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Abstract: Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are the two major neurode-
generative diseases causing dementia. Due to similar clinical phenotypes, differential diagnosis is
challenging without specific biomarkers. Beta-site Amyloid Precursor Protein cleaving enzyme 1
(BACE1) is a β-secretase pivotal in AD pathogenesis. In AD and mild cognitive impairment subjects,
BACE1 activity is increased in brain/cerebrospinal fluid, and plasma levels appear to reflect those
in the brain. In this study, we aim to evaluate serum BACE1 activity in FTD, since, to date, there is
no evidence about its role. The serum of 30 FTD patients and 30 controls was analyzed to evaluate
(i) BACE1 activity, using a fluorescent assay, and (ii) Glial Fibrillary Acid Protein (GFAP) and Neu-
rofilament Light chain (NfL) levels, using a Simoa kit. As expected, a significant increase in GFAP
and NfL levels was observed in FTD patients compared to controls. Serum BACE1 activity was not
altered in FTD patients. A significant increase in serum BACE1 activity was shown in AD vs. FTD
and controls. Our results support the hypothesis that serum BACE1 activity is a potential biomarker
for the differential diagnosis between AD and FTD.

Keywords: BACE1; Alzheimer’s disease; frontotemporal dementia; GFAP; NfL; serum; biomarker;
differential diagnosis

1. Introduction

Alzheimer’s disease (AD) is by far the most common cause of dementia (60–70%
of cases), affecting around 55 million people in the elderly population worldwide, with
10 million new cases each year [1–4]. On the contrary, only 5% of dementia cases seem to
be caused by frontotemporal dementia (FTD) [5], which, however, represents the second
most common form of early-onset dementia with clinical presentations in individuals
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under 65 years old [6,7]. FTD involves frontal and temporal brain region degeneration
and is marked by abnormalities in personality, language, and executive function [8,9].
It is known that AD and FTD are the major neurodegenerative diseases with distinct
clinical and neuropathological profiles that ultimately result in dementia [10]. The dif-
ferential diagnosis between these neurodegenerative disorders is challenging without
specific biomarkers. Thus, the identification of a biomarker to discriminate between these
pathologies is essential.

Beta-site Amyloid Precursor Protein (APP) cleaving enzyme 1 (BACE1) has been
deeply investigated as a promising biomarker for the diagnosis of AD [11,12]. BACE1 is a
β-secretase, a key enzyme in the formation of amyloid-β (Aβ), pivotal in AD pathogenesis,
catalyzing the rate-limiting initial cleavage at the β site of APP [13–15]. For this reason,
BACE1 has been widely studied as part of brain amyloidogenesis and proven to be in-
volved in Aβ production based on data from different knockout mouse models [16–18].
High BACE1 activity was found in the human AD brain, according to the findings that
neurons produce the highest Aβ levels [19,20]. During the last 20 years, several human
in vivo studies have shown a good diagnostic performance of cerebrospinal fluid (CSF)
BACE1 activity/levels in discriminating AD patients from mild cognitive impairment
(MCI) subjects and healthy controls [21–26]. BACE1 activity is increased in both brain/CSF
of AD patients [27] and MCI subjects [22,28]. Moreover, it is also present in plasma [29,30]
and in platelets [31–33], where its levels appear to reflect those in the brain [28]. Con-
sistently, several studies have shown an increase in plasma/serum BACE1 activity in
AD patients and MCI converting to AD (MCI-AD) [29,34,35]. The association of plasma
BACE1 activity with CSF biomarkers of dementia, tau protein and Aβ42 peptide [36,37],
has been previously demonstrated [29]. Notably, our recent study has shown a signif-
icant correlation of BACE1 activity with levels of Aβ40, Aβ42, and Aβ40/42 ratio in
serum [38]. Moreover, we have found that serum BACE1 activity was able to discriminate
AD and MCI-AD from controls with high sensitivity and specificity (98% and 100%, respec-
tively) [38]. All of these results support the idea of plasma/serum BACE1 activity as an early
biomarker of AD.

To date, there is no evidence of BACE1 ability to discriminate AD from other types
of dementia, such as FTD. Thus, the relationship between BACE1 and FTD is still to be
known. Recently, higher levels of Glial Fibrillary Acid Protein (GFAP) and Neurofilament
Light chain (NfL) in the serum of FTD and AD patients compared to healthy controls were
reported [39–42]. GFAP concentration in FTD was associated with disease severity and
disability and correlated with deficits in cognitive domains. These notions support the
hypothesis of serum GFAP as a marker of disease intensity and severity in FTD patients [39].
Serum NfL concentrations showed high accuracy in identifying FTD patients from cogni-
tively healthy elderly subjects, correlating with cognition and GABAergic deficits. Thus, it
is considered a promising biomarker of disease severity in FTD [40]. Moreover, in a study
on a well-documented UK cohort, GFAP and NfL levels were evaluated in a dementia-free
population after adjustment for multiple confounders that may affect protein expression
levels (e.g., age and sex). Elevated peripheral levels of both proteins were associated with
cognitive impairment and dementia, being able to distinguish participants with demen-
tia [43]. GFAP is a marker of astrogliosis that is increased in the brains [44] and CSF of
AD patients [45,46], making it a potential biomarker candidate for AD. However, reactive
astrogliosis in the brain is also a marker of FTD [47]. This is why increased levels of
GFAP are also observed in FTD patients. Elevated blood GFAP levels were described as
a marker of ongoing astrogliosis in AD patients [41]. Moreover, different studies showed
a strong association of peripheral GFAP levels with amyloid pathology [48–51]. All of
these studies reporting non-specific changes in blood GFAP and NfL levels as markers of
early neuroinflammation and neuronal damage in different types of dementia, including
AD and FTD, promote the research of a new marker able to discriminate between these
pathologies. In this pilot study, we used a small-sized cohort of patients to evaluate the role
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of BACE1 in FTD. In particular, we investigated whether serum BACE1 activity is altered in
FTD patients.

2. Results
2.1. BACE1 Activity Is Not Altered in FTD Patients

BACE1 activity and GFAP and NfL levels were evaluated in the serum of 30 FTD
patients and 30 subjects with normal cognitive function (CTRL). No differences were
found in BACE1 activity between the two groups (mean ± SEM; FTD, 12.96 ± 0.92 kU/L
vs. CTRL, 14.30 ± 1.14 kU/L, Generalized Linear Model, p > 0.05) (Figure 1a). A sig-
nificant increase in GFAP and NfL levels was observed in FTD patients compared to
CTRL subjects (mean ± SEM; GFAP: FTD, 152.60 ± 16.32 pg/mL vs. CTRL, 75.55 ± 13.26
pg/mL, Generalized Linear Model, p = 0.0178; NfL: FTD, 25.28 ± 2.54 pg/mL vs. CTRL,
10.30 ± 0.88 pg/mL, Generalized Linear Model, p < 0.0001) (Figure 1b,c). All comparisons
were adjusted for age and gender. Age was significantly and positively associated with
both GFAP and NfL levels.
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Figure 1. BACE1 activity (a) and the levels of GFAP (b) and NfL (c) in the serum of CTRL (n = 30)
and FTD patients (n = 30). No differences were observed in BACE1 activity between the two groups.
A significant increase in GFAP and NfL levels was shown in FTD patients compared to CTRL. Mean
± SEM; * p < 0.05 and **** p < 0.0001.

2.2. BACE1 Activity Is Altered in AD Compared to FTD Patients

We compared serum BACE1 activity in FTD and AD patients. To this aim, we included
in the analysis serum BACE1 activity data previously obtained by our group in 31 AD
patients and 30 CTRL [13]. A significant increase in BACE1 activity was shown in AD
patients compared to CTRL and FTD patients (mean ± SEM; AD, 20.88 ± 3.41 kU/L
vs. CTRL, 10.97 ± 0.73 kU/L, Generalized Linear Model, padj < 0.001; AD vs. FTD,
12.96 ± 0.92 kU/L, Generalized Linear Model, padj = 0.007). No differences were observed
between FTD and CTRL (padj = 0.12) (Figure 2a). All comparisons were adjusted for age and
gender. Age was significantly and negatively associated with BACE1. Then, we evaluated
GFAP and NfL levels. We observed a significant increase in GFAP levels in both AD and
FTD patients compared to CTRL (mean ± SEM; AD, 236.70 ± 15.81 pg/mL vs. CTRL,
100.90 ± 9.42 pg/mL, Generalized Linear Model, padj < 0.001; FTD, 152.60 ± 16.32 pg/mL
vs. CTRL, Generalized Linear Model, padj = 0.002) and in AD compared to FTD patients
(AD vs. FTD, Generalized Linear Model, padj = 0.012) (Figure 2b). Moreover, we observed a
significant increase in NfL levels in AD and FTD patients compared to CTRL (mean ± SEM;
AD, 21.70 ± 1.88 pg/mL vs. CTRL, 12.83 ± 0.87 pg/mL, Generalized Linear Model,
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padj < 0.001; FTD, 25.28 ± 2.54 pg/mL vs. CTRL, Generalized Linear Model, padj < 0.001).
No differences were observed between FTD and AD patients (p > 0.05) (Figure 2c). All
comparisons were adjusted with Bonferroni post hoc correction and for age and gender
as confounders. Age was significantly and positively associated with both GFAP and
NfL levels. Gender was associated with GFAP, with males having lower levels of GFAP
than females.
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Figure 2. BACE1 activity (a) and the levels of GFAP (b) and NfL (c) in the serum of CTRL
(n = 60), AD (n = 31), and FTD (n = 30) patients. A significant increase in BACE1 activity was
shown in AD patients compared to CTRL and FTD patients. No differences were observed between
CTRL and FTD patients. A significant increase in both GFAP and NfL levels was observed in AD and
FTD patients compared to CTRL. Moreover, a significant increase in GFAP levels was shown in AD
compared to FTD patients. No differences of NfL levels were observed between AD and FTD patients.
Mean ± SEM; * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.3. BACE1 Activity Discriminates AD from FTD Patients

In order to evaluate the capacity of serum BACE1 activity and GFAP levels to classify
subjects as AD or FTD patients, a classification tree (CT) was implemented. NfL was not
included in the CT since there was no difference between AD and FTD patients. The
model had an overall correct classification performance of 83.6%. While GFAP was able
to perform the first discrimination between AD and FTD patients, BACE1 activity had
an important role in discriminating subjects with GFAP levels higher than 143.97 pg/mL.
Among those, subjects with a serum BACE1 activity higher than 15.32 kU/L were classified
as AD patients with a very high percentage (95.7%) (Figure 3).
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FTD patients with very high percentage (95.7%).

3. Discussion

AD and FTD are the two major neurodegenerative diseases causing dementia [10].
Due to their similar clinical phenotypes, such as memory disturbances [52] and behavioral
abnormalities [53], differential diagnosis between these pathologies is still challenging
without specific biomarkers. Therefore, it is essential to identify a specific biomarker for an
early and accurate differential diagnosis. This potential biomarker should be cost-effective
and easy to perform in order to avoid invasive approaches (e.g., CSF withdrawal) and/or
the use of expensive technology (neuroimaging devices).

We devoted our attention to serum BACE1 activity for a number of reasons. First, the
mRNA expression, protein concentration, and enzymatic activity of this protein are higher
in the brain of AD and MCI compared to cognitively healthy subjects [22,27,28]. Second, as
previously demonstrated by our group and other researchers, alterations in brain BACE1
levels reflect changes not only in CSF but also in plasma/serum [22,27–29]. Third, the
employed assay has excellent analytical performance (low intra- and inter-assay variability)
and is affordable, easy to perform, and suitable for everyday clinical practice. Fourth, in a
previous large study, we found that serum BACE1 activity was able to discriminate AD
from a group defined as “other dementia”, including Lewy Body disease, Parkinson’s
dementia, FTD, and similar diseases [54].
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In the present study, we show that serum BACE1 activity could be a candidate
biomarker for discriminating AD from FTD. Indeed, we found that this biomarker is
selectively increased in AD patients (already shown in [38]), with higher levels compared
to both FTD and cognitively healthy subjects. Moreover, the significant increase in GFAP
and NfL levels observed in FTD and AD patients compared to controls confirms the pres-
ence of neuronal damage and corroborates previous data regarding the capability of these
biomarkers in identifying FTD, AD, and related dementia compared to the cognitively
healthy elderly, as well as in assessing FTD and AD severity and prognosis [39,40,55,56].
In this scenario, BACE1 activity plays a key role in discriminating subjects with GFAP
levels higher than 143.97 pg/mL. In particular, among those, subjects with serum BACE1
activity higher than 15.32 kU/L were identified as AD patients, with a high percentage of
95.7%. In addition, no correlation between serum BACE1 activity and serum GFAP and
NfL levels was observed in FTD patients, suggesting that neural damage and astrogliosis
may not influence the peripheral levels of β-secretase. Several studies have contributed to
the identification of non-invasive blood biomarkers for the differential diagnosis of neu-
rodegenerative dementias, such as FTD and AD, whose clinical symptoms and pathological
features frequently overlap. Among these biomarkers, GFAP and NfL are considered
important biomarkers of AD and FTD pathogenesis but non-specific. GFAP is the most
important cytoskeletal component of astrocytes. Reactive astrocytosis, shown by elevated
peripheral GFAP levels, has been recognized as a potential starting point of AD. NfL is a
component of myelinated axons and is released under neuronal damage [57,58]. Elevated
blood GFAP and NfL levels can be observed in other neurodegenerative diseases (e.g.,
Parkinson’s disease, amyotrophic lateral sclerosis), stroke, or traumatic brain injury [56,57].
Thus, their non-specificity for dementia limits further clinical applications. Even if the
capacity of blood GFAP and NfL levels to differentiate AD from FTD has already been
investigated, with variable findings, to date, p-Tau181 is more suitable in the differential di-
agnosis of these disorders, showing its high diagnostic value [39,40,42,55,56,59–61]. These
results encourage the search for a new promising biomarker. To the best of our knowledge,
this is the first study testing serum BACE1 activity as a tool for the differential diagnosis
between AD and FTD. This enzyme is deeply involved in AD pathogenesis since it plays a
prominent role in Aβ homeostasis and is the main determinant of the Aβ42 isoform [13,15].
Recent studies point to the role of BACE1 in the degradation of Aβ42 in the less toxic
and more soluble isoforms of these peptides [62,63]. According to the accumulation of
neurotoxic Aβ that originates before the onset of AD symptoms, we recently demonstrated
an increase in BACE1 activity in the serum of MCI-AD patients. This result demonstrates
the high capability of serum BACE1 activity to discriminate subjects with a high probability
of developing AD at the early stages of the pathology [38]. For all of these reasons, BACE1
could be a potential target for therapeutic approaches. Unfortunately, some compounds
assessing its disease-modifying capacity in phase II/III clinical trials were discontinued
due to futility or toxicity problems [64–67].

This study has both limitations and strengths that must be acknowledged. First,
the cross-sectional nature of the investigation prevents us from drawing any conclusive
considerations about the cause–effect relationship between the variables of interest. Second,
the sample size is relatively small, although it was justified by a power analysis. Therefore,
a replication study on a larger independent cohort is warranted to confirm the findings.
Third, we cannot exclude that biases or unmeasured confounding factors might limit the
robustness of our findings. Specifically, we cannot rule out that undetected brain changes,
including established biomarkers for the differential diagnosis of AD, such as atrophy and
the appearance of cerebral lacunes [68], as well as those holding promise, such as variations
in intracranial compliance, brain creep, and glymphatic system activity [69,70], may have
influenced our results. These limitations should be considered in future studies.

We would also like to highlight the strengths of the present study. We are the first to
show that serum BACE1 activity could be a candidate biomarker for distinguishing AD
from FTD. This finding is valuable, considering some important features of the BACE1
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detection method: excellent analytical performance (low intra- and inter-assay variability),
affordability, and easy execution. All of these characteristics make this assay suitable for
any standard biochemistry laboratory.

In conclusion, these findings suggest that serum BACE1 activity may not only serve
as an early biomarker for AD, aiding in the identification of eligible participants for clinical
trials, but also as a potential marker to differentiate AD from FTD patients.

4. Materials and Methods
4.1. Subjects

In this retrospective study, we included 121 subjects, n = 30 FTD, n = 31 AD, and
n = 60 CTRL. Among these subjects, n = 30 CTRL and n = 31 AD were characterized in [38].
Samples were obtained from the biobank of IRCCS Fatebenefratelli, Brescia. Subjects
considered for this study underwent clinical and neurological examination at the MAC-
Memory Clinic IRCCS Fatebenefratelli, Brescia. A clinical diagnosis was made according to
international guidelines [71–74]. Demographic characteristics are reported in Table 1.

Table 1. The demographic characteristics of patients and controls included in this study.

CTRL AD FTD p-Value

N. 60 31 30

Sex (% female) 65.00 67.74 33.33 0.0071 a

Age, years 68.97 ± 5.99 69.16 ± 10.65 72.97 ± 7.67 0.0606 b

CTRL, control; AD, Alzheimer’s disease; FTD, frontotemporal dementia. a chi-square test; b Kruskal–Wallis test.
Means ± standard deviation.

4.2. Biochemical Analyses

The serum BACE1 activity assay was performed by the Department of Translational
Medicine and for Romagna from the University of Ferrara as described in [34,38]. Briefly,
the BACE1 substrate was the peptide SEVNLDAEFR labeled with the fluorescent group
Lucifer Yellow and with the quenching group Dabsyl (see details in [34]). The substrate
was dissolved in dimethyl sulfoxide at a concentration of 392 µM and stored in aliquots at
−20 ◦C for up to 3 months (the basal signal was stable within this storage time). For the
assay, the stock solution was diluted to a final concentration of 30 µM in 50 mM acetate
buffer, pH 4.5, and 0.1 M NaCl. One hundred microliters of this substrate solution at
a final concentration of 30 µM were dispensed in triplicate in the wells of a black, flat-
bottom microplate. Following a pre-incubation period of 10 min at 37 ◦C, the reaction
was started by adding 5 µL of undiluted serum, and the fluorescence was read every 30 s
for 20 min using excitation and emission wavelengths of 430 nm and 520 nm in a Tecan
Infinite M200 (Tecan Group, Männedorf, Switzerland) microplate reader. The reaction
rates were converted from relative fluorescence units (RFU) per minute to enzyme units
(U) by interpolation with a standard curve constructed using known concentrations of
the wild-type enzyme (β-secretase human; Sigma-Aldrich, Saint Louis, MO, USA, Cat.
No. S4195).

Levels of GFAP and NfL were measured simultaneously in the serum of 30 FTD,
31 AD, and 60 CTRL using the commercially available Simoa Human Neurology 2-Plex B
(N2PB) assay kit (Quanterix, Lexington, MA, USA) on the automated Simoa SR-X analyzer
(Quanterix, Lexington, MA, USA), following the manufacturer’s instructions. Briefly,
samples were thawed at room temperature for 60 min and centrifuged at 10,000× g for
5 min prior to analyses, as suggested in the protocol, to prevent any sample debris from
interfering with the measurement. One hundred microliters of calibrators were added in
triplicate in appropriate wells. Twenty-five microliters of controls provided in the kit or
samples were dispensed in duplicate after a 1:4 dilution, adding 75 µL of sample diluent.
Then, 20 µL of vortexed beads were added to each well, followed by 20 µL of detector
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reagent. After incubation at 35 ◦C for 30 min, the plate with pelleted beads was transferred
onto the Simoa SR-X instrument for the analyses.

4.3. Statistical Analysis

The sample size was calculated by a power analysis with BACE1 activity as the primary
outcome, considering as a reference the measurements performed in [38]. Since we showed
serum BACE1 activity of 7.63 ± 1.88 kU/L for the CTRL group and 19.39 ± 9.66 kU/L for
the AD + MCI-AD group (mean ± standard deviation, two-tailed Mann–Whitney non-
parametric test, alpha level = 0.05, power of 0.9), we calculated that 10 subjects per group
was the minimum sample size necessary for this variation to be significant.

The normality assumption of continuous variables was assessed by the Shapiro–Wilk
test and graphical inspection. We employed the chi-square test to evaluate the relationship
between categorical variables and the group variable. For the non-normally distributed
demographic variable age, we used the Kruskal–Wallis test along with Dunn’s multiple
comparison test. To examine the significant differences in biomarker levels among groups,
we applied Generalized Linear Models, adjusting for age and gender. When comparing
more than two groups (AD vs. FTD vs. CTRL), Bonferroni post hoc adjustment was
implemented, and the relative adjusted p-values were reported. All statistical tests were
two-tailed, with statistical significance set at p < 0.05. A classification tree (CT) [75] was
applied to determine a profile of AD and FTD patients based on a set of biomarkers.
Classification trees are a nonlinear modeling technique that recursively splits data based on
features to create subsets, making decisions at each node. Even if features are correlated, the
tree will choose the one providing the best information gain for splitting. In detail, CT model
was carried out, considering the AD and FTD diagnoses as the two classes, depending on
serum BACE1 activity and serum GFAP levels as quantitative independent variables. The
output of the CT consists of a tree-like structure formed by different classification pathways
(defined by the best discriminating estimated cut-offs of the biomarkers). At each split, the
probability of the most likely diagnostic group based on the biomarker levels was provided.
All analyses were conducted using Rstudio (R version: 4.3.2), except for the CT, which was
built with SPSS (v.29).

4.4. Ethics Committee

All subjects (or legal guardians) provided written informed consent. To ensure that
the appropriate ethical standards were upheld (respect of persons, beneficence, and justice),
the study protocol was reviewed and approved by the local ethics committee (Prot. N.
91/2019, 57/2022; date of approval: 4 December 2019, 8 November 2022).
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