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The classical theory of modulation instability (MI) attributed to Bespalov-Talanov in optics and
Benjamin-Feir for water waves is just a linear approximation of nonlinear effects and has limitations
that have been corrected using the exact weakly nonlinear theory of wave propagation. We report
results of experiments in both, optics and hydrodynamics, which are in excellent agreement with
nonlinear theory. These observations clearly demonstrate that MI has wider band of unstable
frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear
theory of MI can be applied is actually much larger than considered here.

INTRODUCTION

Well-known Bespalov-Talanov (BT) [I] and Benjamin-
Feir (BF) [2[3] instabilities discovered more than 60 years
ago (1966 and 1967, respectively) played a significant role
in understanding nonlinear phenomena in optics and hy-
drodynamics [4HIT]. The detailed description of these
fundamental results can be found in any common book
in nonlinear optics [12, 3], ocean waves [14, [T5], and
more generally, in nonlinear dynamics book literature
[16]. The theory tells us that a plane wave or a con-
stant amplitude wave (CW) is unstable relative to small
amplitude perturbations with frequencies within certain
deterministic and finite range. These perturbations are
unstable and can grow exponentially, thus, leading to
modulated waves with infinitely high amplitude. Clearly,
such growth is unphysical and has to be reconsidered us-
ing an approach beyond linear theory.

Indeed, the accurate nonlinear theory [17] predicts sat-
uration and the maximal amplitude of periodic waves ex-
cited due to modulation instability (MI). This prediction
is in accordance with conventional wisdom: “what goes
up must come down”. In fact, this nonlinear stage of MI
predicted not only the exponential growth but the fol-
lowing exponential decay back to the constant amplitude
wave [I7]. The latter was not obvious and required many
years before this seemingly simple principle “must come
down” has been confirmed, first with the observation of
growth saturation in water waves [4], and then with the
demonstration of the full recursive behavior in optical
experiments [I8] [19]. If translated to the frequency do-
main, this principle is, essentially, the Fermi-Pasta-Ulam
recurrence [20] (see also [} Bl [OHIT] 21]) .

Despite these achievements, it has been recently
demonstrated that not all secrets of modulation instabil-

ity concealed by the linear approach have been revealed
so far [22]. The results obtained in [22] demonstrate that
the linear theory does not accurately predict the range
of unstable frequencies. This fact is, once again, not
obvious. An exact nonlinear theory is essential for re-
vealing the full range of frequencies that are unstable
due to the modulation. Exact solutions of the nonlinear
Schrodinger equation (NLSE) that describe the nonlin-
ear stage of modulation instability are presently known
as Akhmediev breathers (AB) [23H29]. The latter form a
family of solutions with a free parameter that is directly
related to the whole interval of unstable frequencies in the
BT and BF theories. However, even the AB solutions do
not cover the whole range of unstable frequencies. The
family of ABs is actually a particular case of more gen-
eral family of solutions that have been found in [30] and
refined recently in [22]. This extension expands the range
of unstable frequencies predicted in the the BT and BF
theories. It has important ramifications for theory, ex-
periment and applications [3I]. It means, that periodic
perturbations of a plane wave (or CW) can grow in the
situations when we would not expect them to do so.

Presenting simultaneously optical and hydrodynamic
experiments confirming this exceptional feature of mod-
ulation instability in a single work has far reaching con-
sequences. Observing the same effect at nearly oppo-
site ends of spatial and time scales of MI in physics is a
convincing argument confirming the validity of the new
finding. It means that similar phenomena at other scales
such as MI in plasma [32] or in Bose-Einstein condensate
[33] must also be re-examined. In optics, the extension of
the range of frequencies leading to MI might have mul-
tiple applications for generating frequency combs [34],
periodic pulse trains [35] and supercontinuum radiation
[36). In hydrodynamics, the new findings might result



in reconsidering conditions leading to formation of rogue
waves in the ocean [37].

THEORETICAL BACKGROUND

We start with the NLSE written in the normalised
form:

i+ g+ 9 =0 (1)

where v is the wave envelope function, z is the longitu-
dinal co-ordinate, and t is the time in a frame moving
with group velocity. We are interested in doubly peri-
odic waves, e.g., in solutions of Eq. that are periodic
both in space and in time [22]. They comprise the three-
parameter family of solutions with a single period along
each axis, z and ¢. This family contains as particular
cases other ‘elementary’ solutions and families [22]. To
be specific, doubly periodic solutions of Eq. can be
presented in general form:

b(t,2) = [Q(t 2) + i5(2)]e™?, (2)

with the functions Q(t,z), §(z) and ¢(z) that can be
found by a direct substitution of (2 into [30]. There
are two forms of such solutions, classified as A- and B-
types depending on the parameters of the family. Each
type contains MI as the limiting case. However, the lim-
iting case of B-type solutions is the standard MI while
the limiting case of A-type solutions is more general.

This apparently puzzling asymmetry between the two
families finds its physical justification in the fact that
A-type solutions can be considered as the full nonlinear
dressing of solutions of the NLSE obtained in the lin-
ear limit (when dispersion dominates over nonlinearity).
As discussed in more details in [22], for very high mod-
ulation frequencies, the deformation introduced by the
nonlinearity is small and essentially the modulation expe-
riences, upon evolution, only a periodic phase shift [38].
However, when the frequency is reduced to sufficiently
small values, the deformation due to the nonlinearity be-
comes strong, thereby inducing a net amplification of the
input sidebands even outside the conventional MI band-
width. Conversely, B-type solutions start to appear only
at frequencies below the conventional band-edge of MI,
as a result of the symmetry breaking nature of the onset
of conventional MI [I0} 22]. Therefore, B-type solutions
cannot be responsible for any unconventional MI.

Thus, our point of interest in this work is the A-type
solutions. Then, the three functions in are defined
as follows. Namely, for the function d(z), we have the
following expression:
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where n = V;’—il, o= 1/W_V::2)V2’ and sd(pz, k) =
%, (am(pz, k),n, k) is the incomplete elliptic in-

tegral of the third kind with the argument am(u, k) being
the amplitude function.

In contrast to § and ¢, the function @) depends on two
variables ¢ and z. It is given by:
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M? = (2sb+ci)? +c%, and N? = (2sb —cy )% + 2.
These functions and, consequently, the whole family
of solutions, depend on three arbitrary real parameters
as, p,n [22, B0]. The periods in z and ¢ also depend on
these parameters. They are given by: Z = 8K(k)/u,
T = 4K (k) /p, respectively, where K (k) is the complete
elliptic integral of the first kind. These free parameters
provide us with the possibility of accurately controlling
the wave evolution with periodic initial conditions and
particularly the development of modulation instability.

INSTABILITY OUTSIDE THE CONVENTIONAL
MI BAND

Equations above provide an exact wave dynamics with
two frequencies. Thus, the MI which is periodic along
the t-axis is a particular case of these solutions. Indeed,
there is a range of parameters p and 1 when the solution
represents the growth of a periodic perturbation on top
of a continuous wave. This happens when 0 < p < 1
and n — 0. This range corresponds to exact conditions
of modulation instability with the exponential growth of
periodic perturbation with a frequency defined by p. On
the other hand, for parameters p and 7 beyond this range,
the evolution has all features of modulation instability
but the growth of the perturbation takes different form.

This more general evolution is periodic in z. The solu-
tion is closest to the continuous wave when the evolution



variable z = +Z/4. Starting from one of these values of
z leads to the growth of modulations on the background
CW. One example is given in Fig. [[a) that shows wave
intensity profiles at z = —Z/4 when the modulation is
small (red curve) and at z = 0 when the modulation is
maximal (blue curve). Pulses within this periodic pulse
train are maximally compressed. The wave intensity pro-
file returns back to the initial condition at z = +Z/4.
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FIG. 1. (a) Transformation of a periodic perturbation on top
of the CW (red curve) into a train of pulses (blue curve).
Parameters of the solution here are: p = 0, n = 1, az =
1. Modulation frequency w = 2.287 > 2 is outside of the
instability band. (b) Amplification of periodic component
of the solution vs frequency. Frequency w depends on the
parameter p that changes in the interval [—3,1]. Grey area
beyond dashed black line marks the frequency range w > 2,
located outside the conventional MI gain band (w < 2).

The amplification of the periodic component of the so-
lution calculated numerically from the exact solution is
shown in Fig. [[{b). Here, the frequency range [0,2] is
the standard band of modulation instability. Amplifica-
tion within this range is not surprising. However, the
amplification is not zero when the frequency w > 2. The
amplification here might seem smaller than within the
band [0,2]. However, the amplitudes of the pulse trains
reached due to the growth are of the same order of mag-
nitude as within the band. Thus, the effect is easily mea-
surable in experiments. Moreover, the frequency range
shown in Fig. [1[b) is nearly 1.5 times the conventional MI
bandwidth w € [0,2]. In reality, it is much wider than
in this figure. Even from this point of view, the effect
is easily observable. As can be seen from Fig. b), the
value of amplification depends on the parameter 7. For
larger values of 7, the amplification within the standard
MI band is smaller. However, the amplification outside
of this band does not depend on 7. Thus, at larger values
of i, the MI effect is nearly the same order of magnitude
within and outside of the standard band.

Another remarkable feature of the MI visible in
Figa) is the period of the pulse train which is twice the
period of the initial modulation. Every second maxima
of the periodic perturbation grows while the juxtaposing
maxima decay. This feature adds flexibility to potential
applications of the effect. The red curve in Fig. a) and
analogous curves calculated for other values of parame-
ters have been used as initial conditions in the optical

and water wave experiments as well as in numerical sim-
ulations presented below.

OPTICAL EXPERIMENTS

For optical experiment, we used a setup similar to the
one used in [I0, BY] and devoted to investigate nonlin-
ear stage of MI within its conventional bandwidth. Its
schematic is shown in Fig. The input in the form of

Raman pump
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FIG. 2. Experimental setup: fi1,2 are the frequencies of the
main laser and the local oscillator laser, respectively. Here
fm is the input modulation frequency (pump frequency at fi,
input sideband frequencies at fi £ fm). The backscattered
signal from the SMF-28 fiber goes through a circulator to be
analysed via heterodyning (beating with the local oscillator)
and then filtered (waveshaper) to isolate the power and phase
evolutions of the pump and the first-order side-band pair in
the MI spectral comb; OSA - optical spectrum analyzer.

continuous wave with periodic perturbation is created by
CW laser 1. The intensity and the phase of the pump and
the sidebands are precisely controlled. The resulting 3-
wave input is injected into a L = 18.28 km long SMF-28
fiber (group velocity dispersion 33 = —21 x 10727 §2m ™1,
nonlinear coefficient v = 1.3 x 103 W~'m~1). The loss
is actively compensated by using a counter-propagating
Raman pump emulating an almost fully transparent opti-
cal fiber [I0]. Power and phase distributions of the pump
and the first order sideband (signal) are obtained using a
multi-heterodyning technique between the backscattered
signal and the local oscillator [10].

In order to apply the theory in the previous section to
optical fibers, the variables must be renormalized. To
this end, the dimensional distance Z, time T (in the
frame traveling at light group-velocity), and field ¥ (with
|W|? giving directly the power in Watts) are obtained by
the following rescaling

ZI(Z*ZO)LNL, T:th, \I/:’l/)\/Pp, (6)
Lyi = (yvPp)™", Ts=+/|Be|Lni, (7)
where Ly, is the characteristic nonlinear length scale as-

sociated with CW power P,, and T} is the relative tempo-
ral scale associated with dispersion. Here z is a suitable



shift that accounts for the fact the input Z = 0 corre-
sponds to a point of weak modulation in the solution
(whereas z = 0 is the point of maximum amplification
in the solution). For practical purposes, we can approxi-
mate zg = Z/4, valid for weak enough input modulation.

In this scaling, the MI cutoff frequency is fo =
2/(2nTs) = 1/(m\/|B2| Lnr). The pump power Pp in
experiments is set to 180 mW leading t.o a cutoff fre-
quency of the conventional MI gain band at fc = 33.6
GHz. In all our experiments, the modulation frequency
fm is located outside the MI gain band i.e. f,, > fo.
The intensity of the sidebands is set at 5.3 dB below the
pump power. The experimental spectra of the 3-wave
input and the spectrum of spontaneous MI, i.e. conven-
tional MI gain band profile, are plotted in Fig. The
initial relative phase between the pump and the signal is

s

—7 in order to excite the A-type waves.
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FIG. 3. Experimental 3-wave input spectrum (purple solid

line) compared with the spontaneous MI spectrum (yellow

dotted line). The two grey areas beyond dashed black lines

mark the range of frequencies f > fc, located outside of the
conventional MI gain band (f < f¢).

Experimental data for f,,, = 40 GHz and analytical so-
lution for the same set of parameters are shown in Fig. [4
Fig. a) displays the experimental power evolution of
the pump (blue) and the signal (red). The correspond-
ing theoretical prediction is shown by dashed curves. As
expected, first, we observe amplification of the signal and
depletion of the pump. The process reverses at around
2.5 km when the maximum depletion of the pump is
reached. The signal in experiment is amplified by 1.7 dB
between its initial value in Z = 0 and its first maximum
(2.8 dB gain for the corresponding analytical solution).
The gain outside the conventional MI bandwidth is lower
than the theoretical one shown in Fig b) as the values
of  in experiments are higher (for w = w,, and n = 0.05
the theoretical gain is 5.2 dB).

The first recurrence to the initial power profile occurs
at 5 km, and then successive cycles of growth and de-
cay are repeated. Overall, more than three periods of
such oscillatory evolution can be seen in Fig. [4a). De-
viation from perfect periodic dynamics is due to an im-
perfect compensation of loss by the active compensation
system. The consequence of this inaccuracy is over am-
plification of the signal around 10 km mark. Fig. b)
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FIG. 4. Three waves evolution along the fiber when the side-
band detuning f, = 40 GHz (wm = 2.3809) is outside the
conventional MI band. (a) Evolution of the pump power
(blue curves) and signal power (red curves). The solid curves
in (a),(b) and (c) correspond to the experimental data while
dashed curves are theoretical. (b) Relative phase vs distance.
(c) The phase-plane representation of the evolution. (d) and
(e) Spatio-temporal false-colour plots of the power profile. (f)
and (g) The phase profiles. The panels (d) and (f) show the
experimental data while (e) and (g) are theoretical. The fol-
lowing parameters have been used to prepare the initial con-
ditions in the experiment and to plot the analytical solution:
n = 1.2420, p = 0.0317, as = 1.0.

shows the nearly linear evolution of the pump-signal rel-
ative phase (A®) over the fiber length. The experimental
curve fits the theory almost perfectly. Importantly, the
initial phase is recovered after two cycles of power evolu-
tion (around Z = 10 km), whereas successive maximum
amplification stages turn out to be mutually out of phase
(sidebands shifted by 7), which is a unique feature of A-
type solutions [22].

It is also very convenient to illustrate the dynamics of
the process in the phase space (ucos(A®), usin(Ad))
where p is the signal power normalised to its maximum
value. Such trajectories are shown in Fig. c). The theo-
retical curve shown by the dashed line is strictly periodic
and corresponds to the A-type solution. The quantita-
tive agreement is also pretty good if we focus on the



locations of the curve maxima. Figure c) also gives
a pictorial view of the fact that the sidebands amplifi-
cation is connected to the nonlinear deformation of the
orbit with respect to circular orbits (characteristic of the
purely linear limit w — oo, not shown). The net gain in-
deed arises, in the figure-of-eight-shaped orbit, from the
ratio of the signal at the maximum elongation (horizontal
axis, A® = 0,7) and at the maximum orbital squeezing
(input, A® = —7/2).

Figures [{d) and (f) show the spatio-temporal evolu-
tions of the power (Fig.[d(d)) and phase (Fig.[4{f)) of the
electric field calculated from the inverse Fourier trans-
form of the 3 main spectral components (see Figsa)-
[4(c)). We used a procedure similar to that in Ref.
[40). Characteristic chess-board-like pattern are obtained
which is a clear signature of A-type solutions. The agree-
ment with the analytical solution (Fig. [4(e) and (g)) is
very good. We notice, once again, that the input phase
is recovered after two grow-decay cycles of power evolu-
tion, whereas successive maximal amplification profiles
are shifted by half of the transverse period.

Figure [5| shows two additional spatio-temporal evolu-
tions of the signal power from experimental measure-
ments (left panels) and from analytics (right panels). The
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FIG. 5. Spatio-temporal power evolution for two other val-
ues of the pump-signal frequency shift. (a),(b) fm = 34 GHz
(wm = 2.0238); (¢),(d) fm = 37 GHz (wm = 2.2023). Left
panels: experimental data, right panels: analytical solution.
The following parameters have been used to prepare the ini-
tial conditions in the experiment and to plot the analytical
solution: (a),(b) n = 1.0385, p = 0.4275, as = 1.0; and (c¢),(d)
n = 1.1407, p = 0.2374, ag = 1.0.

two signal frequency shifts (f,, = 34 and 37 GHz respec-
tively) are still outside of the MI band but located closer
to the cutt-off frequency. Again, the chess-board like pat-
tern of these plots confirms the A-type nature of these
solutions. We can also notice that when approaching the
cut-off frequency, the spatial periods (along z) increase,
as can be seen from Figs[] (d) and [f] (a) and (c). Impor-

tantly, maximal wave amplitudes reached at the points of
maximal compression are of the same order of magnitude
for all cases shown in these figures.

As mentioned, the spatial (longitudinal) period de-
pends on the shift between the modulation and the pump
frequencies. When the modulation frequency is outside
of the MI band, this period decreases with the modu-
lation frequency moving away from the pump. Experi-
mental verification of this behaviour is shown in Fig.[6]a).
Fig. @(b) shows the corresponding theoretical plot. While
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FIG. 6. 2-D plot of the signal power as a function of distance
Z (vertical axis) and pump-signal frequency shift (horizontal
axis). (a) experiment and (b) numerics.

the frequency shift increases from 34 GHz to 41 GHz, the
number of longitudinal periods along the same distance
~ 18 km changes from 3 to 3.8. This means that each
longitudinal period decreases from = 6 km to ~ 4.73 km.
Agreement between the experimental data and the the-
ory is also good as the two plots in Fig. [6] demonstrate.
Thus, our optical experiments confirm, clearly, the fact of
existence of modulation instability outside of the conven-
tional instability band. The measurements are in good
agreement with the theoretical predictions based on the
exact solutions of the NLSE.

WATER WAVE EXPERIMENTS

The hydrodynamic experiments have been performed
in a uni-directional wave tank, installed at the University
of Sydney and shown in Fig. [7] Its dimensions are 1 m

FIG. 7. Sketch of the L=30 meters long water tank at the
University of Sydney. In red the locations of the gauges.

x 1 m x 30 m. The tank was filled with fresh water
to the height of 0.7 m in order to satisfy the deep water
conditions for waves generated at the peak frequencies
between 1.5 and 2.0 Hz. The piston wave maker with



oscillation frequency range of 0.4 < f < 2 Hz is installed
at the right end of the tank. A wave absorbing beach
was located at the opposite end to eliminate any influ-
ence from reflected waves. The piston is activated by
an electric actuator, controlled by a pre-processed signal,
which allows the seeding of a modulated surface eleva-
tion profile, according to mathematical expressions given
above.

Eight wave gauges with a sampling rate of 32 Hz each
are placed along the tank to collect the water wave el-
evation data. Due to repeatability of experiments, all
eight wave gauges have been repositioned five times along
the facility to ensure high resolution of the data acqui-
sition both in time and in space. The gauges locations
measured from the mean position of piston in these ex-
periments are represented in red in Fig. This gave
us sufficient resolution in z for plotting the experimental
patterns, as shown below. The wave envelopes have been
computed using the Hilbert transform while the spectral
data have been calculated using the fast Fourier trans-
form of the water surface elevation data.

Although the water wave envelope obeys the same
dimensionless focusing NLSE as the normalized optical
field in optical fiber, the spatial and time scales turn out
to be extremely different. We start from dimensional
deep-water time-NLSE [I5] characterized by the second-
order dispersion coefficient By = —2/g (g = 9.81 m/s?
is the gravitational acceleration) and the nonlinear coef-
ficient v = —k3 (yB2 > 0, focusing regime), where & is
the wavenumber of the carrier, with the carrier frequency
fixed through the dispersion relation w = /gk. In order
to introduce a normalization akin to Eqgs. (6H7)), the di-
mensional distance along the tank Z, the dimensional
time T, and the envelope of water wave elevation W, can
be expressed in terms of nonlinear length Ly and tem-
poral scale T, fixed by the input envelope elevation a, as
follows (see also [41])

Z:(Z_zO>LNL7 T:tTS, \Ile/)a, (8)

where Ly = ﬁ, T, = and zg is a suitable

gh;%az?
shift for which considerations analogous to those made in
optics are still valid. It is worth mentioning that in this
case, the time T is also measured in the frame moving
with the group velocity ¢, = 5. Obviously, this scaling
is not unique. An equivalent choice often employed in
the case of water waves can be written in terms of the
wavenumber k and the wave steepness ¢ = ak: Z =
z/(ke?), T = 2t/ (we), ¥ = 1pe/k.

Operating with the scaling in Eq. , we obtained the
theoretical spatio-temporal patterns shown in Figs.
[see right panels (b)], which we compare with experi-
mental data [left panels (a) in the same figures]. The
choice of the parameters of the NLSE solution used for
generating these patterns is given in the figure captions.
In our water waves experiment, typically, Ly =~ 10

m and Ts ~ 1.4 s, compared with Ly; ~ 4 km and
Ts; ~ 10 ps of the optical experiment. Accordingly,
also the MI cut-off frequency, which reads, in this

. _ 1 gr3a?
case, fo = 71/ F5—

magnitude lower than the one in optics. For instance,
with x = 10 m~! and @ = 0.01 m (case of Fig. ,
we obtain fo = 0.22 Hz. The envelope evolution as
predicted by theory takes into account the second-order
Stokes correction to the water surface elevation [31].

, turns out to be several orders of
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FIG. 8. (a) Experimental and (b) theoretical plots of spatio-
temporal wave evolution that start with extraordinary mod-
ulation instability. The values of parameters in the NLSE
solution used to prepare the initial conditions in the exper-
iment are: 7 = 1.9, p = —0.9 and a3 = 1.0. Wave ampli-
tude a = 0.01 m, the carrier wavenumber x = 10 m~!, the
corresponding wave steepness ¢ = 0.1, and the modulation
frequency fr, = 0.37 Hz is well above the cut-off fo = 0.22
Hz.

These spatio-temporal patterns are very similar to
those obtained in optical experiments. Remarkably, our
maxima (two periods) have been achieved within the
length of the tank as can be seen from Fig. The re-
sulting chessboard structure of this pattern correspond-
ing to the A-type doubly periodic wave is also clearly
seen. Three recurrences to a nearly constant amplitude
wave are clearly visible despite unavoidable dissipation
elements, always present when performing laboratory ex-
periments. Note that for the given carrier wave param-
eters, it would not be possible to observe more than one
cycle of MI-growth-decay or AB within the given effective
propagation distance of 25 m.

In order to reaffirm the observation, two more exam-
ples of the spatio-temporal pattern are shown in Fig. [0
These plots contain less then one period of evolution that
includes one full recurrence to initial conditions at around
15 meters mark in (a) and around 19 meters mark in (c).
In each case, the carrier steepness € has been adjusted to
be just below the threshold of wave breaking. The latter
happens due to the excessive wave amplitude amplifica-
tion.

One essential difference of experimental patterns in
Figs.[8(a) and[J((a) from the optical ones is slightly tilted
vertical stripes. The reason is the asymmetry of the water
wave profiles, which is the result of significant breather
amplification of a factor of three and above. The con-
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FIG. 9. (a,c) Experimental and (b,d) theoretical plots of
spatio-temporal wave evolution that start with modulation
instability. The values of parameters in the NLSE solution
used to prepare the initial conditions in the experiment are:
(a,b) n = 1.03, p = 0.355, az = 1.0; and (c,d) n = 1.0,
p = 2.0, ag = 1.0. Wave amplitude a = 0.01 m in each case.
The wavenumber of the carrier is (a) x = 10 m™" and (c)
k=8 m™'. The corresponding wave steepness € = 0.1 with
cut-off frequency fc = 0.22 Hz in (a) and ak = 0.08 with
cut-off frequency fc = 0.15 in (¢). The modulation frequency
is fm = 0.25 Hz in (a) and f,, = 0.16 Hz in (c).

sequence is the nonlinear Stokes contributions that are
always present in water waves at these scales [42] [43].
Despite these deviations, the patterns in Figs. a) and
El(a) clearly confirm the presence of the modulation in-
stability and its nonlinear evolution beyond the standard
unstable frequencies of MI in the BF theory.

Generally, when increasing the amplification factor of
the breather, the steepness has to be decreased in order to
avoid wave breaking. The latter violates the condition of
the flow to be irrotational and thus, prohibits applicabil-
ity of the Euler equations and subsequently, the validity
of the NLSE [I4]. Indeed, when this threshold of wave
breaking is exceeded, spilling as well as recurrent break-
ing occurs and the pattern changes significantly and does
not follow the theoretical NLSE predictions. One exam-
ple is shown in Fig. Here, the value of the breather
parameter p is increased in comparison to the previous
cases. Modulation instability still develops but there is
no obvious recurrence back to initial conditions as can be
seen from Fig. [10J(a)

CONCLUSIONS

In conclusion, we have experimentally confirmed that
modulation instability is more complex phenomenon
than the one predicted by the simplified linear stability
analysis. The most striking difference that the more ac-
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FIG. 10. (a) Experimental and (b) theoretical plots of spatio-
temporal wave evolution that start with modulation instabil-
ity. The values of parameters in the NLSE solution used to
prepare the initial conditions in the experiment are: n = 1.9,
p =29 and as = 1.0. Wave amplitude a = 0.01 m. The
wavenumber of the carrier in (a) is x = 8 m™", consequently
the wave steepness ¢ = 0.08. The modulation frequency
here f,, = 0.2 Hz is once again above the cut-off frequency
fc = 0.15 Hz. Modulation instability develops but wave
breaking prevents the recurrence back to initial conditions.

curate nonlinear analysis using exact breather framework
reveals is the fact that periodically perturbed continuous
waves develop the growth of perturbation not only within
the standard modulation instability band described by
the BF and BT theories but also outside of it. To be more
accurate, the frequency range of unstable growth of the
perturbation extends beyond the standard MI threshold.

Another dramatic difference from the standard theory
can be seen when observing the nonlinear stage of MI.
The subsequent evolution beyond the initial growth cre-
ates a specific chess-board like periodic spatio-temporal
pattern of wave propagation. Temporal maxima of the
generated pulse trains change position every half period
of spatial evolution. The effect tightly related to this
phenomenon is the fact that the frequency of the pulse
train at the point of maximum compression is half of the
frequency of initial modulation. Such phenomenon may
find applications in frequency comb devices facilitating
the atomic clock synchronisation when the frequencies
differ by an octave [44].

Having these unusual features revealed in nonlinear
analysis, we can call the effect ‘extended’ or ‘extraordi-
nary’ modulation instability. Importantly, we were able
to track and confirm this ‘extraordinary’ modulation in-
stability in two different physical media, namely, in optics
and in hydrodynamics, proving the interdisciplinary sig-
nificance of the extended MI. In fact, these are the two
areas of physics where the wavelength differs by four or-
ders of magnitude, and the modulation frequencies by ten
orders of magnitude. This twofold confirmation of the ef-
fect shows that it is ubiquitous and does not depend on
the scale of the physical system that we operate with.
The effects should be also observable in other areas of
physics such as astrophysics [45], plasma [46] [47], meta-
materials [48] and in Bose-Einstein condensate [49] [50].
We envisage that the new phenomenon can be useful



in applications such as generation of optical frequency
combs and pulse trains with prescribed parameters: pe-
riods, amplitudes and duty cycles. Moreover, we antic-
ipate novel modelling approaches for extreme events in
nonlinear dispersive media.
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