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Abstract We study the evolution of nonlinear surface
gravity water wave packets developing from modula-
tional instability over an uneven bottom. A nonlinear
Schrödinger equation (NLSE)with coefficients varying
in space along propagation is used as a referencemodel.
Based on a low-dimensional approximation obtained
by considering only three complex harmonic modes,
we discuss how to stabilize a one-dimensional pattern
in the form of train of large peaks sitting on a back-
ground and propagating over a significant distance. Our
approach is based on a gradual depth variation, while
its conceptual framework is the theory of autoreso-
nance in nonlinear systems and leads to a quasi-frozen
state. Three main stages are identified: amplification
from small sideband amplitudes, separatrix crossing
and adiabatic conversion to orbits oscillating around
an elliptic fixed point. Analytical estimates on the three
stages are obtained from the low-dimensional approxi-
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mation and validated by NLSE simulations. Our result
will contribute to understand the dynamical stabiliza-
tion of nonlinear wave packets and the persistence of
large undulatory events in hydrodynamics and other
nonlinear dispersive media.
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List of symbols

ω Angular frequency in m− 1
2

κ Wavenumber-depth product (ad.)
ε Wave steepness
σ Depth correction factor
cg Group velocity
β Dispersion coefficient
γ Nonlinear coefficient
γ̃ Effective nonlinear coefficient
μ0 Shoaling coefficient
U (ξ, τ ) Complex envelope of surface elevation
V (ξ, τ ) Shoaling-corrected U
V0 Carrier amplitude
α Three-wave parameter
Ω Modulation detuning
ΩC Cut-off MI detuning
ΩM Peak MI detuning
ψ Relative sideband phase
η Conversion rate to sidebands
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(ψ̃i , η̃i ) Fixed points of the three-wave system
H (ξ) Hamiltonian function of the three-wave sys-

tem
H (X) Hamiltonian function of the three-wave sys-

tem (w.r.t. the reduced variable X )
Hmin Value of the Hamiltonian function at centers
Δαi Slope of α in the linear stage
Δαt Slope of α in the intermediate stage
Δαf Slope of α in the adiabatic stage
X∗ Crossing into MI sideband
X∗∗ Start of adiabatic regime

1 Introduction

Modulational instability (MI) is an ubiquitous phe-
nomenon for wave packets propagating in a weakly
nonlinear medium [1]. It consists in the appearance of
sidebands growing around a uniformly modulated car-
rier and was observed in deep water waves, nonlinear
optics, Bose–Einstein condensates and plasma physics
[2,3].

If the envelope of the wave-packet is narrowbanded,
the nonlinear stage of the evolution (i.e., when the side-
bands start to grow at amplitudes comparable to the
unstable stationary background) can be modeled by
means of the universal nonlinear Schrödinger equa-
tion (NLSE). This integrable equation exhibits exact
solutions, e.g., stationary envelope solitons and pul-
sating breathers of Kuznetsov-Ma-, Peregrine- and
Akhmediev-type [4–7]

The family of Akhmediev breather (AB) is the pro-
totype of the nonlinear evolution ofMI: in the time-like
NLSE, an initially slightly modulated time-periodic
train of pulses reaches its peak value at a given point in
space, as a result of the exponential sideband growth, as
is followed by the recovery of the initial state known as
Fermi-Pasta-Ulam recurrence [8]. Because of this char-
acteristic feature, i.e., extreme waves appearing from
nowhere and suddenly disappearing [9], it is also a can-
didate solution for the explanation of rogue waves and
other nonlinear systems.

The NLSE is a framework not only valid for deep
water, but also for intermediate depth cases, as is well
known from the literature [10–12].

The depth is thus an important degree of freedom
that tunes the dispersion and nonlinear coefficients dur-
ing wave propagation, thus allowing the possibility to
dynamically control theMI gain. In optics, an adiabatic

variation of fiber dispersion is well known to provide
an effective path to soliton compression [13,14].More-
over, the transition from two fibers of different disper-
sion was recently proposed to control an AB at its peak
focusing point [15]. A standard fiber has a large cross
section; thus, the nonlinear coefficient does not change
much (as it depends mostly on the core area and Kerr
nonlinear refractive index); the dispersion is instead
much more sensitive to geometry [16]. The opposite is
true for surface gravitywaves inwater: the group veloc-
ity always decreases with frequency increase, while the
nonlinearity can be tuned to positive or negative values
[17].

Here, we propose a theoretical framework for
the control of breathing water wave-packets over a
smoothly varying uneven bottom. A three-wave trun-
cation [18,19] allows us to formulate the conditions
required for stabilization, as well as the limits of our
approach.

We rely on a mechanism similar to autoresonance,
in which the change of an external parameter in the sys-
tem allows one to lock it in a stable and stationary oscil-
lating state of large amplitude, starting from an initial
condition close but not exactly matching the resonant
condition. This theory finds its origin in accelerator and
plasma physics [20–22] and was recently applied also
to optical frequency conversion [23–26].

Section 2 recalls the generalized NLSE model in
finite water depth of Ref. [27] and the description of
the nonlinear stage of MI by means of a three-wave
truncation approach. In Sect. 3, we discuss the condi-
tions for stabilization and report improvements on the
implementation of the abrupt transition as proposed in
[15]. Numerical results are presented in Sect. 4. Sec-
tion 5 is devoted to result summary and outlook.

2 Model equation

2.1 Generalized finite water depth NLSE

In [27], a NLSE-like equation is derived for the one-
dimensional evolution of the envelope of surface water
waves on an uneven bottom of depth h at frequency
ω = √

gkσ , with σ ≡ tanh κ and κ ≡ kh, k being
the local wavenumber, which varies with h, while ω is
fixed.

The 2D Laplace equation
[

∂2

∂x2
+ ∂2

∂z2

]
Φ = 0 for

the velocity potential Φ in the longitudinal and depth
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Stabilization of uni-directional water wave trains 1133

Fig. 1 Schematic representation of a surfacewave packet propa-
gating over an uneven bottom. The propagation is uni-directional
from left to right. Wavelengths, depth and amplitude are not in
real scales. (Color figure online)

coordinates (x, z) is solved with the usual kinematic
and dynamic boundary conditions at the free surface
[12], whereas the bottom boundary condition reads as
∂Φ

∂z
= −h′(x)∂Φ

∂x
, z = −h(x). (1)

It is required that the bottom slope is small enough
to prevent wave-reflections due to wavenumber mis-
matches, i.e., h′(x) = O(ε2), with ε ≡ ka � 1 the
wave steepness (a is the local carrier wave amplitude).

By employing the standard method of multiple
scales up to third-order in ε [12], the following evo-
lution equation was derived [27]

i
∂U

∂ξ
+ β

∂2U

∂τ 2
− γ |U |2U = −iμU − iνU, (2)

whereU (ξ, τ ) is the envelope of the free-surface water

elevation, with ξ ≡ ε2x and τ ≡ ε
[∫ x

0
dζ

cg(ζ )
− t

]
are

the coordinates in a frame moving at the group veloc-
ity of the envelope, cg ≡ ∂ω

∂k = g
2ω

[
σ + κ(1 − σ 2)

]
;

moreover β, γ , and μ ≡ μ0
dκ
dξ represent the dis-

persion, cubic nonlinearity and shoaling coefficient,
respectively. The first two are simply the coefficients
of the NLSE on arbitrary depth, see [10], and are func-
tions of κ only; detailed expressions can be found in
“Appendix A”; μ results from wave-energy conserva-

tion arguments as μ0 ≡ 1
2ωcg

d[ωcg]
dκ , i.e., μ is the log-

arithmic derivative of cg. At variance with [27], we
include also a homogeneous loss term, ν due to, e.g.,
viscosity or friction with bottom and sidewalls, which
is appropriate at the NLSE order [28,29].

Let g = ω = 1 for definiteness. It is well-known
that β < 0 for all values of κ (provided that only sur-
face gravity waves are considered) [blue solid line in
Fig. 2a], while γ ≥ 0 for κ ≥ 1.363 [red dashed line in
Fig. 2b]. Recall also that cg [red dashed line in Fig. 2a]
is maximum for κ ≈ 1.20.

0 2 4 6 8
κ

-1

0

1

γ
γ̃/β
γ/β

-1

0

1

β
cg

(a)

(b)

κ = 1.363

Fig. 2 Dependence on the depth parameter κ of the coefficients
of Eq. (2), with g = ω = 1. a Dispersion parameters: cg (dashed
red line) and β (solid blue line); b Nonlinear parameters: γ

(dashed red line), γ̃ /β (solid blue line) and γ /β (black dotted
line), see Sect. 2.1 and “Appendix A”. γ̃ is defined in Eq. (4):
for definiteness we take ν = 0 and κ(ξ = 0) = 2, marked by a
black dotted vertical line. The impact of shoaling isminor. (Color
figure online)

The form of μ allows us to simplify Eq. (2). Fol-

lowing [30], we let U = V exp
[
− ∫ ξ

0 μ(y) dy − νξ
]
;

Eq. (2) can be rewritten as

i
∂V

∂ξ
+ β

∂2V

∂τ 2
− γ̃ |V |2V = 0, (3)

i.e., a NLSE with varying parameters, with

γ̃ (ξ) ≡ γ (ξ)
cg(ξ = 0)

cg(ξ)
exp(−2νξ). (4)

The effect of shoaling is clear fromEq. (4): in the focus-
ing regime, βγ̃ < 0, it slightly increases the effective
nonlinearity, because cg monotonically decreases, see
the red dashed line in Fig. 2a. The effect of ν is to
decrease the impact of nonlinearity as the wave propa-
gates. It is easy to verify that the perfect compensation
of ν by shoaling is impossible for increasing depth.
For the sake of simplicity, we will take ν = 0 in what
follows, except for Sect. 4.3.

In the framework of field theory, Eq. (3) conserves
the total mass N ≡ ∫ ∞

−∞ |V |2dτ and the momentum

P ≡ Im
{∫ ∞

−∞ V ∗ ∂V
∂τ

dτ
}
. We use them in our numeri-

cal calculations to assure the precision of solutions. No
other conserved quantity is present, if coefficients have
no specific functional dependence.
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2.2 Modulation instability

Equation (3) possesses a steady-state solution Vs(ξ) =
V0 exp

(
−iV 2

0

∫ ξ

0 γ̃ (y)dy
)
. For βγ̃ < 0, this solution

is modulationally unstable for a detuning Ω ∈ [0,ΩC]

from the central frequency ω, with ΩC ≡
√
2

∣∣∣ γ̃
β

∣∣∣V0.

The linearMI gain isG = |βΩ|
√

Ω2
C − Ω2, with peak

at ΩM ≡ ΩC√
2
. This is the result of the conventional

linear stability analysis, but it can also be thought of as
the nonlinear phase-matching condition between the
steady-state solution and the two sidebands, a sort of
nonlinear resonance condition.

To compute γ̃ , the initial value of κ must be fixed.
As an example, we let κ(0) = 2 and thus cg(ξ =
0) = 0.55. The main parameter of our problem, γ̃ /β,
is shown as blue solid line in Fig. 2b. For comparison,
we also include the ratio γ /β, as a dotted black line,
to show that the effect of shoaling on MI is quite small
(less than 5%) in the focusing regime.As this parameter
is changed, the same sideband frequency can turn from
modulationally stable to unstable or experience a dif-
ferent instability gain along the MI curve. In Fig. 2b,
it is clear that the range of variation is quite limited,
compared to optical fibers, because both β and γ tend
to their deep-water limits as κ → ∞. The choice of
the reference value κ = 2 (marked in Fig. 2) is a good
trade-off for having strong enough nonlinear effects,
while avoiding high-order corrections appearing when
γ̃ ≈ 0, see for instance [31,32].

TheMIgain is a linear approximation, beyondwhich
the nonlinear behavior demands a more detailed anal-
ysis.

2.3 Nonlinear regime

A thorough understanding of the problem can come
from a low-dimensional analysis. We follow the three-
wave truncation proposed in Ref. [18], that was proven
effective also in higher-order generalizations of the
NLSE [19,33].

Let V (ξ, τ ) = A0(ξ)+ A1(ξ)eiΩτ + A−1(ξ)e−iΩτ ,
where Ω is the angular detuning in normalized units,
and An , with n ∈ {−1, 0, 1} are complex variables,
the phases of which are denoted by φn . It is easy
to reduce Eq. (3) to a one degree-of-freedom (d.o.f.)
Hamiltonian system [18]. The canonical variables are

the conversion rate to sidebands η ≡ |A1|2+|A−1|2
E and

the relative phase ψ ≡ φ1+φ−1
2 − φ0, where E ≡

|A0|2 + |A1|2 + |A−1|2 = V 2
0 is a conserved quan-

tity of the truncated system, as well as the sideband
imbalance χ ≡ |A1|2 − |A−1|2. Compared to [18],
we consider a slightly different set of variables, more
suitable to our goals.

TheHamiltonian function is H (ξ)(ψ, η) ≡ γ̃ Eη(η−
1) cos 2ψ + γ̃ E

(
3η2

4 − η
)

− βΩ2η, and

ψ ′ = ∂H (ξ)

∂η
; η′ = −∂H (ξ)

∂ψ
(5)

where the prime denotes the derivative with respect to
ξ . More details are found in “Appendix B”.

A final transformation to X ≡ E
∫ ξ

0 γ̃ (y)dy allows
us to simplify the Hamiltonian function to

H (X)(ψ, η) ≡ η(η − 1) cos 2ψ + 3η2

4
+ αη, (6)

with α ≡ −
[

βΩ2

γ̃ E + 1
]

=
(

Ω
ΩM

)2 − 1 = −4aAB + 1,

with aAB the well-known parameter of the AB. Now

ψ̇ = ∂H (X)

∂η
; η̇ = −∂H (X)

∂ψ
, (7)

where the dot denotes the derivative with respect to X .
The system is modulationally unstable for |α| ≤ 1,

the peak gain is for α = 0, while the MI cut-off is for
α = 1.

Before going on, we recall that, for constant param-
eters, the system (7) exhibits the following fixed points
[18]:

1. ψ̃0 = cos−1 α
2 , η̃0 = 0 (i.e., no conversion to side-

bands, a center for |α| > 1, a saddle otherwise);

2. ψ̃1 = cos−1
(
−α− 3

2

)

2 , η̃1 = 1 (i.e., full conversion, a
center for α > − 1

2 , a saddle otherwise);

3. ψ̃2 = mπ (m ∈ Z), η̃2 = 2(1−α)
7 (i.e., oscilla-

tions around finite conversion rate, which exists as
a center for |α| ≤ 1);

4. ψ̃3 = π
2 + mπ, η̃3 = 2(1 + α) (which exists as a

center for −1 < α ≤ − 1
2 ).

The last case applies only to the lower half of the
MI gain curve (Ω ≤ ΩC

2 ), where the three-wave trun-
cation obviously breaks down and higher-order side-
bands at±nΩ , n ∈ Z are also unstable. Here, we stress
that resorting to a five-wave or more truncation neither
solves this problem nor improves the description for
ΩC
2 ≤ Ω ≤ ΩC, since the reduction to a Hamiltonian
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Fig. 3 The two topologies of the phase-plane considered in this
work.We show the level sets of the Hamiltonian H (X) Eq. (6), on
which a trajectory lies for constant α. a α = 1.25: the system is
modulationally stable and only free rotations around η̃0 (a center,
marked as a black asterisk) are possible. b α = 0: η̃0 (marked as
a red plus sign) is unstable and lies on a separatrix curve, while
centers ±η̃2 (marked as black asterisks) appear. In all situations,
the trajectories turn anticlockwise. (Color figure online)

system with a small number of degrees of freedom is
feasible only in the present three-wave case. Thus, it
represents a mathematical complication with few prac-
tical benefits. Instead an approachbased on exactNLSE
solutions should be envisaged.

The two different topologies of the phase-plane (for
α ≷ 1) are exemplified in Fig. 3a, b, respectively.

For what follows, it is also useful to recall that,
for α < 1, the trajectory emanating from (ψ̃0, η̃0) is
homoclinic and is referred to as a separatrix. By direct
inspection of Eq. (7), it is easy to see that trajectories
always turn anticlockwise for X > 0, irrespective of
α. This implies that the separatrix exits the origin in
the second and fourth quadrants and rejoins it in the
third or first, respectively. We recall also that conven-
tionally, trajectories outside (resp. inside) the separa-
trix are named period-two (resp. one) solutions. This
is apparent in Fig. 3b and corresponds to the classifi-
cation of time-periodic NLSE solutions, exhibiting (or
not) a phase shift [7]. The separatrix turns out to cor-
respond to an AB, while the centers (ψ̃2, η̃2) to the
steady-state dn-oidal solution [35]. It is also impor-
tant that H (X)(ψ̃0, η̃0) = 0 for all α. For α ≥ 1,
H (X) > 0 everywhere in the whole unit disk, while
for α < 1, H (X) ≷ 0, outside or inside the sepa-
ratrix, respectively. This is obvious, by noticing that

Hmin ≡ H (X)(ψ̃2, η̃2) = − (1−α)2

7 ≤ 0, in its domain
of existence.

In general, as the bathymetry and thus γ̃ /β vary,
the change of α lets H (X) (or H (ξ)) vary across 0, see
Eq. (6). This additional degree of freedom provides the
flexibility to explore the stabilization regime we will
present in the next section.

We will refer to the results of the present section
as truncated or three-wavemodel, while the numerical
solutions of Eq. (3) are referred to as simulations.

3 Stabilization over an uneven bottom

It is well known from classical mechanics that a tra-
jectory oscillating around an elliptic fixed point keeps
on following the same type of oscillatory trajectories if
an internal parameter is changed adiabatically, i.e., the
speed of variation is much smaller than the oscillation
frequency [36]. For Hamiltonian systems, a quantity,
called the adiabatic invariant, is conserved all along the
transition; this is the classical counterpart of Ehrenfest
theorem in quantum mechanics. In order to solve our
problem, we have to go beyond this result and recall
the theory of autoresonance [21,22,37]. Two possible
regimes can occur. Either the trajectory starts close to
an equilibrium and a parameter is changed adiabati-
cally, so that the adiabatic invariant is conserved; or
it is forced to cross the separatrix and phase-locks in
the close proximity to an equilibrium and the adiabatic
invariant is not conserved. We explain below that the
second solution is much more practical if the total tran-
sition length is constrained and for the flexibility in
initial conditions.

Thus, we focus here on how to physically apply the
second approach to our model. As shown in Sect. 2.3,
our system has only elliptic fixed points for α > 1 and
both unstable hyperbolic and elliptic points for α < 1.
Our aim is to stabilize the trajectory around (ψ̃2, η̃2)

starting from small oscillations around η̃0, by varying
α. The trajectory must thus cross the separatrix: a sign
change of the Hamiltonian is associated to this transi-
tion.

Thus, three different aspects have to be considered:
(i) the initial stage where the system behaves almost
linearly, (ii) the separatrix crossing stage, and (iii) small
oscillations around an equilibrium adiabatically shifted
toward a larger η. We describe the three successively
below.

123



1136 A. Armaroli et al.

3.1 Linear stage

We start from η0 ≡ η(0) � 1 and α0 ≡ α(0) > 1 and
linearize the system of Eq. (7) in order to understand
its behavior when we tune the parameters to cross the
bifurcation point α = 1 from above. By letting R ≡√

ηeiψ , we reduce Eq. (7) to

Ṙ = iαR − i R∗, (8)

which can also be obtained by linearizing the complex
system reported in “Appendix B”, Eq. (18), directly.
The validity of Eq. (8) is limited toη � 1; nevertheless,
we can obtain some useful information about the full
dynamics.

We let R = u + iv and split Eq. (8) in real and
imaginary part to get

u̇ = −(α + 1)v,

v̇ = (α − 1)u.
(9)

If we divide these two equations term by term, we see
that the solution is of the form v2 = C− α−1

α+1u
2, which

is either an ellipse or a hyperbola, for resp. α ≷ 1.
For α > 1, it entails periodic oscillations, albeit,
Λ

(0)
lin (α) > Λnl(α, H (X)), defined as the periods pre-

dicted by Eqs. (8) and (7), respectively, see “Appendix
C and D”. For α < 1, Eq. (8) gives exponentially
divergent solutions. For α = 1, we have a pair of
straight lines v = ±√

C , i.e., the horizontal semi-axis
of the ellipse diverges. If |u|  C at the same X ,
ψ → mπ = ψ̃2. Thus, we can define this stage as
the phase-locking stage.

Finally, from Eq. (8), notice that for α  1 the
second term can be neglected and R oscillates on a
circle of radius |R|2 → η(−∞); this limit gives C =
η(−∞).

The trajectories of the full nonlinear system turn
anticlockwise, so do necessarily the solutions of its
linearized version [the first of Eqs. (9) clearly shows
that]. In order to follow the separatrix and then cross it
and approach the centers located at∓η̃2 = ∓ 2

7 (1−α),
(u, v) are required to lie in the second or fourth quad-
rant, respectively: atα ≈ 1,we thus impose u̇u > 0 (or,
equivalently, uv < 0). Otherwise, the solution moves
away from the elliptic fixed points and oscillates out-
side the separatrix.

Let α = 1− Δαi(X − X∗), with Δαi > 0, so that at
X = X∗ > 0 we reach the MI band edge ΩC.

In order to find suitable initial conditions, we resort
to a local approximation in power series, as shown in

“Appendix E”. We conclude that, for α0 close to 1 and
ψ0 ≡ ψ(0) = ±π

2 trajectories evolve to the correct
quadrant and phase-lock to, respectively, π or 0, while
ψ0 = 0 does not.

A lower limit to Δαi must be imposed. α(X∗) = 1
gives X∗ = α0−1

Δαi . We require that X∗ � Λnl/2, i.e.,
the MI band is crossed before the system reaches the
peak η. Otherwise, the trajectory would point back
and could not enter the separatrix as this last appears.

We conclude that Δαi  2(α0−1)
Λnl

>
2(α0−1)

√
α2
0−1

π
,

by virtue of Λnl < Λ
(0)
lin = π(α2

0 − 1)− 1
2 , as shown

in “Appendix C and D”. In order to lie close but
near the separatrix as it appears, we require η0 � 1.
The Hamiltonian takes thus the value H (X)(X∗) ≈[
1 + (X∗)2

]
v20 at the bifurcation point.

3.2 Intermediate regime

Suppose that the solution of Eq. (7) behaves at X∗ as a
trajectory close to the separatrix, Eq. (24) in “Appendix
C”, and grows away from η̃0. After an initial exponen-
tial growth, η slows down and its growth rate starts
soon decreasing. The homoclinic orbit appears atα = 1
and expands linearly in width with decreasing α. From
Eq. (6), as αη decreases, H (X) will change sign, thus
separatrix crossing occurs. The analytic treatment to
characterize the solution near this point is very involved
for the system given by H (X) [38] and does not pro-
vide hints about the dynamics of Eq. (3). Neverthe-
less, we estimate the optimal variation of α and the
distance at which it can be achieved by following a
simpler argument, similar to what reported in Ref.
[39]. Starting at X∗, the optimal transition is such that
H (X)(X∗∗) = Hmin, where X∗∗ marks the adiabatic
stage start. In this way, the orbit reaches closely to
(ψ̃2, η̃2). From Eq. (6), we have

dH

dX
= α̇η ≈ −Δαtη, (10)

where we assumed, as before, that α decreases linearly
with slope Δαt . We can thus approximately integrate
Eq. (10) and write

H (X)(X∗) − Δαt(X∗∗ − X∗)
2

(η∗ + η∗∗) = Hmin.(11)

η∗ ≡ η(X∗) is known from the linear stage above, and
we take η∗∗ ≡ η(X∗∗) = η̃2, to enforce the proximity
to the center at some given distance. We thus require
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Stabilization of uni-directional water wave trains 1137

that

ΔX t ≡ X∗∗ − X∗ = Λm→1
nl (H (X)(X∗))

4
, (12)

i.e., the start and end of the intermediate stage are sepa-
rated by roughly a fourth of a period of an external orbit
close to the separatrix, computed at X∗, see “Appendix
C”. This is justified by the fact that we have period-
two solutions outside the separatrix. By plugging these
values into Eq. (11), we obtain the optimal slope for
changing α in the intermediate stage,

Δαt = 2H (X)(X∗)
η∗ΔX t . (13)

We notice that the farther we start from the separatrix,
the larger the variation of α is required.

3.3 Adiabatic conversion stage

Suppose that the separatrix is crossed and, at distance
X∗∗, the system is close to the center (η̃2, ψ̃2) computed
at the current value of α(X∗∗). Suppose we can approx-
imate α(X) = α(X∗∗)−Δαf(X−X∗∗). The trajectory
will keep on oscillating around the equilibrium, which
in turn varies with α, provided that an adiabaticity con-
dition on Δαf is satisfied. We estimate it by resorting
to the same approach of Ref. [37].

In “Appendix D”, we discuss the general method to
linearize the Hamiltonian and obtain that (ψ, η) make
small oscillations around (ψ̃2, η̃2) if∣∣∣∣
2α̇

7κ2

∣∣∣∣ =
∣∣∣∣
2Δαf

7κ2

∣∣∣∣ � 1, (14)

where κ2 ≡ 2
√
7

7

√
(1 − α)(5 + 2α) is the linearized

angular frequency around the center, see “Appendix
D”.

It is easy to check that κ2 grows monotonically for
− 3

2 < α < 1; thus, the most stringent upper bound on
Δαf occurs at X∗∗.

4 Numerical results

4.1 Initial conditions

We suppose for simplicity that κ is changed linearly
all over the domain: α0 = 1.56, i.e., Ω = 1.6ΩM, and
κ varies from 2 to 5. In practice, this means a linear
variation of h, see the magenta dashed-dotted line in

Fig. 4a (the scale on the right axis). The effect on α is
instead a faster variation in the beginning and slower
after ξ ≈ 200. This is a particularly favorable situation
for the locking into the elliptic fixed point, according
to the previous discussion.

The initial conditions are ε(0) ≡ ε0 = V0k(0) =
0.12,η0 = 0.025 andψ0 = π

2 : they are optimal accord-
ing to the discussion in Sect. 3.1.

4.2 Simulation results

We solve Eq. (3) by means of the adaptive 3rd-order
Runge–Kutta (RK) scheme embedding the conven-
tional 4th-order applied to the interaction-picture for-
mulation [40].Weuse211 points for time-discretization,
while the integration step in ξ is adapted to keep the
error below 1 × 10−9. This guarantees a short compu-
tational time (less than 30 seconds for each simulation)
with a satisfactory conservation of N and P (deviations
of less than 5 × 10−3 and 2 × 10−6, respectively).

In Fig. 4, we clearly identify the three stages
described above: (i) the linear, around α = 1, where η

grows and ψ approaches π (red-shaded area); (ii) the
intermediate, starting at ξ ≈ 200, where the growth
slows down, the separatrix is crossed and ψ locks
to π ; (iii) and the adiabatic, starting at ξ ≈ 450,
where η adiabatically follows the equilibrium up to
η ≈ 0.5 (green-shaded area). The residual oscilla-
tions in amplitude and phase are below 5% and 1%
in relative terms, see blue solid lines in panels (a) and
(b), respectively. The second-order sideband fraction,

defined as η(2) ≡ |V̂ (2Ω,ξ)|2+|V̂ (−2Ω,ξ)|2
V 2
0

, represents

less than 10% of the total mass N [red dashed line
in panel Fig. 4a]. They are generated via nonlinear pro-
cesses of the sort 0 ± Ω ± Ω → ±2Ω , which are
thresholdless and oscillating. They partially account
for the discrepancy between the numerical solution and
η̃2 (black dotted line). Systematically simulations end
up oscillating around a larger η than predicted by the
three-wave truncation. This is themain limitation of the
truncated model and mitigated in the Ω → ΩC limit
for small η [18,19].

We compare simulations (solid line with changing
hue) to the truncated model (dashed blue line) in the
phase-plane, Fig. 5. In both cases η grows, the phase
is locked and the residual oscillations are very small.
Notably, in the simulation the oscillations around the
average are limited to less than 0.025.
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(a)

(b)

Fig. 4 Simulated spectral evolution over a smoothly varying
depth. ξ and h are in units of m in the scaling discussed in the
main text; the other quantities are dimensionless. a On the left
axis, conversion efficiencyη (blue solid line), its value at the ellip-
tic fixed point η̃2 predicted by the three-wave truncation (black
dotted line) computed from the local value of α, and the relative
intensity of the second-order sidebands, η(2) defined below in
the main text (red dashed line). On the right axis, we plot the
bathymetry, shown as a purple dash-dotted line. b The evolu-
tion of the relative phase ψ/π (blue solid lines, refers to the left
axis) and theMI coefficient α (defined in the text, red dotted line,
refers to the right axis). The crossing into theMI band is where η̃2
appears; to guide the eye, panel b includes a thin black dashed-
dotted horizontal line. The vertical black dotted line marks the
α = 1 point, while the vertical black dash-dotted identifies the
point where H (ξ) = 0 (separatrix crossing). The red (resp. green)
shaded region represents the linear (resp. adiabatic) stage of sta-
bilization. (Color figure online)

The asterisk marks the α = 1 transition, after which
the linear approximation soon breaks down. The cir-
cle denotes instead the separatrix crossing, H (ξ) = 0.
Notice that the trajectory turns away from the horizon-
tal axis just after a close approach to an elliptic equilib-
rium [equivalent to (ψ̃2, η̃2)]. This occurs at η = 0.28,
and the phase is then locked, see Fig. 4b.

The three-wave solution (dashed line in Fig. 5)
exhibits larger oscillations than the simulated ones (the
horizontal and vertical scales differ much): in fact, the
final value of κ is chosen to minimize these latter. The
former meets its optimal conversion effectiveness at
κ(ξ = 1000) ≈ 5.5, which combines the fast locking
condition with the adiabatic following of the center:
Δαi  0.5 at ξ = 0, while Δαf � 5 at ξ = 450. For
such a κ , the simulation turns out to oscillate more,
which we explain by the faster displacement of the
elliptic fixed point of the NLSE compared to η̃2, i.e.,

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
η cos ψ

-0.05

0

0.05

η
 s

in
 ψ

Fig. 5 Phase space representation of the numerical results of
simulation and three-wave truncation (solid and dashed line,
respectively) over a smoothly varying depth. The direction of
evolution in ξ is represented by the line getting a lighter hue,
while the red cross denotes the initial condition and the black
circle the point of separatrix-crossing where H (X) = H (ξ) = 0.
The asterisk corresponds to the α = 1 point. Notice that the
horizontal and vertical axes have different scales. (Color figure
online)

the conditions (13) and (14) are stricter for the NLSE
than for the truncated model. This is again inherent to
the three-wave approximation.

In principle, there is no limit on how large the frac-
tion of N can be funneled into η. The physical range of
γ̃ /β is nevertheless limited, see Fig. 2a. Finally, once
the total length of the system is constrained, Δαf is
bounded from below. The condition of Eq. (13) looks
quite more stringent, but we verified numerically that,
provided the separatrix is crossed, the behavior is very
similar to the optimal one: the blue dashed line in Fig. 5,
pertaining to the three-wave model, shows indeed the
typical solution.

A third alternative representation is available. Recall
that Eqs. (5)–(7) are equivalent to a particle moving
in a potential well, as explained in “Appendix C”.
Notice that the potential well W (η) depends on the
initial value of H (X); thus, its minima do not corre-
spond to equilibria, in general. We let H (X) vary and
update it at each integration step by replacing values of
η and ψ extracted from simulations, according to the
X -dependent expression Eq. (6), see “Appendix C” for
more details. In Fig. 6, we show the map of the acces-
sible values of the potential well −W (η) ≤ 0: this
is very shallow and narrow at the beginning (where
α > 1), then it becomes broader and deeper. Again,
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H (ξ)/[ν̃(0)V 2
0 ]

Fig. 6 Simulated evolution of η in the ξ -dependent potential
well, explicitly derived for the three-wave model in “Appendix
C”. The color-map represents the values of the function −W (η)

(the darker the deeper negative, yellow regions are classically
inaccessible). We let H (ξ) vary in ξ and the potential well
is recomputed accordingly for each point in the evolution, by
replacing values extracted from simulations. The blue solid line
corresponds to the numerical solution of Eq. (3), while the dark
green dotted curve represents the solution of Eq. (8), |R|2. The
red dashed line shows the values of the three-wave Hamiltonian
calculated from the solution of Eq. (3), mapped on the top axis.
Like in Fig. 4, the black dotted and dash-dotted lines represent
the distances at which α = 1 and H (ξ) = 0. (Color figure online)

we see that the linear approximation, dark green dot-
ted line, diverges at ξ ≈ 200. After this linear stage,
the well smoothly widens and deepens; H (ξ) changes
sign at ξ ≈ 300. In the last stage, from ξ ≈ 450, the
potential well gets deeper and deeper and the results of
the simulation (blue solid line) are clearly trapped into
it, as expected by the adiabatic following of the elliptic
fixed point, proven above, and in spite of the systematic
difference with the three-wave results.

Finally, a further limitation inherent to water waves
is that nonlinear effects cannot be increased arbitrarily,
because they scale as the generalized Ursell number
[41], which is proportional to ε in the deep water limit.
An AB envelope peaks at roughly two-to-three times
the background amplitude, and wavebreaking occurs if
ε � 0.4 [42]. The physical soundness of our approach
is confirmed by representing the evolution of ε attained
by U—the solution of Eq. (2), which represents the
envelope of physical surface elevation, see Fig. 7. We
notice that the proposed stabilization technique almost
completely suppresses oscillations of U ; this reflects

-200 -100 0 100 200
τ

0

200

400

600

800

1000

ξ

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2
α

Fig. 7 Color-map of the space-time evolution of steepness kU ,
withU the solution of Eq. (2), over an uneven bottomwith linear

slope. ξ and τ are in units ofm andm
1
2 , respectively, as discussed

in the text. The red dashed line shows the variation of α as a
function of ξ and is mapped on the additional abscissa on the
top. The two horizontal black lines (dotted and dashed-dotted)
correspond to their counterpart in Fig. 6. (Color figure online)

in negligible ε overshoots, never larger than 0.3, which
guarantees that the train of pulses will not break.

4.3 A glimpse into a physical realization in
hydrodynamics

In the previous section, we use a quite conservative
set of parameters, in order to assure the validity of the
NLSEand the non-breaking of thewavetrain. The ques-
tion arises if the stabilization can be achieved in a lab-
oratory setting.

We consider a 100 m long wave tank , which is fea-
sible in state-of-the-art hydrodynamic facilities. As our
ξ = 1000-long domain reduces to this length, all the
other quantities presented in Sect. 4.1 are automatically
rescaled. We obtain a carrier frequency f = 1.58 Hz,
the corresponding depth values are then h(x = 0) = 20
cm and h(x = 100m) = 50 cm, the local wavelength
varies fromλ(x = 0) = 63 cm toλ(x = 100m) = 157
cm, and the sideband detuning converts to Δf = 0.17
Hz. Finally, the maximumwave amplitude is estimated
to vary from the initial 1.2 cm to 6.5 cm at the end of
the wave tank.

This is an idealization, because damping occurs.
FromEq. (4), we notice that the shoaling partially com-
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pensates dissipation. Nevertheless, shoaling becomes
negligible for larger κ , while the wave field keeps on
damping exponentially: mathematically it is impossi-
ble to have exact compensation because cg decreases
with κ . Moreover, we showed above that phase-locking
is kept only if α is changed slowly. Thus, it is not pos-
sible to simply choose an arbitrarily large κ so that γ̃

reaches the same values of the undamped case; in fact,
thiswould lie outside of the accessible parametric range
because, for κ > 5, γ is almost constant, see Fig. 2.

The pulse train is thus meta-stable: for large enough
damping, the separatrix will be crossed again, a period-
two solution will be observed, and eventually the wave
will vanish completely [43,44].

The analytic treatment is as involved as the one
required to describe the second stage of the stabiliza-
tion.

We found from simulations that keeping every
parameter as before a total loss of 20% can be toler-
ated. For the wave tank length specified above, this
corresponds to ν ≈ 2×10−3 m−1, which is reasonable
when the effect of sidewall dissipation is taken into
account [45].

5 Conclusions

In this work, we study the nonlinear stage of evolution
of modulational instability in surface water waves over
a water body of gradually increasing depth.We showed
that this stage can be stabilized and results in a uniform
train of pulses on a background. The initial condition
does not need to be restricted to an exact NLSE solu-
tion (e.g., an Akhmediev breather), but just a harmonic
perturbation with a given small amplitude.

Based on a three-wave truncation, we studied how a
linear depth change naturally leads to a virtually frozen
state (which can be considered close to dn-oidal solu-
tion of the NLSE), provided that suitable initial con-
ditions, i.e., frequency lying just outside the instability
margin and with a relative phase facilitating separatrix
crossing, are chosen.

Within these restrictions, still a wide range of car-
rier frequencies and depth variation is compatible with
stabilization, even in spite of the unavoidable viscous
damping.

Although the flexibility available to vary parame-
ters in the hydrodynamics of surface water waves is
much less than in other physical systems, such as opti-

cal fibers, our results will help clarify the possibil-
ity to dynamically control the breathing evolution of
water wave-packets and to understand the impact of
bathymetry on the persistence (or lifetime) of rogue
waves.

Finally, we emphasize that the dn-oidal solution
exhibits a specific stationary spectral profile, where
sidebands are all phase-locked and where sidebands
are in a given ratio among one another [47]. While we
find our approach more general and physically trans-
parent, the transformation between general solutions of
the NLSE will be the subject of future studies.
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The dispersion coefficient reads as

β ≡ − 1

2ωcg

[
1 − gh

c2g
(1 − κσ)(1 − σ 2)

]
. (15)

with fixedω = √
gkσ , σ ≡ tanh kh. Recall the expres-

sionof groupvelocity cg ≡ ∂ω
∂k = g

2ω

[
σ + κ(1 − σ 2)

]
,

while the phase velocity cp = ω
k =

√
gσ
k .

The nonlinear coefficient reads as

γ ≡ ωk2

16σ 4cg

{
9 − 10σ 2 + 9σ 4

− 2σ 2c2g
gh − c2g

[
4
c2p
c2g

+ 4
cp
cg

(1 − σ 2) + gh

c2g
(1 − σ 2)2

]}
.

(16)

These expressions are simplified by using a more
natural system of units where we let g = 1 (without

dimension). Time and speeds are in units of [m 1
2 ], fre-

quencies in unit of [m− 1
2 ]. Given the simple scaling

of coefficients, we can assume ω = 1 throughout the
paper, without loss of generality.

Finally, the shoaling coefficient reads as

μ0 ≡ 1

2ωcg

d
[
ωcg

]

dκ
= (1 − σ 2)(1 − khσ)

σ + kh
(
1 − σ 2

) (17)

Appendix B: Three-wave truncation: from
complex to real variables

Let us substitute the Ansatz V (ξ, τ ) = A0(ξ) +
A1(ξ)eiΩτ + A−1(ξ)e−iΩτ in Eq. (3). By retaining
only the terms oscillating at the frequencies 0 and±Ω ,
we obtain

i A′
0 = γ̃ (|A0|2 + 2|A1|2 + 2|A−1|2)A0

+ 2γ̃ A1A−1A
∗
0

i A′
1 = βΩ2A1 + γ̃ (|A1|2 + 2|A0|2 + 2|A−1|2)A1

+ γ̃ A∗−1A
2
0

i A′−1 = βΩ2A−1 + γ̃ (|A−1|2 + 2|A0|2
+ 2|A1|2)A−1 + γ̃ A∗

1A
2
0

(18)

Then, let An = √
ζn exp iφn , with ζn and φn real

functions. By replacing these variables in Eq. (18), we
notice that φn appears only in the relative phase ψ

defined in the main text. Moreover, it is easy to observe
that the total intensity E ≡ ζ0 + ζ1 + ζ−1 as well as
the sideband imbalance χ ≡ ζ1 − ζ−1 are conserved. It
is thus practical to define η as in the main text, so that
η ∈ [0, 1].

Appendix C: Hamiltonian formalism and some
analytical results

Some trivial algebra allows one to rewrite Eq. (18) as

ψ ′ = −βΩ2 + γ̃ E

[
3η

2
− 1

]

+ γ̃ ES cos 2ψ

[
1 + η(η − 1)

S2

]

η′ = 2γ̃ ES(η − 1) sin 2ψ,

(19)

with S = [
(η − χ̃ )(η + χ̃)

] 1
2 and χ̃ = χ

E . Equa-
tion (19) is integrable. Further, by transforming to the
variable X (defined in the main text), the system (19)
can be cast as a one d.o.f. integrable system, with
Hamiltonian function

H (X)(ψ, η) = S(η − 1) cos 2ψ + αη + 3

4
η2 (20)

A simple transformation allows us to derive a sepa-
rable equation of the form

η̇2 = W (η), (21)

with

W (η; H, χ̃) = 4

[
7

16
η4 −

(
2 + 3

2
α

)
η3

+
(
1 − α2 − χ̃2 + 3H

2

)
η2

+2
(
αH + χ̃2

)
η − H2 − χ̃2

]
,

(22)

where H = H (X)(X = 0) is the value of the Hamilto-
nian determined by the initial conditions of the prob-

lem. Equation (21) is in the conventional η̇2

2 = E −
V (η) form, which allows one to solve any one d.o.f.
mechanical system,W (η) plays the role of the potential
well V (η) conventionally used for textbook Hamilto-
nian systems.

In the main text, we discuss only the case of χ̃ = 0.
The potential in this case reads as

W (η; H, χ̃ = 0) = 4

[
7

16
η4 −

(
2 + 3

2
α

)
η3

+
(
1 − α2 + 3H

2

)
η2 + 2αHη − H2

]
,

(23)

The zeros of a quartic potential can be calculated ana-
lytically and determine the dynamics of the system.

We can solve Eq. (21) in terms of Jacobi elliptic
functions, see [46] for the detailed method. Among
its solutions, the separatrix—the homoclinic orbit con-
necting the origin to itself, which exists for − 1

2 < α <
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1 and on which H = 0—can be written in terms of ele-
mentary functions and is useful to our goals. It reads

η(X) = 2(1 − α2)

(2 + 3
2α) + ( 32 + 2α) cosh

[
2
√
1 − α2(X − X0)

] .

(24)

This means that at X0 it has a peak ηS ≡ 4(1−α)
7 = 2η̃2.

The period of oscillations can also be computed as

Λnl = 2
∫ η+

η−

dζ√
W (ζ )

, (25)

where η± are two classical turning points, namely
W (η±) = 0.

For the present study, in order to compare to the
results of “Appendix D”, we just mention that for H >

0,W (η) has zeros {a, c} = 2(1+α±√
(1 + α)2 − H),

{b, d} = 2
7 (1 − α ± √

(1 − α)2 + 7H), with a > b >

c > d. In Eq. (25), we use η− = c and η+ = b, to
obtain Λnl = 4√

7
pK (m), where K (m) is the com-

plete elliptic integral of the first kind of parameter

m = (b−c)(a−d)
(a−c)(b−d)

, p = 2 [(a − c)(b − d)]− 1
2 . If α > 1,

we have a period-one solution around (ψ̃0, η̃0) and

we approximate Λnl ≈ π√
α2−1

− 3
(
π

(
2α2+4α+1

))
H

4(α2−1)
5/2 <

Λ
(0)
lin = π√

α2−1
, derived in “Appendix D”. Thus, for

α > 1 the nonlinear period is always less than the lin-
earized approximation around (ψ̃0, η̃0). For α < 1, we
have period-two solutions, instead. Form → 1, we find
the period close to the separatrix: it diverges logarith-
mically as Λm→1

nl = 2√
7
p log 16

1−m .
For α < 1, we consider period-one oscillations

inside the separatrix, around (ψ̃2, η̃2). Now, H < 0,
we redefine the roots of W (η) as {a, d} = 2(1 + α ±√

(1 + α)2 − H), {b, c} = 2
7 (1−α±√

(1 − α)2 + 7H),
with a > b > c > d. Integration of Eq. (25) from
η− = c and η+ = b gives the same expression as
above,mutatis mutandis. Again, at first order this coin-
cides with the period Λ

(2)
lin derived in “Appendix D”.

Appendix D: Linearized orbits around centers

In themain text, we recalled that forα > 1, η = η̃0 = 0
is a center, and for α < 1 we have a pair of centers on
the real axis±η̃2 = 2(1−α)

7 . If a trajectory starts close to
one of them, it continues oscillating. This oscillations
can be characterized by linearizing the X -dependent
Hamiltonian

H (X)(ψ, η, X) ≡ η(η − 1) cos 2ψ + 3η2

4
+ α(X)η.

(26)

Define δη ≡ η − η̃C and δψ ≡ ψ − ψ̃C; subscripts
C are used to denote a generic center. The evolution is
derived from the linearized Hamiltonian

H̄(δψ, δη, X) = H (X)
∣∣∣
η̃2

+ 1

2

∂2H (X)

∂ψ2

∣∣∣
η̃C

δψ2

+ ∂2H

∂ψ∂η

∣∣∣
η̃C

δψδη + 1

2

∂2H (X)

∂η2

∣∣∣
η̃C

δη2 + O(η3, ψ3)

(27)

By assuming that the fluctuations evolvemuch faster
than the equilibrium does, the equations of motion can
be written as

δ̇η = − ∂ H̄

∂δψ
− dη̃C

dX
, ˙δψ = ∂ H̄

∂δη
− dψ̃C

dX
. (28)

First consider (ψ̃0, η̃0), for α > 1. We have, obvi-

ously, dη̃0
dX = dψ̃0

dX = 0, ∂2H
∂ψ2

∣∣∣
η̃0

= 0, ∂2H
∂ψ∂η

∣∣∣
η̃0

=
2
√
1 − α2, and ∂2H

∂η2

∣∣∣
η̃0

= 3
2 + 2α.

From Eq. (28), we obtain the linear oscillator equa-
tion ¨δψ + κ2

0ψ = 0, with κ0 ≡ 2
√

α2 − 1, from which
we see that the period of spatial oscillations is approx-

imately Λ
(0)
lin = π

[
α2 − 1

]− 1
2 .

Consider then (ψ̃2, η̃2). Now,
dη̃2
dX = − 2

7 α̇,
dψ̃2
dX =

0, ∂2H
∂ψ2

∣∣∣
η̃2

= −4η̃2(η̃2 − 1) = 8
49 (1 − α)(5 + 2α),

∂2H
∂ψ∂η

∣∣∣
η̃2

= 0, and ∂2H
∂η2

∣∣∣
η̃2

= 7
2 ;

Equation (28) leads to the forced harmonic oscillator

¨δψ + κ2
2 δψ = α̇, (29)

where κ2 ≡ 2
√
7

7

√
(1 − α)(5 + 2α). The spatial period

is thus Λ
(2)
lin = √

7π [(1 − α)(5 + 2α)]− 1
2 .

Following [37], we solve Eq. (29) for δψ(0) =
δη(0) = and assuming constant α̇ to obtain δψ =
2α̇
κ22

sin2 κ2X
2 and δη = 2α̇

7κ2
sin κ2X . This allows us to

impose the adiabatic condition on α̇, see Eq. (14) in the
main text.

Appendix E: Local solution of Eq. (9)

We consider the behavior of Eq. (9) around α = 1. At
this point, the evolutionofv has an essential singularity;
nevertheless, we numerically find that the solution is
regular and this fact is the key to phase-locking.
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Fig. 8 Solutions of Eq. (8) for fixed α. The blue dashed line is
for α = 1.1, the red solid line for α = 0.01. The dotted black
line represents the unit circle (the axes have different scales).
Only the unshaded regions inside the unit circle correspond to
trajectories leading to phase-locking

Letα = 1−Δαi(X−X∗), withΔαi > 0.At distance
0 < X = X∗ � Λ

(0)
lin , we reach the MI band edge ΩC.

We look for a solution of Eq. (9) of the kind v(X) =∑∞
n=0 an(X − X∗)n and u(X) = ∑∞

0 bn(X − X∗)n ,
and obtain, by trivial algebra,

v(X) = a0 − Δαib0
2

(X − X∗)2

+ 2Δαia0
3

(X − X∗)3 + . . .

u(X) = b0 − 2a0(X − X∗) + Δαia0
2

(X − X∗)2

+ Δαib0
3

(X − X∗)3 + . . . ,

(30)

with a0 and b0 arbitrary constants. From these expres-
sions, it is easy to verify that the phase-locking condi-
tions stated in themain text—uv < 0 for X � X∗—are
equivalent to a0b0 < 0. Indeed, v(0) = a0 is a positive
minimum (negative maximum), for b0 ≶ 0. The other
extremum of v if for X − X∗ = b0

2a0
< 0. As far as u

is concerned, it has a single maximum (minimum) at
X − X∗ = 2

Δαi > 0.
Now, we can find the best initial conditions for

achieving phase-locking. If u(0) = 0 and v(0) = v0,
we obtain a0 ≈ v0 and b0 ≈ −v0X∗: a0b0 < 0.
If, instead, u(0) = u0 and v(0) = 0, we obtain
a0 ≈ Δαiu0(X∗)2 and b0 ≈ u0: a0b0 > 0 and the
conditions for crossing the separatrix are violated. The

approximation signs are valid if Δαi(X∗)n � 1, for
n ≥ 1. Finally, notice that tanψ(X∗) = a0

b0
, thus

tanψ → 0, i.e., phase-locked trajectories, only for the
former condition.

We graphically illustrate these results in Fig. 8. We
show two different trajectories v2 + α−1

α+1u
2 = C , with

C = η0 = 0.025 and α ∈ {1.1, 1.01}. The orbits con-
tinuously move from one ellipse to another of bigger
horizontal semi-axis. In order for the initial conditions
to permit phase-locking, we require that they cross into
the second or fourth quadrants before α = 1. This intu-
itively justifies also the lower bound on Δαi discussed
in the main text. An alternative local solution is to con-
sider a second-order equation for u, which reads

ü + α̇

α + 1
u̇ + (α2 − 1)u = 0, (31)

and gives the same solutions of Eq. (30).
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