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This work reports fundamental experimental-theoretical research related to heat transfer enhancement in laminar channel
flow with nanofluids, which are essentially modifications of the base fluid with the dispersion of metal oxide nanoparticles.
The nanofluids were synthesized by a two-step approach, using a dispersant and an ultrasound probe or a ball mill for alumina
nanoparticles dispersion within the aqueous media. The theoretical work involves the proposition of an extension of the
thermally developing flow model that accounts for the temperature variation of all the thermophysical properties, including
viscosity and the consequent variation of the velocity profiles along the thermal entry region. The simulation was performed by
making use of mixed symbolic-numerical computation on the Mathematica 7.0 platform and a hybrid numerical-analytical
methodology (generalized integral transform technique, GITT) in accurately handling the governing partial differential
equations for the heat and fluid flow problem formulation with temperature dependency in the thermophysical properties.
Experimental work was also undertaken based on a thermohydraulic circuit built for this purpose, and sample results are
presented to verify the proposed model. The aim is to confirm that both the constant properties and temperature-dependent
properties models, besides available correlations previously established for ordinary fluids, provide adequate prediction
of the heat transfer enhancement observed in laminar forced convection with such nanofluids and within the experimented

Reynolds number range.

INTRODUCTION

Nanotechnology has been providing great opportunities in
thermal engineering development, such as achieved with the
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capacity of processing and producing materials with average
sizes below 50 nm. Recognizing an opportunity to apply this
emerging nanotechnology to thermal engineering, it has been
proposed [1] that nanometer-sized metallic or metal oxide par-
ticles be suspended in industrial heat transfer fluids, such as
water, ethylene glycol, or engine oil, to produce a new class of
engineered fluids with higher thermal conductivity. The authors
coined the term nanofluid for this new class of heat transfer fluids
[2]. A number of experiments on nanofluids have indicated sig-
nificant increases in thermal conductivity compared with liquids
without nanoparticles or larger particles, and strong temperature
dependence of thermal conductivity [3-5].

The literature already reports some applications of nanofluids
directly in the energy sector, as in the case of power transformers
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and hybrid systems for air conditioning. However, it is still
necessary to consolidate the fundamental analysis on convec-
tive heat transfer with nanofluids, especially with respect to the
variation of thermophysical properties with temperature, to en-
able the adequate choice of simulation or correlation tools in
order to achieve proper design of heat transfer equipment with
nanofluids. For this reason, a number of contributions have been
recently aimed at understanding both experimentally and the-
oretically the convective behavior of nanofluids, as reviewed
in different sources [6-9]. A few recent studies were identi-
fied [10-18] that provide some insight on the influence of the
temperature-dependent thermophysical properties as well as on
the covalidation of simulations, correlations, and experiments.

Nanofluids were here produced with nanoparticles of alu-
mina (Al,O3) dispersed in ultrapure water, and the major phys-
ical properties were compared with those obtained for the base
fluid [19]. The properties measured were the thermal conductiv-
ity, thermal diffusivity, viscosity, and density. Standard ASTM
methods were used in order to measure these properties, such
as the Flash method, line heat-source probe, and rotational vis-
cometer [20]. Due to the particular relevance of thermal conduc-
tivity values in heat transfer enhancement studies, two different
approaches were adopted for identification of this thermophys-
ical property and were critically compared [20].

The present contribution then summarizes the comparisons
between experiments and simulations of laminar forced con-
vection with the synthesized water—alumina nanofluids, trying
to focus on the fundamental aspects that are required to play
some role in matching the classical heat transfer models and
correlations to the produced experimental results. Emphasis is
here placed on the effect of the temperature dependence of the
measured thermophysical properties on simulations in laminar
convective heat transfer with nanofluids, since the classical heat
transfer coefficient correlations have been supposed to fail in
predicting the nanofluids behavior with their effective thermo-
physical properties.

All the theoretical work was performed by making use of
mixed symbolic-numerical computation via the Mathematica
7.0 platform [21], and a hybrid numerical-analytical methodol-
ogy with automatic error control, the generalized integral trans-
form technique (GITT) [22-25], in handling the governing non-
linear partial differential equations. Experimental work was also
undertaken through a built and tested thermohydraulic circuit,
and sample results are briefly discussed and presented to verify
the proposed model and available correlations for heat trans-
fer coefficients in laminar tube flow. The proposed extended
thermally developing flow model accounts for the temperature
dependence in all the thermophysical properties [26], starting
from a fully developed flow at the duct entrance. Since viscosity
is also considered to vary with temperature, the velocity com-
ponents are to be determined along the longitudinal coordinate,
and are computed by direct integration from the longitudinal
momentum equation by neglecting the effect of inertia terms
[27, 28].
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PROBLEM FORMULATION AND SOLUTION
METHODOLOGY

The main concern here is the possible increase of the heat
transfer coefficient in internal laminar flows, as a consequence
of passive techniques such as solid additives (nanofluids). Thus,
forced convection heat transfer inside a circular tube is con-
sidered, for incompressible laminar flow of a Newtonian liquid
with temperature-dependent thermophysical properties, includ-
ing viscosity, thermal capacitance, and thermal conductivity.
The flow is fully developed at the channel entrance, but the
variable viscosity alters the velocity field within the thermal
section. The tube is subjected to a prescribed uniform wall heat
flux, with uniform inlet temperature and negligible viscous dis-
sipation effects. This problem has a strong practical motivation
[26], with a renewed interest due to more recent applications in
forced convection with nanofluids. The related energy equation
and inlet and boundary conditions are written as [19, 25]:

o(T)c,(T) |:u(r, Z, T)E)T(r, 2) + v(r, z, T)M]
0z or
10 aT(r, 2)
2;5 [rk(T)T}, 0<r<rw,z>0 (la)
Tr,0)=Ty, 0<r <ry (1b)

oT
(r, 2) —0.r=0
or

=—qu, Fr=ry, >0

(1c, 1d)
where one may in principle neglect the transversal convective
term and the temperature-dependent longitudinal velocity com-
ponent is obtained by direct integration of the longitudinal mo-
mentum equation [27, 28]:

19 du(r,z) | dp(z)
ror |:rM(T) ar i|_ dz ’
ou(r, z) _

ar

0<r<ry, 2>0(a)

0, =0, u(r,z)=0,r=ry, z2>0
(b, 2¢)

The following dimensionless groups are then defined:

R=". 7- aozz’ U(R,Z)zu(r,z)
Ty uory, Ug
usa(r) k(T) k
Ua(R) = 252 =2(1 = RY), y(0) = —, ag = ——,
uo ko P0Cp,0
T(r,z) — T
C) = P0Cp,0Ura(r) . B(R.Z) = (r,z2) = Tp 3)
p(T)Cp(T)u(r, 2, T) qwrw/kO

where R and Z are the dimensionless radial and longitudinal
coordinates, U is the dimensionless longitudinal velocity com-
ponent, Uy, is the dimensionless fully developed velocity profile
at the channel entry, y is the dimensionless thermal conductivity,
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a is the fluid thermal diffusivity at the entry temperature, C is
the dimensionless product of the thermal capacitance and veloc-
ity, and 0 is the dimensionless temperature field. The problem
formulation in dimensionless form is given as

O0<R<l1, Z>0 (42

B6R.0)=0, 0<R<1 )
BED _o k=0 yo 2y,

R=1,2>0 (dc, 4d)

where for computational purposes, as is made more clear in the
next section, the nonlinear behavior of the velocity component
is moved to the right-hand side of Eq. (4a), and only the fully
developed velocity profile at the channel entrance is kept at the
left-hand side.

An accurate solution of the nonlinear problem (4) is sought,
with automatic global error control, employing the generalized
integral transform technique (GITT) [22-25]. In applying this
hybrid numerical-analytical approach to the present nonlinear
nonhomogeneous problem formulation, as in Egs. (4a)—(4d), it
is convenient to propose an analytical filtering solution that may
reduce the importance of the source term in boundary condition
(4d), that otherwise could noticeably affect the eigenfunction
expansion convergence rate. The following simple filtering so-
lution is then proposed:

0/(R) = — (5a)

with
6(R, Z) =6"(R, Z) + 05(R) (5b)
Then the problem formulation becomes:

a9*(R, Z2)
aZ

*

3 a0
=CO & [Rv(e) 3R

RUr4(R)

|+ 2@,

O<R<l1, Z>0 (6a)

2

(6b)

*(R, Z 0*(R, Z 1
MZQ R=0 Mz — =1,
R R ©)

R=1, Z>0 (6¢, 6d)

where the resulting nonlinear filtered source term becomes

dy (90
Py (0) = C(e)[zky(e)+Rzag<aR )] (6¢)
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The auxiliary problem is chosen as:

“ dy;(R) 2 ) _

R |:R T ] +B2RYi(R)=0, O<R<1 (7a)

di(R) _ 0, = o;d‘l”'(R) =0, R=1 (7b,7c)
dR dR

which yields the solution for eigenfunctions and eigenvalues in
terms of Bessel functions as

Pi(R) = Jo(BiR), Ji(Bi) =0,

where Lo = 0 is also an eigenvalue, and the normalization
integral is given by

i=0,1,2,... (7d, 7e)

1
N; = 5Jg () (79)
while the normalized eigenfunctions result in
- Jo(Bi R)
Ui(R) =2 (72)
Jo(Bi)
The integral transform pair is then given by:

oo

0*(R, Z) = ZJ;,»(R)éi(Z), inverse (8a)

i=0

1
é,-(z)z/ RU;(R)O*(R, Z)dR, transform  (8b)

0

The integral transformation process leads to the following
ODE system:

o0
dez a _
}: () =hi(Z,8), Z>0,

i,j,1=0,1,2,... (9a)

0:0) = fi

where the right-hand side vector is formed by the three contri-
butions here:

hi(Z.B) = hi(Z,8) +§5(Z.8) + 352, 8)

(9b)

(9

S
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and
ay(®)  9y(0) 96
OR 96 oR
or in terms of the more detailed expressions

S . R\ 8y(0)
qi(Z’ej)—/O |:R<9 (R’ZH_?)W]

%9

« (W n R) d“;}gR)dR 2 /01 Ry(®)
R*7 -
X [9*(R, Z)+ 71|\1;,-(R)dR (%9h)
with the transformed inlet conditions
fi= —% /0] R*i(R)dR (10)

Also, the linear coefficients matrix in the convection term is
readily computed in analytic form, and inverted only once to
provide the desired explicit transformed system for numerical
solution. In fact, this advantage of one single inversion justifies
writing Eq. (4a) with only the linear fully developed veloc-
ity component in the convection term, moving the nonlinear
component to the right-hand side. The coefficients are obtained
from:

1

aij = / RUu(R)i(R)Vr j(R)dR

0

Y

The dimensionless velocity field is given by direct integration
of the momentum equation in the form:

1 R /
1 —=dR
UR.Z)= 3 /OIMZ{, — (12a)
Jo R [ 2@ dR dR
where the dimensionless viscosity is written as
T
A =MD (12b)
Lo

Once the temperature distribution has been obtained with
prescribed accuracy, quantities of practical interest such as bulk
temperature and local and average Nusselt numbers can be read-
ily obtained from their analytical expressions.

SYNTHESIS AND CHARACTERIZATION
OF THE NANOFLUIDS

The accurate identification of nanofluid thermal properties
requires successful procedures for creating stable suspensions
of nanoparticles in the base liquids. In this study, a two-step
process was used for the preparation of nanofluids, consisting
first of the preparation of nanoparticles as a dry powder and then
dispersing them into a base fluid in a second processing step.
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The high surface area of nanoparticles makes them reac-
tive with respect to the solvent and the ionic/molecular species
present in the base fluid, so that phenomena like surface com-
plexations and hydroxylation can occur. All these processes can
alter the interface characteristics of the particles and affect the
stability of the suspension, so it is of critical importance to an-
alyze the characteristics of the involved nanoparticles such as
morphology, particles size distribution, and crystallinity, as well
as surface properties like zeta potential [29].

The morphology and the particle size of the starting pow-
ders were analyzed by scanning electron microscope (SEM).
The crystalline phases were characterized by x-ray diffraction
(XRD) measurement performed on the starting powder and on
the powder after dispersion tests.

The stability of the suspensions was monitored by electroki-
netic sonic amplitude (EAS) measurements (Acoustosizerll).
The simultaneous determination of zeta potential and particle
size distribution allows to evaluating the stability of nanoparti-
cles suspensions and to identifying the best conditions for the
preparation of nanofluids.

In this study, commercial a-Al,O3 nanoparticles were used,
and ultrapure water (Milli-Q) was employed as the base fluid.
Nanofluids with different volumetric concentrations of nanopar-
ticles were prepared in order to verify the stability of the disper-
sions.

The nanoparticles, dried out in a oven at 120°C for 24 h, and
the base fluid were initially mixed with a magnetic stirrer and
then processed with an ultrasonic probe to minimize particle
aggregation and improve dispersion behavior.

Figure 1a shows an SEM micrograph of the raw a-Al,O3
nanoparticles. The morphology of the nanoparticles is regular
and their shape is approximately spherical, however large ag-
glomerates are present. The mean particle size of nanoparticles
as received, obtained by SEM observation, is about 99 nm.

The XRD spectra of the a-Al,O; raw powder is shown in
Figure 1b. The peaks of the a-phase are well defined, narrow, and
present high intensity, indicating its high crystallinity. The XRD
analysis carried out with a-Al,O3 nanoparticles after 1 month
of contact with the base fluid has shown the same diffraction
spectra, indicating the absence of hydratation or dissolution
process and confirming the stability of crystallographic o phase
in the nanofluid.

The effect of ultrasonic processing on the stability of the
nanofluids was analyzed. ESA measurements were used to de-
termine the zeta potential and particle size distribution of a 1
vol.% a-Al,O3 nanofluid as a function of ultrasonication time,
and the results are presented in Figure 2. The zeta potential
slowly increases with the processing time up to the maximum
value of 13.4 mV, after 40 min of ultrasonication. This value,
however, is too low for an effective electrostatic stabilization of
the suspension, so the use of a dispersant is critical to obtain
a more stable suspension. The indices d15, d50, and d85 rep-
resent the particle size values for which 15%, 50%, and 85%
of the nanoparticles, respectively, have a diameter lower than
those indicated in the figure. The results show a reduction of the
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Figure 1 (a) SEM micrography of a-alumina (a-Al,O3) raw nanoparticles. (b) Spectra of x-rays diffraction of a-alumina (a-Al;O3) raw nanoparticles. (Color

figure available online.)

mean particles size with ultrasonication time, and after 40 min
of ultrasound exposition no further size reduction was achieved.
The resulting nanofluid shows a pH near to neutrality and mean
particle size of 77 nm, which is adequate for preparation of the
nanofluid.

For the forced convection experiments, since a larger volume
of suspension was required, ball milling was employed as the
dispersion method. Glass spheres with 0.5 mm diameter were
added to the suspension (in the proportion of 40 wt%), and then
the nanofluids were ball milled for 48 h. After removing the
milling media, some samples were collected in order to mea-
sure the zeta potential and the particle size distribution. Figure 3
shows the cumulative particle size distributions for the nanoflu-
ids with 1.6 vol% and 2 vol% of a-alumina and 1 wt% (with
respect to the nanoparticles) of the dispersant Tamol. The mean
particle sizes in these nanofluids are respectively 47 nm and
76 nm and the measured values of zeta potential are 19.6 mV
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Figure 2 Zeta potential and particles size distribution as a function of the
ultrasonication time. (Color figure available online.)
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and 16.1 mV. The zeta potential is higher than the values previ-
ously obtained without dispersant, because of the absorption of
the polyelectrolyte used as dispersant. Moreover, the electros-
teric stabilization, due to the dispersant, allows the nanofuids to
be stable during forced convection tests. After the tests only a
very low level of sedimentation was observed, indicating a neg-
ligible degree of sedimentation, as highlighted by the particle
size distributions of nanofluids.

EXPERIMENTAL SETUP AND PROCEDURE

The thermohydraulic circuit is divided into five parts: heater
system, test section, hydraulic circuit, heat rejection system,
and data acquisition system. The heater system consists of an
electrical resistance in the form of a metallic tape that was
installed over the surface of an electrically insulated copper

1

0.9 1
0.8 A
0.7 1
0.6
0.5 A
0.4 A
0.3 A

0.2 4

Mean Cumulative Fraction

-#-1.6 vol%

-2 vol%

0.1 4

0
0.00

0.10 0.15

Diameter [pm]

0.05 0.20

Figure 3 Particle size cumulative distribution for the nanofluids with 1.6%
and 2% nominal volumetric concentration with dispersant and after dispersion
in ball mill. (Color figure available online.)
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Figure 4 Schematic representation of the experimental apparatus for thermohydraulic analysis of nanofluids. (Color figure available online.)

tube treated with electrostatic painting, to allow for an uniform
heat flux along the pipe wall, which is thermally insulated over
its length after being covered with Kapton tape.

The heater system also includes a Variac that gives a variable-
output AC voltage from 0 to 300 VAC. Upon leaving the Variac,
the alternating current is rectified, filtered, and applied to the
resistance tape wound on the copper tube. The DC supply has
eliminated small electromagnetic induction noise caused in the
reading of the thermocouples. This setup allows applying to the
tube a heating power adjustable from 0O to 1500 W. The circuit
has a 20-A circuit breaker to protect it and also serves as a
key drive. The reading of electrical parameters is performed by
a digital ammeter (A), which measures the current within the
heater, and a digital voltmeter (V), which measures the supplied
voltage, while the resistance of the heater is measured in both
ambient and heated states.

The test section consists of a copper tube with outer di-
ameter of 3/8 inch and wall thickness of 1/16 inch. The wall
temperature measurements along the tube are provided by type
K (chromel-alumel) thermocouples placed on the external cop-
per wall. To measure the temperature within the fluid, type E
(chromel—constantan) thermocouples were placed inside mix-
ing connections at the inlet and outlet of the test section. For
the thermal insulation of the test section, glass wool has been
chosen.

The hydraulic circuit is composed of the fluid storage tank,
the pump, hoses, valves for flow control, the return pipe, and a
solenoid valve for mass flow rate measurements. A peristaltic
pump has been chosen to prevent the contamination of the fluid,
employing a nontoxic hose and avoiding contact with the me-
chanical seals and other pump parts. For mass flow rate measure-
ments a precision digital scale has been used for such low flow
rates, where readings of mass versus time are automatically ac-
quired through the RS232 output of the precision scale. At least
six successive mass flow rate measurements are recorded, at the
end of each experimental run, for statistical data analysis.

The heat rejection system consists of a shell-and-coil heat
exchanger, made of about 20 coiled sections of 18-cm-diameter
3/8-inch copper tube, subjected to a shell-side water stream

heat transfer engineering

at room temperature. The acquisition system was based on a
data logger connected to a microcomputer, and the experimental
apparatus is schematically described in Figure 4.

The implemented experimental procedure was designed for
steady-state measurements. In synthesis, one first checks the
fluid level in the reservoir to power on the pump, adjusting
its rotation. The data acquisition system is connected and the
control valve for the heat exchanger cooling water is adjusted.
Only then the heater system is turned on. When the system
achieves its steady state, the precision scale is powered and tared,
and one measures the voltage and current in the resistance, and
measures the mass flow rate. At the end of each test the system
is cooled back again, after the shutdown of the heating power.
In the case of exchange of fluid, the purge valve located before
the entry to the shell-and-coil heat exchanger is used, the lowest
point of the thermal circuit.

In the results here reported, around 3 L of the synthesized
alumina—water nanofluids have been utilized in the circuit, with
different nominal volumetric concentrations of aluminum ox-
ide nanoparticles. Apparently, due to the high concentration of
nanoparticles and the not fully effective dispersion method or
dispersant employed, some sedimentation of nanoparticles in
the thermohydraulic circuit can still be observed after each new
test batch was concluded. This observation has alerted us to mea-
sure concentrations after each set of runs, which would then be
more representative of the actual concentrations during the tests.
In fact, the postoperational measured value of 1.2% in volume
concentration is more representative of the actual flowing fluid
conditions in the set of experimental runs to be here reported.

To calculate the effective properties of the nanofluid, first
the following expressions for the density and specific heat have
been used, as obtained from the conventional mixtures theory:

Pnr = (1 — d)pp + dpp (13a)

Cp.nf = [(1 - ¢)pfbcp.fb + d)ppcp,p]/pnf (13b)

For the thermal conductivity, the Hamilton and Crosser cor-
relation [30] has been adopted, with the empirical form factor
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defined as n = 3 for nanoparticles with spherical shape, since it
has provided the best agreement with experimental results ob-
tained in our previous work, using both the hot wire and flash
techniques [20]:

kng = kpp(kp + (n = Dk, — (n = Dtk — kp)/

(kp +(n — Dkg, — @lkp, — kp)) (13¢)

In addition, the temperature dependence of the thermophys-
ical properties was found to closely follow that of the base fluid
(pure water) in the range of temperatures achieved in these ex-
periments [20]. The viscosity was measured at different shear
rates and temperatures, and exhibited a Newtonian behavior
[20]. The confirmation of the expected behavior for the thermo-
physical properties is in accordance with a recent benchmark
study involving different research groups but the same nanofluid
samples [31].

The literature provides a few different correlations, either the-
oretical or empirical, to predict the Nusselt number for laminar
flow as a function of dimensionless axial distance, in the form
of Graetz number (Gz) [26]. However, some of the reviewed
work on forced convection with nanofluids reported heat trans-
fer rates augmentation that does not seem to be explainable only
by changing the effective thermophysical properties in compar-
ison with the base fluid, and thus might not be predictable by
the classical correlations for heat transfer coefficients in laminar
flow. Therefore, two correlations for laminar forced convection
that are well accepted in the literature have been recalled, the
first one a theoretical correlation based on the analytical solution
of the so-called Graetz problem for prescribed heat flux [32],
and the correlation of experimental data performed in reference
[33], which also provides a correction on the heat transfer coef-
ficient for the variation of viscosity with temperature. The two
expressions, respectively, for local and average Nusselt num-
bers, are given by:

Churchill and Ozoe [33]:

Nu; + 1.7
5.357[1 + (Gz/97)8/913/8

Gz/71 LEIRe
- [H ([1 + (Pr /0.0468)3]12[1 + (Gz/97)8/9]3/4> ]

(14a)
Shah [32]:
1.953
— > x <0.03
Nuy, = 1 QO (14b)
Um = 0.0722
4.354 + , x>0.03
X
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where

1 z/D

x:G_z:RePr

(14c)

Equation (14a) may also be numerically integrated to provide
the average Nusselt number as a function of the dimensionless
axial position (inverse of the Graetz number).

RESULTS AND DISCUSSION

The proposed model and solution methodology were imple-
mented in the mixed symbolic-numerical platform Mathematica
[21], and first a few representative results were obtained to illus-
trate the convergence behavior of the eigenfunction expansions.
A test case has been selected, and employed in the model and
code validations, for pure water laminar flow with the following
pertinent data: r,, = 0.00315 m; ¢,, = 7188.4 W/m? L=2.45m;
up = 0.197m/s; Tp = 21.4°C; ko = 0.6 W/(m-°C); ap = 1.434 x
1077 m%s; vo = 9.790 x 10~7 m?/s.

The resulting Reynolds number is around Re = 1632 and the
Prandt]l number is Pr = 5.1. All the thermophysical properties
were allowed to vary with temperature, including viscosity and
its corresponding effect on the velocity field. A few selected
positions at the external wall along the tube were taken corre-
sponding to thermocouple locations in the experimental setup,
and are here used to illustrate the convergence behavior of the
eigenfunction expansion implemented. Thus, Table 1 shows the
convergence behavior of the duct wall temperature at the cho-
sen axial positions. The maximum system truncation order is
taken as N = 8, and NI = 36 segments are employed in the
semi-analytical integration of the system coefficients vectors.
Clearly, the integral transform results with truncation orders up
to N = 8 already offer a convergence to the third significant
digit in the wall temperature along the duct length.

Figure 5 illustrates the dimensionless temperature radial dis-
tributions along the channel length, for the same axial locations

8(R,Z)

Z=0.0353
0.0178

0.2 0.4 L .8 a

Figure 5 Dimensionless radial temperature distributions for linear (dashed
lines) and nonlinear (solid lines) formulations and dimensionless axial positions
increasing from lower to upper pairs of curves (Z = 0.0013, 0.0179, 0.0353,
0.0699, 0.1080, 0.1480, 0.1807, 0.2180). (Color figure available online.)
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Table 1 Convergence of dimensional duct wall temperature at different axial positions, z [m] (N < 8, NI = 36 segments)

z=0.014 m z=0.197 m z=0.388 m z=0.767 m z=1.185m z=1.625m z=1983m z=2.393m
N=2 26.410 30.575 33.305 37.419 41.017 44.246 46.616 49.146
N=3 25.185 30.634 33.719 37.949 41.461 44.580 46.877 49.344
N=4 24.737 30.878 33.941 38.053 41.502 44.594 46.879 49.338
N=5 24.559 31.000 33.992 38.060 41.498 44.583 46.865 49.319
N=6 24.490 31.038 33.999 38.056 41.489 44.571 46.850 49.302
N=7 24.459 31.046 33.998 38.051 41.481 44.560 46.838 49.289
N=38 24.429 31.047 33.996 38.046 41.474 44.551 46.828 49.278

as considered in Table 1, which are here represented from bot-
tom to top (Z = 0.0013,0.0179, 0.0353, 0.0699, 0.1080, 0.1480,
0.1807, 0.2180). The solid lines correspond to the full nonlinear
formulation here considered, while the dashed lines are obtained
from the classical linear formulation of the Graetz problem
(constant properties) with the second kind of boundary condi-
tion. As expected, the deviations are more significant within
the regions of larger temperature gradients, corresponding to
regions closer to the wall and as the fluid heating progresses
along the channel. Also, the heat transfer enhancement effect
may be observed in the reduction of the duct wall temperatures
as the nonlinear properties are accounted for, especially due to

T.(2), Tolz), Tolz) [°C)

I Constant

= T,lz)

G0 | ' B w

[ properties - "‘,;..— .
&0t >
: "‘ o = ® Variable

I e B properties . Talz)
10 - — p—

i re ——

[ o -
3'}? e . L Tl.[z}
Snjr;'

[
[I};

r 1 N

0D 0s 1.0 5 20 z[m]

(a)
Nu,(z), Nu(z)
0
5 Variable
l properties
i Constant
20

Num(z)

properties
/ Nus(z)

e _';__\L___: \1 T3

20 z[m]

0.5 0 5

(b)
Figure 6 Experimental (dots), linear (short dashes), and nonlinear (long
dashes) theoretical results for (a) wall, bulk, and centerline temperatures and
(b) local (lower curves and dots) and average Nusselt numbers, for pure water
in laminar flow with Re = 1531. (Color figure available online.)
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the reduction of the viscosities close to the hotter duct wall, with
the subsequent fluid acceleration in this region.

Experimental results of pure water were also obtained for
model verification purposes, and are illustrated in Figure 6
for a Reynolds number equal to 1531. In Figure 6a the tem-
peratures measured along the tube wall (dots) are compared
with the solution of the constant properties linear model (short
dashed lines) and the temperature-dependent properties (non-
linear) model (long dashed). In Figure 6b, the local (lower dots)
and average (upper dots) Nusselt numbers determined from the
measured temperatures are compared with theoretical predic-
tions for the local Nusselt (lower line) and average Nusselt (up-
per line) numbers. The dots in each case are the experimental
results and show good agreement with theoretical predictions,
with a slightly better adherence to the temperature dependent
properties model results. Also, Figure 7 illustrates the repeata-
bility of the experimental procedure, showing the average heat
transfer coefficients obtained for two distinct experimental runs,
for Re = 2008 and 2018 with water, where the agreement is
practically perfect to the graph scale. Temperature uncertain-
ties, after metrological thermocouples calibration, were held to
within 0.3°C, and, combined with the remaining parameters es-
timated errors, lead to an uncertainty of about 8% in the local
Nusselt numbers.

Both experiments and simulations for the nanofluids were
undertaken for a wide range of Reynolds numbers within the

hm(z) [W/m?°C]
2000 [

1500
1000}

500

0 " " 1 " " " 1 " " 1 " " " 1 "
0.0 05 1.0 15 20 z[m]
Figure 7 Repeatability of the experimental procedure: average heat transfer
coefficients for two distinct experimental runs with water and Re = 2008 and

2018. (Color figure available online.)
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Table 2a Comparison of experimental average heat transfer coefficients for water—alumina nanofluid and pure water: nanofluid (Re = 1616) with

postoperational concentration of 1.2% and water (Re = 1604 and Re = 1632)

Iy [W/m?-°C] nanofluid iy [W/ m2-°C] Deviation B [W/ m?-°C] Deviation Interpolation

z [m] Re = 1616 water, Re = 1604 (%) water, Re = 1632 (%) deviation (%)
0.767 932.6 831.3 12.2 850.5 9.64 11.1
1.185 787.5 721.6 9.13 737.0 6.85 8.15
1.625 689.2 649.0 6.18 662.1 4.09 5.28
1.983 648.3 615.3 5.36 629.5 2.99 434
2.393 615.0 583.7 5.38 597.5 2.94 4.33
laminar flow region, and in order to illustrate such analysis
sample results for different values of Reynolds number and
a nanofluid with postoperational concentration of 1.2% were h.(2) [W/m?°C)
selected. Table 2a provides a direct comparison of the experi- 1750 — Re=1515- nanofuid
mental average heat transfer coefficients for the nanofluid with o "
postoperational concentration of 1.2% and Re = 1616, with two g L0t W

. . . +— Re=1453 - water
experiments with pure water for bounding Reynolds number 1250
values (Re = 1604 and Re = 1632), in light of the difficulty 1000 i "
in matching the Reynolds numbers with different experiments s ] . i
for different fluids. Therefore, one may estimate from these two L . s
values the deviations between the nanofluid and the pure wa- oal
ter experimental results, yielding the last column in Table 2a, 250
which ranges from 11% enhancement closer to the channel , . . .
entrance (z = 0.767 m) down to around 4.3% in the fully de- 0.5 1 1.5 3 z[m]
veloped region. Similarly, Table 2b considers a lower value of () Re=1515 for nanofluid, Re=1453 and 1588 for water.
the Reynolds number for the nanofluid, Re = 1335, comparing
the average heat transfer coefficient along the tube with two hm(2) [W/m*°C]
other experiments with water, for a lower and an upper value 1750
of Reynolds, respectively, Re = 1227 and 1413. Again, the in- - Re=1189 - nanofluid
terpolated deviations result in an enhancement that goes from .
around 11% for the point closer to the inlet (z = 0.767 m) to A L :2:;:;::::::
about 7.3% at the end of the tube, in the fully developed region. 1000 aalanic
The heat transfer enhancement effect may also be graphically l !
observed in Figures 8a and b for a couple of different values of el Ut 0 '
Reynolds number, which shows the experimental average heat s00 '
transfer coefficient estimated at each thermocouple axial posi- 250
tion, for the nanofluid with 1.2% volumetric concentration, and
for two other values of Reynolds number for water, one above 0 5 1 _1_: 5 2 z [m]

and one below the corresponding Reynolds for the nanofluid.
In both sets of data, the nanofluid results are represented by
the dots most on top of the graphs, even though they repre-
sent an intermediate Reynolds number, respectively, Re = 1515
and 1189 in Figures 8a and b, while the Reynolds numbers

(h) Re=1189 for nanofluid, Re=1094 and 1277 for water.

Figure8 Comparison of average heat transfer coefficients at different positions
along the channel for the nanofluid with 1.2% volumetric concentration (upper
dots) and two other experiments with pure water for a lower and a higher value
of Reynolds number. (Color figure available online.)

Table 2b Comparison of experimental average heat transfer coefficients for water—alumina nanofluid and pure water: nanofluid (Re = 1335) with

postoperational concentration of 1.2% and water (Re = 1277 and Re = 1413)

hm [W/ m2-°C] nanofluid B [W/ m2-°C] Deviation hm [W/ m2-°C] Deviation Interpolation
z [m] Re = 1335 water, Re = 1227 (%) water, Re = 1413 (%) deviation (%)
0.767 864.2 768.8 12.4 789.8 9.42 11.1
1.185 742.4 678.4 9.43 689.2 7.72 8.70
1.625 660.6 609.0 8.48 620.2 6.52 7.64
1.983 623.8 577.1 8.09 586.8 6.32 7.33
2.393 589.5 544.7 8.22 555.0 6.22 7.37
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Figure 9 Experimental results for the average Nusselt number for the nanofluid with postoperational concentration of 1.2%, in black dots, compared with the
results from the correlations of Shah [32], plus signs, and Churchill and Ozoe [33], in circles: (a) z = 0.767 m, (b) z=1.185m, (¢) z= 1.625m, (d) z= 1.983 m,

and (e) z = 2.393 m.

for water, in each case, were Re = 1453 and 1588, in Fig-
ure 8a, and Re = 1094 and 1277, for Figure 8b. It is also clear
from these graphs that the rate of heat transfer enhancement is
somehow larger closer to the inlet than at the fully developed
region.

heat transfer engineering

It is also of interest to compare the experimental results here
provided with the most common correlations for internal forced
convection, employing the related thermophysical properties at
the overall mean temperature in the channel. Thus, the correla-
tions of Shah [32] and of Churchill and Ozoe [33] were taken to
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compute the average Nusselt numbers for various flow condi-
tions with the same nanofluid, for the five axial locations shown
above in Table 2. Therefore, Figures 9a—e summarize such com-
parisons, showing the present experimental results in filled cir-
cles, the theoretical results of reference [32] in plus signs, and
the reference [33] correlation results in blank circles. Clearly,
the overall agreement with the correlations predictions is quite
reasonable, with a more noticeable deviation from Shah’s [32]
theoretical correlation for shorter tube lengths, but with a good
agreement with Churchill and Ozoe’s [33] even in this range.
Therefore, at least in this range of nanoparticles concentrations
for this class of nanofluids, the classical correlations allow for
a prediction of the convective heat transfer behavior, as long as
the thermophysical properties are adequately accounted for, in
the form of effective properties, estimated at the global mean
temperature.

CONCLUSIONS

Convective heat transfer of water/a-alumina nanofluids in
tubes was studied, both theoretically and experimentally, ac-
counting for temperature dependence of all the thermophysical
properties in the theoretical model. The employed nanofluids
were synthesized by the two-step method, and two techniques
were utilized to disaggregate and disperse the nanoparticles,
ultrasound and ball milling. To improve the stability of the sus-
pensions it was necessary to use a dispersant. The nanoparticles
and the resulting nanofluids were fully characterized in terms of
morphology, crystallinity, zeta potential, and particle size distri-
bution. Experiments and simulations were covalidated for pure
water convection, and based on measurements of the relevant
thermophysical properties of the nanofluids, experimental find-
ings for convective heat transfer were critically compared with
the proposed temperature-dependent properties model results.

It has been observed that the temperature dependence of the
thermal conductivity and viscosity plays some role in the pre-
diction of the nanofluids’ convective thermal behavior, but most
important, one needs to account for operational variations of the
nanoparticle concentration, and postoperational measurements
of the properties should also be accomplished for a more re-
liable comparison. It has also been observed that a classical
correlation of experimental results in laminar forced convection
[33] can predict fairly well the behavior of the tested nanofluids,
once effective thermophysical properties are employed accord-
ing to available expressions in the literature. Therefore, at least
in this range of concentrations and Reynolds numbers, it has
been found unnecessary to develop specific correlations for the
water—alumina nanofluid that employ the concentration as an
adjustment factor. In addition, both the constant and variable
properties models of laminar forced convection with prescribed
wall heat flux were able to reliably reproduce the wall tempera-
ture distributions and Nusselt numbers experimentally obtained.
At least in the present range of wall and fluid temperatures, the
variation of thermophysical properties with temperature pro-
vides only a slight deviation in the theoretical results for the
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heat transfer coefficients, though yielding a better agreement
with the experimental results.

NOMENCLATURE

a;j implicit system coefficients
¢, specific heat [J/kg-°C]

D tube diameter

f; transformed inlet condition

Gz Graetz number, dimensionless

h  heat transfer coefficient [W/m?2-°C]

k  thermal conductivity [W/m-°C]

n  empirical form factor in thermal conductivity relation
N; norm or normalization integral

Nu Nusselt number, dimensionless

p  pressure [N/m?]

Prandt]l number, dimensionless
Py filtered source term

¢w prescribed heat flux [W/m?]

r  radial coordinate [m]

r, internal tube radius [m]

R dimensionless radial coordinate
Reynolds number, dimensionless
T temperature [°C]

Ty channel inlet temperature [°C]
u  fluid velocity components [m/s]
uy average velocity [m/s]

U dimensionless velocity

v fluid velocity components [m/s]
z  axial coordinate [m]

Z dimensionless axial coordinate

Greek Symbols

o thermal diffusivity [m%/s]

B; eigenvalues

dimensionless viscosity

nanoparticles volumetric concentration
absolute viscosity [kg/m-s]
eigenfunctions

kinematic viscosity [m?/s]

density [kg/m?]

dimensionless temperature
dimensionless axial coordinate, Eq. (14c)

= Do < e T & >

Subscripts

exp experimental

fully developed
base fluid

order of eigenvalues
local

average

related to nanofluid
related to inlet condition
particle

wall

local

xEvoBETIBR

vol. 34 nos.5-6 2013



458

Superscript
* filtered quantity
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