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This study demonstrates that pulmonologists improve their individual diagnostic interpretation of
pulmonary function tests when supported by AI-based computer protocols with automated
explanations. Such teamwork may become commonplace in the future. https://bit.ly/3ZKK4Eu
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Abstract
Background Few studies have investigated the collaborative potential between artificial intelligence (AI)
and pulmonologists for diagnosing pulmonary disease. We hypothesised that the collaboration between a
pulmonologist and AI with explanations (explainable AI (XAI)) is superior in diagnostic interpretation of
pulmonary function tests (PFTs) than the pulmonologist without support.
Methods The study was conducted in two phases, a monocentre study (phase 1) and a multicentre
intervention study (phase 2). Each phase utilised two different sets of 24 PFT reports of patients with a
clinically validated gold standard diagnosis. Each PFT was interpreted without (control) and with XAI’s
suggestions (intervention). Pulmonologists provided a differential diagnosis consisting of a preferential
diagnosis and optionally up to three additional diagnoses. The primary end-point compared accuracy of
preferential and additional diagnoses between control and intervention. Secondary end-points were the
number of diagnoses in differential diagnosis, diagnostic confidence and inter-rater agreement. We also
analysed how XAI influenced pulmonologists’ decisions.
Results In phase 1 (n=16 pulmonologists), mean preferential and differential diagnostic accuracy
significantly increased by 10.4% and 9.4%, respectively, between control and intervention (p<0.001).
Improvements were somewhat lower but highly significant (p<0.0001) in phase 2 (5.4% and 8.7%,
respectively; n=62 pulmonologists). In both phases, the number of diagnoses in the differential diagnosis
did not reduce, but diagnostic confidence and inter-rater agreement significantly increased during
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intervention. Pulmonologists updated their decisions with XAI’s feedback and consistently improved their
baseline performance if AI provided correct predictions.
Conclusion A collaboration between a pulmonologist and XAI is better at interpreting PFTs than
individual pulmonologists reading without XAI support or XAI alone.

Introduction
When correctly interpreted, pulmonary function tests (PFTs) are a useful tool to address the differential
diagnosis of respiratory diseases [1]. However, interpretation of PFTs requires expertise in combining the
understanding of normal values, lung function patterns (obstructive, restrictive, mixed and normal) and
appearance of flow–volume curves within the patient’s medical history, clinical presentation and results of
other diagnostic assessments [2, 3]. Although various algorithms exist to aid the interpretation of PFTs [4, 5],
it has been shown that neither pulmonologists nor the American Thoracic Society (ATS)/European
Respiratory Society (ERS)’s guideline-derived algorithms are sufficiently accurate for a correct reading [6, 7].

It could be argued that artificial intelligence (AI) may help in automating the complex reasoning that
drives the process of interpreting PFTs. Indeed, when all the PFT indices are taken together, the data-based
AI approach captures subtle characteristics of respiratory disorders that are not always identified by the
clinician, resulting in a powerful algorithm for differential diagnosis [8]. In the past, such AI-driven
algorithms have been shown to perform as well if not better than pulmonologists alone and might help
support pulmonologists to interpret lung function [6]. However, most clinical studies often report AI
outperforming clinicians’ diagnostic performance in head-to-head comparisons [9, 10], giving way to an
irrational claim that clinicians will soon be replaced by AI-equipped devices. Unlike the narrow task-based
scope of AI, clinicians carry out a multitude of duties involving diagnostics, treatment and management of
patients while also bringing a vital element of empathy to healthcare [11]. While clinicians are
irreplaceable, there remains a vast potential for AI and clinicians to work together in improving routine
clinical outcomes [11]. Presently, no data exist on the benefits of a collaboration between AI and a
pulmonologist at interpreting PFTs. Furthermore, AI algorithms are often regarded as black boxes, i.e. they
cannot provide explanations on their output [12]. Understanding the rationale behind a prediction is critical
to gaining trust, especially if a clinician plans an action based on the algorithm’s output. On the other
hand, it has also been suggested that explanations may help in mitigating automation bias and other errors
that arise from over-reliance on AI systems [13]. Today, several methods exist that allow us to produce
explanations, rendering AI more transparent and hence easier to decipher. This new paradigm of AI is
called explainable AI (XAI) [14].

In this study, we hypothesised that a pulmonologist with the help of XAI’s suggestions would be superior
at interpreting PFTs to the pulmonologist working alone. Our primary goal was to compare the preferential
and differential diagnostic accuracy between the pulmonologist’s view (control) and the pulmonologist’s
view assisted with suggestions provided by a machine-learning model (intervention) [6]. We also compared
whether the intervention was better than the AI’s standalone diagnostic performance. Additionally, we
investigated how pulmonologists updated their diagnostic choices following the assistance of XAI.

Methods
Study design
In this study with a repeated measures design, pulmonologists were requested to interpret 24 anonymised
PFT reports including pre- and/or post-bronchodilator spirometry, lung volumes, airway resistance and
diffusing capacity (with access to z-scores and data colour coding indicating deviation from normal).
Limited clinical information (smoking history and symptom presentation) was also provided. Each PFT
report was interpreted in two steps: 1) a control step in which pulmonologists provided their responses
after reading the PFT report only, then 2) an intervention step in which pulmonologists provided their
responses for the same report with suggestions of XAI available to them. Thus, each pulmonologist
performed 48 interpretations in one exercise.

We carried out the study in two phases. Phase 1 (P1) was a monocentric study in which 16 out of 25
invited pulmonologists from University Hospitals Leuven (Leuven, Belgium) completed the study. In
phase 2 (P2), 62 out of 88 invited pulmonologists from across European institutions completed the study
(supplementary table S1). P2 was initiated only after we observed that primary end-points in P1 were met.
The set of 24 PFT reports differed completely between the two phases.

We used the Gorilla Experiment Builder online platform to carry out the study [15]. Participants could
complete the study at their own pace with no time limits. They began by indicating their informed consent,
years of clinical experience (<5 or ⩾5 years), any prior experience with AI-based clinical decision support
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system (Yes/No) and their enthusiasm on AI applications in general on a 5-point Likert scale
(supplementary material S2).

Afterwards, participants were guided to complete a tutorial to familiarise themselves with the online
platform and XAI’s suggestions (supplementary material S3). During the main tasks, pulmonologists
provided a differential diagnosis including a mandatory preferential diagnosis and up to three additional
diagnoses ranked in the order of preference. The diagnostic choices were: 1) healthy or normal, 2) asthma
(including obstructive or non-obstructive), 3) COPD (including emphysema or chronic bronchitis),
4) interstitial lung disease (ILD) (including idiopathic pulmonary fibrosis and non-idiopathic pulmonary
fibrosis), 5) neuromuscular disease (NMD) (including diaphragm paralysis), 6) other obstructive disease
(OBD) (including cystic fibrosis, bronchiectasis and bronchiolitis), 7) thoracic deformity (TD) (including
pleural disease and pneumonectomy) and 8) pulmonary vascular disease (PVD) (including pulmonary
hypertension, vasculitis and chronic thromboembolic pulmonary hypertension).

The pulmonologists also provided an overall confidence of their diagnosis on a 5-point Likert scale
(1=least confidence, 5=highest confidence). In addition, they indicated their level of agreement with XAI’s
suggestion on a 5-point Likert scale (1=strongly disagree, 2=disagree, 3=neutral, 4=agree, 5=strongly
agree) in the intervention phases. Supplementary material S3 shows an example of a control and
intervention phase for one particular PFT report.

An ethics committee approval was obtained for P1 (S60243), while a separate ethics committee approval
was obtained for the international multicentre P2 phase (S65162).

PFT cases
Between November 2017 and August 2018 at University Hospitals Leuven, 1003 subjects performed
complete lung function testing. All PFTs were performed with standardised equipment by respiratory
operators (Masterlab; Jaeger, Würzburg, Germany), according to ATS/ERS criteria [16]. Global Lung
Function Initiative equations were used to calculated reference values for spirometric forced expiratory
volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC [17], while the 1993 European
Community for Steel and Coal standards were used for diffusion capacity, lung volumes and airway
resistance measurements [18]. A single clinician assigned a preliminary diagnosis across each of the eight
disease categories in 794 subjects by referring to electronic health records of clinical history, symptoms,
PFT reports and additional tests. A high prevalence of COPD (23%), ILD (25%), asthma (9%) and normal
(30%) subjects characterised the sample. All subjects were Caucasians older than 18 years. From this
group, we shortlisted 92 subjects, by randomly selecting 15 subjects from each of the most prevalent
groups (COPD, asthma, ILD and normal lung function) and eight subjects from each of the least prevalent
diseases (NMD, TD, PVD and OBD). Two pulmonologists jointly adjudicated the gold standard diagnosis
in each of these cases using all available clinical data including PFTs. If there was disagreement or doubt
about the diagnosis another case was selected to end up with a set of 24 PFT cases with a gold standard
diagnosis, for P1 and P2 separately. In each set, we randomly included four subjects from the most
prevalent diseases and two subjects from the least prevalent diseases. We then slightly inflated the sample
of incorrectly predicted cases by the AI to study how clinicians would respond to incorrect AI suggestions.
Following an additional review by the pulmonologists, three cases in each set that were correctly predicted
by the AI were deliberately replaced by cases in which the AI did not correctly predict the adjudicated
gold standard diagnosis. Thus in both sets, the preferential diagnostic accuracy of the AI was set at 62.5%
(15 out of 24 cases), which was lower than its reported validation accuracy of 74% [6].

Explainable artificial intelligence
We used our previously reported machine-learning model that predicts eight respiratory disorders (COPD,
asthma, ILD, healthy, NMD, TD, PVD and OBD) [6]. Its preferential diagnostic accuracy (disease with the
highest calculated probability) was reported at 74% during inter-validation, while similar accuracies
(76–82%) were also observed during testing on external cohorts [6]. In this study we also reported
explanations on AI’s second diagnostic suggestion when its probability was >15%, in addition to explanations
for AI’s preferential diagnosis. To render the AI model explainable, we used a game-theoretic concept called
Shapley values (SVs) to estimate the evidence of different PFT indices towards AI’s diagnostic suggestions
[19]. A positive SV is interpreted as evidence supporting the model’s prediction, while a negative SV is
counter-evidence. The magnitude of the SV denotes the strength of the contribution. For each diagnostic
suggestion, we included a SV plot of the top five PFT indices in descending order of magnitude of
evidence. We also normalised the SVs by dividing them by the highest magnitude. We show an example
of a PFT case with XAI’s suggestions in figure 1.
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Study end-points
Our primary end-point was to compare pulmonologists’ mean preferential and differential diagnostic
accuracy between the control and the intervention setting. The mean preferential accuracy is calculated as
the number of cases in which a pulmonologists’ preferential diagnosis matched the gold standard, averaged
over the entire cohort. Mean differential accuracy is calculated as the number of times in which a
pulmonologists’ differential diagnosis (preferential diagnosis+additional diagnoses) included the gold

Suggested diagnoses in order: COPD, OBD

a)

Sex: Male Age: 34 Height: 178 cm Weight: 74 kg BMI: 23 kg·m–2 Race: Caucasian Smoking: 10 PY

Case: Male, 34 years old, heavy smoker, complaints of dyspnoea, cough and sputum production

b)

Asthma

19.6%

COPD

38.5%

OBD

21.7%

Asthma

Healthy

ILD

NMD

PVD

TD

OBD

COPD

KCO

–1.0 0.0 0.5 1.0

TLC

Smoking

Age

FEV1/FVC

–0.5

Against    Evidence    For

34 years

101% pred

98% pred

45%

10 PY

COPD

DLCO

–1.0 0.0 0.5 1.0

KCO

Smoking

Age

FEF25–75%

–0.5

34 years

72% pred

101% pred

17% pred

10 PY

OBD

Against    Evidence    For

FIGURE 1 a) A sample pulmonary function test (PFT) report (see [16–18] for details) and
b) explainable artificial intelligence (XAI)’s diagnostic suggestions with Shapley value (SV) evidence. The gold
standard diagnosis was COPD based on emphysema on computed tomography scan and passive smoke
exposure during childhood (normal α1-antitrypsin levels). In this case, XAI makes two diagnostic suggestions
(COPD and other obstructive disease (OBD)) since the probability of the second disease (OBD) is >15%.
Additionally, we show a normalised SV plot of the top five PFT indices that contributed towards the prediction
of COPD and OBD, respectively. A positive SV (in green) is supporting evidence, while a negative SV (in red) is
counter-evidence. BMI: body mass index; PY: pack-years; ILD: interstitial lung disease; NMD: neuromuscular
disease; PVD: pulmonary vascular disease; TD: thoracic deformity; FEV1: forced expiratory volume in 1 s; FVC:
forced vital capacity; KCO: transfer coefficient of the lung for carbon monoxide; FEF25–75%: forced expiratory
flow at 25–75% of FVC; DLCO: diffusing capacity of the lung for carbon monoxide.

https://doi.org/10.1183/13993003.01720-2022 4

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | N. DAS ET AL.



standard, averaged over the entire cohort. As secondary end-points, we explored the number of additional
diagnoses, clinicians’ diagnostic confidence on the overall diagnostic performance as well as their
inter-rater agreement on the preferential diagnosis. We also analysed how pulmonologists updated their
diagnostic decisions between control and intervention, and further studied if pulmonologists followed
XAI’s incorrect suggestions, indicating automation bias.

Sample size calculation
The minimum sample size for pulmonologists was calculated at 11, using the two-sided paired t-test with
the assumption that the accuracy of both preferential and differential diagnosis improves between control
and intervention with a mean of three cases out of 24 (12.5%), a standard deviation of three cases, a
significance of 0.05 and power of 0.8. The premise of our assumption is that the intervention setting will
show a mean improvement in preferential and differential diagnostic accuracy of at least 10% [6].

Statistical analysis
We evaluated our quantitative end-points using the paired t-test. Inter-observer agreement in preferential
diagnostic choice was assessed using Fleiss’ κ. Continuous variables were assumed to be normally
distributed with homogenous variance and the Shapiro–Wilk test was used to test assumptions of
normality. We performed all our analysis with R statistical software (www.r-project.org) using a
significance level of 0.05.

Results
Participant demographics
P1 and P2 saw the participation of 16 and 62 pulmonologists, respectively (supplementary table S4). More
than three-quarters of the participants in both phases had at least 5 years of clinical experience. Over half
of P1 participants had prior experience with AI-based decision support systems, but that percentage was
much lower in P2 (11%). Mean baseline enthusiasm about AI on a 5-point Likert scale was high in both
groups (3.56 and 3.92, respectively), suggesting an overall bias towards accepting AI’s decisions.

PFT sample characteristics and baseline XAI’s performance
PFT sample characteristics were similar for P1 and P2 (n=24 each) (table 1). Both samples included four
groups each of high prevalence (COPD, asthma, ILD and normal lung function) and two diseases each of
low prevalence (NMD, TD, PVD and OBD).

AI’s preferential diagnosis was set to match the gold standard in 15 out of 24 cases (62.5%) in both P1
and P2 samples, while its differential diagnosis (preferential diagnosis+second diagnostic suggestion)
included the gold standard in 22 (91.7%) of the P1 cases and 21 (87.5%) of the P2 cases. A breakdown of
AI’s diagnostic performance across different disease groups is given in supplementary table S5.

Primary end-points
In P1, the use of XAI improved the mean preferential and differential diagnostic accuracy by 10.4% and
9.4%, respectively (p<0.001), which was somewhat higher than in P2 (5.4% and 8.7%, respectively;
p<0.0001). Thus, primary end-points were met as mean diagnostic accuracies significantly increased
between control (pulmonologist) and intervention (pulmonologist+XAI) (table 2 and figure 2). However,
the improvements were smaller than anticipated (12.5%) from our sample size estimation.

When we compared the diagnostic performance between XAI and the intervention setting (pulmonologist+
XAI) as an exploratory analysis, we also observed a mean improvement of 13% (p<0.0001) and 3.1%
(p=0.01) for preferential and differential diagnostic accuracy in P1 (n=16), which was similar to P2 (n=62)
with a mean improvement of 12.25% and 2.9%, respectively. Thus, we noted that pulmonologists with the
help of XAI’s suggestion not only improved their individual performance, but they also significantly
outperformed AI’s predictive performance in both P1 and P2 (supplementary figure S6).

Secondary end-points
We included a number of secondary end-points in our study (table 3). In both studies, mean Likert scale
confidence in diagnosis significantly increased (p<0.01), while the number of differential diagnostic
choices remained unchanged between control and intervention. Fleiss’ κ quantifying inter-clinician
agreement in preferential diagnosis also increased. Pulmonologists indicated a moderately high level of
agreement with the suggestions of XAI.
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Demographics-based performance
In P2 (n=62), we further analysed the diagnostic performance of the enhanced setting (pulmonologist+
XAI) by stratifying on experience. We observed no significant differences in interventional diagnostic
accuracies between participants with <5 years (n=12) and ⩾5 years (n=50) of experience. Similarly, no
significant differences were observed when the subjects were stratified on their baseline enthusiasm about
AI applications (supplementary table S7).

Change in responses
In both phases, pulmonologists’ diagnostic responses changed between control and intervention in almost
half of the 24 cases (table 4). Diagnostic confidence at baseline was significantly lower in cases where
responses changed compared with cases in which responses remained unchanged. Whenever responses

TABLE 1 Overview of pulmonary function test (PFT) characteristics in the monocentric phase 1 (P1) and multicentric phase 2 (P2) studies, with 24
PFT reports each

Healthy COPD Asthma ILD NMD OBD TD PVD

P1 study
Reports 4 4 4 4 2 2 2 2
Female/male 3/1 3/1 2/2 3/1 0/2 2/0 0/2 1/1
Age, years 36–62 58–72 26–48 51–84 59–59 20–49 65–67 70–82
Pack-years 0–0 30–56 0–5 0–12 10–35 0–0 0–25 0–30
FEV1, z-score −0.78–1.05 −3.08–−1.14 −4.13–−0.41 −3.84–0.64 −4.41–−3.25 −4.87–−3.88 −4.09–−1.34 −0.33–1.19
FVC, z-score −0.93–0.93 −1.16–0.22 −1.61–−0.41 −4.31–−1.65 −5.02–−3.7 −3.59–−0.95 −4.8–−1.63 −1.01–1.44
FEV1/FVC, % 77–86 54–64 49–82 83–90 77–81 43–60 79–80 72–89
RV, z-score −1.44–0.19 1.21–2.28 −0.63–2.89 −3.43–−2.08 −1.64–−0.61 3.68–3.73 −3.39–−2.27 0.44–0.88
TLC, z-score −1.49–1.3 −0.34–1.13 −0.37–1.06 −4.12–−2.01 −3.37–−3.37 −0.07–1.84 −4.78–−2.92 −0.09–0.54
DLCO, z-score −0.81–0.45 −2.66–0.4 −1.12–−0.38 −3.86–−1.81 −1.96–−0.91 −2.45–−2.25 −3.24–−2.46 −3.29–−2.39
KCO, z-score −0.97–2.24 −1.88–0.39 −0.26–0.71 −2.24–0.95 1.52–4.72 −0.22–1.31 0.02–3.36 −2.3–−1.79

P2 study
Reports 4 4 4 4 2 2 2 2
Female/male 3/1 1/3 0/4 2/2 2/0 0/2 2/0 1/1
Age, years 27–67 48–84 21–59 35–85 31–56 30–68 54–90 50–64
Pack-years 0–25 18–50 0–20 0–25 0–3 0–0 0–0 10–20
FEV1, z-score −0.69–0.79 −4.96–−1.63 −1.02–1.38 −4.35–−0.06 −4.6–−4.28 −5.35–−2.17 −3.05–−2.7 −1.16–−1.1
FVC, z-score −1.21–0.7 −4.1–0.19 −0.16–1.85 −4.39–−0.18 −4.83–−4.82 −3.56–−1.39 −3.03–−2.92 −1.35–−0.16
FEV1/FVC, % 77–92 49–60 69–73 77–87 81–81 42–61 74–80 67–82
RV, z-score −1.08–0.72 −1.14–4.56 −0.53–3.43 −1.84–2.53 −1.11–−1.04 1.77–4.64 −2.07–−0.97 −0.55–0.48
TLC, z-score −0.06–0.01 −2.7–2.05 −0.32–2.81 −3.63–−1.39 −2.74–−2.40 −0.77–−0.41 −3.42–−3.19 −1.04–0.16
DLCO, z-score −1.28–−0.32 −3.73–−0.63 −0.62–0.76 −5.2–−2.32 −4.95–−4.27 −1.69–1.15 −2.28–−2.07 −2.19–−1.99
KCO, z-score −0.78–0.23 −0.44–0.39 −0.44–0.58 −1.79–−0.63 −1.17–2.27 0.41–1.4 0.89–1.15 −1.47–−0.61

Data are presented as n or minimum–maximum. ILD: interstitial lung disease; NMD: neuromuscular disease; OBD: other obstructive disease;
TD: thoracic deformity; PVD: pulmonary vascular disease; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; RV: residual volume;
TLC: total lung capacity; DLCO: diffusing capacity of the lung for carbon monoxide; KCO: transfer coefficient of the lung for carbon monoxide.

TABLE 2 Primary end-points in the monocentric phase 1 (P1) and multicentric phase 2 (P2) studies

XAI
alone,
%

Control
(pulmonologist),

%

Intervention
(pulmonologist+XAI),

%

Mean improvement, %

Intervention
on control

Intervention
on XAI alone

P1 study (16 pulmonologists)
Preferential diagnosis=gold standard 62.5 65.1±8.2 75.5±9.3 10.4*** 13****
Differential diagnosis# includes gold standard 91.7 85.4±10.5 94.8±5.8 9.4**** 3.1*

P2 study (62 pulmonologists)
Preferential diagnosis=gold standard 62.5 69.3±9.1 74.6±7.6 5.4**** 12.1****
Differential diagnosis# includes gold standard 87.6 81.7±11.2 90.4±8.8 8.7**** 2.9*

Data are presented as mean±SD, unless otherwise stated. XAI: explainable artificial intelligence. #: differential diagnosis includes preferential
diagnosis and up to three additional diagnoses. *: p<0.05; ***: p<0.001; *****: p<0.0001.
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changed, we observed a significant improvement (p<0.001) in differential diagnostic accuracy: in the 55%
changed cases of P1, the differential diagnosis contained the gold standard in 78% within the control arm
versus 95% after the intervention; in the 48% changed cases in P2, the differential diagnosis included the
gold standard in 73% of the control arm versus 91% after the intervention. The changed responses always
contained at least one diagnostic suggestion of XAI.

Automation bias
We studied if pulmonologists’ performance reduced between control and intervention whenever AI
suggested a correct or incorrect preferential diagnosis (nine cases in P1 and P2, respectively)
(supplementary table S8). While it was found that preferential diagnostic accuracy reduced slightly but
significantly in cases where an incorrect XAI diagnosis was given, we observed much larger increases in
accuracy when the XAI diagnosis was correct. We also observed that pulmonologists placed a significantly
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FIGURE 2 Percentage change of preferential and differential diagnostic performance between control (individual pulmonologists) and intervention
(pulmonologists and explainable artificial intelligence (XAI)) in a) the phase 1 (P1) study with 16 pulmonologists and b) the phase 2 (P2) study with
62 pulmonologists. Boxes indicate median and interquartile range. ***: p<0.001; ****: p<0.0001. GS: gold standard.

TABLE 3 Secondary end-points in the monocentric phase 1 (P1) and multicentric phase 2 (P2) studies

Control
(pulmonologist)

Intervention
(pulmonologist+XAI)

p-value

P1 study (16 pulmonologists)
Additional diagnoses in the differential diagnosis, n 1.86±0.32 1.8±0.33 0.197
Diagnostic confidence on Likert scale
(1=least confidence, 5=most confidence)

3.71±0.5 3.98±0.42 <0.01

Agreement with XAI on Likert scale
(1=strongly disagree, 2=disagree, 3=neutral, 4=agree, 5=strongly agree)

3.76±0.3

Inter-rater agreement on preferential diagnosis (Fleiss’ κ) 0.52 0.64
P2 study (62 pulmonologists)
Additional diagnoses in the differential diagnosis, n 1.67±0.35 1.64±0.32 0.22
Diagnostic confidence on Likert scale
(1=least confidence, 5=most confidence)

3.93±0.34 4.03±0.34 <0.0001

Agreement with XAI on Likert scale
(1=strongly disagree, 2=disagree, 3=neutral, 4=agree, 5=strongly agree)

3.49±0.36

Inter-rater agreement on preferential diagnosis (Fleiss’ κ) 0.53 0.63

Data are presented as mean±SD, unless otherwise stated. XAI: explainable artificial intelligence.
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higher (p<0.001) level of agreement with XAI’s suggestions in cases with correct preferential predictions
as opposed to with incorrect preferential predictions, indicating little risk for automation bias.

Discussion
In this study conducted in two separate phases, we observed that pulmonologists when aided by XAI
significantly improved on their individual preferential and differential diagnostic accuracy in interpreting
PFTs. Among secondary end-points, we noted a significant increase in diagnostic confidence but no
reduction in the number of differential diagnostic choices. Our results support the hypothesis that a
pulmonologist aided by XAI improves on the interpretation of PFTs for the differential diagnosis of
respiratory diseases when compared with individual pulmonologists with no support. Interestingly, we also
observed that pulmonologists when aided by XAI significantly outperformed XAI itself in preferential and
differential diagnostic accuracy.

Most clinical studies involving AI have emphasised the diagnostic superiority of AI using head-to-head
comparisons [10], while few have studied the benefits of a collaborative approach. In fact, our post-hoc
head-to-head comparison revealed no clear differences in diagnostic accuracy between AI and individual
pulmonologists in both P1 and P2. This was expected because unlike most studies that typically compare
AI with non-experts diluting average human performance, our participants were respiratory medicine
specialists. It is likely that the use of XAI will be even more beneficial when used by medical practitioners
less experienced in interpreting PFTs. Although this was not the aim of our study, the use of XAI could be
expanded to these populations if proven advantageous. Secondly, a lower than expected improvement can
also be explained by the fact that we purposefully included PFT cases in which AI made mistakes to study
the effect of incorrect predictions on clinicians’ decision making. A random selection of cases based on
actual disease prevalence in the real word would have seen a higher AI accuracy and pushed up
pulmonologist’s performance by a larger margin.

The superiority of the collaborative approach is in line with several clinical decision support systems
(CDSSs) that have been reported to improve practitioners’ performance in the past [20]. Our study adopted
a repeated measures design instead of a placebo-controlled trial, not only due to the limited availability of
participants. We also wanted to recreate a setting in which the pulmonologist arrives at a diagnostic work-up
and updates, if needed, based on an automated protocol. Although there might be an element of learning
effect present through the repeated measure design, our results showed that XAI’s suggestions effected a
change in pulmonologists’ responses in almost of half of the cases. Whenever responses changed,
pulmonologists were more likely to improve over their baseline performance. An analysis of changed
responses revealed that the updated diagnosis always contained at least one diagnostic suggestion of XAI.

Our study also allowed a preliminary investigation into automation bias, a known error that arises due to
clinicians over-relying on CDSSs’ output even when it is incorrect [13]. The present results showed that
pulmonologists preferential diagnostic performance decreased slightly whenever AI made incorrect
predictions, but increased considerably when a correct diagnostic suggestion was made. Moreover,
agreement with XAI’s suggestions was significantly higher (p<0.0001) with correct suggestions compared

TABLE 4 Change (percentage of cases) in diagnostic responses between control and intervention in the phase
1 (P1) study with 16 pulmonologists and the phase 2 (P2) study with 62 pulmonologists

Change (cases, %) Baseline confidence#

P1 study (16 pulmonologists)
Differential diagnosis unchanged 45±16.3 3.87±0.54
Differential diagnosis changed 55±16.3 3.56±0.48
Preferential diagnosis changed 27.1±10 p<0.01
Additional diagnoses changed 27.9±11.5

P2 study (62 pulmonologists)
Differential diagnosis unchanged 51.7±15.8 4.09±0.36
Differential diagnosis changed 48.5±15.8 3.76±0.39
Preferential diagnosis changed 18±14.2 p<0.01
Additional diagnoses changed 30.4±13.9

Data are presented as mean±SD, unless otherwise stated. #: baseline confidence is the overall diagnostic
confidence on a 5-point Likert scale indicated by pulmonologists during control. t-test comparison between
baseline Likert scales is given with p-value.
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with those in which AI made incorrect predictions, indicating only limited risk for automation bias.
Researchers have suggested that explanations, as we provided with the SVs, allow the clinician to develop
an internal picture on how the system operates. It has the potential to mitigate misplaced trust and
over-reliance on CDSSs [13, 21]. Nonetheless, a controlled study with and without explanations must be
conducted to conclusively establish the impact of explanations on automation bias.

The current study is in line with the novel ATS/ERS standards for lung function interpretation stating that
PFTs are to detect and quantify disturbances of the respiratory system [22]. Based on certain patterns,
clinicians will use PFTs in their diagnostic work-up towards a preferential diagnosis and a reduced list of
differential diagnoses. As the AI and XAI algorithms provide probability estimates for diagnostic disease
clusters but no final disease diagnoses, they completely support this clinical diagnostic process. A major
limitation of our study is that our definition of diagnostic superiority as a positive outcome may be
construed as narrow in scope. In real life, a diagnostic work-up is achieved through an extensive
anamnesis, clinical exam and a multitude of tests such as exhaled nitric oxide fraction and histamine
challenge, blood samples, and even computed tomography scan, which were not available to the
pulmonologists in the current study. Vice versa, future AI models may also benefit from multimodal layers
of information to improve on their granularity and accuracy. Our study could also have benefitted from a
larger sample of PFT reports as the current sample over-represents disease groups like NMD, TD, OBD
and PVD. It distorts the actual prevalence of diseases that pulmonologists routinely encounter in clinical
practice. Due to the limited sample size and good individual baseline performance of clinicians, the
improvements in diagnostic accuracy from introducing AI were small and may be clinically not very
relevant. The lack of ethnic diversity was also a major limitation that hinders extrapolation of current
results to the general population. In the future, prospective studies using randomised clinical trial settings
including less experienced practitioners and using PFTs of a more diverse population, with specific
end-points such as time to final diagnosis, number of diagnostic or redundant tests, total costs for the
healthcare system, etc., are required to establish the real effectiveness of XAI.

To conclude, our study demonstrates that pulmonologists can improve their individual diagnostic interpretation
of PFTs with the help of AI. Such teamwork between AI and clinicians may become commonplace in the
future, with the potential to drive healthcare improvements particularly in areas where clinical expertise is
less available.
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