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Abstract 

Objective: Transcranial Magnetic Stimulation (TMS) has been suggested as a reliable, non-

invasive, and inexpensive tool for the diagnosis of neurodegenerative dementias. In this study we 

assessed the classification performance of TMS parameters in the differential diagnosis of common 

neurodegenerative disorders, including Alzheimer’s disease (AD), dementia with Lewy bodies 

(DLB) and frontotemporal dementia (FTD). 

Methods: We performed a multicenter study enrolling patients referred to four dementia centers in 

Italy, in accordance with the Standards for Reporting of Diagnostic Accuracy. All patients 

underwent TMS assessment at recruitment (index test), with application of reference clinical 

criteria, to predict different neurodegenerative disorders. The investigators who performed the index 

test were masked to the results of the reference test and all other investigations.  

We trained and tested a Random Forests classifier using 5-fold cross validation. The primary 

outcome measures were the classification accuracy, precision, recall and F1-score of TMS in 

differentiating each neurodegenerative disorder.  

Results: 694 participants were included, namely 273 patients diagnosed as AD, 67 as DLB, 207 as 

FTD, and 147 as healthy controls (HC). A series of 3 binary classifiers was employed, and the 

prediction model exhibited high classification accuracy (ranging from 0.89 to 0.92), high precision 

(0.86-0.92), high recall (0.93-0.98), and high F1 scores (0.89-0.95), in differentiating each 

neurodegenerative disorder.  

Interpretation: TMS is a non-invasive procedure which reliably and selectively distinguishes AD, 

DLB, FTD and HC, representing a useful additional screening tool to be used in clinical practice.   
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Introduction 

Alzheimer’s disease (AD) and other dementias are a major and increasing global health challenge 

worldwide, with 40–50 million people currently living with dementia,1 the majority of individuals 

coming from low- and middle-income countries.2 Even though AD is the most common form,3 

recent epidemiological studies4 and the refinement of new clinical criteria5–7 have clearly shown 

that frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) are much more 

frequent than previously thought. 

These premises claim for the urgent need of reliable diagnostic markers, able to identify the 

different forms of neurodegenerative dementias, since the early disease stages, to be easily 

introduced as a screening tool in memory clinics, even in primary or secondary referral centers. 

Currently, validated markers, divided into imaging modalities and fluid measures, are used on 

clinical grounds and have proven to be highly accurate in diagnosing dementia.8 However, a 

number of drawbacks may limit the use of these markers, thus being considered only in selected 

cases. In particular, some are able to identify AD, but are unhelpful in other forms of dementia (i.e., 

amyloid PET imaging or cerebrospinal fluid Aβ42 and Tau dosages), others are not useful in early 

disease stages at single subject level (i.e., brain MRI); moreover, the invasiveness of the procedure 

(i.e., cerebrospinal fluid analysis) or the expensiveness (i.e., PET amyloid) may further confine their 

availability. Notably, the ideal marker, besides having high accuracy and reliability, should be non-

invasive, simple to perform and inexpensive.9 

In this context, transcranial magnetic stimulation (TMS) has shown to be a reliable tool to non-

invasively assess a series of intracortical circuits which indirectly rely on several neurotransmitters, 

as GABA, glutamate and acetylcholine.10,11 
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A considerable body of literature has historically shown that AD and DLB are characterized by a 

deficit in short latency afferent inhibition (SAI),12–21 a marker of sensorimotor integration which 

largely relies on cholinergic circuits,11 while FTD and DLB show a striking alteration in short 

interval intracortical inhibition and facilitation (SICI-ICF),22–25 which substantially depend on 

GABAergic and glutamatergic circuits,11 respectively. These findings have prompted subsequent 

studies, which have suggested that a neurophysiological assessment might not be very far from 

being ready to be translated from the experimental to the clinical setting.26–30 However, to further 

confirm TMS utility for the diagnosis of AD and other neurodegenerative dementias and to extend 

its use broadly, multicenter studies assessing the best combination of TMS measures, thus achieving 

the highest classification performance, are desirable. 

As a results of these observations, we hypothesized that by applying state-of-the-art machine 

learning techniques to neurophysiological measures, obtained from multicenter studies, we could 

obtain a very high diagnostic accuracy in the differential diagnosis of the most common 

neurodegenerative dementing disorders.  
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Methods 

Subjects 

In this study, we collected patients retrospectively from four centers in Italy, namely from 

the Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 

Italy, from the Memory Clinic of the Tor Vergata University, Rome, from the Neurology Unit, 

Campus Bio-Medico University, Rome, Italy, and the Neurology Unit, Merano Hospital, Merano, 

Italy. Several patients were already enrolled in previous published studies by the authors. Each 

included patient fulfilled current clinical criteria for probable AD,31 DLB,7 or FTD.5,6 Dementia was 

defined when cognitive or behavioral (neuropsychiatric) symptoms interfered with the ability to 

function at work or at usual activities, representing a decline from previous levels of functioning 

and performing, not explained by other disorders (i.e. delirium, major psychiatric disorders). 

Regarding AD, patients met criteria for dementia, having an insidious onset with a clear-cut history 

of worsening of cognition, and an amnestic presentation.31 In cases of non-amnestic presentations 

but with a high suspect of AD pathophysiology, patients underwent amyloid PET imaging or 

cerebrospinal fluid (CSF) analysis (see below). For DLB, patients fulfilled the diagnosis of 

dementia, alternately associated with fluctuating cognition with pronounced variations in attention 

and alertness, recurrent visual hallucinations, REM sleep behavior disorder and at least one 

spontaneous cardinal feature of parkinsonism.7 Regarding FTD, patients were classified as probable 

behavioral variant FTD (bvFTD)6 or primary progressive aphasia (PPA)5 based on the initial and 

most prominent clinical features, associated with fronto-insular/temporal atrophy at magnetic MRI 

or hypometabolism at 18F-fluorodeoxyglucose PET (FDG-PET). 
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All patients considered in the present study underwent an extensive neuropsychological evaluation, 

according to standard procedures at each center and based on the expertise of each clinician. 

Patients were followed for at least two years, and clinical diagnoses were confirmed at follow-up. 

Brain MRI with a 1.5 or 3T scanner was performed in all patients. In order to exclude patients with 

vascular cognitive disorders, patients with vascular lesions, small vessel disease, strategic lacunar 

infarcts, or cerebral hemorrhages at MRI,32 were excluded from the present study. 

In selected cases, when the diagnostic confidence was not satisfactory, FDG-PET, single-photon 

emission computed tomography (SPECT)-DaTSCAN or 123I-MIBG myocardial scintigraphy was 

performed (i.e. differential diagnosis between AD and DLB). 

In a subgroup of patients, diagnosis was accomplished by amyloid markers, such as CSF Aβ42 

determinations or amyloid PET imaging, which supported or ruled out AD diagnosis. A CSF AD-

like profile was defined as Aβ1-42 ≤ 650 ng/L and tau ≥ 400 ng/L using a commercial ELISA 

assay,33 while PET amyloid imaging was acquired using 370 MBq (10 mCi) of [18F]-florbetapir or 

[18F]-flutemetamol and visual readings were performed by nuclear medicine physicians who were 

blinded to the patients’ diagnosis, following the procedures provided by the ligand manufacturer, as 

previously reported.34 

Exclusion criteria were as follows: i) use of drugs that could affect TMS variables, ii) history of 

head trauma, alcohol abuse, stroke or transient ischemic attack, or epilepsy; iii) presence of 

pacemaker or other cardiac devices, cochlear implants, or previous brain surgery, such as clipping 

of a cerebral aneurysm. 
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A group of healthy controls (HC) was included, who underwent a brief standardized 

neuropsychological assessment (MMSE ≥ 27/30); psychiatric or other neurological illnesses were 

considered as exclusion criterion.  

Full written informed consent was obtained from all participants according to the Declaration of 

Helsinki. The study protocol was approved by the local ethics committees of the participating 

centers.  

 

Study design 

The study was performed in accordance with the Standard for Reporting of Diagnostic Accuracy 

(STARD) criteria, applying the reference and index test at recruitment (see Figure 1). All subjects 

underwent an extensive clinical and instrumental work-up and the diagnosis was made by 

neurologists with expertise in neurodegenerative disorders (AB, GC, VDL, AA, MSC, AP, BB) 

(i.e., reference test).  

All subjects underwent TMS study at recruitment, performed by examiners who had experience 

with neurophysiological techniques (RN, VC, VD, FR) and who were masked to the results of the 

reference test (i.e., index test). Data analysis was done by two separate statisticians (MG and FP). 

Our primary research question was to determine the classification performance of AD and other 

dementias, considering the best combination of TMS indicators. 

 

Transcranial magnetic stimulation parameters 

The four centers applied comparable TMS protocols. A TMS figure-of-eight coil (each loop 

diameter 70 mm) connected to a monophasic Magstim Bistim or Bistim2 system (Magstim 
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Company, Oxford, UK) was employed for all TMS paradigms. Electromyographic (EMG) 

recordings were performed from the first dorsal interosseous (FDI) muscles using 9 mm diameter, 

Ag-AgCl surface-cup electrodes. The active electrode was placed over the muscle belly and the 

reference electrode over the metacarpophalangeal joint of the index finger. Responses were 

amplified and filtered at 20 Hz and 2 kHz with a sampling rate of 5 kHz.  

To locate the precise representation of the target muscle on the contralateral primary motor cortex, 

the TMS coil was positioned approximately 4 cm laterally and 2 cm anteriorly to Cz, tangentially 

on the scalp with the coil handle pointed 45° posteriorly and laterally to the sagittal plane. The “hot 

spot” was defined as the point in which magnetic stimulation resulted in the maximum motor 

evoked potential (MEP) amplitude with the minimum stimulator intensity. To obtain this, stimulator 

intensity was increased from 35% of the maximal stimulator output (MSO) in 5% steps until MEPs 

with an approximately 0.5-1 mV amplitude could be recorded. The coil was then moved in 0.5 cm 

steps medially, laterally, posteriorly and anteriorly while evoking 3 MEPs at each site.35 This was 

performed until the site in which the largest MEPs could be located, which was marked with a felt 

tip pen on the scalp to ensure constant placement of the coil throughout the experiment. 

RMT was defined as the minimal stimulus intensity needed to produce MEPs with an amplitude of 

at least 50 μV in 5 out of 10 consecutive trails during complete muscle relaxation, which was 

controlled by visually checking the absence of EMG activity at high-gain amplification. The active 

motor threshold (AMT) was determined during a slight tonic contraction of the target muscle at 

approximately 20% of the maximal muscle strength. MT was determined according to the relative 

frequency method, in which we started at a stimulus intensity of 35% MSO with the coil placed 

over the motor “hot spot”, and stimulus intensity was gradually increased in steps of 5% MSO until 
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TMS consistently evoked MEPs with peak-to-peak amplitudes of >50 μV in each trial for RMT. 

Thereafter, stimulus intensity was gradually lowered in steps of 1% MSO until there were less than 

5 positive responses out of 10 trials. For AMT, MEPs greater than 200 μV were judged to be 

positive. 

SICI-ICF, LICI and SAI were studied using a paired-pulse protocol, employing a conditioning-test 

design. For all paradigms, the test stimulus (TS) was adjusted to evoke a MEP of approximately 1 

mv peak-to-peak amplitude. 

For SICI and ICF, the conditioning stimulus (CS) was adjusted at 70% of the RMT or 5% of below 

AMT (based on individual preferences at each center), employing multiple interstimulus intervals 

(ISIs), including 1, 2, 3, 5 ms for SICI and 7, 10, 15 ms for ICF.36,37 

Long interval intracortical inhibition (LICI), which predominantly reflects GABABergic 

transmission, was elicited by applying two suprathreshold stimuli at long ISIs (50, 100, 150 ms), 

with the CS set at 130% of the RMT preceding the TS.38 

SAI was evaluated employing a CS consisting of a single pulse (200 μs) of electrical stimulation at 

the right median nerve at the wrist, using a bipolar electrode with the cathode positioned 

proximally, at an intensity sufficient to evoke a visible twitch of the thenar muscles.39 Different ISIs 

were implemented (-4, 0, +4, +8 ms), which were fixed relative to the latency of the N20 component 

of the somatosensory evoked potential of the median nerve. 

For each ISI and for each protocol (SICI-ICF, LICI and SAI), from 5 to 10 (depending on each 

center) different paired CS-TS and control TS were delivered in all participants in a pseudo 

randomized sequence, with an inter-trial interval of 5 secs (±10%). 
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The conditioned MEP amplitude, evoked after delivering a paired CS-TS, was expressed as 

percentage of the average control MEP amplitude. Stimulation protocols were conducted in a 

randomized order. Audio-visual feedback was provided to ensure muscle relaxation during the 

entire experiment and trials were discarded if EMG activity exceeded 100 μV in the 250 ms prior to 

TMS stimulus delivery. Less that 5% of trials were discarded for each protocol. All of the 

participants were capable of following instructions and reaching complete muscle relaxation; if, 

however the data was corrupted by patient movement, the protocol was restarted and the initial 

recording was rejected.  

The operators who administered TMS were blinded to the subjects’ status; standardized TMS 

procedures were employed for all participants and stimuli were delivered in a randomized sequence, 

thus reducing possible biases in TMS recordings. 

For the purpose of the present study we considered as potential indicators each of the following 

parameters: SICI and ICF (at 1, 2, 3, 5, 7, 10, 15 ms ISIs), LICI (at 50, 100, 150 ms ISIs), and SAI 

(at −4, 0, +4, +8 ms ISIs). For every patient, considering that protocols were performed with 

slightly different parameters between each center (i.e. not every ISI was performed in all centers), 

machine learning algorithms were applied (see next section) to infer average values and trends of 

each measure for each paired-pulse protocol. 

 

Statistical analysis 

Descriptive analysis. TMS raw measures were compared using two-way mixed ANCOVA (for 

SICI-ICF, LICI and SAI) with GROUP as between-subjects factor and ISI as within-subjects factor, 

including age at TMS and center as covariates. If a significant main effect was observed, group 
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differences were evaluated with post hoc tests (Bonferroni correction for multiple comparisons). 

Mauchly’s test was used to check for sphericity violation, applying Greenhouse-Geisser epsilon 

determinations. 

 

Machine Learning (ML) model. The step-by-step ML design is depicted in Figure 3, and detailed 

below.  

Step 1 - TMS parameters selection and missing data imputation. TMS intracortical connectivity 

measures, namely SICI-ICF, SAI and LICI, were considered. Missing values were imputed using 

the k-nearest neighbors (KNN) algorithm as previously reported.40 To prevent the loss of predictive 

accuracy, imputation was restricted to subjects with at least 5 out of 7 data points for SICI-ICF and 

2 out of 4 data points for SAI. No restrictions were applied for LICI, to avoid extensive data loss 

and having only a slight impact on prediction accuracy.  

Step 2 - Regression analysis. Three distinct regression analyses, on the basis of previous published 

data on SICI-ICF, SAI and LICI curve patterns, were carried out (see Figure 3, panel A). For each 

TMS protocol, we performed regression analysis to capture both baseline average values (i.e., 

intercept or zero-order parameters) and trends (i.e., regressor coefficients) through time (ISIs). 

Regressions take the general form: y ~ poly(t); i.e., the TMS parameter y for each subject is 

predicted as a polynomial function of time (ISIs). Each TMS parameter has its own polynomial 

function (see Figure 3, panel B). 

LICI was analyzed with a simple linear regression (LR), in the form: y(LICI) = a0 + a1*t. The 

Broken Line Regression (BLR) was applied for SICI and ICF: y(SICI) = bs0 + bs*t and y(ICF) = 

bi0 + bi*t, where bs0 and bs are the intercept and slope parameters for SICI (at 1, 2, 3, 5 ms), and 

This article is protected by copyright. All rights reserved.



  

bi0 and bi are the intercept and slope parameters for ICF (at 7, 10, 15 ms), respectively. The BLR 

allowed us to account for the dual behavior of the SICI-ICF signal at different ISIs. Finally, 

Quadratic Regression (QR) was used for SAI, considering its parabolic shape: y(SAI) = b0 + b1*t + 

b2*t^2. 

This led to the production of a set of 9 regression parameters (i.e., those estimating baseline mean 

ISIs: a0, bs0, bi0, b0, and those estimating curve trends at different ISIs: a1, bs, bi, b1, b2); these 

regression parameters were the features input for the subsequent classification step, using either 

unadjusted values or adjusted values by demographic variables, including age at TMS, sex and 

center (as for ANCOVA procedures, we did not include age at onset because it was autocorrelated 

with age at TMS, r=0.962, p<0.001, and results did not differ adding this covariate). Covariate 

adjustment was performed by computing the regression parameter residuals per subject after the 

regression parameter fitting on demographic features. 

Step 3 – Random Forest models. Random Forests (RFs) classifier was carried out41 and regression 

parameters were used as predictors for binary classification through decision tree (see Figure 3, 

panel C). The RF is a classifier that includes a large number of decision tree classifiers. Each tree is 

trained with randomly selected with replacement (i.e., bootstrapped) learning samples and at each 

node a subset of features is randomly selected to generate the best split, and then the best 

classification is conducted based on a majority vote of the trees in the forest. We chose hierarchical 

two-group classifications approach, as this method usually yields higher predictive accuracy as 

compared to multi-group classification. Mean Decrease Accuracy (MDA), namely the importance 

of a feature in determining classification accuracy, and Mean Decrease Gini Impurity (MDG), 

namely the importance of a feature to discriminate between classes, were used for features ranking 
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and plotting. In addition, Multidimensional Scaling (MDS) plots were obtained for illustrative 

visualization of RF outputs. 

Step 4 – Validation. To avoid classifier over-performance on a specific dataset, and consequent loss 

of classification generality and reproducibility, we performed a K-fold cross-validation analysis. At 

each iteration, K-1 partitions were merged into one and used for the learning process (training step), 

while the K-th left out partition (i.e., the validation set) was used to predict the outcome (i.e., the 

diagnostic class). Once every iteration cycle was completed, we moved to the next partitioning 

configuration, until every K-th partition has been used as validation set. We performed a multiple 

10, 5, and 4-fold-cross validation analysis. 

Performance of the classifier was computed considering the following indices:42 i) classification 

accuracy, i.e. the ratio of correctly predicted (positive or negative) observations to the total 

observations; ii) precision, i.e. the ratio of correctly predicted positive observations to the total 

predicted positive observations (precision estimates classifier’s ability to predict really positive 

observations when the test is positive); iii) recall, i.e. the ratio of correctly predicted positive 

observations to the total true positive observations (recall estimates the amount of true positive 

observations that were correctly classified as positive); and iv) F1-score, i.e. the harmonic average 

of precision and recall. 

The 2×2 frequency table (the so-called confusion matrix) was obtained at each iteration of the K-

fold cross-validation, and the performance indices were computed both by averaging the indices of 

K 2×2 tables and by using the overall 2×2 table over the K iterations. 

 

Software 
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Descriptive analyses were carried out using SPSS software (SPSS 21.0. Armonk, NY). Random 

forest classifier and evaluation of classification performance were carried out in R-3.6.0, using 

RandomForest package, with ntree=1000=number of trees to grow and mtry=sqrt(9)=number of 

variables randomly sampled as candidates at each split;43 reprtree package for selection of the most 

representative trees;44 CMA package for performance evaluation with K-fold cross-validation and 

custom R visualization functions (MDS_plot).45  
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Results 

Subjects 

Seven hundred and eight participants were assessed for eligibility, and 14 were excluded because 

they could not undergo TMS testing (2%): they were carrying electronic implants (n=4), they had a 

positive history of seizures (n=7), or because 1 mV MEPs could not be obtained by using stimulator 

intensities <85% of the maximum stimulator output (n=3) (see Figure 1).  

Thus, 694 subjects were considered in the present analysis, 504 of whom were recruited at the 

University of Brescia, 103 at the University of Tor Vergata in Rome, 64 at Campus Bio-Medico 

University in Rome and 23 at Merano Hospital, Italy. Of these, 54.2% have been included in 

previous studies published by the authors. 

Demographic characteristics of the diagnostic groups are reported in Table 1. We included 273 

patients with AD, 207 patients with FTD (60 with Primary Progressive Aphasia and 147 with 

behavioral variant FTD), 67 patients with DLB, and 147 subjects as HC. 

Three-hundred thirty-seven (48.5%) patients had at least one amyloid marker (PET amyloid or CSF 

Aβ1-42, and tau dosage), which further supported or excluded an AD diagnosis.  

TMS connectivity measures and regression parameters estimation 

TMS connectivity measures, i.e. SICI-ICF, SAI and LICI in the different diagnostic groups are 

reported in Figure 2. We observed a significant interaction at the two-way mixed ANCOVA for 

SICI-ICF [F(12.0,2411.2)=81.1, p<0.001, partial η2=0.29, ε=0.67], LICI [F(5.6,867.1)=2.4, 

p=0.031, partial η2=0.02, ε=0.93] and SAI [F(7.2,1382.1)=13.8, p<0.001, partial η2=0.07, ε=0.80]. 

Post-hoc differences, corrected for multiple comparisons, between groups and for each ISI, are 

reported in Figure 2. Briefly, in comparison to healthy controls, SICI-ICF resulted significantly 
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impaired in both FTD and DLB, SAI was significantly impaired in AD and DLB, while LICI was 

significantly impaired in FTD. 

We did not observe significant differences in MT intensities (expressed as % of MSO) between 

centers, F(6,680)=1.82, p=0.092, η2=0.02, or in SICI-ICF measures obtained with different 

conditioning stimulus intensities (70% RMT or AMT-5%), which were distinctly adopted between 

centers, F(1,682)=0.12, p=0.726, η2<0.01. 

For each subject, the set of 9 regression parameters on the basis of ISI values and curve shapes of 

SICI-ICF, SAI and LICI, was calculated (see method section for details) and used in the Random 

Forests classifier. The mean values of each regression parameter according to diagnostic group, and 

significant differences between groups are reported in Supplementary Table 1. 

 

Random Forests (RFs) models and classification performances 

As reported in Figure 1 (lower part), a series of subsequent 3binary (two-groups) and independent 

classifiers were employed: 1) cases (AD, FTD or DLB) vs HC; 2) FTD vs non-FTD (AD or DLB), 

3) AD vs DLB.  

The specific order of classification resulted in the greatest accuracy, i.e. fewer classification errors. 

The first two-groups classification allowed us to classify each subject as “case” (i.e., patient with 

dementia) or “control”; if the subject fell into the “case” category, the next order of classification 

was considered, and the FTD vs non-FTD classifier was carried out; once again, if the patient fell 

into the “non-FTD” category, the third classifier allowed us to classify the patient into AD vs DLB. 

For each of the three classifiers, Multi-dimensional scaling (MDS) plots are reported in Figure 4. 

MDS plots tend to a separate shape: the more pronounced is the separation the better the 
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classification performance is obtained (especially visible in the first and second RF classifier). In 

the first classifier, cases vs HC, the top-ranking variables of importance were SAI b0, SICI bs and 

ICF bi; in the second classifier, FTD vs non-FTD, were SAI b0, SICI bs and ICF bi0, while in the 

third classifier, AD vs DLB, were ICF bi, SICI bs0 and ICF bi0. 

Classification indices with 5-fold-cross validation (10 and 4-fold cross validation run similar 

results), unadjusted and adjusted for age, sex and center, are reported in Table 2 (A-B), after 

removing outliers with Brier score >1.46 The prediction model exhibited overall high accuracy 

(ranging from 0.89 to 0.92), high precision (0.86-0.92), high recall (0.93-0.98), and high F1-scores 

(0.89-0.95). 

To evaluate if results were consistent in patients with a higher diagnostic confidence, classification 

performance was also evaluated by 5-fold-cross validation on control subjects and the patient 

subgroups with a biomarker-supported diagnosis, obtaining very similar results [see Table 2 (C)]. 

Considering the large sample size, we reported classification results using a single random 

independent validation set, corresponding to roughly half of the sample size (for each RF classifier), 

obtaining comparable results [see Table 2 (D)].  
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Discussion 

In this work, we aimed at maximizing the potential diagnostic performances of TMS measures by 

applying Random Forest classifiers to the diagnosis of AD and other neurodegenerative dementias.  

We have previously demonstrated that SICI-ICF, LICI and SAI parameters, as well as SICI-

ICF/SAI ratio, are helpful to differentiate AD, FTD and DLB27 with high accuracy. However, the 

previously proposed cut-offs (not cross-validated) cannot theoretically reproduce comparable 

results when different centers and new subjects are considered (data not shown). Even though the 

same findings were independently obtained by other groups in the past,24,47,48 a systematic 

evaluation of TMS performances was essential to prove its diagnostic utility. 

In this multicenter study which included a very large sample size, we propose a diagnostic approach 

which is able to differentiate the most common forms of dementias, whose performance metric was 

validated using a machine-learning based computer-aided approach. 

We observed very high levels of classification accuracy, precision and recall, applying an intuitive 

and straightforward step-by-step approach: in the first step healthy controls are identified and 

excluded, in the second step FTD is recognized from the dementias of the central cholinergic 

system (i.e., AD and DLB), while in the third step AD is differentiated from DLB. Indeed, using the 

classification parameters obtained in the Random Forest analysis, an automated R script was coded 

to allow the simple and straightforward entry of raw TMS measures, which are computed and 

elaborated, resulting in a diagnostic class for each diagnosis at the single subject level (an user-

friendly R package and related documentation are available online at the GitHub Repository 

https://github.com/fernandoPalluzzi/tmsClassifier). The decision process is achieved evaluating 

1000 rules (i.e. trees) per subject, and then the best classification is based on a majority vote of the 
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trees in the forest. As compared to other biological markers, TMS parameters are possibly able to 

selectively identify most of the spectrum of neurodegenerative dementias, such as AD, FTD, DLB 

and distinguish them from healthy ageing. 

The high accuracy obtained using TMS measures possibly relies on the biological bases of 

dementia. If neuropathological criteria for AD, FTD and DLB classify each disease by a specific 

proteinopathy, parallelly, biological studies have detected a specific, now well-established, 

neurotransmitter impairment. 

Indeed, as SICI and LICI are considered to reflect short-lasting postsynaptic inhibition mediated 

through the GABAA and GABAB receptors at the level of local interneurons,36,37 and ICF is thought 

to represent a net facilitation most likely mediated by glutamatergic NMDA receptors,11,37 the 

impairment observed in FTD suggests a deficit of GABAergic and glutamatergic interneurons.49–51 

On the other hand, Aβ peptides have been shown to impair acetylcholine synthesis and release, and 

to induce cholinergic cell toxicity,52 which could reflect the impairment of SAI observed in AD.12–21 

In the same view, the well-recognized cholinergic deficit and the documented impairment of 

GABAergic and glutamatergic neurotransmission in DLB might explain the impairment of both 

SAI and SICI-ICF in these patients.27,53,54 Summarizing, from what we have observed in this study, 

SICI-ICF was significantly impaired in FTD and DLB, LICI mostly in FTD, while SAI was 

impaired in both DLB and AD patients. The combination of these measures has been shown to be 

accurate in differentiating these neurodegenerative diseases from one another. 

Diagnosis of neurodegenerative dementias is still challenging, with substantial diagnostic delays, 

employing different methods which may be invasive or expensive, as cerebrospinal fluid analysis or 

amyloid PET imaging. TMS has the advantage that it can be carried out concomitantly in the 
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outpatient visit, being non-invasive, relatively non-time consuming and rather inexpensive. For 

these reasons, beyond resulting as a marker with diagnostic accuracy values comparable to those of 

well-established biomarkers, TMS might represent a reliable and accessible screening tool,55 

considering the exponential increase in the prevalence of people living with dementia.1 

The strength of the present work relies on the very large sample size with a multicenter enrolment 

and the machine-learning approach to data analysis to obtain highest possible values of diagnostic 

accuracy. Indeed, as compared to a previous work,28 the large sample size allowed us to apply a 5-

fold cross validation, which prevents results from overfitting and guarantees replicability to other 

datasets. Moreover, the Random Forests classifier is superior to the most available learning 

algorithms since it is easy to parameterize, robust against overfitting, not sensitive to noise in the 

data set (i.e. good at dealing with outliers in training data) and able to avoid biases due to unrelated 

centers. 

However, the main limitation is that TMS remains a specialized technique requiring specific 

technology (special hardware and software) and training. Consequently, although the tolerability of 

the index test was very good, the practicability in primary or secondary referral dementia centers is 

still limited. This issue needs to be further assessed considering that worldwide the majority of 

patients with dementia come from low- and middle-income countries,2 and inexpensive screening 

tools will be mandatory. 

Moreover, a number of questions needs to be further addressed. Above all, the performance of TMS 

in real-world situations as a screening tool should be tested as well as the accuracy in subjects in the 

preclinical or prodromal phases of dementia, even though most of the patients included in the 

present work had a mild disease stage. Another relevant aspect relies on the possible overlap 
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between pathologies, considering that approximately 40% of dementias are of mixed type,56 and 

which were not accounted for in this study. Nevertheless, excluding patients with a vascular 

cognitive decline based also on MRI assessments,32 which account for a significant overlap in 

pathological studies, could partially mitigate this issue. We cannot also exclude that healthy 

controls included in the present study are biomarker positive in a preclinical phase of disease, since 

the majority did not undergo any biological marker assessment. 

Despite these limitations, the addition of TMS measures to the routine diagnostic assessment could 

allow for an earlier diagnosis, increasing the enrolment of patients with dementia into therapeutic 

trials when combined with clinical and conventional methods of diagnosis. These findings support 

for the use of TMS intracortical connectivity measures to be translated from the experimental 

setting to the clinical practice.  
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Table 1. Demographic and clinical characteristics of included patients. 

Variable AD FTD DLB HC 

Patients (number) 273 207 67 147 

Age, years 70.7±7.0§* 65.9±8.7†‡* 72.9±6.1§* 57.7±17.6†§‡ 

Gender, F% 50.9‡ 45.4‡ 22.4†*§ 57.8‡ 

Age at onset, years 68.1±7.0§ 62.8±8.3†‡ 70.0±6.2§ - 

Education, years 9.6±4.4* 10.5±4.5 9.7±4.7* 11.6±4.6†‡ 

MMSE scores 23.3±4.8* 22.2±7.9* 23.4±3.5* 29.1±1.6†§‡ 

CSF Aβ42, pg/ml (n) 461.2±203.1 (93)§‡* 839±314.3 (111)†* 744.7±352.0 (9)†* 1140.0±169.3 (7)†§‡ 

CSF Tau, pg/ml (n) 725.5±394.6 (93)§‡* 381.0±248.4 (111)† 230.6±6.8 (9)† 204.0±64.3 (7)† 

CSF pTau, pg/ml (n) 99.5±124.2 (93)§ 54.8±38.7 (111)† 41.9±22.1 (9) 40.1±9.5 (7) 

PET amy, positive % (n) 98.6 (69)§‡* 7 (27)† 0 (3)† 0 (12)† 

TMS parameters     

   RMT (% MSO) 0.43±0.08§ 0.46±0.09†‡ 0.42±0.09§ 0.45±0.08 

   SICI 0.57±0.26§‡* 0.76±0.31†* 0.76±0.41†* 0.47±0.27†§‡ 

   ICF 1.33±0.33§‡* 0.96±0.34†‡* 1.13±0.46†§* 1.44±0.3†§‡ 

   SAI 0.81±0.19§* 0.54±0.17†‡ 0.83±0.26§* 0.51±0.14†‡ 

   LICI 0.45±0.26§* 0.69±0.40†‡* 0.43±0.35§ 0.31±0.26†§ 

 
Demographic and clinical characteristics, and neurophysiological parameters are expressed as mean 

± standard deviation; SICI, ICF, LICI and SAI are represented as ratio of mean conditioned and 

unconditioned (i.e. control) motor evoked potential (MEP) amplitude. 

AD = Alzheimer’s Disease; FTD = Frontotemporal Dementia; HC = healthy controls; n = number; 

F = female; MMSE=Mini-Mental State Examination; CSF = cerebrospinal fluid; PET amy = 

amyloid Positron Emission Tomography; TMS = Transcranial Magnetic Stimulation; RTM = 

resting motor threshold; SICI = mean short interval intracortical inhibition (1, 2, 3, 5 ms); ICF = 

mean intracortical facilitation (7, 10, 15 ms); SAI = mean short latency afferent inhibition (0, +4 

ms); LICI = mean long interval intracortical inhibition (50, 100, 150 ms). 
*p<0.05 vs HC; †p<0.05 vs AD, ‡p<0.05 vs DLB; §p<0.05 vs FTD using one-way ANOVA or chi-

square tests, as appropriate (post hoc tests with Bonferroni correction for multiple comparisons, 

only after a significant interaction).
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Table 2. Classification accuracy, precision, recall and F1-score of the two-group classifiers (5-fold 

cross-validation), after outliers with Brier score >1 were removed; training and validation 

performed on the whole dataset with: (A) unadjusted regression parameters, (B) adjusted for center, 

age and sex regression parameters, (C) patients with a biomarker-supported diagnosis and (D) in a 

single random independent validation set. 

Two-group classifier First classier 

Cases vs HC 

Second classifier 

FTD vs non-FTD 

Third classifier 

AD vs DLB 

A) All patients (unadjusted) n=645 n=504 n=305 

Accuracy 0.92 0.91 0.90 

Precision 0.93 0.91 0.92 

Recall 0.97 0.95 0.96 

F1-score 0.95 0.93 0.94 

B) All patients (adjusted) n=649 n=508 n=320 

Accuracy 0.89 0.89 0.92 

Precision 0.90 0.86 0.92 

Recall 0.97 0.93 0.98 

F1-score 0.94 0.89 0.95 

C) Patients with biomarkers n=454 n=297 n=171 

Accuracy 0.87 0.89 0.96 

Precision 0.89 0.88 0.97 

Recall 0.93 0.91 0.99 

F1-score 0.91 0.90 0.98 

D) Single random independent validation set n=322 n=278 n=169 

Accuracy 0.89 0.87 0.94 

Precision 0.97 0.86 0.97 

Recall 0.91 0.94 0.96 

F1-score 0.94 0.89 0.97 

 

This article is protected by copyright. All rights reserved.



  

AD = Alzheimer Disease; FTD = Frontotemporal Dementia; DLB = Dementia with Lewy Bodies; 

HC = Healthy Controls; Cases = AD, FTD or DLB; non-FTD =AD or DLB. 
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Legend to figures: 

 

Figure 1. Flow diagram of the study. 

After the index test, results were sorted on the basis of the reference standard (McKhann criteria for 

AD, Rascovsky and Gorno-Tempini criteria for FTD, and McKeith criteria for DLB). 

AD = Alzheimer disease; FTD = frontotemporal dementia; DLB = Dementia with Lewy bodies; HC 

= healthy controls. 

 

Figure 2. TMS connectivity parameters according to diagnostic groups. 

(A) SICI at ISI of 1, 2, 3, and 5 ms and ICF at ISI of 7, 10, and 15 ms, (B) SAI at ISI of -4, 0, +4, 

and +8 ms, and (B) LICI at ISI of 50, 100, and 150 ms in patients with AD, FTD, DLB and in HC. 

Data are presented as a ratio to the unconditioned motor evoked potential amplitude; error bars 

represent standard errors. 

AD = Alzheimer disease; FTD = frontotemporal dementia; DLB = Dementia with Lewy bodies; HC 

= healthy controls; ICF = intracortical facilitation; ISI = interstimulus interval; LICI=long-interval 

intracortical inhibition; MEP = motor evoked potential; SAI = short-latency afferent inhibition; 

SICI = short-interval intracortical inhibition.  
*p<0.05 vs HC; †p<0.05 vs AD, ‡p<0.05 vs DLB; §p<0.05 vs FTD using one-way ANOVA (post 

hoc tests with Bonferroni correction for multiple comparisons). 

 

Figure 3. Source data (A), time trend parametrization (B), and Random Forest model (C). 

(A) source data evaluation (TMS connectivity measures), according to previous literature. Mean 

scores at each interstimulus interval (ISI) and curve trend were considered; (B) regression analysis 

for each TMS connectivity measure, according to source data and each curve shape. Regressions 

take the general form: y ~ poly(t); i.e., the indicator y is predicted as a polynomial function of time; 

(C) Random Forest (RF) learning and classification. 

AD = Alzheimer disease; FTD = frontotemporal dementia; DLB = Dementia with Lewy bodies; HC 

= healthy controls. 

 

This article is protected by copyright. All rights reserved.



  

Figure 4. Multi-dimensional scaling (MDS) plots (panel A-C) according to each of the three 

classifiers. 

MDS of classification forests and decisions tress of A: first classifier (y=1 cases, y=0 HC), B: 

second classifier (y=1 FTD, y=0 non-FTD), and C: third classifier (y=1 AD, y=0 DLB). 

AD = Alzheimer disease; FTD = frontotemporal dementia; DLB = Dementia with Lewy bodies; HC 

= healthy controls; cases = AD or FTD or DLB; non-FTD = AD or DLB. 

MDS plots visualize the proximity matrix accumulated for the training data by out-of-bag (OOB) 

observations, i.e. predicted values for each observation in the training dataset that are not included 

in the bootstrap samples. 
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