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Abstract
Two reduced projective schemes are said to be Cremona equivalent if there is a Cremona 
map that maps one in the other. In this paper I revise some of the known results about 
Cremona equivalence and extend the main result of Mella and Polastri (Bull Lond Math 
Soc 41(1):89–93, 2009) [20] to reducible schemes. This allows to prove a very general con-
tractibility result for union of rational subvarieties.

Keywords Cremona equivalence · Reducible subvarieties · Birational maps

Mathematics Subject Classification Primary 14J70; Secondary 14N05 · 14E05

1 Introduction

The birational geometry of the projective space has always attracted the attention of alge-
braic geometers. The Cremona group, Cr(ℙr

k
) , that is the group of birational selfmaps of 

the projective space, has been intensively studied for well over a century but it is still a 
quite mysterious object. Here is an extract from the article “Cremona group” in the Ency-
clopedia of Mathematics, written by V. Iskovskikh in 1982:

One of the most difficult problems in birational geometry is that of describing the struc-
ture of the group Cr(ℙ3

k
) , which is no longer generated by the quadratic transformations. 

Almost all literature on Cremona transformations of three-dimensional space is devoted to 
concrete examples of such transformations. Finally, practically nothing is known about the 
structure of the Cremona group for spaces of dimension higher than 3. [14].

Unfortunately after 40 years the situation is not much better. A reasonable set of genera-
tors is not known yet. The Cremona groups have been proved to be non simple, [1, 9] and 
their behavior is wild from many points of view, as an example one can look at the results 
in [1]. Already the two dimensional Cremona group has many foundational problems that 
are far from being solved, see [2] for a very nice introduction. Instead of trying to tame this 
group, in this paper I want to use its wildness to address the following question.
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Question: Let X, Y ⊂ ℙr be birational reduced schemes is there a birational selfmap of 
the projective space � ∶ ℙr

⤏ ℙr such that �(X) = Y?
When the answer to the question is positive X and Y are said to be Cremona equivalent. 

The notion of Cremona equivalence is quite old and already at the end of XIX th century 
both Italian and English school of algebraic geometry approached the problem, with spe-
cial regards to plane curves, [8, 10, 13, 16]. The first result I am aware off in modern times, 
is due to Jelonek, [15] where the author proved that two irreducible and reduced birational 
subvarieties of the complex projective space are Cremona equivalent when roughly the 
dimension is smaller than the codimension. More recently I have been attracted by the 
problem and dedicated a series of papers to explore the possibility to extend birational 
maps of projective varieties to the ambient space. The first important improvement has 
been achieved in [20], see also [7] for an alternative proof, where it is proven that two irre-
ducible and reduced birational projective varieties of codimension at least 2 are Cremona 
equivalent.

It is not difficult to see that the result is sharp with respect to the codimension. It was 
classically known the existence of non Cremona equivalent rational plane curves, see for 
instance Example 3.7. Then stemming from the mentioned result in [20] there are two pos-
sible directions: study the Cremona equivalence of divisors, extend the result to reducible 
and reduced projective varieties. The case of divisors has been fruitfully studied. In [21] 
and [4] the authors completely described the Cremona equivalence classes of irreducible 
curves and gave conditions for a plane curve to be of minimal Cremona degree, that is 
with the smallest degree in the Cremona equivalence class. Partial results have also been 
obtained for special classes of divisors, [17], and special classes of rational surface, [18, 
19].

To the best of my knowledge the only cases of reducible varieties studied in relation to 
the Cremona equivalence are those concerning the contractibility of set of lines in the pro-
jective plane, [5, 6, 8, 11]. Even for this very special class of reducible varieties the answer 
is really complicate and it is not known yet a complete classification of contractible set of 
lines in the plane. The problem resting on the different possible configuration of intersec-
tion points. Note further that essentially nothing is known about the Cremona equivalence 
class of non contractible set of lines in the plane. That is given two configurations of lines 
in the plane nothing is known about their Cremona equivalence.

In this paper I want to address the case of reduced schemes of codimension at least 2. I 
was really amazed when I realized that also for this class it is possible to extend the result 
of irreducible subvarieties and give a complete answer to the question.

Theorem 1.1 Let X, Y ⊂ ℙr be two reduced schemes of dimension at most r − 2 . Then X is 
Cremona equivalent to Y if and only if X and Y are birational.

To appreciate the result and the amazing flexibility of the Cremona group just think of a 
bunch of lines L = ∪s

1
li ⊂ ℙr , for n ≥ 3 . Then there is a birational map � ∶ ℙr

⤏ ℙr map-
ping L to a set of s lines passing through a fixed point p. Hence any set of lines in ℙn is con-
tractible by a birational map as soon as n ≥ 3 . No matter how the irreducible components 
of L intersects we can always contract them to a set of s points with a birational selfmap of 
ℙr . As an application of Theorem 1.1 we’ll prove a similar statement for an arbitrary set of 
rational varieties.

Despite the proof of the theorem is constructive and algorithmic, it is difficult if not 
impossible to produce a birational map that realizes the Cremona equivalence of two 
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prescribed subvarieties. This is due to the fact that to follow the proof’s steps one has to 
produce irreducible monoids with special features and those are difficult to be computed 
on effective examples. Coming back to the wildness of Cr(ℙr

k
) the positive answer to the 

Cremona equivalence question for arbitrary subvarieties of codimension at least 2 can be 
seen as a further confirmation of the difficulty to describe and tame this incredible group of 
transformations, see also Remark 4.7.

The paper is organized as follows. First I introduce a set of special Cremona birational 
maps and use them to study the Cremona equivalence of special classes of varieties, in 
particular an explicit construction of the Cremona equivalence of sets of reduced points 
is given. Even if this part is not strictly necessary to prove the main result I think it allows 
to perceive the beauty of Cremona modification and it is also a nice training camp on the 
birational geometry of projective subvarieties of the projective space. The proof of the 
main Theorem is then finished in the last section. To do it I adapt the proof in [7] to the 
case of reducible varieties. This is done improving the computation of the dimension of 
monoids containing a subvariety, see Lemma 4.4, and avoiding the use of the results in [3] 
on the Segre locus to produce the chain of double projection needed to complete the argu-
ment. Finally as an application it is proven that any set of reduced codimension at least two 
rational varieties can be contracted by a Cremona transformation.

Many thanks are due to the referee for a careful reading and for suggesting an improve-
ment of Lemma 4.3.

2  Basics on Cremona transformations

we work over the complex field.

Definition 2.1 A Cremona transformation is a birational map � ∶ ℙr
⤏ ℙr given by 

equations

where Fi(x0,… , xr) are homogeneous polynomials of the same degree 𝛿 > 0 , for 
i = 0,… , r.

The inverse map is also a Cremona transformation, and it is defined by homogene-
ous polynomials Gi(x0,… , xr) of degree 𝛿′ > 0 , for i = 0,… , r . If the polynomials {Fi} 
are coprime and we choose the {Gj} as well coprime we say that � is a (�, ��)--Cremona 
transformation.

The subscheme

is the indeterminacy locus of � . Since the composition of � and its inverse is the identity, 
we have

where Φ is a homogeneous polynomial of degree � ⋅ �� − 1 . The hypersurface 
Fund(�) ∶= {Φ = 0} is the fundamental locus of � and its support is the reduced funda-
mental locus Fundred(�) . The group of Cremona transformation of ℙr is

[x0,… , xr] ↦ [F0(x0,… , xr),… ,Fr(x0,… , xr)],

Ind(�) ∶= ∩r
i=0

(Fi(x0,… , xr) = 0)

Gi(F0(x0,… , xr),… ,Fr(x0,… , xr)) = Φ ⋅ xi, for i = 0,… , r
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Remark 2.2 Note that we are not asking for the polynomials {Fi} to be coprime. This is 
quite unusual but useful to prove the main result, indeed this allow us to add fixed compo-
nents to linear system to produce the birational maps we need.

Let us work out some special cases in details.

Example 2.3 (Quadro-quadric transformation of ℙr ) Let Q ⊂ H ⊂ ℙr be a codimension 2 
reduced quadric and p ∈ ℙr⧵H a point. Consider the linear system

of quadrics through p and Q. Then dimL = n and the scheme theoretic base locus of L is 
Q ∪ p.

Let � ∶ Z → ℙr be the blow up of Q and p with exceptional divisor Ep and EQ and 
� ∶ Z → ℙr+1 the blow down of the hyperplane H and of the cone Cp(Q) with base Q and 
vertex p. Then a general conic passing through p and intersecting Q in 2 points is mapped 
to a line. Therefore � ∶= �◦� is a Cremona transformation. For a general hyperplane H the 
restriction �|H maps H to a quadric, then the inverse of � is again given by quadrics with 
an isomorphic base locus. This shows that � is a quadro-quadric Cremona transformation.

Note that for n = 2 the map �L is the standard quadratic Cremona transformation. More-
over for a general linear space ℙa ≅ A ⊂ ℙr containing p, the restriction �L|A is again a 
quadro-quadric map ℙa

⤏ ℙa.
Recall that Noether–Castelnuovo Theorem shows that Cr2 is generated by the linear 

automorphisms and the quadro-quadric transformation of ℙ2 . Therefore if we consider a 
plane A ≅ ℙ2 and any birational map � ∶ A ⤏ A we may write

with �i quadro-quadric maps and gi linear automorphisms of ℙ2 . If A ⊂ ℙr we may extend 
both quadro-quadric maps and linear automorphisms to selfmaps of the ambient space. 
Hence for any map � ∈ Cr(ℙ2) there is a birational map Ω ∈ Cr(ℙr) such that Ω|A = � , as 
birational maps.

Example 2.4 (Cubo-cubic transformation of ℙ3 ) Let Γ ⊂ ℙ3 be a rational normal curve and 
S1, S2 ∈ |IΓ(3)| two smooth cubic surfaces containing Γ . Then we have S1 ∩ S2 = Γ ∪ R , 
for a residual curve R of degree 6 genus 3. It is not difficult to check that

and Γ ⋅ R = 8 , see for instance [23]. This shows that the linear system |IR(3)| defines a Cre-
mona transformation � ∶ ℙ3

⤏ ℙ3 . that can be described as follows. Let � ∶ ℤ → ℙ3 be 
the blow up of R and � ∶ Z → ℙ3 the blow down of the strict transform of trisecant lines to 
R. Then we have

Since Γ ⋅ R = 8 we have that �(Γ) is a line, moreover the restriction to a general plane �|H 
maps H to ℙ2 blown up in 6 points, the intersection points with the curve R. Therefore the 

Crr ∶=∶ Cr(ℙr) ∶= {� ∶ ℙr
⤏ ℙr| the map � is birational }.

L = |Ip∪Q(2)|

� = g1◦�1◦… ◦gh◦�h,

dim |IR(3)| = 3.

� = �◦�.
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inverse of � is again defined by cubics and with a bit more of work one can prove that the 
base locus is of the same type. In particular � is a cubo-cubic Cremona transformation

Next we introduce a class of special hypersurfaces that will be of crucial importance 
in what follows.

Definition 2.5 (Monoids) Let X ⊂ ℙr be a hypersurface of degree d. We say that X is a 
monoid with vertex p ∈ ℙr if p is a point in X of multiplicity exactly d − 1 . Note that a 
monoid can have more than one vertex. If we choose projective coordinates in such a way 
that p = [1, 0,… , 0] , then

where Fd−1 and Fd are homogeneous polynomials of degree d − 1 and d respectively and 
Fd−1 is nonzero. The hypersurface X is irreducible if and only if Fd−1 and Fd are coprime.

Construction 2.6 An irreducible monoid X is rational. Indeed, the projection of X from a 
vertex p onto a hyperplane H not passing through p is a birational map � ∶ X ⤏ H ≅ ℙr−1 . 
If H has equation x0 = 0 , then the inverse map �−1 ∶ ℙr−1

⤏ X is given by

The map � is called the stereographic projection of X from p. Its indeterminacy locus is p. 
Each line through p contained in X gets contracted to a point under � . The set of all such 
lines is defined by the equations {Fd = Fd−1 = 0} . This is the indeterminacy locus of �−1 , 
whereas the hypersurface of H with equation {x0 = Fd−1 = 0} is contracted to p by the map 
�−1.

Monoids are useful to produce an important class of Cremona transformations.

Example 2.7 (de Jonquiéres transformations) A de Jonquiéres transformation of ℙr is a 
birational map that preserves the family of lines through a point, say p, see [22] for a com-
prehensive introduction. Let � ∶ ℙr

⤏ ℙr be a de Jonquiéres transformation given by

Up to a linear automorphisms we may assume that the lines through [1, 0,… , 0] are mapped 
to lines through [1, 0,… , 0] . Then we may choose the Xi ∶= (Mi = 0) to be monoid with 
vertex [1, 0,… , 0] . Moreover {X1,… ,Xn} has to contain a common divisor B, which has to 
be itself a monoid. This shows that a de Jonquiéres map, up to linear automorphisms, is of 
the form

where Gj ∈ ℂ[x1,… , xn]g , for j = 1,… n , and

defines a Cremona transformation of ℙn−1.
We will always be concerned with the subclass of de Jonquiéres maps where g = 1 . That 

is Cremona transformations that admit the form

X = (Fd−1(x1,… , xr)x0 + Fd(x1,… , xr) = 0),

[x1,… , xr] ↦ [−Fd(x0,… , xr−1),Fd−1(x1,… , xr)x1,… ,Fd−1(x0,… , xr−1)xr].

[x0,… , xn] ↦ [M0,… ,Mn].

[x0,… , xn] ↦ [x0F0 + G̃0,G1(x0F1 + G̃1),… ,Gn(x0F1 + G̃1)],

[x1,… , xn] ↦ [G1,… ,Gn]
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with a slight abuse of language we will also write � as the map associated to the linear 
system

With these notation we have:

– the indeterminacy locus of � is (x0F0 + G̃0) ∩ (x0F1 + G̃1),
– the family of lines through [1, 0,… , 0] is preserved
– � is birational and the inverse is again a de Jonquiéres transformation.

To convince you let me write the map in the following equivalent way

This shows that the lines through [1, 0,… , 0] are preserved, the map is birational and its 
inverse is of the same form.

Let me stress that a de Jonquiéres transformation restricts to a linear automorphism on a 
general line through the special point p.

The quadro-quadric map described in Example 2.3 is a de Jonquiéres of degree 2, where 
B is the span of the codimension 2 quadric. The case of ℙ2 is particularly interesting. A de 
Jonquiéres map of degree d has 2d − 2 simple base points, maybe infinitely near. The map 
can be factored via the blow up of the multiple point and then 2d − 2 elementary transfor-
mations of Hirzebruch surfaces to finally contract the curve B.

3  Cremona equivalence: definition and first examples

Let us introduce in details the main relation we are going to analyze.

Definition 3.1 Let X, Y ⊂ ℙN be two birational reduced schemes. We say that X is Cre-
mona equivalent to Y if there is a birational modification � ∶ ℙN

⤏ ℙN that is an isomor-
phism on the generic points of X, such that �(X) = Y .

To get acquainted it is useful to have some examples in mind.

Example 3.2 Let C ⊂ ℙ3 be a twisted cubic. Let S1, S2 be two general cubic surfaces con-
taining C. As we saw in Example 2.4 there is a cubo-cubic modification of ℙ3 that maps the 
Si to planes and hence C to a line. So C is Cremona equivalent to a line.

The next is again a cubic curve but reducible

Example 3.3 Consider two sets of three lines in ℙn , say L1, L2, L3 and R1,R2,R3 . Let us 
start assuming that n = 2 . Let pij = Li ∩ Lj and qhk = Rh ∩ Rk . Let 𝜆 = ♯{pij}i,j∈{1,2,3} and 

[x0,… , xn] ↦ [x0F0 + G̃0, x1(x0F1 + G̃1),… , xn(x0F1 + G̃1)],

{x0F0 + G̃0, x1(x0F1 + G̃1),… , xn(x0F1 + G̃1)}.

[x0,… , xn] ↦

[
x0F0 + G0

B
, x1,… , xn

]
.
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𝜌 = ♯{qhk}h,k∈{1,2,3} be the cardinality of the intersection points. If � = � then there is a 
linear automorphism of ℙ2 realizing the Cremona equivalence. Indeed with the choice of 4 
points we can map one configuration to the other.

Assume, without loss of generality, that � = 1 and � = 3 . This time we need a bira-
tional modification to put the lines {L1, L2, L3} in general position. Let p1 ∈ L1 , p2 ∈ L2 , 
q1, q2 ∈ L3 and x ∈ ℙ2 be general points. Consider the linear system

of quartics singular along p1, p2, x and passing through the intersection point p12 and q1 , 
q2 . Then �L ∶ ℙ2

⤏ ℙ2 is a Cremona transformation, the composition of two standard Cre-
mona maps,

and the lines {�L(L1),�L(L2),�L(L3)} are in general position.
We already observed that, thanks to Noether–Castelnuovo Theorem and the quadro 

quadric transformation of Example  2.3, any Cremona map of ℙ2 can be extended to an 
arbitrary ℙr . Then for r ≥ 3 it is enough to prove that any set of three lines is Cremona 
equivalent to a set of three lines in a plane.

Let {L1, L2, L3} ⊂ ℙr be a set of three lines. Assume first that there is an irreducible 
quadric Q ⊂ ℙr containing the set. Let Y ⊂ Q be a general hyperplane section and p ∈ Q 
a general point. Then the quadro-quadric map centered in Y and p maps {L1, L2, L3} to a 
set of three lines in ℙr−1 . Therefore by a recursive argument we may assume that the lines 
{L1, L2, L3} are contained neither in an irreducible quadric nor in a plane and in particular 
n = 3.

Here I want to propose two different approaches. First consider a point p ∈ ℙ3 and conic 
C ⊂ ℙ3 intersecting the three lines. Let X be a quartic singular along C ∪ p and contain-
ing L1 ∪ L2 ∪ L3 . By an easy dimensional count X exists and it is mapped to a quadric by 
a quadro-quadric map centered in C ∪ p . This is enough to prove that all lines triples are 
Cremona equivalent.

Then I want to argue in a different way. Without loss of generality, we may assume that 
L1 is skew to L2 and L3 and L2 ∩ L3 = p . Pick a general cubic surface S containing L1, L2, L3 
and let R ⊂ S be a line intersecting L3 and skew with L1 and L2 . Let � ∶ S → ℙ2 be the blow 
down of L1, L2,R and three more (−1)-curves in S, to points p1, p2, p3, p4, p5, p6 ∈ ℙ2 . Then 
�(L3) is a line in ℙ2 spanned by p2 and p3 . Let C ⊂ ℙ2 be a conic with

then Γ ∶= �−1
∗
C is a twisted cubic intersecting L1, L2 and L3 in a point. Let S1 be a general 

cubic surface containing Γ and R the residual intersection

Then R ∩ Li = 2 and the cubo-cubic map � ∶ ℙ3
⤏ ℙ3 centered in R maps S to a plane 

and the Li in lines. This is enough to conclude that all triples of lines in ℙn are Cremona 
equivalent.

Despite the beauty of this constructions it is clearly impossible to proceed in this way 
for an arbitrary number of lines. Already four lines have many different configurations and 
one should be able to produce a Cremona modification for all of them. Note further that in 

L = |Ip2
1
∪p2

2
∪x2∪p12∪q1∪q2

(4)|

deg�L(Li) = 4 − 3 = 1

C ∩ {p1, p2, p3, p4, p5, p6} = {p1, p2, p4},

S ∩ S1 = Γ ∪ R.
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ℙ2 not all line configurations are Cremona equivalent, see [11] for a vast treatment of lines 
configuration with respect to Cremona equivalence and the problem of contractibility.

Next we consider monoids.

Example 3.4 Irreducible monoids are always Cremona equivalent to a hyperplane. Let 
X ⊂ ℙn be a monoid of degree d with vertex p0 = [1, 0,… , 0] and Y a monoid of degree 
d − 1 with the same vertex. Then the de Jonquiéres transformation given by

maps X to the hyperplane (y0 = 0) . Hence any irreducible monoid is Cremona equivalent to 
a hyperplane.

Example 3.5 Any irreducible rational surface in ℙ3 of degree at most 3 is Cremona equiv-
alent to a plane. Quadrics and singular cubics are monoids, therefore we conclude with 
Example 3.4. For smooth cubic we may use the cubo-cubic map to produce the equiva-
lence. Note that non rational irreducible cubics, that is cones over elliptic curves, are not 
Cremona equivalent to any surface of lower degree, simply because all surfaces of smaller 
degree are rational.

Already for quartic surfaces in ℙ3 the situation is much more complicate, but it is still 
possible to study it, see [18, 19].

Despite this quite long list of explicit examples of Cremona equivalences it is in 
general quite rare to be able to control birational modification that realizes a Cremona 
equivalence. On the other hand the Cremona group is so flexible that it is able to realize 
a huge set of Cremona equivalences. We are ready to appreciate the following theorem.

Theorem 3.6 [7, 20] Let X, Y ⊂ ℙr be irreducible birational subvarieties and assume that 
dimX ≤ r − 2 . Then X is Cremona equivalent to Y.

Let me spend a few words on this result and its consequences. The Theorem proves 
that the Cremona group contains, as subsets, the set of birational self map of any sub-
variety of codimension at least two. Note that in general nothing can be said on the 
group structure. That is there is no hint that it is possible to realize the group of bira-
tional selfmaps of a subvariety as subgroup of some Cremona group. Despite the proof 
of Theorem 3.6, especially the second one, is quite algorithmic it is in general almost 
impossible to write down an explicit map that furnishes the Cremona equivalence. On 
the other hand for few special cases of rational varieties it is possible to describe an 
explicit linearization, see [7].

It is quite easy to see that the bound on the codimension is sharp.

Example 3.7 Let C ⊂ ℙ2 be an irreducible rational curve of degree 6 with ordinary dou-
ble points. Note that the pair (ℙ2,

1

2
C) has canonical singularities, therefore, by a standard 

application of Sarkisov theory, [20], any curve Cremona equivalent to C has degree at least 
6, therefore C is not Cremona equivalent to a line.

In a similar fashion it is easy to produce examples in arbitrary dimension, see [20]. It is 
also possible to see that in general a fixed abstract variety has infinitely many inequivalent 
birational embeddings with respect to Cremona equivalence, [20].

{X, Yx1,… , Yxn}
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Definition 3.8 A reduced variety Z ⊂ ℙn is a cone if there is a point p ∈ Z , called vertex, 
such that Z = ∪x∈Z⧵{p}⟨x, p⟩ . The cone with vertex p ∈ ℙn and base X ⊂ ℙn is

Example 3.9 (Cones) In [17] it is proven that two divisorial cones X, Y ⊂ ℙn are Cremona 
equivalent if their general hyperplane sections are Cremona equivalent. In particular, 
thanks to Theorem 3.6, a divisorial cone over a rational variety is always Cremona equiva-
lent to a hyperplane.

It is less clear if the irreducibility assumption is needed. On one hand the example of 
lines, Example 3.3, is not encouraging since the Cremona modification needed depends on 
the intersection between the irreducible components. On the other hand there are no theo-
retical limits to extend the proof to reduced schemes. I must say that I was quite surprised 
when I realized that with few improvements a combination of the proofs in [20] and [7] 
worked in the reducible case. Before going into this I want to give a last explicit example of 
Cremona equivalence for reduced schemes: the case of points.

This is the only case in which I am able to provide the Cremona modification in a quite 
explicit way.

Construction 3.10 Let us consider a de Jonquiéres transformation of degree d,

given by

Then p0 = [1, 0,… , 0] is the vertex of all the monoids and the lines through p0 are pre-
served. Let l ∋ p0 be a line and assume that � is defined on the generic point of l. Then we 
have that either �|l is an automorphism or �(l) = p0 . Moreover � is an isomorphism out-
side the cone with vertex p0 and base

As a birational map, we can write � as

Let p = [a0,… , ar], q = [b0,… , br] ∈ ℙr⧵{p0} be points aligned with p0 . Then we may 
assume that ai = bi , for i = 1,… , r . Hence the condition �(p) = q translates into the 
equation

linear in the coefficient of F0,G0,F,G . Moreover if we choose a map � such that �(p) = p , 
for a point p ∈ ℙr⧵{p0} then � is an isomorphism in a neighborhood of p.

Let us pick two points, p, q ⊂ ℙr and a set of a points {p1,… , pa} ⊂ ℙr⧵⟨p, q⟩ . Then we 
may choose p0 ∈ ⟨p, q⟩⧵{p, q} such that no pair of points in {p1,… , pa} is aligned with p0 . 
This shows that there is a d(a) such that for d ≥ d(a) there is a de Jonquiéres map, � , cen-
tered in p0 of degree d such that �(pi) = pi , for i = 1,… , a and �(p) = q . In particular � is 
an isomorphism in a neighborhood of {p1,… , pa, p, q}.

Cp(X) ∶= ∪x∈X⟨x, p⟩.

� ∶ ℙr
→ ℙr

[x0,… , xr] ↦ [x0F0 + G0, x1(x0F + G),… , xr(x0F + G)]

(x0F0 + G0 = x0F + G = 0).

[x0,… , xr] ↦

[
x0F0 + G0

x0F + G
, x1,… , xr

]
.

a0F0(a1,… , ar) + G0(a1,… , ar) = b0(a0F(a1,… , ar) + G(a1,… , ar)),
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Let us take advantage of this construction to give an explicit version of the Cremona 
equivalence between reduced sets of points.

Theorem 3.11 Let Z = {p1,… , ps} and Z� = {p�
1
,… , p�

s
} be reduced sets of s points in ℙr . 

Then there exists a Cremona transformation � ∶ ℙr
⤏ ℙr such that � is an isomorphism in 

a neighborhood of Z and �(Z) = Z�.

Proof Let us prove the statement via a recursive argument. We may assume, eventually 
after a generic quadro-quadric modification, that for any i = 1,… , s

Then by Construction 3.10 there is a de Jonquiéres map �1 ∶ ℙr
⤏ ℙr such that:

– �1(p1) = p�
1
,

– �1(pi) = pi and �1(p
�
i
) = p�

i
 for i ≥ 2.

In particular �1 is an isomorphism in a neighborhood of Z ∪ Z� . Set, recursively, 
�i ∶ ℙr

⤏ ℙr a de Jonquiéres map such that:

– �i(p
�
j
) = p�

j
 , for j < i,

– �i(pi) = p�
i
,

– �i(ph) = ph and �i(p
�
h
) = p�

h
 for h > i.

Then the composition

realizes a Cremona equivalence between Z and Z′ .   ◻

Remark 3.12 Note that Theorem 3.11 proves the Theorem 1.1 for r = 2 . The next section 
we will devoted to extend it to arbitrary r ≥ 3.

4  Cremona equivalence for reduced schemes

In this section X and Y will be reduced schemes in ℙr . Let us start observing a useful way 
to consider a birational relation between them. The schemes X and Y are birational if exists 
a smooth scheme Z such that:

– Z has a number of connected components equal to the number of irreducible compo-
nents of X and Y;

– there are two base point free linear systems LX and LY such that the induced morphism 
�LX

∶ Z → X and �LY
∶ Z → Y  are dominant and birational.

Let M = LX + LY be the linear system on Z and �M ∶ Z → ℙN the associated map. We may 
consider X and Y as linear projections of 𝜙M(Z) ⊂ ℙN . This is essentially the reason we opted 
in Definition 2.1 to accept non coprime sets of polynomials. With this trick we will be able to 
factorize a Cremona equivalence between X and Y into steps associated to monoids.

⟨pi, p�i⟩ ∩ {p1,… , ps, p
�
1
… , p�

s
} = {pi, p

�
i
}.

Φ ∶= �r◦⋯◦�1
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Construction 4.1 (Double projection) Let X ⊂ ℙr be an irreducible monoid of degree d. 
Let p1, p2 ∈ X be two vertices, let H1,H2 be hyperplanes with pi ∉ Hi , and consider the ste-
reographic projections of X from pi , which is the restriction of the projection �i ∶ ℙr

⤏ Hi 
from pi , with i = 1, 2 . The map

is a Cremona transformation. If p1 = p2 = p , then �X,p,p does not depend on X and it is a 
linear automorphism, classically called the perspective with center p of H1 to H2.

From now on, we restrict to the case when p1 ≠ p2 . In this setting, the map �X,p1,p2 is 
called the double projection and it depends on X and it is in general nonlinear. Assume that 
pr = [0,… , 0, 1], pr−1 = [0,… , 0, 1, 0] and the hyperplanes H1,H2 have equations (xr = 0) 
and (xr−1 = 0) respectively. Then the defining equation of X has the form

with Fi,Gi ∈ ℂ[x0,… , xr−2]i . Then the double projection map �X,pr ,pr−1 is given by

Observe that the double projection is a de Jonquiéres map of degree d centered in pr−1 ∈ H1

.

The main idea to produce the Cremona equivalence between X and Y is borrowed from 
[20]. Since X and Y are linear projection of the same variety 𝜙M(Z) ⊂ ℙN their embedding is 
determined by functions on Z that are linearly equivalent. Let us see how to use this remark. 
Let, in this set up, 𝜙 ∶ Z ⤏ X ⊂ ℙr be given by equations

and 𝜓 ∶ Z ⤏ Y ⊂ ℙr by equations

with t coordinates on a dense open subset of Z intersecting all connected components. In 
general {(�i = 0)} and {(�j = 0)} have fixed divisorial component but nonetheless they 
define birational maps to X and Y respectively.

Then we may consider the birational embedding 𝜂 ∶ Z ⤏ Z1 ⊂ ℙr+1 given by equations

Assume that there is an irreducible monoid X, with vertices pr and pr+1 and containing Z1 . 
Then the double projection �X,pr+1,pr produces a Cremona map � ∶ ℙr

⤏ ℙr such that �(X) 
is associated to the birational embedding

given by equations

If further, the monoid X does not contains any of the cones with vertex either pr or pr+1 
and base an irreducible component of Z1 , then the double projection realizes a Cremona 
equivalence between X and �(X).

�X,p1,p2 ∶= �2◦�
−1
1

∶ H1 ⤏ H2

Fd + xr−1Gd−1 + xrFd−1 + xrxr−1Fd−2 = 0,

[x0,… , xr−1] ↦ [(Fd−2xr−1 + Fd−1)x0,… , (Fd−2xr−1 + Fd−1)xr−2,−Fd − xr−1Gd−1].

t ↦ [�0(t),… ,�r(t)]

t ↦ [�0(t),… ,�r(t)],

t ↦ [�0(t),… ,�r(t),�0(t)].

𝜙1 ∶ Z ⤏ X1 ⊂ ℙr

t ↦ [�0(t),… ,�r−1(t),�0(t)].
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Iterating this process we may substitute the functions �j with the functions �h realiz-
ing a chain of double projections, that is de Jonquiéres maps, that produces the required 
Cremona equivalence.

To let this argument work we need to produce the required monoids. Let us start 
rephrasing [7, Lemma 2.1] to the reducible case, I adopt notation of [12, Chapter 6] for 
the intersection theory needed.

Remark 4.2 I want to thank the referee for pointing out the following version of the proof 
that allows to remove the assumption that the projection of Z from pr is birational.

Lemma 4.3 Let Z ∶= ∪h
1
Zi ⊂ ℙr⧵{[0,… , 0, 1]} be a reduced scheme, Md the linear system 

of monoids with vertex pr ∶= [0,… , 0, 1] and M(Z)d ⊂ Md those containing the scheme Z. 
Then, for d ≫ 0 , we have

where

in particular � = 0 if dimZ < r − 2.

Proof Let � ∶ V → ℙr be the blow–up of ℙr at pr with exceptional divisor E. We denote by 
H the pull back of a general hyperplane of ℙr and by Z′ the proper transform of Z.

In this notation we have

and, by a simple dimension count,

Set s = dim Z ≤ r − 2 by assumption the point p ∉ Z , hence

and

for any d, r ∈ ℤ . In particular, as a polynomial in d

Thus

  ◻

dim(M(Z)d) ≥
2dr−1

(r − 1)!
+

(r − 1 − �)dr−2

(r − 2)!
+ O(dr−3),

� = Z ⋅OZ(1)
r−2

,

Md ≅ |dH − (d − 1)E| = |(d − 1)(H − E) + H|,

(1)dim(Md) =
2dr−1

(r − 1)!
+

(r − 1)dr−2

(r − 2)!
+ O(dr−3).

OV (E)⊗OZ� ≅ OZ�

OZ� (dH − rE) ≅ OZ� (dH) ≅ OZ(d),

h0(OZ� (dH − rE)) = h0(OZ(d)) =
�

s!
ds + o(ds−1).

dim(M(Z)d) ≥ dim(Md) − h0(OZ� (d(H − E))) =
2dr−1

(r − 1)!
+

(r − 1 − �)dr−2

(r − 2)!
+ O(dr−3).
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Next we use Lemma 4.3 to produce monoids.

Lemma 4.4 Let Z = ∪h
1
Zj ⊂ ℙr , with r ⩾ 3 , be a reduced scheme of dimension r − 2 and let 

p ∈ ℙr⧵Z be such that the projection of Z from p is birational to its image. For d ≫ 0 there 
is an irreducible monoid of degree d with vertex p, containing Z and not containing the 
cone Cp(Zj) over Zj with vertex p, for j = 1,… h.

Proof In the notation of Lemma 4.3 consider M(Z)d ⊂ Md the sublinear system of monoids 
containing Z.

By Lemma 4.3 we have

where � is the degree of the (r − 2)-dimensional part of Z. Note that r ≥ 3 forces 𝛿 > 0.

Claim 1 For any j = 1,… , s and d ≫ 0 there is a monoid Bj ∈ M(Zj)d such that

Proof Let a = dimZj and �j ∶ ℙr
⤏ ℙa+2 be a general linear projection, if a = r − 2 we set 

�j = idℙr . Set p ∶= �j(p) , Z ∶= �j(Zj) and � = degZ.
To prove the claim it is enough to produce a monoid in ℙa+2 with vertex p , containing Z 

and not containing the cone Y ∶= Cp(Z).
Let M(Z)d be the linear system of monoids with vertex p in ℙa+2 and containing Z.
By Lemma 4.3 we have

Let M� ⊂ M(Z)d be the sublinear system of divisors containing the cone Y. Note that Y is a 
hypersurface of degree � , i.e. Y ∈ |Oℙa+2 (�)| . Hence we have M� ≅ Md−� and

Hence

This shows the existence of the required monoids.   ◻

Set

– � ∶ ℙr
⤏ ℙr−1 the projection from p

– Z̃ ∶= 𝜋(Z)

– Z̃j = 𝜋(Zj) , for any irreducible component Zj ⊂ Z.

dimM(Z)d ≥
2dr−1

(r − 1)!
+

(r − 1 − 𝛿)dr−2

(r − 2)!
+ O(dr−3) > 0,

Bj ⊅ Cp(Zj).

dimM(Z)d ≥
2da+1

(a + 1)!
+

(a + 1 − 𝛼)da

a!
+ O(da−1) > 0.

dim(M�) =
2(d − �)a+1

(a + 1)!
+

(a + 1)(d − �)a

a!
+ O(da−1)

=
2da+1

(a + 1)!
+

(a + 1 − 2�)da

a!
+ O(da−1).

dim(M(Z)d) − dim(M�) =
𝛼da

a!
+ O(da−1) > 0, for d ≫ 0.
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By hypothesis for any j = 1,… , h the variety Z̃j is an irreducible component of degree 
deg Zj of Z̃ . In particular Zj is not contained in the cone over Z̃⧵Z̃j with vertex p. Let

be a divisor in ℙr−1 of degree d containing Z̃⧵Z̃j , and Dj = Cp(D̃) its cone with vertex p.
By Claim  1, for d ≫ 0 , we have Dj + Bj ∈ M(Z)2d . Moreover Dj + Bj does not con-

tain the cone Cp(Zj) . This shows that the general element in M(Z)2d does not contain 
Cp(Zj) . Hence the general element in M(Z)2d does not contain any of the cones Cp(Zj) , for 
j = 1,… , s . Note that a reducible monoid decomposes in the union of cones, with vertex p, 
and a single irreducible monoid. Therefore our construction shows that the general element 
in M(Z)b contains an irreducible monoid X with X ⊃ Z and X ⊅ Cp(Zj) for j = 1,… , h , for 
b ≫ 0 .   ◻

The next step is to produce the required double projections.

Lemma 4.5 Let Z = ∪h
1
Zj ⊂ ℙr , with r ≥ 3 , be a reduced scheme of positive dimension 

n ⩽ r − 3 . Let p1, p2 ∈ ℙr⧵Z be distinct points such that the projection of Z from the line 
⟨p1, p2⟩ is birational to its image. For d ≫ 0 there is an irreducible monoid of degree d 
with vertices p1 and p2 , containing Z but not containing any cone Cpi

(Zj) , for i = 1, 2 and 
j = 1,… , h.

Proof We start the proof with a reduction to codimension 3 subvarieties.

Claim 2 It suffices to prove the assertion for n = r − 3.

Proof of the Claim Consider the projection of ℙr to ℙn+3 from a general linear subspace Π 
of dimension r − n − 4 and call Z′, p′

1
, p′

2
 the projections of Z, p1, p2 respectively. Then Z′ 

is birational to Z and it is still true that the projection of Z′ form ⟨p′
1
, p′

2
⟩ is birational to its 

image. The dimension of Z′ is n − 3.
Assume the assertion holds for Z′, p′

1
, p′

2
 and let F� ⊂ ℙn+3 be an irreducible monoid of 

degree d ≫ 0 with vertices p′
1
, p′

2
 containing Z′ but no irreducible components of Cp�

i
(Z�) , 

for i = 1, 2 . Let F ⊂ ℙr be the cone over F′ with vertex Π . Then F is an irreducible monoid 
with vertices p1, p2 containing Z and no irreducible component of Cpi

(Z) , for i = 1, 2 .  
 ◻

We can thus assume from now on that n = r − 3 . Fix two hyperplanes H1 and H2 , 
where p1 ∉ H1 and p2 ∉ H2 . Let Z1 and Z2 be the birational projections of Z from p1 and 
p2 to H1 and H2 , respectively. Set p�

3−i
∶= �i(p3−i) , for i = 1, 2 . By hypothesis the projec-

tion of Zi from p�
3−i

 is birational, then, by Lemma 4.5, for i = 1, 2 there are irreducible 
monoids Xi ⊂ Hi with vertex p�

3−i
 such that:

– Xi ⊃ Zi

– Xi does not contain any irreducible component of Cp�
3−i
(Zi) ⊂ Hi,

Set Yi ∶= Cpi
(Xi) ⊂ ℙr to be the cone over Xi with vertex pi , then Yi has the following 

properties:

– Yi is a cone with vertex pi

D̃j ∈ |IZ̃⧵Z̃j (d)|
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– Yi is a monoid with vertex p3−i,
– Yi contains the cone Cpi

(Z),
– Yi does not contain any irreducible component of the cone Cp3−i

(Z).

Then a general linear combination of Y1 and Y2 contains an irreducible monoid with verti-
ces p1 and p2 containing Z and not containing any irreducible component of the cones with 
vertex p1 and p2 over Z.   ◻

To conclude the proof of Theorem 1.1 we will provide, for r ≥ 3 , the Cremona equiva-
lence via a sequence of double projections as in [20, Theorem 1] and [7, Theorem 2.5]. To 
do this we plan to use Lemma 4.5. Therefore we need to ensure that projection from the 
line connecting the vertices of monoids are birational. In [7, Theorem 2.5] this was done 
via [3, Theorem 1]. Let me spend a few word on this nice Theorem.

Let X ⊂ ℙN be a non degenerate scheme, the Segre locus of X, S(X) , is the locus of 
points from which X is projected in a non birational way. When X is irreducible and 
reduced Calabri and Ciliberto, [3], proved that this locus has irreducible components of 
dimension less than dimX , giving a very precise description of its irreducible components. 
Unfortunately when X is reducible this is no more true. As an example of this behavior 
consider X = ∪Li a union of lines, with L1 ∩ L2 ≠ � . Then any point of the plane spanned 
by L1 and L2 is in the Segre locus of X.

Therefore the Segre locus of reducible schemes is not well behaved as the one of irre-
ducible varieties and therefore we cannot adapt [3, Theorem 1] for our purposes and we 
need to substitute it with a finer analysis than the one in [20] of the individual steps of the 
process. The following is what we need to complete the proof of Theorem 1.1.

Theorem  4.6 Let X, Y ⊂ ℙr , with r ⩾ 3 , be two reduced schemes of positive dimension 
n < r − 1 . Then X, Y are Cremona equivalent if and only if they are birationally equivalent.

Proof One direction is clear. Assume that X and Y are birational. Then, as observed at the 
beginning of the section there is a smooth scheme Z and two birational morphisms

associated to linearly equivalent linear systems LX ∼ LY.

Claim 3 We may fix basis of LX and LY such that the projection of X = �LX
(Z) and 

Y = �LY
(Z) from any coordinate subspace of dimension m is birational to its image if 

r > n + m + 1 and dominant to ℙr−m−1 if r ≤ n + m + 1.

Proof of the Claim It is well known that for any reduced scheme X ⊂ ℙr of dimension n the 
projection from a general linear space of dimension less than r − n − 1 is birational and 
finite and the projection from a general space of dimension r − n − 1 is finite. Then it is 
enough to choose a basis of LX and LY in such a way that such linear spaces are coordinate 
subspaces.   ◻

We may assume that �LX
 is given by equations

and �LY
 is given by equations

𝜙LX
∶ Z → X ⊂ ℙr and 𝜙LY

∶ Z → Y ⊂ ℙr,

t ↦ [�o(t),… ,�r(t)]
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where (�j = 0), (�h = 0) are linearly equivalent divisors on Z and t varies in a suitable 
dense open subset of Z intersecting all irreducible components of Z.

We prove the theorem by constructing a sequence of birational maps

and projections

for 0 ⩽ i ⩽ r , such that: 

(a) �0◦�0 = � and �r◦�r = � , thus X0 = X and Xr+1 = Y;
(b) for 0 ⩽ i ⩽ r , there is a Cremona transformation �i ∶ ℙr

⤏ ℙr , such that �i is an iso-
morphism in a neighborhood of the generic points of Xi , it satisfies �i(Xi) = Xi+1 and 
�i|Xi

= �i◦�
−1
i

.

We may summarize the sequence of maps in the following diagram

The construction is done recursively. For i = 0 we set

the restriction of the projection from the (r + 1)th-coordinate point pr+1 ∶= [0,… , 0, 1] and

the restriction of the projection from the rth-coordinate point pr ∶= [0,… , 0, 1, 0] . By 
Claim 3 the projection from ⟨pr, pr+1⟩ is birational. Then by Lemma 4.5 there is a monoid 
W ⊂ ℙr+1 containing Z0 and with vertices in pr+1 and pr such that the double projection 
�W,pr+1,pr

 is an isomorphism on the generic points of X0 and realizes a Cremona equivalence 
�0 ∶ ℙr

→ ℙr such that �0(X0) = X1.
Assume 0 < i ⩽ r − 1 . In order to perform the step from i to i + 1 , we have to define the 

maps �i+1 , �i+1 , �i+1 and �i+1 . From the ith-step we have the map

given by

for suitable functions �̃�i,j . Then we define 𝜑i+1 ∶ Z ⤏ Zi+1 ⊂ ℙr+1 as

t ↦ [�0(t),… ,�r(t)]

𝜑i ∶ Z ⤏ Zi ⊂ ℙr+1
,

�i ∶ Zi ⤏ Xi, �i ∶ Zi ⤏ Xi+1,

�0(t) = [�0(t),… ,�r(t),�0(t)],

�0 ∶= �[0,…,0,1]|Z0

�0 ∶= �[0,…,0,1,0]|Z0

𝜈i◦𝜑i ∶ Z ⤏ Xi+1 ⊂ ℙr

t ↦ [�̃�i,0(t),… , �̃�i,r−i(t),𝜓0(t),… ,𝜓i(t)],
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Note that we added the function �i+1 on the last coordinate, therefore

Therefore we set

To define �i+1 we need to take a point

and prove that the projection from the line lp ∶= ⟨p, [0,… , 0, 1]⟩ restricts to a birational 
map on Zi+1.

Claim 4 The projection of Zi+1 from a general line lp is birational to its image.

Proof of the Claim Let � ∶= �[0,…,0,1] ∶ ℙr+1
⤏ ℙr be the projection from the point 

[0,… , 0, 1] and Z̃ = 𝜋(Zi+1) . By construction �|Zi+1 is birational. Let

be the linear space we are interested in and �A ∶ ℙr
⤏ ℙi−2 the linear projection from A. To 

prove the claim we have to prove that the projection from a general point of A restricts to a 
birational map onto Z̃.

By Claim 3 the restriction 𝜋A|Z̃ is either birational onto the image or dominant. If � is 
birational the claim is clear.

Assume that 𝜋A|Z̃ is dominant, in particular i − 2 ≤ n . Let F ⊂ Z̃ be a general fiber of 
this projection. We have dimFj ≤ n − i + 2 , for all irreducible components Fj ⊂ F . Moreo-
ver the fiber F is contained in a linear space PF of dimension r − i + 2 and A ∩ PF is a 
hyperplane. Since

the general projection from a line in PF restricts to F as a birational map and being A an 
hyperplane this shows that the projection, say �p , from a general point p ∈ A restricts to 
F as a birational map. Let x ∈ F be a general point and r the line spanned by p and x. By 
construction we have

The scheme F is the general fiber of the linear projection � and x ∈ F is a general point, 
hence the line r is not tangent to Z̃ in x. This shows that the morphism 𝜋p|Z̃ is birational as 
required.   ◻

Let p ∈ Πi be a general point and �p ∶ ℙr+1
⤏ ℙr the projection from p. Set

Thanks to Claim  4 we are in the condition to apply Lemma  4.5 and produce a monoid 
W ⊂ ℙr+1 with the following properties:

t ↦ [�̃�i,0(t),… , �̃�i,r−i(t),𝜓0(t),… ,𝜓i(t),𝜓i+1(t)].

�[0,…,0,1](Zi+1) = Xi+1.

�i+1 ∶= �[0,…,0,1]|Zi+1 .

p ∈ Πi ∶= {xr−i+1 = … = xr+1 = 0} ⊂ ℙr+1

A ∶= {xr−i+1 = … = xr = 0} ⊂ ℙr

cod PF
F ≥ 3

r ∩ Z̃ = r ∩ F = {x}.

�i+1 ∶= �p|Zi+1 .
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– W ⊃ Zi+1
– pr+1 and p are vertices of W
– the double projection �W,pr+1,p

 is an isomorphism on the generic points of Xi+1.

Therefore the double projection �W,pr+1,p
 realizes a birational map �i+1 ∶ ℙr

⤏ ℙr such 
that �i+1(Xi+1) = Xi+2 and �i+1 is an isomorphism in a neighborhood of the generic 
points of Xi+1 . This proves part (b) of the requirements.

To conclude observe that at the rth-step we have

therefore, thanks to Claim  3, the restriction of the projection from p0 ∶= [1, 0,… , 0] 
is automatically birational and the same is true for the projection from the line 
⟨[1, 0,… , 0], [0,… , 0, 1]⟩ . Therefore we set �r ∶= �[1,0,…,0]|Zr◦�r to fulfill also the last part 
of requirement (a).

This chain of double projections realizes the Cremona equivalence between X and Y.  
 ◻

Remark 4.7 It is interesting to stress the following point. We already observed that double 
projections are associated to de Jonquiéres Cremona transformations. Therefore all Cre-
mona equivalences of subvarieties of codimension at least 2 can be realized by transforma-
tions in the subgroup generated by de Jonquiéres transformations. This is particularly inter-
esting when confronted with [1] where it is proven that the group of de Jonquiéres map is a 
proper subgroup of Crn . That is to produce all Cremona equivalences for codimension ≥ 2 
reduced schemes we do not even need the full group Crn.

As an application of the main result we prove a general contractibility criteria for sets 
of rational varieties.

Corollary 4.8 Let Z = ∪s
1
Ti ⊂ ℙr be a reduced scheme all of whose irreducible compo-

nents are rational varieties of dimension at most r − 2 . Then there is a birational map 
� ∶ ℙr

⤏ ℙr that contracts Z to a set of s distinct points.

Proof By Theorem 4.6 there is a birational map � ∶ ℙr
⤏ ℙr such that �(Z) is a union of 

s linear spaces. We are therefore left to study the case of linear spaces. We prove the claim 
by induction on the dimension of Z. Assume dimZ = 1 and

with li lines. Then there is a birational map � ∶ ℙr
⤏ ℙr such that ∩h

1
�(li) = p is a general 

point and �(pi) = pi . Consider a quadro-quadric map � ∶ ℙr
⤏ ℙr centered in p and a gen-

eral codimension 2 quadric Q intersecting the h lines. Then � contracts the h lines to a set 
of h points.

Assume that dimZ = i and, by induction, that the result is true for sets of linear spaces 
of dimension at most i − 1 ≤ r − 3.

Set

𝜑r(t) = [�̃�r,0(t),𝜓0(t),… ,𝜓r(t)],

Z = ∪h
1
li ∪ {ph+1,… , ps},

Z = ∪h
1
Mi ∪ Z�,
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with Mi ≅ ℙi and dimZ� ≤ i − 1 . Fix a general point p ∈ ℙr , a general codimension 2 
quadric Q ⊂ H ⊂ ℙr containing h linear spaces Ai ⊂ Q of dimension i − 1 . By Theorem 4.6 
there is a Cremona equivalence between Z and

Let � ∶ ℙr
⤏ ℙr be the quadro-quadric map with base locus p ∪ Q . Then by construction

Hence �(W) is a union of linear spaces of dimension at most i − 1 and we can conclude by 
induction that Z is contractible.   ◻
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