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Abstract

When investigating epidemic dynamics through differential models, the parameters
needed to understand the phenomenon and to simulate forecast scenarios require a delic-
ate calibration phase, often made even more challenging by the scarcity and uncertainty
of the observed data reported by official sources. In this context, Physics-Informed Neural
Networks (PINNs), by embedding the knowledge of the differential model that governs
the physical phenomenon in the learning process, can effectively address the inverse and
forward problem of data-driven learning and solving the corresponding epidemic prob-
lem. In many circumstances, however, the spatial propagation of an infectious disease
is characterized by movements of individuals at different scales governed by multiscale
PDEs. This reflects the heterogeneity of a region or territory in relation to the dynamics
within cities and in neighboring zones. In presence of multiple scales, a direct application
of PINNs generally leads to poor results due to the multiscale nature of the differential
model in the loss function of the neural network. To allow the neural network to operate
uniformly with respect to the small scales, it is desirable that the neural network satis-
fies an Asymptotic-Preservation (AP) property in the learning process. To this end, we
consider a new class of AP Neural Networks (APNNs) for multiscale hyperbolic trans-
port models of epidemic spread that, thanks to an appropriate AP formulation of the
loss function, is capable to work uniformly at the different scales of the system. A series
of numerical tests for different epidemic scenarios confirms the validity of the proposed
approach, highlighting the importance of the AP property in the neural network when
dealing with multiscale problems especially in presence of sparse and partially observed
systems.

Keywords: asymptotic-preserving methods, physics-informed neural networks, discrete-
velocity transport models, multiscale hyperbolic models, epidemic compartmental models,
diffusion limit
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1 Introduction

In recent decades, enormous progress has been made in the understanding of complex systems
described by multiscale PDEs with applications ranging from classical physics and engineering
to biology and social sciences [1, 4, 5, 11,14,25,36].

Despite continuing progress, modeling and predicting the evolution of nonlinear multiscale
systems using classical analytical or computational tools inevitably faces severe challenges.
Firstly, numerically solving a multiscale problem requires complex and sophisticated compu-
tational codes and can introduce prohibitive costs (due to the well-known curse of dimen-
sionality). Moreover, we are always facing the difficulties related to the scarcity of data and
multiple sources of uncertainty, especially when concerning social sciences. Above all, solving
real physical problems with missing or incomplete initial or boundary conditions through
traditional approaches is currently impractical. This is where and why data-driven models
began to play a crucial role [17].

Machine Learning (ML) is an incredibly powerful tool, which has proven to have an
enormous impact in many fields of our society. This has led to great interest in using ML
techniques also to study challenging scientific problems in science, engineering, medicine,
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concerning complex multiscale dynamics. However, it is clear that the problems we are
dealing with are very different from the classical problems in which ML has proved to be so
successful. So, we cannot simply take the available ML methods as a “black box” and use them
uncritically [2]. Purely data-driven models may fit observations very well, but predictions may
result physically inconsistent and, consequently, lead to erroneous generalizations. Therefore,
there is an urgent need to integrate fundamental physical laws and related mathematical
models into the learning process of the neural networks [18,28,33]. The main motivation for
developing this new class of physics-informed machine learning algorithms is that such prior
physical knowledge or constraints can ensure that ML methods remain robust even in the
presence of imperfect data (such as missing, incomplete or noisy data) and provide accurate
predictions that adhere to the physics of the phenomenon under study.

A recent example of this new learning paradigm is represented by Physics-Informed Neural
Networks (PINNs) [15, 28, 38, 44]. PINNs are a new class of deep neural networks (DNNs)
that are trained to solve supervised learning tasks while respecting any given physical laws
described through general nonlinear ordinary differential equations (ODEs) or partial differ-
ential equations (PDEs). The physical knowledge of the underlying phenomenon is incorpor-
ated into the PINN mainly in two ways: either it is introduced directly through the data
embodying the underlying physics of the phenomenon of interest (observational bias) or it
is introduced by an appropriate choice of the loss function that the PINN must minimize,
forcing the training phase of the neural network to converge to solutions that adhere to the
underlying physics (learning bias).

Nevertheless, the adoption of a standard formulation of PINNs in the context of multiscale
problems may still lead to incorrect inferences and predictions [26]. This is mainly due to
the presence of small scales leading to reduced or simplified models in the system that need
to be enforced consistently during the learning process. In these cases, a standard PINN
formulation allows an accurate description of the process only at the leading order, thus
loosing accuracy in the asymptotic limit regimes. One remedy for this, as recently proposed
in [26], is to modify the loss function to include asymptotic-preserving (AP) properties during
the training process. The realization of such an AP-loss function will therefore depend on
the particular problem under study and will be based on an appropriate asymptotic analysis
of the model.

One particularly interesting area where the use of machine learning techniques can play
a key role concerns epidemiological dynamics. In this context, a number of mathematical
models have recently been proposed that require the estimation of several parameters from
data to provide predictive scenarios and to test their reliability [1,7,10–12,19,20,37,41]. In this
paper we will focus on a new class of epidemic models described by multiscale PDEs capable of
describing both hyperbolic-type phenomena characteristic of epidemic propagation over long
distances and main lines of communication between cities and parabolic-type phenomena
in which classical diffusion prevails at the urban level [1, 7, 10, 11]. The multiscale nature
of the problem poses a challenge to the construction of PINN, and preservation of the AP
property is therefore essential in order to obtain reliable results. Following the approach
recently introduced in [26], we will show how to construct AP neural networks (APNNs) that
are capable to solve both inverse and forward problems of interest in epidemic dynamics.

The rest of the paper is organized as follows. The next section is devoted to the description
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of the model under study and a formal analysis of the different multiscale behaviors. In
Section 3 we introduce the notion of APNN and describe how to construct such a neural
network in the case of a simplified multiscale hyperbolic model and then how to extend it
to the epidemic case under study. A series of numerical results for both inverse and forward
problems using synthetic data produced by the numerical solution of the mathematical model
illustrate the validity of the present approach. In particular, the case of partially observed
systems, as commonly found in epidemics, will be considered and permits to emphasize the
relevance of the AP-property. Some final considerations and future developments are reported
in a concluding section.

2 Hyperbolic models of epidemic spread

For simplicity, we illustrate the space dependent epidemiological modeling in the case of a
classic SIR compartmental dynamics, in which we consider a population subdivided in sus-
ceptible S (individuals who may be infected by the disease), infectious I (individuals who
may transmit the disease) and removed R (individuals healed and immune or died due to
the disease). We assume to have a population with subjects having no prior immunity and
neglect the vital dynamics represented by births and deaths due to the time scale considered.
Nevertheless, it is straightforward to extend our arguments to more enriched compartment-
alizations, designed to take into account specific features of the infectious disease of interest,
as those proposed recently in [7, 10–12,19,20,37,41] to study the spread of COVID-19.

2.1 The hyperbolic SIR model

By analogy with discrete-velocity kinetic theory [4, 36], we consider individuals moving in
a one-dimensional domain D ⊆ R in two opposite directions, with velocities ±λS,I,R =
±λS,I,R(x), distinguished for each epidemic compartment. Notice that the characteristic
velocities reflect the heterogeneity of geographical areas, and, therefore, are chosen dependent
on the spatial location x ∈ D. Hence, we can describe the space-time dynamics of the
population for t > 0 through the following two-velocity SIR epidemic transport model [1,8,9]:

∂S±

∂t
+ λS

∂S±

∂x
= −βS±I ∓ 1

2τS

(
S+ − S−

)
,

∂I±

∂t
+ λI

∂I±

∂x
= βS±I − γI± ∓ 1

2τI

(
I+ − I−

)
,

∂R±

∂t
+ λR

∂R±

∂x
= γI± ∓ 1

2τR

(
R+ −R−

)
,

(1)

with the total densities of each compartment, S(x, t), I(x, t), and R(x, t), given by

S = S+ + S−, I = I+ + I−, R = R+ +R−.

The transport dynamics of the population is governed by the scaling parameters λS,I,R as
well as the relaxation times τS,I,R = τS,I,R(x). The quantity γ = γ(x, t) is the recovery rate
of infected, which corresponds to the inverse of the infectious period. This rate may vary
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in space and time depending on the treatment therapies used, even though generally can be
assumed constant, especially for short-term analysis. The transmission of the infection is
defined by an incidence function βSI modeling the transmission of the disease [13, 23, 30].
The transmission rate β = β(x, t) characterizes the average number of contacts per person per
time, multiplied by the probability of disease transmission in a contact between a susceptible
and an infectious subject. Notice that this rate may vary in space and time as a consequence
of the intensification of governmental control actions (such as mandatory wearing of masks,
closing of specific activities or full lockdowns) or their relaxation (lifting mask mandates,
reopening schools, restaurants, leisure and cultural centers) in specific locations.

It is worth to highlight that, when investigating real epidemic scenarios, the above-
mentioned parameters are, in general, unknown. While the recovery rate might be fixed
based on clinical data, the transmission rate must always be estimated through a delicate
calibration process in order to match available data. It is also well-known that this process
is highly heterogeneous which makes the inverse problem even more challenging [16].

The standard threshold of epidemic models is the so-called basic reproduction number R0,
which defines the average number of secondary infections produced by one infected individual
in a totally susceptible population [23]. The effective reproduction number Rt, instead, defines
the variation in time of this rate, giving information on the progress of the infectious spread.
Indeed, this number determines when an infection can invade and persist in a new host
population (Rt > 1), or tend to fade away (Rt < 1). The endemic state corresponds to the
case Rt = 1.

Assuming no inflow/outflow boundary conditions in D, integrating in space and summing
up the second equation in (1) we are able to define the effective reproduction number of the
SIR transport model

Rt(t) =

∫
D β(x, t)S(x, t)I(x, t) dx∫
D γ(x, t)I(x, t) dx

≥ 1. (2)

Notice that this definition naturally extends locally by integrating over any subset of the
computational domain D if one ignores the boundary flows. Under the same no inflow/outflow
boundary conditions, if we integrate in D equations (1), we can finally observe that the model
fulfill the conservation of the total population, being

∂

∂t

∫
D

(S(x, t) + I(x, t) +R(x, t)) dx = 0 , (3)

with S(t) + I(t) +R(t) = P , and P total population reference size, constant over time.

2.2 Multiscale behavior and diffusion limit

Introducing the fluxes, defined by

JS = λS
(
S+ − S−

)
, JI = λI

(
I+ − I−

)
, JR = λR

(
R+ −R−

)
, (4)
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we obtain a hyperbolic model equivalent to (1), but presenting a macroscopic description of
the propagation of the epidemic at finite speeds

∂S

∂t
+
∂JS
∂x

= −βSI,

∂I

∂t
+
∂JI
∂x

= βSI − γI,

∂R

∂t
+
∂JR
∂x

= γI,

∂JS
∂t

+ λ2
S

∂S

∂x
= −βJSI −

JS
τS
,

∂JI
∂t

+ λ2
I

∂I

∂x
=
λI
λS
βJSI − γJI −

JI
τI
,

∂JR
∂t

+ λ2
R

∂R

∂x
=
λR
λI
γJI −

JR
τR
.

(5)

Let us now consider the behavior of this model in diffusive regimes [32]. To this aim, we
introduce the space dependent diffusion coefficients

DS = λ2
SτS , DI = λ2

IτI , DR = λ2
RτR. (6)

which characterize the diffusive transport mechanism of susceptible, infectious and removed,
respectively. Keeping the above quantities fixed while letting the relaxation times τS,I,R → 0
(and so the characteristic velocities λS,I,R → ∞), from the last three equations in (5) we
obtain, for each epidemic compartment, a proportionality relation between the flux and the
spatial derivative of the corresponding density (Fick’s law)

JS = −DS
∂S

∂x
, JI = −DI

∂I

∂x
, JR = −DR

∂R

∂x
. (7)

Substituting (7) into the first three equations in (5), we recover the following parabolic
reaction-diffusion model, widely used in literature to study the spread of infectious diseases [6,
24,35,40,43]

∂S

∂t
= −βSI +

∂

∂x

(
DS

∂S

∂x

)
,

∂I

∂t
= βSI − γI +

∂

∂x

(
DI

∂I

∂x

)
,

∂R

∂t
= γI +

∂

∂x

(
DR

∂R

∂x

)
.

(8)

The model’s capability to account for different regimes, ranging from hyperbolic to para-
bolic, according to the space dependent values τS,I,R and λS,I,R, makes it suitable for de-
scribing the dynamics of human beings. Our daily routine is, indeed, a complex mixing of
individuals moving at the scale of a city center and individuals traveling among different mu-
nicipalities. In this situation, it results more appropriate to describe the human dynamics in
city centers with a high density of individuals through a diffusion operator, while characteriz-
ing the mobility of subjects in extra-urban areas through a hyperbolic, advective, mechanism,
avoiding in this case a propagation of the information at infinite speeds [7, 10,11].
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3 Asymptotic-Preserving Neural Networks (APNNs)

In this section, we provide a brief overview of the general framework of PINNs [28,38] and then
we shall discuss the relevant concepts of Asymptotic-Preserving Neural Networks (APNNs)
for the problems of interest.

3.1 Basics of PINNs

The design of a standard deep neural network (DNN) by supervised learning can be sum-
marized in three main steps [18]:

1. The choice of the neural network structure.

2. The loss function that minimizes the classical empirical risk, typically characterized by
the difference between model and data.

3. A method to minimize loss over the parameter space. The most popular choices are
stochastic gradient descent (SGD) and advanced optimizers such as Adam [31].

In practice, the performance of the neural network is estimated on a finite data set (which
is unrelated to any data used to train the model) and called test error, whereas the error in
the loss function (which is used for training purposes) is called the training error.

Compared to the above classical deep learning methodology, the major difference of PINN
is the integration of physical laws, usually in the form of PDEs

F(u, x, t; ξ) = 0, (x, t) ∈ Ω,

B(u, x, t; ξ) = 0, (x, t) ∈ ∂Ω.
(9)

Here Ω ⊂ Rd×R is the spatio-temporal domain of the system, ∂Ω represents its boundary, F
is the differential operator, u represents the solution to the system, ξ is the parameter related
to the physics. Since the initial condition is mathematically equivalent to the boundary
condition in the spatio-temporal domain, we use B as a general operator for arbitrary initial
and boundary conditions of the system.

PINN models usually include a neural network representation of the solution u ≈ uNN (z; θ),
parameterized by network parameters θ and having z ∈ Rd input data. In PINN literature,
the most widely used neural network architecture is the feed-forward neural network (FNN).
A L + 1 layered FNN consists of an input layer, an output layer, and L − 1 hidden layers,
which can be defined as follows

z1 = W 1z + b1,

zl = σ ◦ (W lzl−1 + bl), l = 2, . . . , L− 1

uNN (z; θ) = zL = WLzL−1 + bL,

where W l ∈ Rml×ml−1 are the weights, bl ∈ Rml the bias, ml is the width of the l-th hidden
layer with m1 = din = d the input dimension and mL = dout the output dimension, σ is a
scalar activation function (such as ReLU [21]), and “◦” denotes entry-wise operation. Thus,
we denote the set of network parameters θ = (W 1, b1, . . . ,WL, bL).
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To find the optimal values for θ, the neural network is trained by minimizing the following
type of loss (also called cost or risk) function

L(θ) = wTr Lr(θ) + wTb Lb(θ) + wTd Ld(θ). (10)

Here Lr and Lb quantify the discrepancy of the neural network surrogate uNN with the
underlying PDE and its initial or boundary conditions in (9), respectively. The data mismatch
loss Ld is applied when additional measurement data are available, e.g., when solving inverse
problems, and wr, wb, wd are the corresponding weight vectors. The most popular methods
chosen to solve this optimization problem remain stochastic gradient descent (SGD) and
Adam [31]. After finding the optimal set of parameter values θ∗ by minimizing the PINN
loss (10), i.e.,

θ∗ = argminL(θ), (11)

the neural network surrogate uNN (x, t; θ∗) can be evaluated at any given spatio-temporal
point to get the solution.

In the context of inverse problems, the structure of the network is almost the same with
respect to the forward problem setting, except that unknown physical parameters ξ are
treated as learnable parameters. As a result, the training process involves optimizing θ and
ξ jointly

(θ∗, ξ∗) = argminL(θ, ξ). (12)

In summary, PINN can be regarded as an unsupervised learning approach when used to train
forward problems, with only equations residual and boundary conditions in the loss function,
and as a semi-supervised learning approach for inverse problems, when some measurements
are available. In the last part of this section, we shall further discuss in detail each component
of this learning framework through several examples.

3.2 Extension to APNNs

Since we aim at analyzing multiscale hyperbolic dynamics regardless of the propagation
scaling, in order to obtain physically-based predictions, it is important that the PINN can
preserve the correct equilibrium solution (8) in the diffusive regime, which means that the
PINN should fulfill the AP property [22, 25, 26, 34]. We remark that in the context of the
epidemic modeling of this work, the AP property is of particular importance, allowing the
same neural network to efficiently and robustly simulate population dynamics characterized
by both diffusive and hyperbolic transport behaviors (the former in urban centers and the
latter for mobility along connecting routes).

The neural networks satisfying this property are called Asymptotic-Preserving Neural Net-
works (APNNs), and have been recently introduced in [25, 26] to efficiently solve multiscale
kinetic problems with scaling parameters that can have several orders of magnitude of differ-
ence. The definition of an APNN reported in [26] for the case of multiscale kinetic models
with continuous velocity fields is generalized in the following (see Figure 1).

Definition 1 (Asymptotic-Preserving Neural Network). Assume the solution is parameter-
ized by a PINN trained by using an optimization method to minimize a loss function which

8



Figure 1: AP diagram for neural networks. Fε is the multiscale problem that depends on the
scaling parameter ε, while F0 is the corresponding formulation in the reduced order limit,
which does not depend anymore on ε. The solution of the system Fε is approximated by
the neural network through the imposition of the residual term RNN (Fε) = RεNN . The
asymptotic limit of RNN (Fε) as ε → 0 is denoted with RNN

(
F0
)

= R0
NN . The neural

network is called AP if RNN
(
F0
)

is consistent with the residual of the reduced system F0.

includes a residual term enforcing the physics of the phenomenon. Then we say it is an
Asymptotic-Preserving Neural Network (APNN) if, as the physical scaling parameter of the
multiscale model tends to zero, the loss function of the full model-constraint converges to the
loss function of the corresponding reduced order model.

In other words, the loss function, viewed as a numerical approximation of the original
equation, benefits from the AP property.

3.3 A simple example: APNN for the Goldstein–Taylor model

To illustrate the relevance of the AP property in the construction of the neural network,
let us carry on a detailed example by considering a simplified case in which there are no
epidemic source terms that allow individuals to move to a different compartment and the
entire population behaves as a single compartment. Such a case corresponds to the so-
called Goldstein–Taylor model in discrete velocity kinetic theory [27,36]. This model, indeed,
describes the space-time evolution of the two particles densities f+(x, t) and f−(x, t), at time
t > 0, traveling in a one-dimensional domain, x ∈ D ⊆ R, with velocity ±c, respectively.
At the same time, particles can change and assume the opposite velocity, randomly. The
dynamics of this system of particles is governed by the following system of PDEs

∂f±

∂t
± c

ε

∂f±

∂x
=

σ

2ε2

(
f∓ − f±

)
, (13)

with ε scaling parameter of the kinetic dynamics and σ scattering coefficient. The total
particles density is given by ρ(x, t) = f+(x, t) + f−(x, t).

We consider f±NN (x, t; θ) to be a DNN with inputs x and t and trainable parameters θ, to
approximate the solution of our system: f±(x, t) ≈ f±NN (x, t; θ). Then, we define the PDEs
residual

RεNN (f±) = ε2∂f
±
NN

∂t
± εc

∂f±NN
∂x

− σ

2

(
f∓NN − f

±
NN

)
, (14)
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and incorporate it into the loss function term ωTr Lr(θ) of the neural network by taking the
weighted mean square error of the residual to obtain a standard PINN.

To understand the asymptotic behavior of the model we resort on a suitable macroscopic
formulation of the system which is achieved through the introduction of the scaled flux
j = c (f+ − f−) /ε. This permits to write the system (13) in equivalent form as

∂ρ

∂t
+
∂j

∂x
= 0 ,

∂j

∂t
+
c2

ε2

∂ρ

∂x
= − σ

ε2
j .

(15)

In the diffusion limit, i.e. let ε→ 0, we obtain

j = −c
2

σ

∂ρ

∂x
, (16)

which, inserted into the first equation, leads to the reduced diffusive model (which recalls the
standard heat equation)

∂ρ

∂t
=
c2

σ

∂2ρ

∂x2
. (17)

It is clear that the standard PINN residual (14) is not consistent with the above analysis
since RεNN (f±) in the limit ε→ 0 reduces to

R0
NN (f±) = −σ

2

(
f∓NN − f

±
NN

)
,

which corresponds to force f+(x, t) = f−(x, t) and does not suffice to achieve the correct
diffusive behavior (17).

In contrast, using the macroscopic formulation (15), we can construct an APNN incor-
porating in the loss function the mean square error of the PDEs residuals

RεNN (ρ) =
∂ρNN
∂t

+
∂jNN
∂x

, RεNN (j) = ε2∂jNN
∂t

+ c2∂ρNN
∂x

+ σjNN . (18)

Now, in the limit ε→ 0, we obtain

R0
NN (ρ) =

∂ρNN
∂t

+
∂jNN
∂x

, R0
NN (j) = c2∂ρNN

∂x
+ σjNN , (19)

which is consistent with the residual of the limiting diffusive model (17). We refer to Appendix
A for a detailed description of the loss function for the Goldstein-Taylor model, including
data and boundary conditions loss terms.

3.4 APNN for the hyperbolic SIR model

To achieve the AP property in the neural network for the hyperbolic SIR model, we follow
the same approach of the previous section. Thus, we consider the system written in mac-
roscopic form defined by equations (5). Multiplying both members of each equation for the
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corresponding scaling parameter τi, i ∈ {S, I,R}, we can rewrite the system in the following
compact form

τ(x)
∂U(x, t)

∂t
+D(x)

∂F (U(x, t))

∂x
= G(U(x, t)), (x, t) ∈ Ω, (20)

where

U =



S
I
R
JS
JI
JR

 , τ =



1
1
1
τS
τI
τR

 , D =



1
1
1
DS

DI

DR

 , F (U) =



JS
JI
JR
S
I
R

 , G(U) =



−βSI
βSI − γI

γI
−τSβJSI − JS

τI
λI
λS
βJSI − τIγJI − JI
τR

λR
λI
γJI − JR


.

We consider UNN (x, t; θ) to be a deep neural network (NN) with inputs x and t and
trainable parameters θ, to approximate the solution of our system: U(x, t) ≈ UNN (x, t; θ).
Then, we define the residual term

RτNN (U) = τ
∂UNN
∂t

+D
∂F (UNN )

∂x
−G(UNN ), (21)

and embed it into the loss function of the neural network to obtain an APNN. We omit for
brevity the detailed analysis of the AP property. In the limit as τi → 0, λi →∞, i ∈ {S, I,R},
under conditions (6), such analysis follows the same steps of the previous section, and R0

NN

results in agreement with the diffusion limit computed in Section 2.2.
We restrict the neural network approximation UNN to satisfy the physics imposed by

the residual (21) on a finite set of Nr user-specified scattered points inside the domain,
{(xnr , tnr )}Nr

n=1 ⊂ Ω (referred as residual points) and we also enforce the initial and space-
boundary conditions of the system onNb scattered points of the space-time boundary B(U(x, t)),
i.e. {(xkb , tkb )}

Nb
k=1 ⊂ ∂Ω [29]. In the context of inverse problems, we also consider to have

access to measured data, with a dataset {(U id, xid, tid)}
Nd
i=1, with U id = U(xid, t

i
d), available in

a finite set of fixed training points. Thus, in the training process of the PINN, we minimize
the following AP-loss function, composed of four mean squared error terms

L(θ) = ωTd Ld(θ) + ωTb Lb(θ) + ωTr Lτr (θ) + ωc Lc(θ), (22)

where ωd, ωr, ωb, ωc characterize the weights associated to each contribution. Notice that Ld
quantifies the mismatch of the approximated solution with respect to known data samples,
while Lb, Lτr and Lc represent the discrepancy in initial/boundary conditions of (20), in
the residual (21) and with respect to the conservation of the total density in the domain
(3), respectively, all three contributing to enforce the physical structure of the problem. We
present the detailed expression of each term in (22) in Appendix B. A schematic representation
of the APNN architecture is given in Figure 2.
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Figure 2: APNN schematic work-flow. The NN architecture is integrated with the physical
knowledge of the dynamics of interest through the inclusion of the PDE system and the
enforcement of initial and boundary conditions (and eventually conservation properties),
when known, becoming a PINN. The AP property, which is a fundamental feature when
dealing with multiscale hyperbolic systems, is guaranteed through the correct design of an
AP-loss function.

4 Numerical examples and applications

In this section, various numerical tests are presented to assess the performance of the proposed
APNNs. The first two examples concern the usage of an APNN for the solution of inverse
and forward problem set up considering as prototype multiscale hyperbolic system either the
standard Goldstein–Taylor model or a slightly modified version of it. Even if this model
is a simpler system of equations with respect to (5), it well represents the dynamics of
interest, as discussed in Section 3.3. These tests are designed to further highlight how the
choice of the APNN formulation proposed in this work is fundamental for the treatment of
multiscale problems, especially in the context of availability of partial information. We shall
demonstrate also numerically with this prototype model (and we refer to Section 3.3 for the
analytical proof) that a standard PINN formulation leads to the loss of the AP property and,
consequently, to non-physical reconstructions of the sought dynamics.

Following that, various tests concerning the solution of epidemic problems are discussed,
examining the APNN performance in inferring the unknown epidemic parameters, solving
the forward problem, and forecasting the spread of the infectious disease, also when spatially
heterogeneous parameters are considered.

The numerical solution obtained with a second-order AP-IMEX Runge-Kutta Finite
Volume method [9, 10] is considered as synthetic data for the ground truth and used in
the APNN to build up the training dataset. With regards of epidemic test cases, we remark
here, as also discussed in Appendix B, that since data of fluxes JS , JI , JR are not accessible
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in real-world applications, we only enforce the measurements of S, I,R in Ld. Nevertheless,
unless otherwise specified, we impose initial conditions of the fluxes in Lb. In all the examples,
periodic boundary conditions are considered. To strictly impose them (accounted again in
Lb), we employ the periodic mapping technique taken from [45] in the input layer

UNN (x, t) = UNN (cos(αx), sin(αx), t) , (23)

where α is a hyperparameter controlling the frequency of the solution. For the tests con-
cerning the Goldstein–Taylor model, the activation function sin is chosen, adopting the
SIREN framework [39]; for the epidemic tests, the function tanh is used. Finally, the Adam
method [31] is used for the optimization process and derivatives in the NN are computed
applying automatic differentiation [3].

For all the numerical examples, we adopt a single feed-forward neural network with depth
8 and width 32. The model structure is deliberately fixed among numerical experiments in
both parabolic and hyperbolic regime, to highlight the main advantage of AP schemes that
macroscopic behavior can be captured without resolving small physical parameters numeric-
ally (i.e. the architectural parameters of the neural network are independent of the physical
scaling parameters). The chosen model and training hyperparameters are given in Tables 7
and 8 of the Appendix C for each test case.

4.1 Test 1: Goldstein-Taylor model in diffusive regimes

In the following, we seek to emphasize numerically the importance of choosing the correct
formulation to preserve the AP property and correctly approximate population dynamics
even in diffusive regimes, particularly when dealing with partial information available. To
this aim, we set up for problem (13) a test with initial conditions

ρ(x, 0) = 6 + 3 cos(3πx), j(x, 0) =
9πc2

σ
sin(3πx),

with c = 1 and σ = 4. We consider periodic boundary conditions, choosing α = 3 in
the periodic mapping (23), and only the diffusive, parabolic regime of the model, choosing
ε = 10−4, with final time of the simulation tend = 0.1.

Inverse Problem Initially, we consider an inverse problem inferring the scattering coef-
ficient σ from the available measurement data using the APNN formulation presented in
Appendix A, with loss function (26) and Lεr term given in (28). For comparison, we also
solve the inverse problem applying the standard PINN residual (14) in the loss function. For
both APNN and standard PINN formulations, we train the network model on measurements
composed of Nd = 24000 equally spaced samples in the domain (x, t) ∈ [−1, 1]× [0, 0.1], from
which 20% (4800) points are randomly selected for validation purpose. For the APNN model
we consider measurements only for the density ρ, hence assuming to have no information
on the flux j, whereas for the standard formulation we employ data samples for both the
densities f+ and f− (therefore, in the latter case we assume we have more information on
the system (13)). In addition, Nr = 24000 residual points are employed with the same data
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Figure 3: Test 1: Inverse problem for the Goldstein-Taylor model in the diffusive regime
(ε = 10−4). Convergence of the target parameter σ = 4 with respect to epochs using the
APNN (left) and the standard PINN (right).

Figure 4: Test 1: Forward problem for the Goldstein-Taylor model with standard PINN in
the diffusive regime (ε = 10−4). Solution of the forward problem by PINN (left) and ground
truth (right) of the kinetic densities f+ (top) and f− (bottom).

split for validation set. With respect to loss function and training hyperparameters of the
APNN given in Table 7, the same setting has been used also for the standard PINN, with the
only difference just stated that, when used, the training dataset is given for both variables
f± considering equal weights ω±d .
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Figure 5: Test 1: Forward problem for the Goldstein-Taylor model with APNN in the diffusive
regime (ε = 10−4). Solution of the forward problem by APNN (left) and ground truth (right)
of the density ρ (top) and j (bottom).

We show the convergence of the target parameter σ in Figure 3 for both PINN formula-
tions. A very fast convergence can be observed in the APNN, with the initial guess σ0 = 2 and
a final relative error O(10−3). However, it can be observed that the standard PINN failed
to recover the correct value of the scattering parameter σ (at epoch 4000, early-stopping
prevents further training of the PINN).

Forward Problem To further highlight the importance of the AP property, we consider a
forward problem for the Goldstein-Taylor model, where scattering coefficient σ = 4 is given
and the goal now is to solve the equations on the spatio-temporal domain with corresponding
initial conditions. For APNN formulation, Nb = 200 points are employed to enforce initial
conditions of both ρ and j, with equation enforced on Nr = 24000 residual points on the
domain (x, t) ∈ [−1, 1] × [0, 0.1]. The standard PINN formulation based on the kinetic
equations (13) share the same set with APNN, but initial conditions are given for f±.

We plot the solutions obtained with the standard PINN in Figure 4 and with APNN
in Figure 5. Standard PINN based on the kinetic equations (13) shows its weakness and
converges to a trivial solution on the space-time domain, failing to approximate the forward
solution of both density and flux. On the contrary, the adoption of the APNN ensures the
convergence towards the correct diffusive limit, which is also beneficial for the inverse problem
we considered before.
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4.2 Test 2: Goldstein–Taylor model with source term

To examine the performance of the APNN with a more challenging setting closely related to
epidemic scenarios that we shall discuss later on, we introduce a source term that creates an
oscillatory effect in the density ρ in the Goldstein–Taylor model. The resulting system reads

∂ρ

∂t
+
∂j

∂x
= κρ ,

∂j

∂t
+
c2

ε2

∂ρ

∂x
= − σ

ε2
j ,

(24)

where κ = κ(x). For this problem, we reformulate the AP-loss function accordingly to
the model, simply including the presence of the source term with respect to the formulation
discussed in Appendix A. In the source term, we set κ(x) = κ0 +κ1 sin(κ2πx), with a baseline
value κ0 = 0 perturbed by sinusoidal oscillations having amplitude κ1 = 3 and frequency
κ2 = 4. We consider again a spatial domain L = [−1, 1] and c = 1. The final goal in this test
is to infer parameters κ0, κ1 and κ2 and evaluate the spatio-temporal reconstruction given
by the APNN with a partially observed system, having only information of ρ, considering a
scattering coefficient σ = 1 and the following initial conditions:

ρ(x, 0) = 1 + 0.5 e−10x2 , j(x, 0) = 10x e−10x2 .

Test 2 (a): Diffusive regime with density data only

We initially consider a diffusive, parabolic regime defined by ε = 10−5, with tend = 0.1. We
employ Nd = 12000 for ρ, not considering any dataset for j, while still imposing initial and
boundary conditions for both variables. For the residual term, we use Nr = 12000 points on
the domain (x, t) ∈ [−1, 1] × [0, 0.1]. We use 20% of Nd and Nr for validation purposes and
the rest for the training. Results of the parameters inference are shown in Table 1, where
initial guesses of target variables are listed, even though we observed that the neural network
is not very sensitive to the choice of these values. From these results we can observe that,
in general, the most difficult coefficient to calibrate with the NN is the amplitude of the
perturbation of the source term, κ1.

The APNN forward approximations of ρ and j are presented in Figure 6, where we can
observe that forward solutions well capture the correct dynamics of ρ and accurately recover j

Parameter Ground Truth Initial Guess Estimation Relative Error

κ0 0 0.5 0.0011 N/A
κ1 3 2 2.9263 2.46× 10−2

κ2 4 3 4.0003 7.50× 10−5

Table 1: Test 2 (a): Goldstein-Taylor model with source in diffusive regime (ε = 10−5) with
density data only. Inference results for the source term coefficients using the APNN.
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Figure 6: Test 2 (a): Goldstein-Taylor model with source in diffusive regime (ε = 10−5)
with density data only. Approximated forward solution (left column), ground truth (middle
column) and relative L2 error (right column) of density ρ (first row) and flux j (second row)
obtained with the APNN.

without any measurement on the latter. Nonetheless, we acknowledge that when concerning
diffusive regimes as in Eq. (17), the problem results fully described by the sole density ρ,
and the absence of information on j does not lead to an actual lack of data knowledge.

Test 2 (b): Hyperbolic regime with density data only

In the second case, we consider a hyperbolic regime with ε = 1 and tend = 0.5. We employ
Nd = 16800 for ρ, not considering again any dataset for j, and fix Nr = 16800 on the domain
(x, t) ∈ [−1, 1] × [0, 0.5], with 20% of each dataset for validation. Coefficients inferred by
the APNN are listed in Table 2, while forward solutions are shown in Figure 7. Similar to
the diffusive regime, the APNN correctly infer all the unknown parameters and is capable
of approximating the solution of densities ρ and j well, but in this case in a much more
demanding problem. Indeed, even though in hyperbolic regimes the problem is not completely

Parameter Ground Truth Initial Guess Estimation Relative Error

κ0 0 0.5 4.37× 10−5 N/A
κ1 3 2 3.0005 1.67× 10−4

κ2 4 3 4.0002 5.00× 10−5

Table 2: Test 2 (b): Goldstein-Taylor model with source in hyperbolic regime (ε = 1) with
density data only. Inference results for the source term coefficients using the APNN.
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Figure 7: Test 2 (b): Goldstein-Taylor model with source in hyperbolic regime (ε = 1)
with density data only. Approximated forward solution (left column), ground truth (middle
column) and relative L2 error (right column) of density ρ (first row) and flux j (second row)
obtained with the APNN.

defined by the sole density of the system, being the dataset really incomplete without any
information on the flux j, the APNN is still capable of approximating the correct solution of
the whole dynamics.

4.3 Test 3: SIR transport model with constant epidemic parameters

In the following, we evaluate the performance of the APNN with respect to the dynamics
governed by the SIR multiscale transport model (5). We first design a numerical test with
an initial condition that simulates the presence of two epidemic hot-spots, aligned in the
spatial domain L = [0, 20], presenting a different number of infected individuals, distributed
following a Gaussian function,

I(x, 0) = α1 e
−(x−x1)2 + α2 e

−(x−x2)2 ,

where x1 = 5 and x2 = 15 are the coordinates of the hot-spots, while α1 = 0.01 and
α2 = 0.0001 define the different initial epidemic concentration in the two cities, hence with
a deeply higher density of infected individuals in the first city. Assuming that there are no
immune individuals at t = 0 and that the total population is uniformly distributed in the
domain, we have

S(x, 0) = 1− I(x, 0), R(x, 0) = 0.

We impose initial fluxes in equilibrium, following (7), and periodic boundary conditions to
allow both directions of connection for the two cities. We initially consider a simple setting
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Figure 8: Test 3.1 (a): SIR transport model with constant epidemic parameters and partially
observed dynamics in diffusive regime (λ2

S,I,R = 103, τS,I,R = 10−3). Selected sparse samples
(Nd = 20) marked with white crosses (left column), approximation obtained in the inverse
problem (middle column), and ground truth (right column) of the densities of infected I.

defined by constant epidemic parameters in space and time, with β = 12 and γ = 6, which
lead to study an infectious disease characterized by an initial reproduction number Rt(0) = 2.

The APNN is used to infer both the epidemic parameters as well as approximate the
solutions for a parabolic and a hyperbolic scenario. To mimic the availability of data close to
reality, we use a sparse dataset for the training process, sampling the spatio-temporal points
from the available dataset with probability proportional to the magnitude of I. We consider,
indeed, that in real-world epidemic scenarios data on the evolution of the infectious disease
are only available in the regions in which the virus has already started to spread. Specifically,
the probability of each spatio-temporal location (x, t) chosen for the training dataset is given
by

p(x, t) =
I(x, t)∫
Ω I(x, t)

. (25)

Test 3 (a): Partially observed dynamics in diffusive regime

In the first case, a parabolic configuration of speeds and relaxation parameters is considered,
with λ2

S,I,R = 103 and τS,I,R = 10−3. We examine the performance of the APNN in the two
following different problems.

• Test 3.1 (a): Parameter inference test. We consider a sparse dataset where
only Nd = 20 measurements are selected from the entire space-time domain (x, t) ∈
[0, 20]× [0, 4], according to the density of I, as described in (25), as shown in Figure 8
(left).

• Test 3.2 (a): Forecasting test. As a second problem, we intend to investigate the
forecasting capability of the APNN. In contrast with sampling measurements available
across the entire spatio-temporal domain in the parameter inference test, we generate
a training dataset of size Nd = 5300 on a shorter time domain t ∈ [0, 1.5] and we assess
the correctness of APNN approximations in t ∈ [0, 1.5] and forecasting performance in
t ∈ [1.5, 4].

19



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.5

1.0

1.5

2.0

I(t
)

approx
true

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R t
(t)

approx
true

Figure 9: Test 3.2 (a): SIR transport model with constant epidemic parameters and partially
observed dynamics in diffusive regime (λ2

S,I,R = 103, τS,I,R = 10−3). Approximation and
forecast with measurements on a short time t ∈ [0, 1.5] denoted by the dashed line (left
column), and ground truth (middle column) of infected I (first row) and removed R (second
row). Temporal evolution of the cumulative density of infected individuals I in the whole
domain (first row, right) and of the reproduction number Rt (second row, right) obtained
with the APNN, trained based on a short time period t ∈ [0, 1.5] (marked by the dotted line).

In both cases, equations residual are enforced on Nr = 40000 residual points on the spatio-
temporal domain and 20% of each dataset is used for validation. In addition, we assume
initial conditions for S, I,R are unknown in both problems, thus requiring an even more
demanding performance to the APNN.

Results of the parameter inference task based on the sparse measurement dataset are
reported in Table 3, where an excellent estimation of both β and γ can be observed with
respect to the ground truth. Figure 8 shows that the reconstructed forward approximations
for the density of the epidemic compartment I have an excellent agreement with the true
solution in the entire domain. Also in the forecasting test, the approximated and predicted

Parameter Ground Truth Initial Guess Estimation Relative Error

β 12 8 11.9428 4.76× 10−3

γ 6 3 5.9772 3.80× 10−3

Table 3: Test 3.1 (a): SIR transport model with constant epidemic parameters and partially
observed dynamics in diffusive regime (λ2

S,I,R = 103, τS,I,R = 10−3). Inferred results for
transmission rate β and recovery rate γ from a sparse measurement dataset of Nd = 20
samples, and the relative error with respect to the ground truth values.
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Figure 10: Test 3.1 (b): SIR transport model with constant epidemic parameters and partially
observed dynamics in hyperbolic regime (λ2

S,I,R = 1, τS,I,R = 1). Selected sparse samples
(Nd = 20) marked with white crosses (left column), approximation obtained in the inverse
problem (middle column), and ground truth (right column) of the densities of infected I.

dynamics (based on the measurements from the time period t ∈ [0, 1.5]) perfectly match the
ground truth in the entire domain t ∈ [0, 4], as shown in Figure 9, even if in this demanding
setting initial conditions of densities are assumed to be unknown. These results further
highlight the capability of APNN to forecast the spread of an infectious disease in diffusive
regimes thanks to the physical knowledge of the PDE system embedded in the NN together
with the preservation of the AP property. In the same Figure, we present also the temporal
evolution of the cumulative density of infected individuals I in the whole domain as well
as the effective reproduction number Rt predicted by the APNN. The excellent agreement
between predictions (t > 1.5) and the ground truth out of the training domain further assess
the forecasting capability of APNNs.

Test 3 (b): Partially observed dynamics in hyperbolic regime

In the second case, we consider a hyperbolic regime with λS,I,R = 1 and τS,I,R = 1. As
previously done, we consider two different contexts.

• Test 3.1 (b): Parameter inference test. We first consider a sparse measurement
setting, where Nd = 20 measurements the spatio-temporal domain (x, t) ∈ [0, 20]× [0, 5]
are available. The chosen samples are shown in Figure 10 (left) and have been selected
again according to the density of I, as described in (25).

Parameter Ground Truth Initial Guess Estimation Relative Error

β 12 8 12.0126 1.05× 10−3

γ 6 3 6.0447 7.45× 10−3

Table 4: Test 3.1 (b): SIR transport model with constant epidemic parameters and partially
observed dynamics in hyperbolic regime (λ2

S,I,R = 1, τS,I,R = 1). Inferred results for trans-
mission rate β and recovery rate γ from a sparse measurement dataset of Nd = 20 samples,
and relative error with respect to the ground truth values.
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Figure 11: Test 3.2 (b): SIR transport model with constant epidemic parameters and par-
tially observed dynamics in hyperbolic regime (λ2

S,I,R = 1, τS,I,R = 1). Approximation with
measurements from a shorter time period t ∈ [0, 1.5] (first column) or t ∈ [0, 2.5] (middle
column), stopped at the dashed line, and ground truth (last column), of the densities of
infected I (first row) and removed R (second row).
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Figure 12: Test 3.2 (b), SIR transport model with constant epidemic parameters and partially
observed dynamics in hyperbolic regime (λ2

S,I,R = 1, τS,I,R = 1). Temporal evolution of the
cumulative density of infected individuals I in the whole domain (left) and of the reproduction
number Rt (right) obtained with the APNN using measurements from a shorter period of
t ∈ [0, 1.5] or t ∈ [0, 2.5] (stopped at the dotted lines) compared with ground truth.

• Test 3.2 (b): Forecasting test. Secondly, we consider a forecasting task, training
the APNN with the measurements generated from a limited time domain t ∈ [0, ttrain].
In this example, we chose ttrain = 1.5 and ttrain = 2.5 with Nd = 5000 and Nd =
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8500 measurements of densities employed respectively, and then evaluate the network
performance over the time domain t ∈ [0, 5].

In both scenarios, Nr = 23600 residual points are employed on the spatio-temporal domain
to enforce the underlying equations, still assuming that initial conditions of densities S, I,R
are unknown, as in the previous test case.

Parameters β and γ estimated by the APNN from the sparse measurements are presented
in Table 4, where we observe again a very good agreement with respect to true values. At the
same time, the APNN is capable of reconstructing the correct dynamics of the phenomenon
of interest in the whole domain besides the sparsity and incompleteness of data, as shown
in Figure 10. On the other hand, we show results obtained when training the APNN with
measurements taken from a shorter time period in Figures 11 and 12. In Figure 12, we
plot the temporal evolution of the cumulative density of infected individuals I in the whole
domain as well as the effective reproduction number Rt predicted by the APNN when the
measurement data restrict to the shorter time periods t ∈ [0, ttrain]. When ttrain = 1.5, APNN
predictions deviate from the ground truth almost immediately after the training period. In
contrast, when the measurement data is extended to ttrain = 2.5, the APNN produces good
reconstructions and predictions in the forecasting region (t > 2.5) with respect to the ground
truth. Similar observations can be made for the approximations of densities I and R presented
in Figure 11. This behavior of the APNN is observed because, when considering a dataset
only for t ∈ [0, 1.5], we do not cover enough information of the major dynamics. We remark
indeed that no data on fluxes is given to the APNN, which, in a hyperbolic regime, means to
deal with a consistent lack of data knowledge. The predictions obtained, in fact, show that
the APNN tends to smooth out the actual epidemic propagation pattern, not describing the
correct transport/hyperbolic mechanism in the regions connecting the two urban areas. This
appears clear when looking at Figure 11 (first column) and Figure 12, and observing that
the dynamics predicted by the APNN tend to spread the virus faster in a more diffusive way,
giving rise to a fake epidemic hot-spot around t = 2.5.

4.4 Test 4: SIR transport model with heterogeneous environment

Next, we consider a much more challenging scenario, taking into account a spatially varied
transmission rate that follows a hypothetical heterogeneous environment. An initial condition
of the SIR multiscale transport model is designed to simulate the presence of 3 epidemic hot-
spots aligned in the spatial domain L = [0, 20], each one having a different initial density of
infected individuals, distributed in space following again a Gaussian:

I(x, 0) = α1 e
−(x−x1)2 + α2 e

−(x−x2)2 + α3 e
−(x−x3)2 .

Here x1 = 10/3, x2 = 10, x3 = 50/3 are the coordinates of the epidemic centers and α1 =
0.01, α2 = 0.001, α3 = 0.004 define the different initial epidemic concentration in each
spot. Assuming again that there are no immune individuals at t = 0 and that the total
population is uniformly distributed in the spatial domain, we set S(x, 0) = 1 − I(x, 0) and
R(x, 0) = 0. As previously, we impose initial fluxes in equilibrium, following (7), and periodic
boundary conditions, to allow a connection also between hot-spots 1 and 3, so that the domain
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Figure 13: Test 4: SIR transport model with spatially variable transmission rate. Left:
schematic representation of the spatial setting considered, with 3 initial hot-spots present-
ing different initial concentrations of infectious people, proportional to the light red circles.
Individuals move from one location to another following the two opposite directions defined
in the one-dimensional space with periodic boundary conditions. Due to the heterogeneous
environment 3 additional hot spots will form along the main connection lines. Right: initial
conditions for susceptible (top), infectious (middle) and removed (bottom).

connecting the positions of these regions form the closed shape presented in Figure 13 (left).
In the same figure (right), initial conditions of the 3 epidemic compartments are shown. We
set the following spatially varied transmission rate [9, 42]:

β(x) = β0 + β1 sin (ζπx) ,

with β0 = 9 and perturbing this baseline value with oscillations of amplitude β1 = 2.5 and
frequency ζ = 0.55. The recovery rate is set to be γ = 8. This choice of parameters simulates
an infectious disease characterized by an initial reproduction number Rt(0) ≈ 1.05. With
the APNN, the goal is to infer β0, β1 and ζ as well as approximate the dynamics of densities
based on the partially available measurements and the forecasting performance.

Test 4 (a): Partially observed dynamics in diffusive regime

In the first scenario, a parabolic configuration of speeds and relaxation parameters is con-
sidered with λ2

S,I,R = 105 and τS,I,R = 10−5.
Similar to the setting of Test 3, we investigate the capabilities of the proposed APNN

when concerning heterogeneous epidemic environments through the following two scenarios.

• Test 4.1 (a): Parameter inference test. First, we consider a relatively sparse
availability of measurements, with Nd = 1000 samples over the spatio-temporal domain
(x, t) ∈ [0, 20]× [0, 5] selected according to (25), as previously described, with the main
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Figure 14: Test 4.1 (a): SIR transport model with spatially variable transmission rate and
partially observed dynamics in diffusive regime (λ2

S,I,R = 105, τS,I,R = 10−5). Selected sparse
samples for the dataset marked with white crosses (left column), approximation obtained in
the inverse problem (middle column), and ground truth (right column) of the densities of
infected I.

task to infer unknown physical parameters β0, β1 and ζ. The selected samples are
indicated in Figure 14 (left).

• Test 4.2 (a): Forecasting test. Secondly, the forecasting performance in predicting
the spread of the infectious disease until tend = 5 with Nd = 10100 measurements
generated from a shorter time period t ∈ [0, 2.5] is investigated.

In both scenarios, the equation residual is enforced on Nr = 10100 residual points in the
domain (x, t) ∈ [0, 20]× [0, 5], and initial conditions are enforced on Nb = 200 equally spaced
points. Furthermore, we enforce the conservation (3) on Nc = 235 equally spaced temporal
points, and we randomly split 20% of each dataset for validation purpose.

In Table 5, we present the results of parameters inference based on the sparse meas-
urements. The APNN accurately recovers the correct values for parameters β0, β1 and ζ
characterizing the epidemic incidence function, even when initial guesses are away from cor-
responding ground truth values. As illustrated in Figure 14, reconstruction of the density I
is also in a very good agreement with the ground truth. Notice that the three initial epi-
demic concentrations give rise to six different epidemic outbreaks in time due to the spatial
heterogeneity assigned to the transmission rate. In Figure 15, we also present the approx-

Parameter Ground Truth Initial Guess Estimation Relative Error

β0 9 5 9.0170 1.89× 10−3

β1 2.5 1.5 2.4512 1.95× 10−2

ζ 0.55 0.5 0.5508 1.45× 10−3

Table 5: Test 4.1 (a): SIR transport model with spatially variable transmission rate and
partially observed dynamics in diffusive regime (λ2

S,I,R = 105, τS,I,R = 10−5). Inferred results

for the three different coefficients in the incidence function, β0, β1, ζ, and relative error with
respect to the correct solution.
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Figure 15: Test 4.2 (a): SIR transport model with spatially variable transmission rate and
partially observed dynamics in diffusive regime (λ2

S,I,R = 105, τS,I,R = 10−5). Approximation
and forecast with measurements taken from a shorter time period, stopped at the dashed line
(left column), and ground truth (middle column) of the densities of infected I (first row) and
removed R (second row). Temporal evolution of the cumulative density of infected individuals
I in the whole domain (first row, right) and of the effective reproduction number Rt (second
row, right) obtained with the APNN, trained based on measurements from a shorter time
period t ∈ [0, 2.5] (marked by the dotted line).

imated forward solutions for the forecasting task. A good match in the forecasting region
(t > 2.5) is observed, demonstrating once more the capability of the APNN to capture the
underlying physics and deliver reasonably accurate predictions in the forecasting regions,
even when spatially heterogeneous environments are considered in the context of partially
observed systems.

Parameter Ground Truth Initial Guess Estimation Relative Error

β0 9 5 9.0205 2.28× 10−3

β1 2.5 1.5 2.4691 1.24× 10−2

ζ 0.55 0.5 0.5502 3.64× 10−4

Table 6: Test 4.1 (b): SIR transport model with spatially variable transmission rate and par-
tially observed dynamics in hyperbolic regime (λ2

S,I,R = 1, τS,I,R = 1). Inferred results from

sparse measurements for the three different coefficients in the incidence function, β0, β1, ζ,
and relative error with respect to the ground truth.
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Figure 16: Test 4.1 (b): SIR transport model with spatially variable transmission rate and
partially observed dynamics in hyperbolic regime (λ2

S,I,R = 1, τS,I,R = 1). Selected sparse
samples for the dataset marked with white crosses (left column), approximation obtained in
the inverse problem (middle column), and ground truth (right column) of the densities of
infected I.
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Figure 17: Test 4.2 (b): SIR transport model with spatially variable transmission rate and
partially observed dynamics in hyperbolic regime (λ2

S,I,R = 1, τS,I,R = 1). Approximation
and forecast with measurements taken from a shorter time period, stopped at the dashed line
(left column), and ground truth (middle column) of the densities of infected I (first row) and
removed R (second row). Temporal evolution of the cumulative density of infected individuals
I in the whole domain (first row, right) and of the effective reproduction number Rt (second
row, right) obtained with the APNN, trained based on measurements from a shorter time
period t ∈ [0, 2.5] (marked by the dotted line).

Test 4 (b): Partially observed dynamics in hyperbolic regime

In the second scenario, we consider a hyperbolic regime setting λS,I,R = 1 and τS,I,R = 1.
Similar to the previous test case, we consider two distinguished tasks for the APNN.
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• Test 4.1 (b): Parameter inference test. Initially, a sparse measurement dataset
of Nd = 1000 training samples over the spatio-temporal domain (x, t) ∈ [0, 20] × [0, 5]
is considered, based on the importance sampling previously described, and marked in
Figure 16 (left), to solve the inverse problem and also evaluate the following forward
reconstruction.

• Test 4.2 (b): Forecasting test. Then, the APNN is trained with Nd = 8400 data
samples selected from the spatio-temporal domain (x, t) ∈ [0, 20] × [0, 2.5], and the
reconstruction of the dynamics is evaluated until t = 5, to also examine the performance
on the forecasting of the virus spread.

Equation residual is enforced on Nr = 23500 residual points on the domain (x, t) ∈ [0, 20]×
[0, 5] in both setups, while Nb = 600 points are applied to enforce initial conditions for
densities S, I,R and fluxes JS , JI , JR, and the conservation (3) is enforced on Nc = 47 equally
spaced temporal points. 20% of each dataset is randomly selected, as usual, for validation
during the training process.

Similarly with the parabolic setting, the APNN is able to estimate the correct parameters
of the spatially-varied transmission rate β from sparse measurements in the hyperbolic regime,
as shown in Table 6. In Figures 16 and 17, the approximated forward solutions and the
ground truth of I and R over the space-time domain are shown. A good match between the
APNN approximation and the ground truth is observed, for both sparse measurement and the
measurement from a reduced training time domain, in the latter considering also predictions
of the space-time dynamics. Notice that, as expected, due to the hyperbolic setting of the
scaling parameters of this test, the six epidemic outbreaks that arise at different temporal
levels due to the spatial movement of individuals are more contained in terms of spatial spread
with respect to results obtained in the diffusive regime.

5 Conclusions

The recent Covid-19 pandemic has led to a significant development of mathematical mod-
els for describing epidemiological phenomena, which have also introduced the challenge of
identifying the parameters involved from partial information. In this direction, recent de-
velopments in machine learning represent a promising tool for addressing such problems in
the hope of identifying robust procedures for solving the corresponding inverse problems and
also formulating predictive scenarios. This paper has addressed these problems in the con-
text of spatially dependent epidemic models for which, in addition to the lack of information
about the spread of the epidemic, face additional difficulties induced by the different scales at
which the dynamics take place. These scales are representative of the different interactions
that occur in densely populated areas, such as urban areas, or in suburban areas where the
movement of individuals over long distances prevails. The construction of neural networks
that can accurately describe the various scales is thus essential. In particular, we have shown
how physically informed neural networks (PINN) that benefit from the asymptotic-preserving
(AP) property provide considerably better results with respect to the different scales of the
problem when compared with standard PINN. Several numerical tests have been presented
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to illustrate the performance of this new class of neural networks, referred to as asymptotic-
preserving neural network (APNN), both for inverse and forward problems. Finally, we
emphasize that even if, for presentation simplicity, we focused on a single population hyper-
bolic SIR model, the results extend naturally to multi-population transport models which
include additional epidemic compartments [1, 7, 11].
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A AP-loss function for the Goldstein–Taylor model

Fixing a finite set of residual points {(xnr , tnr )}Nr
n=1 ⊂ Ω, {(xkb , tkb )}

Nb
k=1 ⊂ ∂Ω, and considering

the available dataset {uid, xid, tid}
Nd
i=1, we define the loss function for the Goldstein–Taylor

model as follows

L(θ) =ωTd Ld(θ) + ωTb Lb(θ) + ωTr Lεr(θ). (26)

The expressions of Ld and Lb terms in (26) read

ωTd Ld(θ) =
ωρd
Nd

Nd∑
i=1

∣∣ρNN (xid, t
i
d; θ)− ρ(xid, t

i
d)
∣∣2 +

ωjd
Nd

Nd∑
i=1

∣∣jNN (xid, t
i
d; θ)− j(xid, tid)

∣∣2 ,
ωTb Lb(θ) =

ωρb
Nb

Nb∑
k=1

∣∣∣ρNN (xkb , t
k
b ; θ)− ρ(xkb , t

k
b )
∣∣∣2 +

ωjb
Nb

Nb∑
k=1

∣∣∣jNN (xkb , t
k
b ; θ)− j(xkb , tkb )

∣∣∣2 . (27)

The AP-residual term Lεr in (26) is defined through (18) and reads as follows

ωTr Lεr(θ) =
ωρr
Nr

Nr∑
n=1

∣∣∣∣∂ρNN (xnr , t
n
r ; θ)

∂t
+
∂jNN (xnr , t

n
r ; θ)

∂x

∣∣∣∣2

+
ωjr
Nr

Nr∑
n=1

∣∣∣∣ε2∂jNN (xnr , t
n
r ; θ)

∂t
+ c2∂ρNN (xnr , t

n
r ; θ)

∂x
+ σ jNN (xnr , t

n
r ; θ)

∣∣∣∣2 ,
(28)

where we assumed that the scattering coefficient σ in system (13) is constant.
This formulation allows the neural network to benefit from the AP property. Indeed, if

we consider the zero relaxation (or diffusive) limit ε→ 0, Eq. (28) results

ωTr L0
r(θ) =

ωρr
Nr

Nr∑
n=1

∣∣∣∣∂ρNN (xnr , t
n
r ; θ)

∂t
+
∂jNN (xnr , t

n
r ; θ)

∂x

∣∣∣∣2

+
ωjr
Nr

Nr∑
n=1

∣∣∣∣c2∂ρNN (xnr , t
n
r ; θ)

∂x
+ σNN jNN (xnr , t

n
r ; θ)

∣∣∣∣2 ,
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which is consistent with the definition of residual term that we would have by directly con-
sidering the diffusive limit of the model in (17).

B AP-loss function for the hyperbolic SIR model

Aware that in real-world applications data on fluxes JS , JI , JR are generally difficult to access,
we consider the loss function

L(θ) = ωTd Ld(θ) + ωTb Lb(θ) + ωTr Lτr (θ) + ωc Lc(θ), (29)

where the first term is given by

ωTd Ld(θ) =
ωSd
Nd

Nd∑
i=1

∣∣SNN (xid, t
i
d; θ)− S(xid, t

i
d)
∣∣2 +

ωId
Nd

Nd∑
i=1

∣∣INN (xid, t
i
d; θ)− I(xid, t

i
d)
∣∣2

+
ωRd
Nd

Nd∑
i=1

∣∣RNN (xid, t
i
d; θ)−R(xid, t

i
d)
∣∣2 .

Concerning the imposition of initial and boundary conditions, both included in the Lb term
in (29), we have the detailed expression

ωTb Lb(θ) =
ωSb
Nb

Nb∑
k=1

∣∣∣SNN (xkb , t
k
b ; θ)− S(xkb , t

k
b )
∣∣∣2 +

ωIb
Nb

Nb∑
k=1

∣∣∣INN (xkb , t
k
b ; θ)− I(xkb , t

k
b )
∣∣∣2

+
ωRb
Nb

Nb∑
k=1

∣∣∣RNN (xkb , t
k
b ; θ)−R(xkb , t

k
b )
∣∣∣2 +

ωJSb
Nb

Nb∑
k=1

∣∣∣JSNN (xkb , t
k
b ; θ)− JS(xkb , t

k
b )
∣∣∣2

+
ωJIb
Nb

Nb∑
k=1

∣∣∣JINN (xkb , t
k
b ; θ)− JI(xkb , tkb )

∣∣∣2 +
ωJRb
Nb

Nb∑
k=1

∣∣∣JRNN (xkb , t
k
b ; θ)− JR(xkb , t

k
b )
∣∣∣2 .

We underline here that, to impose boundary conditions, we apply the appropriate mapping
technique based on the specific boundary conditions of the problem of interest [45].

The expression of the last mean squared error term in the loss function (29), which
concerns the residual presented in (21), reads

ωTr Lτr (θ) =
ωSr
Nr

Nr∑
n=1

∣∣∣∣∂SNN (xnr , t
n
r ; θ)

∂t
+
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n
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∂x
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n
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n
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n
r ; θ)

∣∣∣∣2

+
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n
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∂JINN (xnr , t

n
r ; θ)

∂x
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n
r )SNN (xnr , t

n
r ; θ)INN (xnr , t

n
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+ γ(xnr , t
n
r )INN (xnr , t

n
r ; θ)

∣∣∣∣2
+
ωRr
Nr

Nr∑
n=1

∣∣∣∣∂RNN (xnr , t
n
r ; θ)

∂t
+
∂JRNN (xnr , t

n
r ; θ)

∂x
− γ(xnr , t

n
r )INN (xnr , t

n
r ; θ)

∣∣∣∣2
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+
ωJSr
Nr
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∣∣∣∣τS(xnr )
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∂JRNN (xnr , t

n
r ; θ)

∂t
+DR(xnr )

∂RNN (xnr , t
n
r ; θ)

∂x

− τR(xnr )
λR(xnr )

λI(xnr )
γ(xnr , t

n
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n
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∣∣∣∣2 .
If one considers the limit τi → 0, λi → ∞, i ∈ {S, I,R} s.t. equations (6) hold true, the
above term is clearly consistent with the definition of residual applied directly to the diffusive
limit given by equations (8).

Finally, in the SIR epidemic transport model, conservation (3) is enforced as

ωc Lc(θ) =
ωc
Nc

Nc∑
m=1

∣∣∣∣∣∣
Nq∑
q=1

(SNN (xq, t
m
c ; θ) + INN (xq, t

m
c ; θ) +RNN (xq, t

m
c ; θ))

−
Nq∑
q=1

(S(xq, 0) + I(xq, 0) +R(xq, 0))

∣∣∣∣∣∣
2

,

(30)

with Nq quadrature points in D.

C Loss function and training hyperparameters

Loss function and training hyperparameters of the APNN for the various test cases considered
are listed in the following Tables.
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