by convoluting the Breit-Wigner profile with a Gaussian
resolution function

|V(m;µ,Γ, σ)|2 =
∫ +∞

−∞
|BW(m;µ,Γ)|2G(m−m′; 0, σ)dm′ = 1

σ
√
2π

|H(a, u+, u−)|2,

(4.18)

with u± = m±µ√
2σ and a = µW(m;Γ)

2σ2 , and µ and σ representing the Gaussian parameters. The
result of the integration is a weighted-sum of Faddeeva functions

|H(a, u+, u−)|2 =
w(z++) + w(z+−)

2∆+
+ w(z−+) + w(z−−)

2∆−
, (4.19)

where zκη = (u+ + u− + κ ·∆η)/2, ∆η =
√
(u+ − u−)2 + η · 4ia and w(z) is the Faddeeva

function, i.e. the scaled complementary error complex function, the real part of which defines
the usual nonrelativistic Voigt profile

w(z) = e−z
2 erfc(−iz). (4.20)

The mass resolution is then included in the amplitude model by redefining the Breit-Wigner
pole definition as

BWR(mKK ;µr,Γr, σr) = |V(mKK ;µr,Γr, σr)|eiArg[BR(mKK ;µr,Γr)], (4.21)

i.e. the resolution is included in the mass lineshape, but the effect of the resolution on the
mass-dependent phase is neglected. The nominal resolution values derived from simulation
studies are fixed to σϕ = 0.54MeV/c2 for the ϕ(1020) lineshape, and to σr = 3.2MeV/c2 for
all the higher-mass resonances. The experimental resolution on the helicity observable θKK ,
found to be negligible over the whole analysis range, is not introduced in the model.

As the K+K− system is a CP eigenstate, the flavour of the decaying B0
s meson is

undefined in this time-integrated analysis. The helicity angle observable in the symmetrical
K+K− system, θH , is univocally defined as the angle between the momentum of the positively-
charged kaon and the B0

s momentum in the dikaon rest frame. This measured angle matches
the helicity angle for one of the B0

s flavours, θH = θKK , but corresponds to the opposite
angle, θH = π − θKK , for the opposite flavour. As a consequence, the interference between
odd- and even-spin components, which is an anti-symmetrical function of the helicity, cancels
out in the case of equal decay rates of the two flavours. Thanks to the fast B0

s oscillation,
any small flavour asymmetry at the production level [41] is diluted to a negligible level
when integrating over time. Assuming, in addition, that there is no violation of the CP

symmetry in the penguin-mediated radiative decay [42], an equal decay rate for B0
s and

B0
s is expected. Residual experimental asymmetries due, for instance, to differences in
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the momentum-dependent K+/K− detection efficiencies are explicitly cancelled out by
considering the folded (mKK , |cos θKK |) half plane and summing incoherently the odd- and
even-spin amplitude subsystems. The nominal probability density function describing the
signal component is then defined as

Ps(mKK , θKK) = ε(mKK , θKK) · J3(mKK)
∑

p=+,−

∣∣∣∣∣∑rp

crp · Arp(mKK , |cos θKK |)
∣∣∣∣∣
2

,

(4.22)

where Arp is the amplitude for the component Rp with spin parity p, crp = |crp |eiδrp is the
associated complex isobar coefficient and ε(mKK , |cos θKK |) is the parametrised experimental
acceptance presented in section 4.2.

Including backgrounds, the full PDF describing the selected data sample is given by

P(mKK , θKK) = Ns · Ps +
∑
bkg

Nbkg · Pbkg, (4.23)

where Ns is the overall (B0
s + B0

s) → K+K−γ yield, and Nbkg and Pbkg represent the
yields and PDFs of the backgrounds, respectively. Each PDF component, Ps and Pbkg,
is normalised to unity.

4.2 Acceptance

The two-dimensional selection acceptance ε(mKK , |cos θKK |) is determined from a simulta-
neous fit to large samples of fully reconstructed B0

s→ K+K−γ simulated decays, uniformly
produced in the decay phase space, B0

s → ϕ(1020)γ decays and B0
s → f ′2(1525)γ decays.

Weights are applied to the simulated candidates to correct for imperfections in the simula-
tion of kinematic variables and to reproduce the neutral and charged particle identification
efficiencies using a data-driven calibration [30, 31].

The PDF that describes each of the simulated samples,

Pr = ε(mKK , θKK ; α⃗) · J3(mKK) · |Ar(mKK)dJr
λ,0(θKK)|

2, (4.24)

embeds the parameterised two-dimensional acceptance function, ε(mKK , θKK ; α⃗). A generic
acceptance function based on Bernstein polynomials up to degree 5 is defined as

ε(x,y; α⃗) = 1 +

 4∑
i=0

5∑
j=0

αij ·B4
i (y) ·B5

j (x)

 · εb(mKK , |cos θKK |;σc), (4.25)

where the coordinate x = qr(mKK)/q0 is the normalized kaon momentum in the dikaon rest
frame and y = |cos θKK | is the folded helicity observable. The functions Bn

k (u) represent
the nth-order Bernstein polynomials

Bn
k (u) =

(
n

k

)
uk(1− u)n−k. (4.26)

The normalisation factor q0 = qr(mmax
KK ) ensures the Bernstein argument x lies within the

[0, 1] bounds for the considered mass range, mKK ∈ [2mK ,m
max
KK ]. Conditions are applied to
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Figure 3. Selection acceptance in the (mKK , |cos θKK |) plane for (left) Run 1 and (right) Run 2. The
absolute normalisation ε = 1 is arbitrarily set at the ϕ(1020) pole. The dashed-red curves indicate the
kinematic boundary corresponding to the anti-charm veto, mK±γ→π0 > 2000MeV/c2. The hatched
areas delimited by the solid-black curves indicate the fiducial acceptance cut applied to the data.

the αij parameters such that the acceptance becomes independent of the undefined helicity
value at the decay threshold x = 0 (implying αi0 = 0, ∀i) and that the acceptance derivative is
continuous on the helicity folding line y = 0 (implying α0j = α1j , ∀j). These two constraints
leave twenty independent αij parameters to be determined in the fit.

The second factor appearing in the acceptance function of eq. (4.25), is defined as

εb(mKK , |cos θKK |;σc) =
1
2

[
1 + erf

(c0(mKK)− |cos θKK |
σc

)]
, (4.27)

and aims to describe the effect of the anti-charm veto that directly affects the Dalitz acceptance
region. This criteria, mK±γ→π0 > mcut, is equivalent to a mass-dependent helicity range

|cos θKK | < c0(mKK) ≡

(
M2
B0

s
+ 2m2

K +m2
π0 −m2

KK − 2m2
cut

)
mKKc

2

4MB0
s
qr(mKK)qB(mKK)

, (4.28)

which reaches the physical region, |cos θKK | ≤ 1 when mKK exceeds ∼1450 MeV/c2. The error
function entered in the definition of the acceptance accounts for the experimental resolution
on the upper-limit value, c0(mKK), through the resolution parameter σc.

The acceptance is evaluated separately for the Run 1 and Run 2 data samples. The set of
acceptance parameters, α⃗ = {αij , σc}, as well as the mass pole, the width, the reconstructed
mass resolution and the meson radius describing the mass shape of the resonances are let
free to vary in the fit. The two-dimensional acceptance extracted from the simultaneous fit
to the simulated samples is displayed in figure 3 for Run 1 and Run 2. The helicity boundary
resolution is found to be σfit

c = (2.17± 0.07)× 10−2 for Run 1 and σfit
c = (2.55± 0.03)× 10−2

for Run 2. To avoid any systematic effect due to the modelling of the acceptance boundary on
data, a fiducial cut, located 3σfit

c below the theoretical threshold, |cos θKK | < c0(mKK)−3σfit
c ,

is applied on the data sample, rejecting less than 1% of the selected signal. The corresponding
excluded acceptance is indicated by the hatched areas in figure 3.

The fitted meson radius parameter, common to all the resonances in the fit, is found to
be in very good agreement with the value used in the simulation. The dikaon mass resolutions
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analytically included in the relativistic Breit-Wigner model are found to be consistent with
the nominal resolutions derived from the direct study of the B0

s → ϕγ and B0
s → f ′2(1525)γ

simulated samples. Small biases on the mass and width parameters due to reconstruction
and selection effects are measured in the fit to determine the acceptance function,

δµsim
ϕ(1020) = µfit

ϕ(1020) − µsim
ϕ(1020) = (0.041± 0.007 +0.004

−0.014)MeV/c2,

δΓsim
ϕ(1020)/Γ

sim
ϕ(1020) = (2.1± 0.5± 0.1)%,

δµsim
f ′2(1525)

= (0.3± 0.1± 0.1)MeV/c2,

δΓsim
f ′2(1525)

/Γsim
f ′2(1525)

= (1.4± 0.3 +0.2
−0.1)%,

where the first uncertainties are due to the limited statistics of the simulated samples, and
the second are systematic uncertainties obtained by varying the acceptance model and the
simulation weighting procedures as discussed in section 6.1. These reconstruction biases
derived from simulation are used to correct the mass-shape parameters measured in data
for the ϕ(1020) and the f ′2(1525) resonances.

4.3 Background model

After sPlot subtraction of the combinatorial background and the partially reconstructed B

decays, the background contamination is dominated by the misidentified B0→ K+π−γ and
Λ0
b→ pK−γ decays which are both expected to contribute at the level of a few percent in

the signal region. A small and well localised contribution from B0 → D0(K+K−)π0 decays
with a high-energy neutral pion reconstructed as a photon is also expected. Other peaking
contaminations, e.g. charmless K+K−π0, are assumed to be small and therefore neglected in
the nominal model. This assumption is addressed in the studies of systematic uncertainties.

The two-dimensional distribution of the K+π−γ contamination in the (mKK , |cos θKK |)
observables plane is modelled using a dedicated selection of a reconstructed and identi-
fied K+π−γ data sample. The event reconstruction and selection strictly reproduce the
requirements discussed in section 2 for the B0

s→ K+K−γ signal with an adapted exclusive
criteria for the K+π− dihadron identification. The sPlot technique is used to extract the
B0→ K+π−γ contribution, and the dihadron mass and helicity angle are both re-evaluated
under the dikaon hypothesis, i.e. by assigning a kaon mass to the pion candidate. The same
procedure is applied to the baryonic Λ0

b → pK−γ decay, assigning the kaon mass to the
proton candidate. In addition to the mass substitution, mπ+(p) → mK , correction weights
derived from simulation are applied to the selected K+π−γ and pK−γ data candidates to
ensure their distributions correctly reproduce the corresponding misidentified contamination
passing the exclusive dikaon identification requirements. The resulting two-dimensional
projections of the 24× 104 (3× 104) K+π−γ (pK−γ) candidates, displayed in figure 4, are
used to build the background binned PDFs.

The background-subtracted K+K−γ sample possibly includes contaminations from
high-energy neutral pions misidentified as photons. The peaking

(
Kπ0

)±
K∓ decay modes

are highly suppressed by the anti-charm veto. The poorly known
(
K+K−)π0 charmless

contamination is expected to be small and is treated as a source of systematic uncertainty.
Other doubly misidentified contamination, for instance from

(
K+π−

)
π0, are included in the
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Figure 4. Reconstructed (left) B0 → K+π−γ and (right) Λ0
b → pK−γ candidates, projected on the

(mKK , |cos θKK |) plane. The dihadron mass and helicity observables are computed assigning the
kaon mass to the pion and proton tracks. The mass-shifted contributions of K∗(892)0, K∗

2 (1430)0

and D0 → K+π− are clearly visible in the projection of the B0 → K+π−γ candidates.

data-derived description of the
(
K+π−

)
γ contamination, discussed above. The suppressed

but well-localised contamination from the charmed decay mode B0 → D0π0, with a visible
branching fraction B(B0 → D0π0)·B(D0 → K+K−) = (1.07±0.06)×10−6, further suppressed
by the neutral pion misidentification, is included in the amplitude model as an incoherent
scalar contribution with a uniform helicity distribution. The D0 → K+K− mass shape is
described as a narrow Gaussian peak with a resolution of about 6.5 MeV/c2, adjusted to the
dikaon mass distribution around the D0 mass selected in the K+K−γ upper mass sideband.

5 Amplitude fit

5.1 Fit procedure and nominal isobar model

An unbinned extended likelihood fit of the nominal model is applied to the sWeighted data
sample, where the sWeights are determined from a mass-fit to the combined Run 1 and Run 2
data. The model is adjusted to data by minimizing the weighted negative log-likelihood
function defined as

− lnLω(ρ⃗) = −
N∑
i

ωi lnPi(mKK , |cos θKK |; ρ⃗ ), (5.1)

where Pi(mKK , |cos θKK |; ρ⃗) is the model PDF evaluated for the ith event observables given
the set of parameters ρ⃗, and ωi is the event weight derived from the sPlot formalism. The
PDF defined in eq. (4.23) is applied to the whole data sample, combining Run 1 and Run
2 candidates, using the weighted average acceptance

ε(mKK , |cos θKK |) = f1 × εRun1(mKK , |cos θKK |) + (1− f1)× εRun2(mKK , |cos θKK |),
(5.2)

where f1 is the relative Run 1 signal yield normalized to the integrated acceptance ratio.
As the signal PDF normalisation is related to the yield parameter Ns, one reference isobar

contribution and it phase can be fixed by setting to unity the complex coefficient associated
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State JPC µr [MeV/c2] Γr [MeV/c2] BK+K− [%] |cr| [×10] χ2
|cr| ∆lnL

ϕ(1020) 1−− 1019.461± 0.016 4.249± 0.013 49.2± 0.5 10 (fix) — —

f ′2(1525) 2++ 1517.4± 2.5 86± 5 43.8± 1.1 4.16± 0.09 2270 —

ϕ(1680) 1−− 1689± 12,a 211± 24,a seen 2.40± 0.15 266 +304

f2(1270) 2++ 1275.5± 0.8 186.6 +2.2
−2.5 2.30 +0.25

−0.20 1.07± 0.17 41 +18

ϕ3(1850) 3−− 1854± 7 87 +28
−23 seen 0.61± 0.16 14 +15

f2(2010) 2++ 2011 +62
−76 202 +67

−62 seen 0.74± 0.18 16 +13

(kk)nr 1−− — 0.79± 0.26 10 +17

a[43].

Table 1. Selected states contributing to the baseline isobar model. The nominal mass and width
parameters used to model the resonant lineshapes are reported in the 3rd and 4th column [11]. When
not specifically measured, the branching fraction to the K+K− final state (5th column) is taken as half
of the BKK̄ decay rate, neglecting any phase space effect for the heavy states far from the kinematic
threshold. The last three columns indicate the measured isobar coefficients, |cr|, the corresponding
squared significance, χ2

|cr|, and the increase in negative log-likelihood when the state is removed from
the baseline model, ∆lnL.

to the ϕ(1020) meson, cϕ(1020) = (1, 0). In the assumed limit of no B0
s/B

0
s asymmetry, a

reference phase can also be fixed for the incoherent even-spin subsystem. This is done by
setting the phase of the f ′2(1525) amplitude factor to zero. With this convention, the even-spin
complex phase is measured relative to the f ′2(1525) state, and the phase of the odd-spin
components is relative to the ϕ(1020) resonance.

The isobar model for the signal amplitude is built by selecting the possible contributions
among the well-established unflavored isoscalar mesons that have been observed in the dikaon
final state [11]. Each candidate is accepted in the nominal model if it significantly improves
the fit quality. Namely, the negative log-likelihood minimum is required to increase by more
than ∆lnL =12.5 units when the state is removed from the model, roughly indicating a√
2∆lnL = 5 standard deviations (σ) effect.4 In addition, the squared significance of the

fitted isobar coefficient, χ2
|cr| = |cr/σcr |

2, is required to exceed nine units to avoid selecting a
poorly resolved amplitude that mostly improves the fit quality through its contribution to
the interference pattern. The selected states passing those criteria are summarized in table 1,
together with their statistical significances and the world average masses and widths used
to parameterise their amplitude description. The free lineshape parameters for the ϕ(1020)
and f ′2(1525) mesons are found to be consistent with the current measurements, and the
ϕ(1020) meson radius is measured as rϕ = 1.01 ± 0.13 (GeV/c)−1.

4To better reflect their statistical interpretation, the quoted likelihood variations throughout the text

implicitly include the global scaling factor α =
∑N

i
ωi∑N

i
ω2

i

that aims at accounting for the statistical dilution due

to the sPlot signal weights such that ∆lnL = α∆ ln Lω. The scale factor measured on the selected sample
is α = 0.67.
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Besides the dominant contributions from the ϕ(1020) and the f ′2(1525) mesons, the fit
indicates a high-significance contribution from the (ss̄)-dominated vector meson, ϕ(1680),
with a fit fraction relative to the ϕ(1020) of the order of 6%. The f2(1270) state, the isoscalar
partner of the f ′2(1525) tensor meson, is found to contribute at the level of 1% to the overall
amplitude, and the JPC = 3−− ss̄ candidate, ϕ3(1850), is measured with a relative fit fraction
of the order of 0.3%. The amplitude fit also indicates a possible contribution from a heavy
tensor state around 2 GeV/c2. Several separate candidates are listed in ref. [11] in that
mass region, f2(1910), f2(1950), f2(2010) or f2(2150), which all contribute with a similar
significance. The f2(2010) state is slightly preferred by the fit, and is retained.

The nominal model includes a nonresonant component, (kk)nr, modelled as a pure
P-wave uniformly distributed in mass with a constant phase: Anr(mKK , θKK) = d1

10(θKK).
The nonresonant amplitude is found to contribute at the level of 0.5% with a statistical
significance of ∆lnL = +17. This contribution is, however, weakly resolved, and its significance
is strongly correlated to the parameterisation of the other vector components. In particular,
the significance of the nonresonant amplitude decreases either when the ϕ(1680) state width
parameter increases, or when the relativistic tail of the ϕ(1020) meson increases at a low
radius value.

The nominal PDF model depends on twenty free parameters: four overall normalisation
yields, Ns, NB0 , NΛ0

b
and ND0 , parameterising the signal and backgrounds contributions to

the data, six relative isobar factors |cr|, their five relative phases δr, the mass and width
parameters of the dominant resonances, ϕ(1020) and f ′2(1525), as well as the Blatt-Weisskopf
radius parameter of the former. The Breit-Wigner parameters of other resonant states are
fixed to the world average values reported in table 1. The corresponding fit model projected
on the mass and helicity observables, mKK and |cos θKK |, is shown in figure 5. The fitted
B0
s→ K+K−γ signal yield is found to be Ns = (44.4±0.4)×103. The fitted contamination of

the misidentified backgrounds B0→ K+π−γ and Λ0
b→ pK−γ are 6.3± 0.7% and 5.4± 0.9%,

respectively, in good agreement with the expectations derived from simulation studies discussed
in section 2. The residual background yield from the suppressed B0 → D0(K+K−)π0 decay
is found to be ND0 < 110, with 95% confidence.

The individual contribution of each component r to the B0
s→ K+K−γ amplitude model is

measured by defining the fit fractions in the analysis mass range mKK ∈ [2mK , 2400]MeV/c2 as

Fr = |cr|2
∫+1
0
∫ 2.4GeV/c2

2mK
|Ar(mKK , |cos θKK |)|2dϕ3∫+1

0
∫ 2.4GeV/c2

2mK

∑
p
∣∣∑rp crp · Arp(mKK , |cos θKK |)

∣∣2 dϕ3 , (5.3)

where dϕ3 = J3(mKK)dmKKdcos θKK is the phase space volume. Although it is not required
by the minimization process, each individual amplitude of the isobar model is normalised
to unity, ∫ +1

0

∫ 2.4GeV/c2

2mK

|Arp(mKK , |cos θKK |)|2dϕ3 = 1, (5.4)

to allow an easier interpretation of the associated isobar factor that directly provides the
relative fit fractions normalized to ϕ(1020): Fr/Fϕ(1020) = |cr|2.

To account for the statistical dilution due to the sPlot weights, the asymptotically
correct approach [44, 45] is adopted to evaluate the statistical error on the fit parameters
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Figure 5. One-dimensional projection of the nominal fit on (top) mKK and (bottom) |cos θKK |
observables. Nonuniform binning is applied on both projections, with the bin width varying from
0.5 MeV/c2 (in the ϕ(1020) region) to 20 MeV/c2 for mKK , and from 0.025 to 0.075 for |cos θKK |.

and on the derived fit fractions. The statistical coverage of the method is validated using
a large sample of pseudoexperiments. For that purpose, a three-dimensional binned PDF
representation of the data sample observables (mKKγ , mKK , |cos θKK |) is prepared using an
adaptative binning adjusted to the data density. Pseudodata samples are randomly generated
from that PDF with a random yield consistent with the size of the selected data sample.
Each step of the analysis, including evaluating the sWeights, is applied to the generated
pseudoexperiments. As an illustration, the pseudodata dispersion of the f ′2(1525) relative
fit fraction, Ff ′2(1525)/Fϕ(1020), compared with the statistical uncertainty derived from the
fit using the asymptotically correct estimation of the parameters’ covariance, is displayed
in figure 6. The statistical interval corresponding to 68.3% of the pseudodata population
on both sides of the distribution maximum is found to be almost symmetrical and in good
agreement with the asymptotic error interval obtained from the fit to data.
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Figure 6. Distribution from pseudoexperiments of the f ′2(1525) relative fit fraction normalized to
the ϕ(1020) fraction. The one, two and three σ asymmetric intervals, containing respectively 68.3%,
95.5% and 99.7% of the pseudodata population on both sides of the distribution mean, are indicated
by the green, orange and red coloured areas, respectively. The solid and dotted vertical lines indicate
the central value and the statistical interval returned by the fit to the data sample, evaluated using an
asymptotically correct approach.

5.2 Likelihood minima pattern

Several distinct and almost degenerate −lnL minima separated by less than three units are
found by exploring the isobar parameter space. This quasi-degenerated behaviour can be
explained by the poorly constrained interference pattern in the symmetrical B0

s→ K+K−γ

decay where the odd- and even-spin components form two incoherent amplitude systems.
The even-spin subsystem consists of a largely dominant f ′2(1525) amplitude surrounded

by the two small f2(1270) and f2(2010) contributions that may either interfere constructively
or destructively with almost the same statistical significance. A first set of four solutions
separated by less than one log-likelihood unit, hereafter denoted Xi with i ∈ {0, 1, 2, 3},
originate from the interference ambiguities in the even-spin subsystem, leaving the structure
of the odd-spin system unchanged. The overall minimum solution X0 (∆lnL = 0) illustrated
in figure 5 corresponds to the smallest fit fractions for each resonant state, along with positive
interference. Other solutions with a larger amplitude and destructive interference, either for
the f2(2010) (X1, ∆lnL = 0.1) or the f2(1270) (X2, ∆lnL = 0.5) or both (X3, ∆lnL = 0.6),
are barely disfavoured. The overall contribution of the three spin-2 states, including their
interference, is found to be 16.8% identically for the four solutions Xi that only differ by
their internal interference pattern. The dominant contribution of the f ′2(1525) state varies
from 12% with constructive interference for the preferred solution X0, to 20% with negative
interference for the solution X3.

A similar ambiguity appears in the odd-spin system, which consists of the two well-
separated vector resonances, ϕ(1020) and ϕ(1680), connected by the small nonresonant
P-wave, (kk)nr, that can either interfere constructively or destructively in the ϕ(1680) region.
As a consequence, another set of four minima, denoted by Yi with i ∈ {0, 1, 2, 3}, is obtained.
It approximately replicates the Xi solutions for the even-spin subsystem and exhibits an
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Figure 7. Negative log-likelihood scans as a function of (left) the vector isobar |cϕ(1680)| and (right)
the tensor isobar |cf ′

2(1525)| in the vicinity of the fit solutions X0 and Y0. The fit minima, well separated
in the vector system, correspond to the same location in the tensor system.

alternative interference pattern for the vector components with a large ϕ(1680) fit fraction of
about 18% along with large destructive interference, to be compared to 4% with constructive
interference for the solutions set Xi. The small spin-3 amplitude, ϕ3(1850), does not induce
any additional minimum pattern in the odd sector as its interference vanishes in the integration
over the helicity observable due to the orthogonality of the Wigner d-functions. The four Yi
solutions are modestly disfavored with a log-likelihood shift from ∆lnL = 1.5 to 2.9 units.
The even-spin structure of each Yi solution is very close to that of the corresponding Xi one,
with a consistent overall tensor fraction identical for the four solutions within 0.1%. For
illustration, the likelihood scans of the ϕ(1680) and the f ′2(1525) isobars in the vicinity of
the solutions X0 and Y0 are compared in figure 7. The detailed amplitude structure of the
eight quasi-degenerated solutions is summarized in appendix A.

The very large ϕ(1680) fit fraction of the Yi solutions is questionable, as this radial
excitation of the ground state is expected to mainly decay into K∗0K and ϕη final states [11,
46]. The small partial decay rates of the ϕ(1680) to a kaon pair [47, 48] disfavors a large
contribution to the (K+K−)γ final state. The solutions Yi would imply an unlikely large
B0
s → ϕ(1680)γ branching fraction ratio

Rϕγ = B(B0
s → ϕ(1680)γ)

B(B0
s → ϕ(1020)γ) ≃ 5.5± 0.9.

This presumption is also supported by the amplitude analysis of the B0
s → J/ψK+K−

decay [49] which reports the fit fraction FJ/ψK+K−

ϕ(1680) = 4.0 ± 0.3 (stat.) ± 0.3 (syst.)%, very
consistent with the value observed for the fit solutions Xi.

Similar arguments can be made for the orbitally excited tensor f ′2(1525) and its almost
decoupled isoscalar partner, f2(1270). The large f2(1270) fit fraction of the fit solutions X2
and X3 (or equivalently Y2 and Y3) would imply the unlikely large ratio of branching fractions

Rf2γ = B(B0
s → f2(1270)γ)

B(B0
s → f ′2(1525)γ)

= 3.0± 0.3.

Although most of the quasi-degenerate fit solutions are disfavoured by external arguments,
no definitive statement can be derived from the amplitude fit to the current data, given
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the numerical proximity of the negative log-likelihood minima. It is worth noting, however,
that the tensor subsystem including the three states f2 = {f2(1270), f ′2(1525), f2(2010)} is
found to contribute with an overall fit fraction of about 17.0% consistently for all the eight
solutions. The ϕ(1020) and f ′2(1525) lineshape parameters as well as the signal and background
composition of the data sample are also found to be independent of the amplitude fit solutions.

6 Systematic uncertainties

The sources of systematic uncertainty can be organised into four main categories driven by
the analysis steps: the uncertainties related to the K+K−γ mass fit and the determination
of the sP lot weights, the uncertainties related to the parametrisation of the two-dimensional
acceptance, the uncertainties related to the amplitude PDF and the description of the
backgrounds, and the uncertainties related to the nominal choices for the dikaon isobar model.

The systematic uncertainties are summarised in table 2, and details are provided in
the following subsections. The systematic uncertainties are presented as determined for the
best-fit minimum, but their values are similar for other solutions.

6.1 Mass fit and sPlot weights

The combinatorial K+K−γ background and the partially reconstructed decays are statistically
subtracted by applying sP lot weights derived from a fit to the reconstructed invariant mass,
mKKγ . The associated uncertainties reported in the third column of table 2 are obtained by
repeating the full amplitude analysis with alternative mass models to extract the sP lot weights.
The fixed parameters that describe the tails on both sides of the signal peak have been varied
and an alternative shape based on a first-order polynomial function has been tested for the
combinatorial background. Particular attention was paid to the modelling of the partially
reconstructed backgrounds that extend into the signal mass region. The fixed parameters of
the one-missing-pion shape have been varied by several times their uncertainty as derived from
simulation studies. Similar variations have been applied to the low-mass two-missing-pion
component that slightly overlaps with the signal peak. Additionally, the fit has been repeated
in the reduced mass range, mKKγ ∈ [5100, 6400]MeV/c2, with this low-mass component
removed from the fit model. To further check that the partially reconstructed background
components are correctly subtracted in the signal mass region, the full data sample has
been split into four bins of the dikaon mass, with very different levels of contamination:
the ϕ(1020) region, mKK ∈ [1000, 1100]MeV/c2, which is almost background free, the two
intermediate regions mKK ∈ [1100, 1300]MeV/c2 and mKK ∈ [1300, 1525]MeV/c2, where
most of the partially reconstructed backgrounds accumulate, and the high dikaon mass region
mKK ∈ [1525, 2400]MeV/c2. A limited variation of the amplitude fit fractions is obtained
when applying sWeights extracted in separate mKK bins. The same procedure is applied to
the helicity observable, splitting the data sample into four bins of |cos θKK | almost equally
populated. The difference in the mKKγ mass distribution over time has also been tested
by splitting the data sample into data-taking periods. A small change in the amplitude fit
results is obtained when extracting the sWeights from separate mass fits per year of data
taking or when splitting the data into two subsamples for Run 1 and Run 2. A simultaneous
amplitude fit to the Run 1 and Run 2 data with separate acceptances and independent
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mKKγ fit Acceptance Amp. fit Isobar model Total

ϕ(1020) Fr [%]
(
+0.21
−0.65

) (
+0.85
−0.38

) (
+0.32
−0.87

) (
+0.32
−0.49

) (
+0.99
−1.19

)
µr [keV/c2]

(
+5
−6

) (
+5
−6

) (
+5
−4

) (
+6
−14

) (
+11
−16

)
Γr [keV/c2]

(
+3
−10

) (
+8
−7

) (
+14
−62

) (
+20
−82

) (
+26
−103

)
rϕ [(GeV/c)−1]

(
+0.02
−0.07

) (
+0.05
−0.04

) (
+0.05
−0.06

)
±0.09 ±0.12

f2(1270) Fr [%]
(
+0.09
−0.22

) (
+0.04
−0.07

) (
+0.13
−0.21

) (
+0.09
−0.13

) (
+0.19
−0.34

)
Fr/Fϕ [%]

(
+0.13
−0.31

) (
+0.05
−0.10

) (
+0.20
−0.30

) (
+0.13
−0.19

) (
+0.28
−0.49

)
δr [deg.]

(
+6.3
−3.8

) (
+1.1
−0.9

) (
+5.6
−8.5

) (
+23.1
−14.1

) (
+24.6
−16.9

)
f ′2(1525) Fr [%]

(
+0.25
−0.19

) (
+0.17
−0.14

) (
+0.59
−0.25

) (
+0.61
−0.16

) (
+0.90
−0.38

)
Fr/Fϕ [%]

(
+0.32
−0.14

) (
+0.32
−0.36

) (
+0.85
−0.18

) (
+0.86
−0.23

) (
+1.29
−0.49

)
µr [MeV/c2]

(
+0.3
−0.8

)
±0.2

(
+0.6
−0.5

) (
+1.2
−1.7

) (
+1.4
−1.9

)
Γr [MeV/c2]

(
+0.6
−0.9

) (
+0.8
−0.4

) (
+2.0
−0.6

) (
+2.5
−1.0

) (
+3.4
−1.5

)
ϕ(1680) Fr [%]

(
+0.29
−0.48

)
±0.18 ±0.28 ±0.47 ±0.70

Fr/Fϕ [%]
(
+0.39
−0.64

) (
+0.25
−0.32

) (
+0.46
−0.35

)
±0.70

(
+0.97
−1.05

)
δr [deg.]

(
+2.7
−3.1

) (
+1.2
−1.4

) (
+3.9
−1.7

) (
+6.7
−6.9

) (
+8.3
−7.9

)
ϕ3(1850) Fr [%]

(
+0.13
−0.07

)
±0.03

(
+0.07
−0.04

) (
+0.12
−0.10

) (
+0.19
−0.13

)
Fr/Fϕ [%]

(
+0.19
−0.10

) (
+0.05
−0.04

) (
+0.10
−0.06

) (
+0.17
−0.14

) (
+0.28
−0.19

)
δr [deg.]

(
+1.4
−4.7

) (
+2.7
−1.5

) (
+4.1
−3.2

) (
+11.5
−10.5

) (
+12.6
−12.1

)
f2(2010) Fr [%]

(
+0.08
−0.01

) (
+0.02
−0.07

) (
+0.14
−0.07

) (
+0.11
−0.10

) (
+0.20
−0.14

)
Fr/Fϕ [%]

(
+0.11
−0.01

) (
+0.02
−0.10

) (
+0.21
−0.10

) (
+0.16
−0.14

) (
+0.29
−0.20

)
δr [deg.]

(
+17.1
−15.9

) (
+9.1
−2.8

) (
+20.5
−11.7

) (
+43.7
−55.1

) (
+52.1
−58.6

)
(kk)nr Fr [%]

(
+0.21
−0.08

) (
+0.04
−0.14

) (
+0.23
−0.12

) (
+0.12
−0.09

) (
+0.34
−0.22

)
Fr/Fϕ [%]

(
+0.31
−0.11

) (
+0.07
−0.21

) (
+0.34
−0.17

) (
+0.17
−0.12

) (
+0.50
−0.32

)
δr [deg.]

(
+1.9
−4.5

) (
+1.7
−2.8

) (
+6.1
−6.7

) (
+5.5
−3.9

) (
+8.5
−9.4

)
Table 2. Systematic uncertainties on the parameters of the amplitude fit: fit fractions, Fr, relative
fit fractions, Fr/Fϕ, isobar phases, δr, and mass-shape parameters, µr, Γr and rϕ. The uncertainties
due to the mass fit and the sP lot weights, the two-dimensional acceptance definition, the amplitude fit
PDF and the isobar model are given from the 3rd to the 6th columns, respectively. The last column
shows the overall uncertainties calculated as the quadratic sum of the individual sources.
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background contributions has alternatively been performed. The small difference with the
nominal strategy is included in the budget of systematic uncertainties.

6.2 Acceptance model

The acceptance-related uncertainties reported in the fourth column of table 2 address the
acceptance model definition, the simulation corrections weights and the limited data samples
used to derive the acceptance function. The robustness of the acceptance model has been tested
against the choice of the considered simulated decays and using alternative parameterisations.
The impact of the limited statistics has been evaluated by repeating the amplitude analysis
with sets of acceptance parameters randomly generated according to their covariance. The
uncertainties affecting the weights reproducing the dikaon and the photon identification
efficiencies [30, 31] have been propagated to the acceptance estimate. Alternative weighting
corrections [50] have been tested for the kinematics distributions.

6.3 Amplitude PDF and residual backgrounds

The signal PDF defined in eq. (4.22) explicitly assumes an equal decay rate for B0
s and B0

s

mesons. To check this assumption and the resulting interference cancellation, the amplitude
fit is repeated in the unfolded (mKK , cos θKK) plane with an adapted PDF for the signal
component

Ps(mKK , θKK) = Ns

[1− a

2 × PB0
s
+ 1 + a

2 × PB0
s

]
, (6.1)

allowing the asymmetry parameter, a, to vary freely. The measured helicity observable,
θKK , arbitrarily defined with respect to the direction of the positively charged kaon, leads
to the flavour-dependent PDF definitions

PB0
s
(mKK , θKK) = ε(mKK , θKK) · J3(mKK) ·

∣∣∣∣∣∑r cr · Ar(mKK , θKK)
∣∣∣∣∣
2

, (6.2)

PB0
s
(mKK , θKK) = PB0

s
(mKK , π − θKK), (6.3)

where the coherent sum is over all contributions, regardless of their spin parity. In addition,
the reference phase for the even-spin states, which is fixed to 0 for the f ′2(1525) in the nominal
fit, is allowed to vary to account for the non-exact cancellation of the interference between
odd and even spin resonances. The decay asymmetry and the f ′2(1525) relative phase are
found to be consistent with no asymmetry within two standard deviations

a = (−3.9± 2.2)× 10−2,

δf ′2(1525) = −46± 37 deg.

The observed variations of the fit parameters that do not exceed 0.3% for the fit fractions
are added to the budget of the systematic uncertainties.

A small impact on the amplitude fit is observed when varying the PDFs that describe the
background contributions discussed in section 4.3. The possible peaking contribution from
charmless B → K+K−π0 decays with a high-energy neutral pion misidentified as K+K−γ

is neglected in the nominal PDF. The expected contamination, roughly estimated at the level
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of 0.5% from simulations, is affected by large uncertainties as the actual resonant structure of
this final state is poorly known. The final state most similar to the signal, B0

s → ϕπ0, has a
predicted branching fraction of O(10−7), leading to an expected negligible contamination of
O(0.1%). The same final state in the B0 decay is expected to be further suppressed, O(10−9),
and constrained by the upper limit [51] provided by Belle of B(B0 → ϕπ0) < 1.5 × 10−7.
Evidence at 3.5σ for the B0 → K+K−π0 decay was reported by Belle [52], with a relatively
large branching fraction of B = (2.17± 0.60± 0.24)× 10−6. The charged intermediate states,
K∗±K∓, are removed from the analysis by the anti-charm veto. However, the unknown S-wave
(K+K−)π0 contribution might contaminate the (K+K−)γ signal at the level of O(1%). No
clear statement about a possible intermediate (K+K−) structure could be made with the
Belle data, however, BaBar has reported [53] a possible observation of a broad structure
peaking near mKK ∼ 1500MeV/c2 in the corresponding charged decay, B+ → K+K−π+.
LHCb has performed the first amplitude analysis of this three-body charged mode [54], and
a good description of the data pattern in that mass region is also observed when including
the contribution of a vector resonance compatible with the ρ(1450) hypothesis.

The potentially neglected contamination from the charmless K+K−π0 decays, which may
also include a residual contribution from K+K−η(→ γγ) decays not fully accounted for in the
partially reconstructed backgrounds, has been investigated by adding an incoherent S-wave
contribution to the dikaon amplitude. Several possible models have been tested: a resonant S-
wave contribution based on the scalar mesons f0(980)π0 or f0(1500)π0, a resonant vector-scalar
contribution based on ϕ(1020)π0 or ρ0(1450)π0, a resonant tensor-scalar contribution based
on f ′2(1525)π0, and a nonresonant scalar contributions (K+K−)nrπ

0. The corresponding
PDFs are built assuming the same acceptance as for the K+K−γ final state. A relativistic
Breit-Wigner lineshape is used to describe the f0(1500) and the ρ(1450) resonances with
their world average mass and width [11]. A Flatté lineshape is used for the f0(980) resonance
with the BES parameterisation [55]. The angular dependencies are described by the relevant
Wigner d-functions, d1

00 (d2
00) for the vector (tensor) resonances and d0

00 = 1 for the scalar
hypothesis. Among the different investigated models, the largest contributions are obtained
with the f0(980)π0 hypothesis, Nf0π0/Ns=5.1± 1.0 %, and with the ϕ(1020)π0 hypothesis,
Nϕπ0/Ns=1.2± 0.2 %, improving the fit quality in both cases. The other considered scalar,
vector or tensor contributions around 1.5 GeV/c2, f0(1500), ρ(1450) or f ′2(1525), as well as
the nonresonant S-wave hypothesis, are all found to vanish in the fit. The possibly significant
K+K−π0 contamination at low mKK mass, much larger than expected in particular for
the very suppressed ϕπ0 final state hypothesis, may indicate an opportunistic improvement
of the fit when adding these additional degrees of freedom. Systematic uncertainties are
conservatively derived from the largest observed positive and negative variations of each
isobar parameter when adding any of the above K+K−π0 hypotheses to the fit model.

6.4 Isobar model

The lineshape parameters are fixed to their world average measurements for the f2(1270),
ϕ(1680), ϕ3(1850) and f2(2010) components of the nominal isobar model, while they are free
to vary for the two dominant ϕ(1020) and f ′2(1525) resonances. The amplitude fit has been
repeated by varying each fixed parameter within its uncertainty range by ±1σ. The quadratic
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sum of the parameter variations, limited to few 0.1% at most for the fit fractions, are added
to the systematic uncertainty. When allowed to vary freely, the lineshape parameters for
the subdominant ϕ(1680) component are found to be

µϕ(1680) = 1688± 10 (stat.)MeV/c2,
Γϕ(1680) = 264± 28 (stat.)MeV/c2,

in good agreement with the nominal value taken from the Belle measurement [43] and
consistent with the current world average estimate [11]. Moreover, the statistical significance
of the isobar coefficient for the nonresonant (kk)nr and for the ϕ3(1850) components are
both reduced below the 3σ level with fit fractions measured as F(kk)nr = (0.34 ± 0.27)%
and Fϕ3(1850) = (0.15 ± 0.11)%, respectively.

A negligible impact on the fit fractions is observed when varying the nominal ϕ(1020)
mass resolution, analytically included in the relativistic Breit-Wigner lineshape. Similarly,
for higher mass resonances, the resolution has been varied by ±50% of the nominal value,
inducing marginal variation on the amplitude fit parameters other than the free f ′2(1525)
width that varies accordingly.

The angular momentum in the radiative B decay to a Jr-spin state can take LB = {Jr−1,
Jr, Jr + 1} values. The amplitude fit is performed using the lowest value Jr − 1 for all
resonances. Repeating the fit by fixing the LB parameter to the other allowed eigenvalues
leads to a negligible effect on the fit fractions.

The meson radius that defines the centrifugal correction in the Blatt-Weisskopf form-
factors is nominally set in the range [0.5, 3] (GeV/c)−1 for the light resonances [56]. The
ϕ(1020) radius parameter rϕ is left free to vary in the nominal fit, leading to a measured value
of rϕ = 1.01±0.13 (GeV/c)−1. The meson radius for heavier resonances is fixed to the nominal
value rf2 = 3.0 (GeV/c)−1. The likelihood scan of this parameter indicates that large radii are
preferred with no clear minimum of the negative log-likelihood up to very large unphysical
values. Associated systematics are derived from the maximal negative or positive variations
of each of the fit parameters in the wide radius range rf2 ∈ [2.0, 10] (GeV/c)−1, corresponding
to changes of the log-likelihood by [+0.7,−3.0] units with respect to the nominal point.

6.5 Other possible resonant states

The nominal isobar model includes the isoscalar dikaon states that significantly improve
the fit quality according to the selection criteria presented in section 5.1. Several possible
resonant candidates with poorly measured properties, and sometimes unclear spectroscopic
classification, may additionally contribute in the high-mass region. No large contribution
is observed when adding any of the known candidates to the nominal model. The most
significant rejected candidate is the f4(2050) state, just below the significance threshold
for inclusion. The measured partial rate, B(f4(2050) → KK̄) = (0.68 +0.34

−0.18)%, indicates
that this state would have a negligible contribution to the signal. This spin-4 meson is
generally interpreted as an almost decoupled uū+ dd̄ isoscalar state. The yet unconfirmed
associated ss̄ heavy partner, f4(2300), induces a rather significant fit quality improvement,
∆lnL = −10. The impact on the nominal fit fractions is small, and no additional systematic
is included in the error budget.

– 23 –



J
H
E
P
0
8
(
2
0
2
4
)
0
9
3

Assuming SU(3)F symmetry, the excited dikaon states are reasonably described by a
ρ-ω-ϕ model with an almost ideal singlet-octet mixing and can be interpreted as recurrences
of the ρ-ω-ϕ vector ground state. Except for the well measured f2(1270) isoscalar, the nominal
amplitude model only includes ss̄-dominant states. The largest significance, albeit limited,
when adding the partially decoupled isovector partner to the isobar model, is observed for the
wide and possibly mixed vector states ρ(1450) and ρ(1700) that both increase the fit quality
by ∆lnL ≈ −5. Including those states essentially has the same impact on the fit as the
enlargement of the ϕ(1680) width discussed above. A limited fit improvement, ∆lnL ≈ −3
units, is observed as well with the a2(1320) isovector partner of the orbitally excited f2(1270)
and f ′2(1525) states. Including this resonance only affects the f2(1270) fit fractions due
to its approximate mass and width degeneracy with its isoscalar partner. The measured
f2(1270) fit fraction must be considered as possibly receiving contributions from both the
quasi-degenerate isoscalar partners. No impact is observed with the a2(1700), possible partner
of the f2(1640) and f2(1950) isoscalars, nor with the ρ3(1690) associated to the ϕ3(1850)
ss̄ state. As no clear evidence of contribution is observed for any of the tested additional
states, no additional systematic source is included in the error budget.

7 Results and conclusions

An isobar amplitude analysis of the radiative B0
s → K+K−γ decay mode is performed in

the mass range mKK ∈ [2mK , 2400] MeV/c2. The ϕ(1020) vector meson, accounting for
almost 70% of the amplitude, dominates the dikaon structure. Considering the resonant
contributions of f2(1270), f ′2(1525) and f2(2010) states, the overall tensor contribution to
the amplitude is measured as

F{f2} = 16.8± 0.5 (stat) ± 0.7 (syst)%,

mostly dominated by the f ′2(1525) state. Several almost statistically equivalent solutions
are obtained for the detailed resonant structure depending on whether the low contributing
resonances interfere destructively or constructively with the dominant amplitudes. The
statistically preferred solution corresponds to the lowest values of all the individual fit
fractions along with constructive interferences that contribute for 3.5% and 8.1% in the even-
spin and odd-spin subsystems, respectively. The corresponding fit fractions are given in table 3,
together with the measured relative phases. The first quoted uncertainties are statistical
and correspond to the 68.3% intervals derived from pseudoexperiments and the second
uncertainties are the associated systematic uncertainties. The sum of partial fit fractions is
less than unity due to the integrated interference. Larger individual fit fractions, up to 20%
for the f ′2(1525) state, associated with large destructive interference, cannot be excluded.

The branching fraction B(B0
s → f ′2(1525)γ) relative to B(B0

s → ϕ(1020)γ) can be derived
from the fit fractions ratio as

B(B0
s → f ′2(1525)γ)

B(B0
s → ϕ(1020)γ) = B(ϕ(1020) → K+K−)

B(f ′2(1525) → K+K−) ·
Ff ′2(1525)
Fϕ(1020)

. (7.1)
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State Fit fraction [%] Relative fit fraction [%] Phase [deg.]

ϕ(1020) 70.3 +0.9
−1.0

+1.0
−1.2 100 0 (fixed)

f2(1270) 0.8± 0.3+0.2
−0.3 1.2 +0.4

−0.3
+0.3
−0.5 −55 +13

−17
+25
−17

f ′2(1525) 12.1 +0.6
−0.5

+0.9
−0.4 17.3 +0.8

−0.7
+1.3
−0.5 0 (fixed)

ϕ(1680) 3.8 +0.6
−0.5±0.7 5.4 +0.9

−0.6
+1.0
−1.1 137 +5

−6± 8

ϕ3(1850) 0.3 +0.2
−0.1

+0.2
−0.1 0.4 +0.3

−0.2
+0.3
−0.2 −61 +16

−13
+13
−12

f2(2010) 0.4± 0.2+0.2
−0.1 0.6 +0.3

−0.2
+0.3
−0.2 43 +30

−24
+52
−59

(kk)nr 0.5 +0.4
−0.2

+0.3
−0.2 0.6 +0.5

−0.3
+0.5
−0.3 165 +6

−16± 9

Table 3. Absolute and relative fit fractions (in the mass range mKK ∈ [2mK , 2400] MeV/c2) and the
associated isobar phase for the best-fit solution. The first quoted uncertainties are statistical and
correspond to the 68.3% intervals derived from pseudoexperiments, while the second are systematic.

Using the world average measurements reported in table 1 for the branching fraction of
ϕ(1020) and f ′2(1525) into K+K−, the ratio

B(B0
s → f ′2(1525)γ)

B(B0
s → ϕ(1020)γ) = 0.194+0.009

−0.008 (stat.)+0.014
−0.005 (syst.)± 0.005 (B)

is obtained for the statistically preferred fit solution that corresponds to the smallest value.
The last uncertainty is associated with the ratio of measured branching fractions to the
K+K− final state. This result establishes the first observation of the radiative B0

s decay to
an orbitally excited meson, B0

s → f ′2(1525)γ, and the second radiative transition observed
in the B0

s sector [2].
A relative branching ratio can similarly be derived for the f2(1270) tensor partner,

B(B0
s → f2(1270)γ)

B(B0
s → ϕ(1020)γ) = 0.25+0.09

−0.07 (stat.)+0.06
−0.10 (syst.)± 0.03 (B),

which possibly includes the contribution from its quasi-degenerate isovector partner, a2(1320).
The relative branching fraction of the ϕ(1680) → K+K− contribution is measured as

B(B0
s → ϕ(1680)γ)

B(B0
s → ϕ(1020)γ) × B(ϕ(1680) → K+K−) = 0.026+0.004

−0.003 (stat.)± 0.005 (syst.).

The mass and width of the f ′2(1525) meson are measured, identically for all the almost
degenerate solutions, as

µf ′2(1525) = 1521.8± 1.7 (stat.) +1.4
−1.9 (syst.)MeV/c2,

Γf ′2(1525) = 79.3± 3.5 (stat.) +3.3
−1.5 (syst.)MeV/c2,
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in good agreement with the current world average [11] and with the previous LHCb measure-
ment [49]. The precise measurement of the ϕ(1020) parameters gives

µϕ(1020) = 1019.50± 0.02 (stat.)± 0.02 (syst.)MeV/c2,

Γϕ(1020) = 4.36± 0.05 (stat.) +0.03
−0.10 (syst.)MeV/c2,

consistent with their current world average within 1.5 standard deviations. The corresponding
Blatt-Weisskopf radius parameter is measured to be

rϕ = 1.0± 0.2 (stat.)± 0.1 (syst.) (GeV/c)−1.
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A Fit minima pattern

Table 4 reports the fit fractions and the integrated interference fractions, I(r1,r2) =∫ [
|Ar1 +Ar2 |2 − |Ar1 |2 − |Ar2 ||2

]
, for the quasi-degenerated fit minima. The corresponding

isobar coefficients and relative phases are given in table 5. The quoted symmetrical errors
correspond to the asymptotically correct estimation of the statistical intervals.
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∆lnL 0.0 (X0) 0.1 (X1) 0.5 (X2) 0.6 (X3) 1.5 (Y0) 1.6 (Y1) 2.5 (Y2) 2.9 (Y3)

JPC = 2++ F{f2}=16.8 ± 0.5% F{f2}=17.3 ± 0.6%

Ff ′2(1525) 12.1± 0.5 13.8± 0.6 17.9± 0.7 20.4± 0.8 12.2± 0.5 13.9± 0.6 18.3± 0.8 20.8± 0.8

Ff2(1270) 0.8± 0.3 0.9± 0.3 2.9± 0.5 3.2± 0.6 0.9± 0.3 0.9± 0.3 3.1± 0.5 3.4± 0.6

Ff2(2010) 0.4± 0.2 3.7± 0.5 0.5± 0.2 4.1± 0.8 0.5± 0.2 4.3± 0.6 0.6± 0.2 4.8± 0.6

I(f ′2(1525), f2(1270)) +2.4± 0.4 +2.3± 0.6 −5.7± 0.7 −6.3± 0.6 +2.6± 0.4 +2.7± 0.5 −6.1± 0.7 −6.5± 0.6

I(f ′2(1525), f2(2010)) +0.7± 0.4 −3.1± 0.6 +1.7± 0.4 −4.9± 0.4 +0.8± 0.4 −3.5± 0.6 +1.9± 0.3 −5.3± 0.4

I(f2(2010), f2(1270)) +0.3± 0.1 −0.7± 0.4 −0.5± 0.3 +0.3± 0.5 +0.4± 0.1 −1.0± 0.3 −0.5± 0.3 +0.1± 0.4

I{f2} +3.5 ± 0.5 −1.5 ± 0.5 −4.6 ± 0.9 −11.0 ± 1.1 +3.8 ± 0.5 −1.8 ± 0.5 −4.7 ± 0.8 −11.8 ± 1.0

JPC = (1,3)−− F{ϕ}=83.2 ± 0.5% F{ϕ}=82.7 ± 0.6%

Fϕ(1020) 70.4± 1.0 71.1± 0.7

Fϕ(1680) 4.0± 0.5 18.2± 1.0

Fϕ3(1850) 0.3± 0.1 0.2± 0.1

F(kk)nr 0.4± 0.3 0.3± 0.2

I(ϕ3(1850), ϕ(1680)) +3.9± 0.3 −7.8± 0.5

I(ϕ(1020), (kk)nr) +4.0± 1.2 +2.7± 1.0

I(ϕ(1680), (kk)nr) +0.3± 0.2 −2.0± 0.8

I(ϕ3(1850), ϕ1) 0 0

I{ϕ} +8.1 ± 1.0 −7.2 ± 0.6

Table 4. Fit fractions, Fr, and interference fractions, I(r1,r2), in the mass range
mKK ∈ [2mK , 2400]MeV/c2, for (top) the even-spin components and (bottom) the odd-spin com-
ponents for the fit minima (left) Xi and (right) Yi. The total integrated interference, I{rp}, and
the overall fit fraction, F{rp} for the odd- (r− = ϕ) and the even-spin (r+ = f2) subsystems are
emphasised.
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X0 X1 X2 X3

|cr| [×10] δr [deg.] |cr| [×10] δr [deg.] |cr| [×10] δr [deg.] |cr| [×10] δr [deg.]

ϕ(1020) 10 0 10 0 10 0 10 0

ϕ(1680) 2.40± 0.15 138± 4 2.39± 0.14 138± 4 2.38± 0.14 138± 4 2.38± 0.14 137± 4

ϕ3(1850) 0.61± 0.16 −61± 13 0.61± 0.15 −61± 12 0.60± 0.16 −61± 13 0.60± 0.16 −61± 13

(kk)nr 0.79± 0.26 165± 8 0.80± 0.21 165± 6 0.81± 0.21 165± 6 0.81± 0.21 164± 7

f ′2(1525) 4.16± 0.09 0 4.43± 0.10 0 5.04± 0.12 0 5.38± 0.11 0

f2(1270) 1.07± 0.17 −55± 14 1.11± 0.17 −72± 16 2.04± 0.19 146± 7 2.13± 0.19 130± 6

f2(2010) 0.74± 0.18 42± 26 2.29± 0.17 −122± 10 0.86± 0.20 93± 28 2.43± 0.18 68± 8
Y0 Y1 Y2 Y3

ϕ(1020) 10 0 10 0 10 0 10 0

ϕ(1680) 5.06± 0.15 −135± 3 5.07± 0.15 −135± 3 5.09± 0.15 −134± 3 5.09± 0.15 −134± 3

ϕ3(1850) 0.57± 0.17 116± 23 0.56± 0.17 116± 24 0.55± 0.18 117± 25 0.53± 0.18 117± 26

(kk)nr 0.59± 0.22 137± 14 0.59± 0.22 137± 14 0.60± 0.22 137± 14 0.60± 0.23 136± 15

f ′2(1525) 4.13± 0.09 0 4.41± 0.10 0 5.06± 0.11 0 5.41± 0.11 0

f2(1270) 1.09± 0.17 −43± 13 1.14± 0.18 −60± 14 2.08± 0.18 142± 7 2.18± 0.19 125± 5

f2(2010) 0.81± 0.15 44± 22 2.47± 0.17 −121± 9 0.92± 0.17 92± 24 2.59± 0.17 −68± 7

Table 5. Isobar coefficients and phases for (top) the fit minima Xi and (bottom) Yi.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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